
Subqueries in SPARQL

Renzo Angles1 and Claudio Gutierrez2

1 Department of Computer Science, Universidad de Talca
2 Department of Computer Science, Universidad de Chile

Abstract. Subqueries are a poweful feature which allows to enforce
reuse, composition, rewriting and optimization in a query language.
In this paper we perform a comprehensive study of the incorporation
of subqueries into SPARQL. We consider the many possible choices as
suggested by the experience of similar languages, as well as features that
developers are incorporating and/or experimenting with. Our study in-
cludes the discussion in the SPARQL case of common design issues con-
cerning subqueries (i.e., query correlation, scope of datasets, and opti-
mization), show the interplay among them, and study their implications
in terms of expressive power.
Based on this study, we present an extension of SPARQL, with syntax
and formal semantics, which incorporates all knwon types of subqueries
in a modular fashion and preserving the original semantics.

1 Introduction

This paper addresses the design issues raised by the introduction of subqueries
to the standard RDF query language SPARQL. By a subquery is usually under-
stood a query that is part of another query.

The advantages of having subqueries in a query language are well known [6,4];
among the most important for SPARQL we can mention incorporation of views,
reuse of queries, query rewriting and optimization, and facilitating distributed
queries [2]. For SPARQL, whose 2008 Recommendation lacks these features, the
issue was early raised by the RDF Data Access Working Group in July 2004 with
the name of cascadedQueries [1]. Also it has been gradually incorporated into
SPARQL engines, like ARQ and Virtuoso. To the best of our knowledge, there are
neither formal semantics defined for these types of queries nor a systematic study
of their expressive power and relationships with other functionalities present the
language.

There are several desirable design considerations when including a new fea-
ture to a language. Among the most important that will guide our study here
are: precise semantics, hopefully a formal one, that avoids case by case analy-
sis and missing corner cases; compositional semantics, that is, the meaning of
an expression should be the same wherever it appears, and expressions with
equal result types should be allowed to appear in the same contexts. This is
crucial when designing subqueries; Modularity, that is, each functionality should
be “basic” (atomic) and hopefully semantically independent of others. This is

particularly important in subquerying, because queries as part of queries bring
with them many features, sometimes in an hidden or undesirable manner. Fi-
nally, one always want simplicity, which in this case amounts to avoid adding
new features if already present. Most of the current proposals lack some or all
of these desiderata.

In this paper we study the introduction of subqueries to SPARQL following
these guidelines. We study the diverse proposals, both theoretical and practical,
that have been presented, analyze their basic constructors, and show their in-
terplay and implications. We unify these diverse constructions in an extension
of SPARQL that includes all these features –modulo some consistency neces-
sary constraints–, and extend for them the standard semantics of SPARQL. We
present the syntax and a formalized semantics.

This global goal is developed as follows in this paper. First, (in Section 2) we
present, via examples, an informal introduction to subqueries in SPARQL. We
show different approaches existing and introduce informally the problems and
advantages of each of them. Then, (in Section 3) we introduce the definition of a
formal semantics for subqueries, which is flexible and expressive enough to cover
all known cases. We show that it preserves the original one of SPARQL when
the constructs are expressible in SPARQL, and extend the original semantics
coherently in the other cases. After this, (in Section 4), we discuss one by one
the diverse functionalities that subqueries in SPARQL incorporate (explicitly
or as side-effect), like creation of new values, projection in patterns, possibility
of choosing set semantics for patterns. Our goal here is to isolate the basic
constructors playing behind the different proposed extensions. We study their
expresiveness and interrelation. Finally, in Section 5 we summarize our findings
and suggest next steps in the process of incorporating subqueries into SPARQL.

2 Motivating Examples

There are many choices to incorporate subqueries into SPARQL. Two main
approaches emerge naturally: to consider those features suggested by the ex-
perience of similar languages, notably SQL; and to consider the features that
implementors are already incorporating or exploring.

In this work we follow both. On the one hand, subqueries using known con-
structors taken from standard languages like SQL (subqueries in WHERE and
FROM clauses), and on the other, subqueries in places where the developers are
considering necessary (filters for example) and also in places where there is still
little experience (e.g. in the NAMED FROM clauses).

Our proposal extends the grammar of SPARQL (complete grammar is pre-
sented in the Appendix A). In particular, it includes the following features:

– Extends the FROM clause to permit a construct query as either the default
graph or a named graph.

– Allows a select-query in the place of a graph pattern.
– Introduces the set-membership operator IN in order to find a value in a set

of values returned by a select query.

2

– Introduces the quantifier operators SOME and ALL which allow, using a
scalar comparison operator (e.g. “=”), to compare a value with some or all
the values returned by a select-query.

– Introduces the operator EXISTS to allow an ask-query inner a filter con-
straint.

In this section we motivate these choices via examples, and discuss their
implications, interplay, and completeness in detail in Section 4.

2.1 Subqueries in dataset clauses

This extension is based on the property that construct-queries return RDF
graphs, hence, it is natural to allow the inclusion of these type of queries in
dataset clauses FROM or FROM NAMED (which currently only accept refer-
ences to a graph).

These types of subqueries incorporate the possibility to compose queries au-
tomatically, and to specify the composition of several queries, and open the door
to modularization and optimization of queries. Correlation of variables, that is,
variables occurring both in the inner and outer query, enrich even more this
construct.

It is interesting to note that as side-effect of this extension, other features
are introduced, the most notably being the creation of values (by using ground
triples in the template of the construct-query).

Example 1. Mails of pairs of people having a co-authorship relation. The first
FROM points to a graph. The second one includes an inner query that outputs
a graph whose triples represent coauthors.

SELECT ?Mail1 ?Mail2

FROM u

FROM (CONSTRUCT { ?Aut1 co-author ?Aut2 }

FROM bib

WHERE { ?Art bib:has-author ?Aut1 . ?Art bib:has-author ?Aut2 .

FILTER (!(?Aut1 = ?Aut2))})

WHERE { ?Per1 co-author ?Per2 .

?Per1 foaf:mbox ?Mail1 . ?Per2 foaf:mbox ?Mail2 }

2.2 Subqueries as graph patterns

One of the most natural –at least at first sight– form of incorporating subqueries
into SPARQL is to allow a query in the place of a graph pattern. There is one
necessary restriction, though, that diminishes its power: In order to be compat-
ible with the original semantics of SPARQL graph patterns, the correlation of
variables can not go inside these type of subqueries. Consider for example the
join of two such subqueries (SELECT ?X ?Z WHERE { ?X ?Y ?Z }) and
(SELECT ?Y ?W WHERE { ?X ?Y ?W }). If ?Y is visible outside the former
(and similarly with ?X), which pattern is to be evaluated first?

3

Hence the need to impose the constraint that only the solution variables be
visible outside the select-query (i.e., the correlation of variables is not supported).
This restriction kills a great part of the expressivess of the subqueries and hence
their value. On the other hand, a strong functionality is also introduced: the
possibility to eliminate duplicates in patterns. (See Section 4.2, DISTINCT).

The positive aspects of these types of subqueries is the flexibility given por
rewriting and optimization purposes.

Example 2. Mails of people having no publications. The implementations simple
substract from the database of people those having no articles.
SELECT ?Mail FROM u

WHERE {

{?Per foaf:mbox ?Mail} MINUS {(SELECT DISTINCT ?Per

FROM bib

WHERE {?Art bib:has-author ?Per})}}

2.3 Subqueries in filter constraints

This extension follows the same design philosophy of subqueries in SQL by intro-
ducing the operators IN, SOME, ALL, and EXISTS. It results in the following
types of filter conditions:

(1) Set membership condition: it uses the IN operator to test whether the result
of a select-subquery contains a value (Example 3);

(2) Quantified condition: it combines a value, a quantifier operator (SOME/ALL),
and a scalar comparison operator (e.g., “<”) to test whether the comparison
condition is satisfied by some (Example 3) or all (Example 4) the data values
resulting of a select-subquery.

(3) Existencial condition: it uses the EXISTS operator to enclose and verify
whether an ask-subquery has at least one solution (Example 5).

Note that the types (1) and (2) demand a select-subquery with a single result
variable. The corresponding negation operators, NOT-IN and NOT-EXISTS, can
be represented by using the negation of filter conditions (i.e., “!”).

In a previous work [2] we studied these types of queries and proved that
nested queries using SOME, ALL and IN can be simulated by using nested
queries with the EXISTS operator.

It turns out that subqueries in filter expressions preserve faithfully the orig-
inal semantics of SPARQL. In particular, allow correlation of variables in outer
and inner expressions. This is because the filter is evaluted in a per-mapping
form: the subquery is evaluated once for each solution mapping of the outer
graph pattern (this is called the nested iteration method [6]).

Example 3. Name of researchers, whithout duplicates, with at least one paper in
some edition of the ISWC. (The query also works with IN replaced by ’= SOME’).
SELECT ?Name FROM bib

WHERE { ?Res bib:name ?Name . ?Art bib:author ?Res . ?Art bib:conf ?Conf .

FILTER (?conf IN (SELECT ?ConfX

WHERE { ?ConfX bib:series "ISWC" }))}

4

Example 4. The names of the oldest people. Note that the MAX aggregate op-
erator is not useful here because we are not asking for the highest age.
SELECT ?Name FROM foaf

WHERE { ?Per foaf:name ?Name . ?Per foaf:age ?Age .

FILTER (?Age >= ALL (SELECT ?AgeX

WHERE { ?PerX foaf:age ?AgeX }))}

Example 5. Researchers with at least one paper in every edition of the ISWC
(this is the typical query of the division operator).
SELECT ?Res FROM bib

WHERE { ?Aut name ?Name .

FILTER !(ASK

WHERE { ?conf series "ISWC" .

FILTER !(ASK

WHERE { ?Art author ?Aut .

?Art conf ?Conf })})}

These examples deserve some comments. The IN operator is less expressive
than the SOME operator. It is because the former is restricted to equality of
values whereas the latter allows any scalar comparison operator. In fact every
query using IN can be rewriten to a query using “= SOME”.

Subqueries with SOME/ALL operators without correlated variables are well-
suited for query composition (i.e., direct copy/paste of queries). In contrast, the
use of EXISTS is not good for query composition because it needs correlated
variables to make sense. This helps the user to express complex queries but makes
the evaluation harder (because the application of the nested iteration method).

An interesting feature of these subqueries is the natural elimination of du-
plicates. For instance, Example 6 shows the query in Example 3 expressed using
DISTINCT. Although the use of DISTINCT here is simple and clear, it must be
stressed that the duplicate elimination is expensive.1 Thus, the use of subqueries
could improve and optimize this task in many cases.

Example 6. Name of researchers, without duplicates, with at least one paper in
some edition of the ISWC (solution using DISTINCT).
SELECT DISTINCT ?Name FROM bib

WHERE { ?Res bib:name ?Name . ?Art bib:author ?Res .

?Art bib:conf ?conf . ?conf bib:series "ISWC" }

SQL includes an aditional type of subquery called aggregate subquery. It
extends the definition of subqueries type (2) by allowing an aggregate operator
(COUNT, AVG, SUM, MIN, MAX) in the select-subquery (see Example 7).

Example 7. Name of people whose age is under the average.
SELECT ?Name FROM foaf

WHERE { ?Per foaf:name ?Name . ?Per foaf:age ?Age .

FILTER (?Age < (SELECT AVG(?AgeX)

WHERE { ?PerX age ?AgeX }))}

1 The time it takes to sort the solutions, so that duplicates may be eliminated, is often
greater than the time it takes to execute the query itself [5].

5

3 Constructors and Semantics for Subqueries

In order to formally study the interplay of the different constructs presented,
we need to define the syntax and semantics of them. This is the content of this
section.

We depart from the widely accepted formalization of the syntax and seman-
tics given in [7], and present here the corresponding extensions. Additionally we
use the following notation: For a query Q we use the notation Q = (R,F, P)
to name explicitly its SELECT/CONSTRUCT/ASK clause (the R), its dataset
clause (the F), and the WHERE clause (the graph pattern P).

3.1 Syntax

As discussed in the previous section, subqueries in SPARQL can be introduced in
each of their three main clauses.2 Formally, we have the following three families
of subqueries, and the fragments summarized in Table 1.

(1) Subqueries in dataset clauses. If u ∈ I and QC is a construct-query then the
expressions FROM(QC) and FROM NAMEDu(QC) are dataset clauses.

(2) Subqueries as graph patterns. If QS is a select-query then the expression
(QS) is a graph pattern.

(3) Subqueries in FILTER constraints. IfQA is an ask-query then the expressions
EXISTS(QA) and ¬EXISTS(QA) are filter constraints.

SPARQLFrom SPARQL + (1)
SPARQLSubS SPARQL + (2)
SPARQLFilter SPARQL + (3)
SPARQLExt SPARQL + (1) + (2) + (3)

Table 1. Different possible extensions of SPARQL with subqueries. On the left the
notation for the language; on the right the features incorporated. SPARQL denotes the
SPARQL 1.0 version.

Let Q = (R,F, P) be a query. A query Q′ is nested in Q if and only if Q′

occurs in Q as part of one of the expressions defined above. In such case, Q is
known as the outer query and Q′ is known as the inner query. If Q does not
contain nested queries then Q is called a flat query. This definition supports
queries with any level of nesting.

Additionally, two queries Q and Q′ are correlated if and only if Q′ is nested in
Q, and there is some variable occurring in both the graph pattern of Q and the
graph pattern of Q′. Such variables are called correlated variables. This notion
of correlated queries will be allowed only for nested queries in filter constrains.
2 In this work we will avoid subqueries in the SELECT and CONSTRUCT clauses,

because, on one hand, although the former are allowed in SQL, they are hardly used,
and on the other, there are use cases reported with subqueries in the CONSTRUCT
clause.

6

3.2 Semantics

Although apparently simple and intuitive, the semantics of subqueries has several
subleties, the principal one being the scope of correlated variables.

A mapping µ is a partial function µ : V → T . The domain of µ, dom(µ), is
the subset of V where µ is defined. The empty mapping µ0 is a mapping such
that dom(µ0) = ∅ . Given a triple pattern t and a mapping µ, µ(t) is the triple
obtained by replacing the variables in t according to µ.

Scope of variables in a nested query. Given a query Q, as in programming
languages, a variables can occur in (some place of) Q as free or bound. The
precise recursive definition is as follows: For a query Q = (R,F, P), an occurrence
of a variable ?x is free in Q iff ?x occurs free in the pattern P and does not occur
in the clause R. For a pattern P , an occurrence of ?x is free iff either: (1) P is a
SPARQL pattern and ?x occurs in P , or (2) P is the pattern of an ASK-query
QA in a filter constraint, and ?x occurs free in QA.

Note: In this paper we do not consider free occurrences in FROM subqueries,
because there is yet little background and no known use cases for them. Note
also that if P is a SubSelect pattern, all variables occur bound.3

Let Q = (R,F, P) be a query and µ be a mapping. We denote by µ(Q)
the query resulting by replacing each occurrence of a free variable ?x in Q by
the constant µ(?x) (recursively if necessary). Note that the same variable ?x
could occur free and bound in the same query and we are replacing only the free
occurrences.

We need one more notion to be ready to give a formal semantics for sub-
queries. The answer for a query Q = (R,F, P), denoted ans(Q), is a function
which takes a set of mappings [[P]]d(F) obtained from evaluating the pattern
P over the dataset d(F), and returns: (i) a sequence of mappings when Q is a
select-query; (ii) an RDF graph when Q is a construct-query; and (iii) a boolean
value (true / false) when Q is an ask-query. (For the details of this semantics
–which stays unchanged here– we suggest to read [8]).

3 This rather counterintuitive notion is necessary as was illustrated in Section 2.2. In
the SPARQL 1.1 draft the variables in the SELECT clause of a SubSelect query
are “free”, i.e., are exposed to be captured, like in any other pattern, and those
“projected” (i.e. not occurring in the SELECT clause) are “local”, i.e. invisible from
outside.

This SPARQL 1.1 design decision goes counter-clock wise to the behaviour of
variables in a standard SELECT query, whose variables in the SELECT clause can
be renamed (consistently with those in the pattern) without harm. This is a desirable
design feature in any language which wants to be modular and extensible.

Currently, the only “new” feature a SubSelect pattern has as compared to a stan-
dard pattern, are the use of constructors available in the SELECT clause (limit,
distinct, etc.) to patterns. We believe that it would be better to sincere this deci-
sion, incorporating new constructors instead of changing the semantics of a standard
construct like the SELECT. Also, if one would like to compose queries (i.e. include
on-the-fly in a program, or ”paste” another query) it is desirable to have the FROM
clause, which currently is absent.

7

Hence we need to define recursively the set of mapping [[P]]d(F). First, let us
define data(F) as the following dataset:

(i) a default graph consisting of the merge of the graphs referred in clauses
“FROMu”, plus the graphs ans(QC) obtained from clauses “FROM(QC)”.
If there is no such clauses, then the default graph is an empty graph.

(ii) a named graph 〈u, graph(u)〉 for each clause “FROM NAMEDu”.
(iii) a named graph 〈u, ans(QC)〉 for each clause “FROM NAMEDu(QC)”.

Now, the recursive definition for the semantics of patterns is as follows:

1. Subqueries in graph patterns. Let (R,F, P) be a subselect graph pattern.

[[(R,F, P)]]D = ans(R,F, P)

Note: In SPARQL 1.1 draft, Select-subqueries do not have datasets and the
evaluation can be incorporated in this general framework as: [[(R, ∅, P)]]D =
ans(R,F ′, P), where F ′ is a FROM clause with d(F ′) = D.

2. Subqueries in FILTER constraints. Let P be a graph pattern and QA be an
ask-query.

[[P FILTER EXISTS(QA)]]D = {µ ∈ [[P]]D : ans(µ(QA)) is true}

Example 8. The semantics presented gives for correlated queries the standard
semantics of the nested iteration method [6], i.e., the inner query is performed
once for each solution of the outer query. For example, consider the graph pattern

((?X name ?N) FILTER¬EXISTS(ASK(?X email ?E))).

Considering that ?Y is a correlated variable ?Y , the method establishes that the
graph pattern (µ(?Y) email ?E) must be evaluated over and over again, once
for each result mapping µ of the graph pattern (?X name ?N).

4 Design Issues and Expressive Power

We are now ready to discuss more formally the incorporation of subqueries into
SPARQL. We separate this discussion in two parts: 4.1. The comparison of our
approach with respect other proposals; and 4.2. The design decisions triggered
by the incorporation of these new features. We add a brief speculative subsection
4.3 to indicate a clean and modular extension to be developed in an ideal world.

4.1 Current proposals / Related work

In March 2009, the SPARQL Working Group has started up and is currently
working, on defining potential extensions to SPARQL. The last working draft4

of SPARQL 1.1 presents the following features related to our work:
4 http://www.w3.org/TR/2010/WD-sparql11-query-20101014/

8

– Graph patterns { P FILTER EXISTS { P’ } } which test the presence of P’.
Here, P’ is basically a graph pattern, therefore there is not a direct notion
of subquery.

– Two styles of negation: (i) { P FILTER NOT EXISTS { P’ } } which test
the absence of a match to the pattern P’; and (iii) { P MINUS { P’ } } which
remove the solutions of P occurring in P’ also. Both can be used to represent
negation in SPARQL, however in some cases they are are not equivalent (this
assuming a direct transformation).

– SubSelects, which consists in to allow SELECT queries within the graph
pattern of another query.

In comparison with our proposal: a Subselect share the same RDF dataset as
their parent query, and FROM and FROM NAMED clauses are not permitted
in subselects; there is not a clear and formal definition of the semantics for query
correlation.

Two notions of nested queries have been proposed in works that study trans-
lations from SPARQL to Datalog. Polleres [9] suggests that boolean SPARQL
queries (i.e., queries having ASK query form) can be safely allowed within filter
constraints. Additionally, Schenk [11] proposes the use of views as parts of a
dataset, that is, the inclusion of CONSTRUCT queries in FROM clauses. Al-
though, in both cases such extension are well supported by their translations
from SPARQL to Datalog, they do not include further developments about is-
sues concerning these extensions.

Angles and Gutierrez [2] develop systematically a SQL-like subqueries in filter
constraints for SPARQL, showing that they can be reduced to ASK queries in
filter constraints.

Regarding real-life practice, implementations are beginning to provide exten-
sions of SPARQL that include support for some types of nested queries. Virtuoso
has included extensions5 related to nested queries. Among them, it allows an em-
bedded select query in the place of a triple pattern; and filter conditions of the
form ”EXISTS (<scalar subquery>)”. The following pattern shows an example
of the latter extension:

?x foaf:name "Alice" .

FILTER (EXISTS (SELECT *

WHERE { ?x foaf:knows ?y . ?y foaf:name "John"})).

Similarly, ARQ, the query engine for Jena, supports a type of nested SELECT
which uses aggregate functions6. For example,

?x a :Toy . { SELECT ?x (COUNT(?order) AS ?q)

{ ?x :order ?order } GROUP BY ?x }

None of these implementations present systematic covering nor analysis of
these extensions. The extension of Virtuoso corresponds to the inclusion of the

5 http://www.w3.org/2009/sparql/wiki/Extensions_Proposed_By_

OpenLink##Nested_Queries
6 http://jena.sourceforge.net/ARQ/sub-select.html

9

select-query in a FROM clause. If one does not consider aggregate functions,
not present in current SPARQL, the “EXISTS” extension is equivalent to our
definition, and the “SELECT” of ARQ can be simulated by our SOME queries.

Additionally, ARQ allows expressions SERVICE <URI> { P } which can be
used, inner a graph pattern, to send the sub-pattern P to the SPARQL endpoint
named <URI> (basic federated queries). DARQ [10] offers a single interface for
querying multiple, distributed SPARQL endpoints and makes query federation
transparent to the client.

4.2 Design Issues

Query composition. Composed queries enforces both, reuse of queries (by
introducing directly either pieces of text in a query or an URI pointing to such
query), and rewriting, by allowing distributed evaluation (by pushing the max-
imum possible information from the WHERE into the FROM clauses). Opti-
mization also by bringing patterns from the FROM into the WHERE.

Query composition is naturally included in SPARQLFrom. Neither current
SPARQL nor SPARQL 1.1 allow to express it.

Creation of New values. This feature consists in outputting atomic values
different from those found in the database to be queried.

SPARQL has no mechanism to create new values. In SPARQL 1.1 this func-
tionality is introduced in the SELECT clause by the construct AS. For example a
discounted price variable can be expressed as: (?p*(1-?discount) AS ?price).
By allowing subSelect queries, this functionality is smuggled into graph patterns.

In our proposal, the fragment SPARQLFrom, allows it by means of intro-
ducing what the SPARQL Recommendation calls “ground or explicit triples”.
The intermediate graph created by a construct subquery can contain new val-
ues when its template contains ground triples. Therefore we have the following
results about the expressive power of SPARQLFrom.

Lemma 1. SPARQLFrom allows the creation of new values (i.e., values not
existing in the database) in a query.

Theorem 1. SPARQLFrom is more expressive than SPARQL.

Projections in graph patterns. This is useful to avoid unnecessary clashes
of variables (for example in automatic construction of queries, or even when
cutting and pasting pieces of code). Note that this feature is naturally supported
in SPARQLSubS because one can project in the select sub-query.

SPARQL does not provide projection in patterns, that is, there are no “local”
variables in patterns (or in other terms: all variables in a pattern are part of the
solutions of the patterns). A partial (and dirty) shortcut to solve this issue
are blank nodes (e.g., the solution mapping to the pattern { :b1 ?X ?Y } have
only ?X and ?Y as solution variables). There are two problems with this patch
solution: blank nodes are not allowed in the predicate positions (although most
implementations allow it), and cannot constraint the “variable” :b1 with filters.

10

Projection in patterns is the type of feature that does not increase the ex-
pressive power of the language, but is very useful for programmers.

DISTINCT in graph patterns. This is a delicate issue. It is well known the
complexities that introduces the interplay between bag and set semantics [3].

The evaluation of a graph pattern P in SPARQL has bag semantics by de-
fault. But in SPARQLSubS , one could choose bag or set semantics by writing a
subselect (SELECT DISTINCT * WHERE P). Is this desirable? This functionality
adds expressive power as the following example shows.

Example 9. Assume a database of university people, codified with triples of the
form (u, name, n) (name of individual u) and (u, dept, d) (department to whom
u is attached to). The query “list names of people in either the CS or the Math
department” is the following in SPARQL 1.1:

SELECT ?N

WHERE {?U name ?N . { SELECT DISTINCT *

WHERE {?U dept CS} UNION {?U dept Math}}}

Note that this query has no equivalent one in current SPARQL because one has
to project in the SELECT before eliminating duplicates with the DISTINCT.
Hence, one could get either more or less names than existing selected individuals.
(For example, if there are three Peters in both departments).

Theorem 2. SPARQLSubS is more expressive than SPARQL.

Variable Correlation in SPARQLSubS. Correlation of variables is a basic
and useful feature of subqueries (as we shown in the examples of Section 2). In
SPARQLSubS and SPARQL 1.1, only variables projected by the select subquery
are visible to operations outside the subquery.

Allowing correlated variables (for example, through projected variables in a
pattern to be visible from outside), would bring an undesirable design: the need
to introduce an order to the evaluation of patterns, thus changing its current
SPARQL semantics. In fact, to make consistent the design, subSelects should be
evaluated at the end. But still in this case we could find troubles like the one
signaled in subsection 2.2.

This problem is solved, for example in SQL, by giving the subqueries the
function of filters. Filters are evaluated last, and they do not allow crossing of
correlated variables because they have a different status than standard predi-
cates (graph patterns in SPARQL). Note that the extension of SPARQL with
subqueries in filter constraints and in dataset clauses follow this philosophy,
hence do not need any artificial constraint on visibility of variables.

4.3 A clean and modular extension

From the previous results, it turns out that if one would like to incorporate all
current features for subqueries proposed for SPARQL, but have a modular and

11

clean language (thus, in the unreal world where one could forget the unavoid-
able compromises of standardization Committees and Working Groups), this
language would be as follows:

1. The extension SPARLFrom

2. The extension SPARQLFilter

3. An operator DISTINCT for patterns, which would eliminate duplicate in the
multiset of mappings resulting from the evaluation of a pattern. For example,
a syntax like {DISTINCT P} with the obvious semantics.

4. An operator of projection for patterns, which would hide some of its vari-
ables. For example, a syntax like { OUT(?X,?Y) P } would indicate that
the only variables visible from outside in the pattern P are ?X and ?Y .

This extension would encompass the SPARQLSubS fragment, hence being
equivalent to SPARQLExt (our extension that embodies all current proposals),
but avoiding the noise that bring on subSelect queries.

5 Conclusions

In this paper we presented a comprehensive discussion of all possible ways of
introducing subqueries intro SPARQL, while preserving the original semantics
and spirit.

For this we presented in Section 3 the syntax and semantics of a complete
proposal of adding subqueries and composition to SPARQL in almost all possible
forms. The arguments presented show that is is complete feasible, adding little
overhead over the current specification of SPARQL and in particular without
changing the original semantics, to incorporate all the flexibility of subqueries of
SQL (that has been systematically tested by users and developers), to include
all syntaxes currently in use, plus some new constructs that would add facilities
to the users.

We presented expressiveness results of these extensions, analyzed their inter-
play and their implications, particularly regarding unexpected side-effects pro-
duced by the incorporation of some features.

Based on this analysis, we defined a global extension (expressed in Table 1
as SPARQLExt) which incorporates all these extensions –with some restrictions
necessary to preserve the original semantics of SPARQL– and gave it a complete
syntax (Appendix A) and formal semantics.

To be complete, the discussion should include at some point the incorpora-
tion of subqueries in the aggregate constructs that are planned for SPARQL 1.1.
Again, we strongly suggest to follow the SQL-philosophy in this regard. We have
showed that it can be incorporated to SPARQL with little noise, in a perfectly co-
herent manner, without altering the original semantics of SPARQL, and adding
few syntactic construct with a clear semantics. In this regard, implementations
of SPARQL can be modularly extended to include these new features.

12

References

1. W3C RDF Data Access Working Group - Issues List.
http://www.w3.org/2001/sw/DataAccess/issues.

2. R. Angles and C. Gutierrez. SQL Nested Queries in SPARQL. In Proc. of the IV
Alberto Mendelzon Workshop on Foundations of Data Management, 2010.

3. S. Cohen. Equivalence of queries combining set and bag-set semantics. In Proc. of
the 25th Symp. on Principles of DB Systems (PODS), pages 70–79. ACM, 2006.

4. R. A. Ganski and H. K. T. Wong. Optimization of nested SQL queries revisited.
In Proceedings of the 1987 Int. Conf. on Management of data (SIGMOD), pages
23–33, New York, NY, USA, 1987. ACM Press.

5. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems - The Complete
Book. Prentice Hall, 2002.

6. W. Kim. On optimizing an SQL-like nested query. ACM Transactions on Database
Systems (TODS), 7(3):443–469, 1982.

7. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In
Proceedings of the 5th International Semantic Web Conference (ISWC), number
4273 in LNCS, pages 30–43. Springer-Verlag, 2006.

8. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL.
ACM Transactions on Database Systems (TODS), 34(3):1–45, 2009.

9. A. Polleres. From SPARQL to Rules (and back). In Proceedings of the 16th
International World Wide Web Conference (WWW), pages 787–796. ACM, 2007.

10. B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with SPARQL.
In Proc. of the 5th European SW Conf. (ESWC), volume 5021 of LNCS, 2008.

11. S. Schenk. A SPARQL Semantics Based on Datalog. In 30th Annual German
Conf. on Advances in AI (KI), volume 4667 of LNCS, pages 160–174. Springer,
2007.

A Proposed Grammar for subqueries in SPARQL

Expressions added to the original grammar of SPARQL occurs in bold.

DatasetClause ::= “FROM” (DefaultGraphClause | NamedGraphClause)
DefaultGraphClause ::= SourceSelector | (“(” ConstructQuery “)”)
NamedGraphClause ::= “NAMED” SourceSelector

(“(” ConstructQuery “)”)?
GraphPatternNotTriples ::= OptionalGraphPattern | GroupOrUnionGraphPattern |

GraphGraphPattern | SubSelect
SubSelect ::= “(” SelectQuery “)”
ValueLogical ::= RelationalExpression | SubqueryExpression
SubqueryExpression ::= QuantifiedExpr | ExistentialExpr

| SetMembershipExpr
QuantifiedExpr ::= VarOrTerm ComparisonOp (“SOME” | “ALL”)

SingleVarSelect
ComparisonOp ::= “ = ” | “! = ” | “ < ” | “ > ” | “ <= ” | “ >= ”
SetMembershipExpr ::= VarOrTerm “IN” “(” SingleVarSelect “)”
ExistentialExpr ::= “EXISTS” “(” AskQuery “)”
SingleVarSelect ::= “SELECT” Var DatasetClause* WhereClause

13

