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Abstract

The original RDFS language design includes several features that hinder the task of developers and theoreticians.

This paper has two main contributions in the direction of simplifying the language. First, it introduces a small

fragment which, preserving the normative semantics and the core functionalities, avoids the complexities of the

original specification, and captures the main semantic functionalities of RDFS. Second, it introduces a minimalist

deduction system over this fragment, which by avoiding certain rare cases, obtains a simple deductive system and a

computationally efficient entailment checking.
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1. Introduction

The Resource Description Framework (RDF) is
the W3C standard for representing information in
the Web [12]. The motivation behind the develop-
ment of RDF by the W3C was to have a common and
minimal language to enable to map large quantities
of existing data onto it so that the data can be an-
alyzed in ways never dreamed of by its creators [3].
Bringing this vision to reality amounts to make the
processing of RDF data at big scale viable.

Efficient processing of any kind of data relies on
a compromise between the size of the data and the
expressiveness of the language describing it. As we
already pointed out, in the RDF case the size of the
data to be processed will be enormous, as current de-
velopments show (e.g. DBpedia [8], FOAF [7], Gene
Ontology [13], etc. For studies on data sets see [19]).

Email addresses: smunozv@uchile.cl (Sergio
Munoz-Venegas), jperez@ing.puc.cl (Jorge Pérez),
cgutierr@dcc.uchile.cl (Claudio Gutierrez).
1 This is an extended and revised version of [21].

Hence, a program to make RDF processing scal-
able has to consider necessarily the compromise be-
tween complexity and expressiveness. Such a pro-
gram amounts essentially to look for fragments of
RDF with good behavior with respect to complexity
of processing. This is the broad goal of the present
paper.

The RDF specification is given in [11] and its se-
mantics is defined in [17] and has been studied from
several points of view [16,9,20,24]. Essentially, an
RDF statement is a subject-predicate-object struc-
ture, called an RDF triple, intended to describe re-
sources and properties of those resources. Subject
and object of an RDF triple can be anonymous re-
sources, known as blank nodes. An RDF graph (or
simply a graph) is a set of RDF triples. In addi-
tion to this basic structure, the RDF specification
includes a built-in vocabulary, the RDFS vocabu-
lary, that deal with inheritance of classes and prop-
erties, as well as typing, among other features [11] 2 .

2 In this paper we call RDFS vocabulary to the set all URIs
under the prefixes (namespaces) rdf: and rdfs: in [17].
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The first observation that arises when dealing with
RDFS vocabulary is the difficulty to work with it.
An example of this fact is that even the rules of
deduction presented in the normative RDF Seman-
tics specification were not complete [20,24]. A sec-
ond empirical observation is that several parts of the
RDFS vocabulary have been deprecated, and prac-
tice shows that there are others that are hardly used
or not being used at all. This makes it very hard
for developers to build and optimize sound imple-
mentations and algorithms, and for theoreticians to
work on this specification. These and other concerns
have led researchers to formulate different propos-
als of interesting fragments or closely related spec-
ifications [25,22,15,4] improving diverse aspects of
the language (we will discuss them in the section of
related work). Another example where this type of
issues arises is the SPARQL query language specifi-
cation [23], that currently does not support RDFS
entailment. In practice, each query will use just a
small fragment of the RDFS vocabulary. For reason-
ing and optimization purposes, it would be useful to
have a sound and complete theory of each such frag-
ment which preserves the semantics of RDFS, and to
know exactly what are the minimal portions of the
whole vocabulary that interplay in the entailment
of every specific fragment. In this paper we address
these issues.

Among the most important directions of a pro-
gram to develop solutions to the above mentioned
problems are:

(i) To identify a fragment which encompasses the
essential features of RDFS, which preserves
the original semantics, be easy to formalize
and can serve to prove results about its prop-
erties.

(ii) To point out features that the groups involved
in the development and standardization of
RDFS and its query language should take a
more careful look at, and suggest directions
for improvements.

(iii) To study the complexity of entailment for the
vocabulary in general and in these fragments
in particular, and to develop efficient algo-
rithms for testing entailment.

As for the first point, in this paper we isolate a
fragment of RDFS that covers the most relevant vo-
cabulary, prove that it preserves the original RDFS
semantics, and avoids vocabulary and axiomatic in-
formation that only serves to reason about the struc-
ture of the language itself and not about the data
it describes. It is composed of the reserved vocab-

ulary rdfs:subClassOf, rdfs:subPropertyOf, rdf:type,
rdfs:domain and rdfs:range. The rest of the RDFS
vocabulary has either light or no semantics at all,
and much of it plays the role of structural infor-
mation about the internals of the language itself. A
good example of this latter function is the keyword
rdfs:Resource. An exception is rdfs:Class, which is
important for the ontological level of the Semantic
Web, but, as we show in this paper, in the frame of
RDFS deductions does not play any relevant role.
We lift this structural information into the seman-
tics of the language, hiding it from developers and
users, and present a complete and sound deduction
system for the fragment.

Furthermore, we study the subfragments of the
core fragment, prove that they retain the original
RDFS semantics, and present results that identify
the minimal parts of the vocabulary needed in the
deductions of every subfragment.

Regarding the second point, we study possible
refinements of the fragment presented in the first
item. In particular, we show that reflexivity of
rdfs:subClassOf and rdfs:subPropertyOf included in
the official RDF specification [17], play no relevant
role in the semantics and thus can be avoided with-
out having side-effects. This greatly simplifies the
deductive system. A more delicate issue we address
is the occurrence of RDFS vocabulary in subject
and object positions. These occurrences rarely oc-
cur in practice and from a theoretical point of view
are re-definitions of the original semantics.

Considering the above arguments (and some com-
plexity issues discussed below) we introduce a frag-
ment, which we call minimal RDFS, based on the
restricted vocabulary mentioned above, avoiding re-
flexivity of rdfs:subClassOf and rdfs:subPropertyOf,
not having distinguished vocabulary in subject nor
object positions, and including only ground triples,
that is, triples without blank nodes. We show that
this fragment behaves semantically well; in fact, we
give a semantics for it, and present a simple deduc-
tive system sound and complete. Our goal is that
this fragment should work as an essential minimal
and efficient floor from where to extend the language
in different directions. For example, in this paper we
show a general result that states that deductions can
be normalized into a ground and a non-ground part.
Thus, deductions that need blank nodes semantics,
can be modularly composed with deductions for our
minimal fragment. This result is also the theoretical
basis of why we consider only ground triples in the
minimal RDFS fragment.
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Concerning the third item, complexity of entail-
ment, the minimal RDFS system has several good
properties. For testing RDFS entailment in the
ground case even current known bounds seems to-
tally impractical. For example, the naive approach
would use closure of graphs. The closure is a com-
pletion of the graph obtained by adding all the
triples that are entailed by the graph. Estimates for
the size of the closure are high: we show that the
size of the closure is quadratic in the worst case.
This bound is impractical from a database point
of view. In this paper we present an algorithm for
entailment which shows that, testing whether a
ground triple is entailed by a graph G, can be de-
cided in time O(|G| log |G|) in the worst case, where
|G| stands for the number of triples of G. We also
prove that this is a tight bound for the complexity
of ground entailment.

Finally, we extend the previous result to a large
family of non-ground graphs of practical signifi-
cance. In fact, we prove that for graphs G and H
with H containing at most one blank node per
triple, testing whether H is entailed by G can be
done in time O(|H ||G| log |G|).

The rest of the paper is organized as follows. Sec-
tion 2 presents preliminary material. In Section 3
we introduce the fragment ρdf of RDFS, which is
the base for further developments, and prove that it
is self-contained and preserves the original seman-
tics of RDFS. We present a notion of proof which is
sound and complete for the semantics. Section 4 in-
troduces minimal RDFS, a minimal fragment based
on a small vocabulary, which avoids reflexivity con-
straints, RDFS vocabulary in subject and object po-
sitions, and consider only ground triples. We present
arguments showing that this system behaves compu-
tationally well and has very simple entailment rules.
We present an algorithm which performs entailment
efficiently on this fragment. In order to easy the read-
ing of the paper, proofs of results in Section 3 and 4
which are long and not necessary to follow the main
arguments of the paper are placed in the appendix.
For the sake of completeness, the appendix also in-
cludes parts of the official RDF specification that
are relevant to this work.

2. Preliminaries

Assume there are pairwise disjoint infinite sets
U (RDF URI references), B (Blank nodes), and
L (Literals). Through the paper we assume U, B,

and L fixed, and for simplicity we denote unions of
these sets simply concatenating their names. A tu-
ple (s, p, o) ∈ UBL × U × UBL is called an RDF
triple. In this tuple, s is the subject, p the predicate,
and o the object. Note that –following recent devel-
opments [5,23]– we are omitting the usual restriction
stating that literals cannot be in subject position.
Definition 1 An RDF graph (or simply a graph)
is a set of RDF triples. A subgraph is a subset of a
graph. The set of terms of a graph G, denoted by
terms(G) is the set of elements of UBL that occur
in the triples of G. The vocabulary of G, denoted by
voc(G) is the set terms(G)∩UL. A graph is ground
if it has no blank nodes.

A vocabulary is a subset of UL. Given a vocab-
ulary V and an RDF graph G, we say that G is a
graph over V whenever voc(G) ⊆ V .

In what follows we need some technical notions.
A map is a function µ : UBL → UBL preserving
URIs and literals, i.e., µ(u) = u for all u ∈ UL.
Given a graph G, we define µ(G) as the set of all
(µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. We over-
load the meaning of map and speak of a map µ from
G1 to G2, and write µ : G1 → G2, if the map µ is
such that µ(G1) is a subgraph of G2.

The RDF specification [17] includes a set of
reserved names, the RDFS vocabulary (RDF
Schema [11]) designed to describe relationships be-
tween resources as well as to describe properties like
attributes of resources (traditional attribute-value
pairs). Table A.1 (in the appendix) shows the full
RDFS vocabulary [17], and (in brackets) the short-
cuts that we use in this paper. We assume that the
set U includes the RDFS vocabulary. Also notice
that we call RDFS vocabulary to all the URIs under
the prefixes (namespaces) rdf: and rdfs: in [17] (that
is, we assume in this paper that the RDFS vocab-
ulary already contains the RDF vocabulary [17]).
Notice that our definition of the RDFS vocabu-
lary also contains the keyword rdf:XMLLiteral, and
thus, we consider XML typed literals part of the
RDFS vocabulary.

2.1. Interpretations and RDFS semantics

The normative semantics for RDF graphs given
in [17] follows standard classical treatment in logic
defining the notions of model, interpretation, entail-
ment, and so on. The RDFS theory is built incre-
mentally from Simple interpretations, to RDF in-
terpretations, and to RDFS interpretations [17]. In
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this paper we use a single notion of interpretation
which summarizes Simple, RDF, and RDFS inter-
pretations in one step. In order to concentrate on
the core semantics, we do not include Datatyped in-
terpretations in this work.
Definition 2 An interpretation over a vocabulary
V is a tuple

I = (Res, Prop, Class, Ext, CExt, Lit, Int)

such that: (1) Res is a nonempty set of resources,
called the domain or universe of I; (2) Prop is a
set of property names (not necessarily disjoint from
Res); (3) Class ⊆ Res is a distinguished subset of
Res identifying if a resource denotes a class of re-
sources; (4) Ext : Prop → 2Res×Res, a mapping
that assigns an extension to each property name; (5)
CExt : Class → 2Res a mapping that assigns a set
of resources to every resource denoting a class; (6)
Lit ⊆ Res the set of literal values that contains all
the plain literals in L ∩ V ; (7) Int : UL ∩ V →
Res∪Prop, the interpretation mapping, a mapping
that assigns a resource or a property name to each
element of UL in V , and such that Int is the iden-
tity for plain literals and assigns an element in Res
to elements in L.

In [17] the semantics of RDF graphs is defined by
using the notion of entailment based on the idea of
satisfaction of a graph under a given interpretation.
Intuitively, given a vocabulary V and an interpreta-
tion I over V , a ground triple (s, p, o) over V is true
under I if:
- I interprets p as a property name, and thus, I

assigns an extension (a set of pairs of resources)
to the interpretation of p, and

- the interpretation of the pair (s, o) belongs to the
extension of the interpretation of p.

Notice that, since the set of resources and the set
of property names of an interpretation are not nec-
essarily disjoint, an element in V can be simulta-
neously interpreted as a resource and as a property
name. This feature reflects the capability of RDF of
stating a predicate about properties, that is, prop-
erties may occur as subjects or objects in triples.

In RDF, blank nodes work as existential variables.
Intuitively the triple (X, p, o) with X ∈ B would be
true under I if there exists an element s such that
(s, p, o) is true under I. When interpreting blank
nodes, an arbitrary resource can be chosen, taking
into account that the same blank node must always
be interpreted as the same resource. To formally deal
with blank nodes, an extension of the interpretation
map Int is used. Let A : B → Res be a function

from blank nodes to resources. We denote by IntA
the extension of Int that includes blanks as part
of its domain and is defined by IntA(X) = A(X)
when X ∈ B. The function A captures the idea of
existentiality.

The formal definition of model and entailment for
graphs that includes RDFS vocabulary relies on a set
of semantics restrictions imposed to interpretations
in order to model the vocabulary, and the a priori
satisfaction of a set of axiomatic triples. We refer
the reader to Appendix A for a formal definition of
the normative semantics of RDFS using the notion
of interpretation given in Definition 2.

3. The ρdf fragment of RDFS

In this section we define the fragment of RDFS
that we study in this paper. We define a semantics
and a set of inference rules for this fragment, proving
completeness and soundness, and proving that these
rules captures the RDFS semantics for the fragment.

The fragment to be considered comprises the
RDFS keywords (with shortcuts in brackets)
rdfs:subPropertyOf [sp], rdfs:subClassOf [sc],
rdfs:domain [dom], rdfs:range [range] and rdf:type
[type]. This fragment is relevant for several reasons.
The intended meaning of the fragment is non-trivial
and is designed to relate individual pieces of data
external to the vocabulary of the language, thus
having a deep semantical role in RDFS. Their se-
mantics can be defined by rules which involve vari-
ables (to be instantiated by real data). For example,
sc is a binary property reflexive and transitive;
when combined with type, it specifies that the type
of an individual (a class) can be lifted to that of a
superclass. Moreover, as we show in this section,
the above fragment is self-contained : the entailment
relation between RDFS graphs that only mention
vocabulary of this fragment does not rely on vocab-
ulary outside the fragment (see Theorem 5). As our
results show, there are theoretical reasons that sup-
port the convenience of the choice of the fragment.

On the other hand, the predicates left out have
a light semantics essentially describing its internal
function in the ontological design of the system of
classes of RDFS. Most of their semantics is defined
by axiomatic triples [17] (see Table A.2 in the ap-
pendix), which are relationships among these re-
served words. Note that all axiomatic triples are
“structural”, in the sense that do not refer to exter-
nal data but talk about themselves. Much of this se-

4



mantics correspond to what in standard languages
is captured via typing. From a theoretical and prac-
tical point of view it is inconvenient to expose it to
users of the language because it makes the language
more difficult to understand and use, and for the
criteria of simplicity in the design of the language.
Definition 3 Define ρdf vocabulary 3 to be the fol-
lowing subset of the RDFS vocabulary:

ρdf = {sp, sc, type, dom, range}.

An RDFS triple is called a ρdf–triple if all the RDFS
vocabulary that is mentioned in the triple belongs to
ρdf. A ρdf–graph is defined as a set of ρdf–triples.

3.1. Semantics for ρdf

Definition 4 Let G be a ρdf–graph. An interpre-
tation I = (Res, Prop, Class, Ext, CExt, Lit, Int)
is a model of G under ρdf (ρdf–model for short),
denoted I |=ρdf G, iff I is an interpretation over
ρdf∪terms(G) that satisfies the following conditions:

(i) Simple:
(a) there exists a function A : B → Res such that for

each (s, p, o) ∈ G, it holds that Int(p) ∈ Prop and
(IntA(s), IntA(o)) ∈ Ext(Int(p)), where IntA is the
extension of Int using A.

(ii) Subproperty:
(a) Ext(Int(sp)) is transitive and reflexive over Prop

(b) if (x, y) ∈ Ext(Int(sp)) then x, y ∈ Prop and
Ext(x) ⊆ Ext(y)

(iii) Subclass:
(a) Ext(Int(sc)) is transitive and reflexive over Class
(b) if (x, y) ∈ Ext(Int(sc)) then x, y ∈ Class and

CExt(x) ⊆ CExt(y)

(iv) Typing I:
(a) x ∈ CExt(y) iff (x, y) ∈ Ext(Int(type))
(b) if (x, y) ∈ Ext(Int(dom)) and (u, v) ∈ Ext(x) then

u ∈ CExt(y)
(c) if (x, y) ∈ Ext(Int(range)) and (u, v) ∈ Ext(x) then

v ∈ CExt(y)

(v) Typing II:
(a) For each e ∈ ρdf, Int(e) ∈ Prop.
(b) if (x, y) ∈ Ext(Int(dom)) then x ∈ Prop and y ∈

Class.
(c) if (x, y) ∈ Ext(Int(range)) then x ∈ Prop and y ∈

Class.
(d) if (x, y) ∈ Ext(Int(type)) then y ∈ Class.

We define G entails H under ρdf (ρdf–entailment
for short), denoted G |=ρdf H, iff every model under
ρdf of G is also a model under ρdf of H.

3 Read rho-df, the ρ from restricted rdf.

Notice that in ρdf–models we do not impose
the a priori satisfaction of any axiomatic triple.
Indeed, ρdf–models do not satisfy any of the
RDFS axiomatic triples given in [17] because all
of them mention RDFS vocabulary outside ρdf.
This is also the reason for the inclusion of con-
ditions (4) in ρdf models because they capture
semantically the restrictions imposed syntactically
by the RDFS axiomatic triples (dom, dom, prop),
(dom, range, class), (range, dom, prop), (range,
range, class), and (type, range, class), and the
fact that every element in ρdf must be interpreted
as a property.

The next theorem shows that this definition re-
tains the normative RDFS semantics for the ρdf vo-
cabulary.
Theorem 5 Let |= be the RDFS entailment defined
in [17], and let G and H be ρdf–graphs. Then

G |= H iff G |=ρdf H.

PROOF. We present a brief sketch of the proof.
The complete proof can be found in Appendix B 4 .
In [17], the RDFS entailment relation is defined by
using the notion of RDFS-model : given G and H ,
it holds that G |= H if every RDFS-model of G
is also an RDFS-model of H (see Definition 30 in
the appendix). An RDFS-model must satisfy several
semantics conditions imposed to properly interpret
the RDFS vocabulary (see Definition 30 in the ap-
pendix). It is straightforward to show that if I is an
RDFS-model of a ρdf graph G, then I is also a ρdf-
model of G. The crucial property is that if I is a
ρdf-model of a ρdf-graph G and I satisfies all the se-
mantic conditions interpret the RDFS vocabulary,
then I is also an RDFS-model of G. The “if” part
of the theorem follows from this last fact. Assume
that G |=ρdf H and that I is an RDFS-model of G.
We need to prove that I is an RDFS-model of H .
Since I is an RDFS-model of G, we know that I is
also a ρdf-model of G and, therefore, from G |=ρdf

H we obtain that I is a ρdf-model of H . Finally, I
is a ρdf-model of H that satisfies the semantic con-
ditions imposed to RDFS-models, and thus, I is an
RDFS-model of H .

The proof of the “only if” part is more involved
and relies on the fact that given an interpretation I
one can build a new interpretation I ′ that satisfies

4 To give continuity of reading to the main results of the
paper, we send proofs of theorems (when long and technical)
to Appendix B.
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the following property: given a ρdf-graph G, the in-
terpretation I is a ρdf-model of G if and only if I ′

is an RDFS-model of G. Thus, assume that G |= H
and let I be a ρdf-model of G. We need to prove
that I is a ρdf-model of H . Since I is a ρdf-model
of G, we know that I ′ is an RDFS-model of G, and
thus, from G |= H we obtain that I ′ is an RDFS-
model of H . Finally by the properties of I and I ′,
we know that I is a ρdf-model of H which was to be
proved. 2

3.2. A deductive system for the ρdf fragment

Now we present a deductive system for ρdf based
on a system of rules for RDFS entailment defined in
the W3C Recommendation [17]. Loosely speaking,
we work with those rules in [17] which only involves
ρdf vocabulary, and that do not involve allocation of
blanks to literals nor datatypes. We prove later that
the deductive system defined for the ρdf fragment
is sound and complete for ρdf–entailment. Table 1
shows the rules for the fragment ρdf.

It is worth mentioning that, as noted in [20,24],
the set of rules presented in [17] is not complete
for RDFS entailment. The problem with the system
proposed in [17] is that a blank node X can be im-
plicitly used as a property in triples like (a, sp, X),
(X, dom, b), and (X, range, c). In this paper we fol-
low the solution proposed by Marin [20]. In fact,
the rules (5a)-(5b) were added in [20] to the system
given in [17] to deal with this problem.

Now we formalize deductions made with rules (1)-
(7). In every rule letters A, B, C, X , and Y, stand for
variables to be replaced by actual terms. More for-
mally, an instantiation of a rule is a uniform replace-
ment of the variables occurring in the triples of the
rule by elements of UBL, such that all the triples
obtained after the replacement are well formed RDF
triples. For example, if a, b ∈ U, N ∈ B and y ∈ L,
then R

R′ with R = {(a, sp, b), (N, a, y)} and R′ =
{(N, b, y)}, is an instantiation of rule (2b).
Definition 6 (Proof) Let G and H be RDFS
graphs. Define G ⊢ρdf H iff there exists a sequence
of graphs P1, P2, . . . , Pk, with P1 = G and Pk = H,
and for each j (2 ≤ j ≤ k) one of the following cases
hold:
– there exists a map µ : Pj → Pj−1 (rule (1a)),
– Pj ⊆ Pj−1 (rule (1b)),
– there is an instantiation R

R′ of one of the rules (2)–
(7), such that R ⊆ Pj−1 and Pj = Pj−1 ∪ R′.

Such sequence of graphs is called a proof of G ⊢ρdf

H. Whenever G ⊢ρdf H, we say that the graph H is
derived from the graph G. Each pair (Pj−1, Pj), 1 ≤
j ≤ k is called a step of the proof which is labeled by
the respective instantiation R

R′ of the rule applied at
the step.

The relation ⊢ρdf is well defined for ρdf–graphs in
the sense that from a ρdf–graph G only ρdf–graphs
can be proved by using rules (1)–(7):
Proposition 7 Let G be a ρdf–graph and let H be
an RDFS graph. Assume G ⊢ρdf H. Then H is a
ρdf–graph.

PROOF. Suppose the assertion of the proposition
is false. Thus there are some triples in H with RDFS
vocabulary not included in ρdf occurring as subject
or object. Let P1, P2, . . . , Pk be a proof of G ⊢ρdf H ,
with P1 = G and Pk = H . Since G is a ρdf–graph, it
follows recursively that exists j with 1 < j ≤ k such
that Pj−1 is a ρdf–graph and there is some RDFS
vocabulary occurring in Pj that does not belong to
ρdf.

As the application of rule (1) at most adds to
Pj−1, if adds any, only triples with some URIs re-
placed by blank nodes, we have that the occurrence
of RDFS vocabulary either does not change, or de-
crease. Therefore rule (1) was not applied to the step
(Pj−1, Pj) of the proof. Hence there is an instance
R
R′ of a rule (2)-(7) that was applied to the step
(Pj−1, Pj) of the proof. Thus Pj = Pj−1 ∪ R′ with
R ⊆ Pj−1 and with some RDFS vocabulary out of
ρdf occurring in triples of R′. But a simple inspec-
tion of these rules shows that R must have also some
RDFS vocabulary out of ρdf occurring in its triples.
As R ⊆ Pj−1, we have that Pj−1 is not a ρdf graph,
a contradiction. 2

Theorem 8 (Soundness and completeness)
Let G and H be ρdf graphs. Then

G ⊢ρdf H iff G |=ρdf H.

The proof of the above theorem is a long list of
checkings and it is given in Appendix B. From Theo-
rem 5 and Theorem 8 we get the following corollary.
Corollary 9 Let |= be the RDFS entailment defined
in [17], and let G and H be ρdf graphs. Then

G |= H iff G ⊢ρdf H.

Thus, the set of rules (1)–(7) captures RDFS en-
tailment when restricted to ρdf vocabulary.

The following result follows from the proof of The-
orem 8. Its proof is given in Appendix B.
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(1) Simple:

(a) G
G′ for a map µ : G′ → G (b) G

G′ for G′ ⊆ G

(2) Subproperty:

(a)
(A,sp,B) (B,sp,C)

(A,sp,C)
(b)

(A,sp,B) (X ,A,Y)
(X ,B,Y)

(3) Subclass:

(a)
(A,sc,B) (B,sc,C)

(A,sc,C)
(b)

(A,sc,B) (X ,type,A)
(X ,type,B)

(4) Typing:

(a)
(A,dom,B) (X ,A,Y)

(X ,type,B)
(b)

(A,range,B) (X ,A,Y)
(Y,type,B)

(5) Implicit Typing:

(a)
(A,dom,B) (C,sp,A) (X ,C,Y)

(X ,type,B)
(b)

(A,range,B) (C,sp,A) (X ,C,Y)
(Y,type,B)

(6) Subproperty Reflexivity:

(a)
(X ,A,Y)
(A,sp,A)

(b)
(A,sp,B)

(A,sp,A) (B,sp,B)

(c)
(p,sp,p)

for p ∈ ρdf

(d)
(A,p,X)
(A,sp,A)

for p ∈ {dom, range}

(7) Subclass Reflexivity:

(a)
(A,sc,B)

(A,sc,A) (B,sc,B)
(b)

(X ,p,A)
(A,sc,A)

for p ∈ {dom, range, type}

Table 1
Deductive rules for the fragment ρdf.

Theorem 10 (Normal form for proofs) Let G
and H be ρdf–graphs and assume that G ⊢ρdf H.
Then there is a proof of H from G (in the sense
of Definition 6) such that rule (1a) is used at most
once and at the last step of the proof.

Notice that rule (1a) captures the semantics of
blank nodes. Thus, Theorem 10 essentially states
that the inference regarding blank nodes can always
be postponed to the last step in a proof of entail-
ment. We use this result in Section 4 when proposing
a minimalist inference system for RDFS graphs.

3.3. The role of reflexivity

Note that although in ρdf–models we do
not impose the a priori satisfaction of any
triple, there are triples that are entailed by
all graphs, for example the triples (sp, sp, sp),
(sc, sp, sc), (type, sp, type), (dom, sp, dom), and
(range, sp, range). These triples are true under
every ρdf model since sp must be interpreted as a
reflexive relation. Moreover, since blank nodes work

as existential variables, the triples above with their
subject or object positions replaced by blank nodes,
are also true in every ρdf–model. The good news is
that these are the only triples in the ρdf fragment
that are satisfied by every model as the following
proposition shows.
Proposition 11 Let t be an RDF triple such that
∅ |=ρdf t. Then, either t ∈ {(sp, sp, sp), (sc, sp, sc),
(type, sp, type), (dom, sp, dom), (range, sp, range)},
or t is obtained from these triples replacing the
subject or/and the object by blank nodes.

PROOF. It is not difficult to see that the
triples in the set A = {(sp, sp, sp), (sc, sp, sc),
(type, sp, type), (dom, sp, dom), (range, sp, range)}
together with their existential versions obtained by
replacing subject or predicate by blank nodes, are
satisfied by every ρdf model, and so they are ρdf–
entailed by every graph G. The rest of the proof
follows by a case by case analysis, taking into ac-
count that, for a ground triple to be satisfied by
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every model, all its components must be elements
in ρdf. 2

We show next that this is part of a more general
phenomena, namely the presence of reflexivity for
sp and sc. In fact, we prove that reflexivity for sp
and sc is orthogonal to the rest of the semantics.
Definition 12 An interpretation I is a reflexive–
relaxed model under ρdf of a graph G, denoted by
I |=nrx

ρdf G, iff I is an interpretation that satisfies the
conditions in Definition 4 for G with the exception
that I does not necessarily satisfy the restrictions
stating that Ext(Int(sp)) and Ext(Int(sc)) are re-
flexive relations over Prop and Class, respectively.

For graphs G and H we write G |=nrx
ρdf H, iff every

reflexive-relaxed model of G is also a reflexive-relaxed
model of H.
Theorem 13 Let G and H be ρdf graphs. Assume
that H does not contain triples of the form (x, sp, x)
nor (x, sc, x) for x ∈ UL, nor triples obtained from
them by replacing the subject and/or the object by
blank nodes. Then

G |=ρdf H iff G |=nrx
ρdf H.

PROOF. ⇐) Assume that G |=nrx
ρdf H and let

I = (Res, Prop, Class, Ext, CExt, Lit, Int) be a
ρdf model of G. We need to show that I is a ρdf
model of H . Since I is a ρdf model of G, by defini-
tion we know that I is also a reflexive–relaxed ρdf
model of G. Now, since G |=nrx

ρdf H , we have that I
is also a reflexive–relaxed ρdf model for H . Now, I
is an interpretation that satisfies the conditions of
Definition 12 for H , and is such that Ext(Int(sp))
and Ext(Int(sc)) are reflexive relations. Hence, I
satisfies all the conditions of Definition 4 for H and
so I is a model under ρdf for H , completing this
part of the proof.
⇒) Assume that G |=ρdf H and let I =

(Res, Prop, Class, Ext, CExt, Lit, Int) be a
reflexive-relaxed ρdf model of G. We need to show
that I is a reflexive-relaxed ρdf model of H . Let I ′

be the model obtained from I by taking the reflex-
ive closure of the relations Ext(Int(sp)) over Prop,
and Ext(Int(sc)) over Class. Thus I ′ is a ρdf model
of G (it satisfies all the conditions in Definition 4
for G). Since G |=ρdf H , we have that I ′ is a ρdf
model for H . Now we show that I satisfies all triples
(s, p, o) ∈ H . Let A be the extension function that
I ′ use in modeling H . Thus (IntA(s), IntA(p)) ∈
Ext(Int(p)) for every (s, p, o) ∈ H . We also know
that I and I ′ differ only in the reflexive pairs

of Ext(Int(sp)) and Ext(Int(sc)). Now, because
H does not contain triples of the form (x, sp, x)
nor (x, sc, x) nor their existential versions replac-
ing subject or object by blank nodes, the same
extension function A is such that in I it holds
that (IntA(s), IntA(p)) ∈ Ext(Int(p)) for every
(s, p, o) ∈ H , hence it satisfies all the conditions of
Definition 12, and finally I is a reflexive–relaxed
model for H , completing this part of the proof. 2

Essentially the above theorem states that the only
use of reflexive restrictions in RDFS models is the
entailment of triples of the form (x, sp, x), (x, sc, x)
(or their existential versions).

Another property of |=nrx
ρdf is that it does not entail

axiomatic triples:
Corollary 14 There is no triple t such that

∅ |=nrx
ρdf t.

PROOF. It is evident that, as the interpreta-
tion of sp is not necessarily reflexive over prop-
erty names, we see that none of the triples in
A = {(sp, sp, sp), (sc, sp, sc), (type, sp, type),
(dom, sp, dom), (range, sp, range)} are axiomatic
for |=nrx

ρdf . Finally, the fact that |=nrx
ρdf ⊆ |=ρdf com-

pletes the proof. 2

4. Minimal RDFS

Our main goal in this work is to study the core
process of entailment in RDFS. Towards our goal we
have presented the ρdf fragment, and we have for-
mally proved that the normative RDFS entailment
restricted to this fragment is captured by the in-
ference rules (1)–(7). In this section we take a step
forward in our investigation defining the fragment
of minimal RDFS. We present a system of rules for
this fragment proving that, avoiding reflexivity, the
system is sound and complete for RDFS entailment
for minimal RDFS graphs. We also prove tight com-
plexity bounds for the problem of testing entailment,
and provide an algorithm that is asymptotically op-
timal to test entailment in the fragment.

The refinement of ρdf involves restricting graphs
to be ground, and rejecting the presence of ρdf vo-
cabulary as subject or object of the triples. Avoid-
ing the presence of ρdf vocabulary as subject or ob-
ject of triples implies that we avoid the redefinition
of RDFS vocabulary. In [10] the presence of RDFS
vocabulary as subject or object of triples was called
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“non-standard use of RDFS vocabulary”. We agree
with [10] conjecturing that, in practice, large classes
of RDFS graphs will not have RDFS vocabulary oc-
curring as subject or object in their triples. On the
other hand, ground restriction is formally supported
by Theorem 10 that states that the application of
rule (1a) can be made at the final step of proofs,
thus the introduction of blank nodes is not crucial
for proofs.

We show in this section that the two above men-
tioned restrictions considerably simplify the set of
inference rules for RDFS. In fact, we consider the set
of rules (1b), (2), (3) and (4), and we prove that these
rules define a sound and complete system for RDFS
entailment under the above mentioned restrictions.

We start by defining the notions of minimal RDFS
triple and minimal RDFS graph, and the system of
rules that we use for inference.
Definition 15 (Minimal RDFS) A minimal
RDFS triple (mrdf–triple for short) is a ground ρdf–
triple having no ρdf vocabulary as subject or object.
A mrdf–graph is a set of mrdf–triples.

For G and H mrdf–graphs, define G ⊢mrdf H iff
there is proof of H form G (in the sense of Def-
inition 6) involving solely the rules (1b), (2), (3)
and (4).

This refinement is well behaved, indeed using a
similar argument as in the proof of Proposition 7 it
can be shown:
Proposition 16 Let G be a mrdf–graph and let H
be an RDFS graph. Assume that G ⊢mrdf H. Then
H is a mrdf–graph.

The following result proves that ⊢mrdf is sound
and complete with respect to the reflexive-relaxed
entailment |=nrx

ρdf (see Definition 12) for mrdf-graphs.
Proposition 17 Let G and H be mrdf–graphs.
Then

G ⊢mrdf H iff G |=nrx
ρdf H.

The proof of the proposition follows from the
proof of Theorem 8. Notice that the mrdf fragment
considers only ground graphs and that any ground
application of rule (5) reduces to the application
of rules (2b) plus rule (4), thus, we do not need
rule (5) for |=nrx

ρdf . Also notice that, since |=nrx
ρdf does

not force the reflexivity constrains over sp and sc,
we can avoid rules (6) and (7). The details of the
proof can be found in the appendix.

The following result (that follows from Corol-
lary 9, Theorem 13, and Proposition 17) states that
the normative semantics of RDFS [17] is captured
by the deductive system ⊢mrdf for those mrdf–

graphs that do not mention triples of the form
(x, sp, x) nor (x, sc, x) for x ∈ UL.
Corollary 18 Let |= be the RDFS entailment de-
fined in [17], and let G and H be mrdf–graphs. As-
sume that H does not contain triples of the form
(x, sp, x) nor (x, sc, x) for x ∈ UL. Then

G |= H iff G ⊢mrdf H.

Thus, by considering rules (1b), (2)–(4). we have
obtained a very simple deductive system that pre-
serves the normative RDFS semantics for a large
class of graphs.

4.1. Complexity

In this section, we study the complexity of entail-
ment for ⊢mrdf. We prove a lower bound for testing
entailment and provide an algorithm that matches
this bound. We assume that the data structure used
to store RDF graphs is a set of triples, thus, the in-
put of our algorithm is a set.

Let us introduce some notation. For a mrdf–graph
G and a predicate p, define Gp as the subgraph of
G consisting of the triples of the form (x, p, y) of G,
and define G∅ as the subgraph consisting of triples
without ρdf vocabulary. Let G(sp) be the directed
graph whose vertices are all the elements v which
occur as subject or objects in the triples of G, and
in which (u, v) is an edge if and only if (u, sp, v) ∈
G. Define G(sc) similarly. Let V∅ be the vocabulary
that is not RDFS vocabulary.

The naive approach to test the entailment G ⊢mrdf

H in the ground case would be to consider the clo-
sure of G, that is the graph obtained by adding to G
all triples that are derivable from G using rules (2),
(3) and (4), and check if H is included in that clo-
sure. The following results show that this procedure
would take time Θ(|H |·|G|2) in the worst case, which
is too expensive from a database point of view in the
worst case:
Theorem 19 (Size of closure) Let G be a mrdf–
graph.

(i) The size of the closure of G is O(|G|2).
(ii) The size of the closure of G is, in the worst

case, no smaller than Ω(|G|2).
For the upper bound, the result follows by an anal-

ysis of the rules. The most important point is the
propagation –when applicable– of the triples of the
form (x, a, y) through the transitive closure of the
G(sp) graph by the usage of rule (2b): it can be
shown that this gives at most |G∅|×|Gsp| triples. For
triples having a fixed predicate in ρdf the quadratic
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bound is trivial. The lower bound follows from the
example below.
Example 20 (Lower bound for the closure)
Consider the graph

{(a1, sp, a2), . . . , (an, sp, an+1)}.

The number of triples of the closure of the graph is
∑n

k=1 k that is order Ω(n2).
The algorithm in Table 2 presents a much better

procedure to check ground entailment in this frag-
ment as next theorem states.

Theorem 21 Let (a, b, c) be a mrdf–triple and let
G be a mrdf–graph. Then the algorithm in Table 2
can be used to test the entailment G ⊢mrdf (a, b, c) in
time O(|G| log |G|).

The proof of the theorem rests in the following
interpolation lemmas that state which specific sub-
graph of G is relevant when deriving triples contain-
ing ρdf vocabulary as predicate, or having no ρdf vo-
cabulary at all. Let us denote by G|S the subgraph
of G induced by vocabulary S, i.e. those triples of G
having subject, predicate, or object in S.
Lemma 22 Let (a, b, c) be a mrdf–triple and G
a mrdf–graph. Assume that b does not belong to
ρdf. Then G ⊢mrdf (a, b, c) iff G|{sp,a,b,c} ⊢mrdf

(a, b, c).

PROOF. We only need to prove G|{sp,a,b,c} ⊢mrdf

(a, b, c) under the assumption G ⊢mrdf (a, b, c) (the
other direction is trivial). Assume G ⊢mrdf (a, b, c).
Thus a proof sequence P1, . . . Pk−1, Pk exists with
Pk = {(a, b, c)}.

Since (a, b, c) is ground, there is an instance S
S′ of a

rule among (2)-(4) with S′ = {(a, b, c)}. Given that
b /∈ ρdf, the only rule that were applied is (2b), with
S = {(B, sp, b), (a,B, c)}. We assume B 6= b to avoid
a trivial and unnecessary application of the rule.
Note that by Proposition 16 and the assumption
about G, B /∈ ρdf.

Thus we need to show that G|{sp,a,b,c} ⊢mrdf

(B, sp, b) and G|{sp,a,b,c} ⊢mrdf (a,B, c). We can
apply the same argument again to (a,B, c), avoid-
ing trivial applications of rule (2b). For (B, sp, b)
we only need to observe that any instance R

R′ of a
rule among (2)-(4) having R′ = {(B, sp, b)} with
B 6= b must be an instance of rule (2a), thus having
as premises R = {(B, sp, C), (C, sp, b)}. We can ob-
serve that, if B = C or C = b, thus the application
of the rule can be avoided. In any case only triples
of the form (a,D, c) or (C, sp, E), with C 6= D, are
needed. 2

The next lemma characterizes mrdf-entailment of
triples with dom and range predicates:
Lemma 23 Let G be a mrdf–graph. Let a, b ∈ UBL
and assume a, b do not belong to ρdf. Then

(i) G ⊢mrdf (a, dom, b) iff (a, dom, b) ∈ G
(ii) G ⊢mrdf (a, range, b) iff (a, range, b) ∈ G

PROOF.
(i) We only need to prove that (a, dom, b) ∈ G

under the assumption G ⊢mrdf (a, dom, b)
(the other direction is trivial). So assume
G ⊢mrdf (a, dom, b). Thus a proof sequence
P1, . . . Pk−1, Pk exists with Pk = {(a, dom, b)}.
Thus (a, dom, b) ∈ Pj for some j ≤ k. Assume
j is the least index with this property. As we
only concern with rules (2)-(4), we have that
(a, dom, b) ∈ G or there exists an instance R

R′

of these rules such that (a, dom, b) ∈ R′. But
this happens only for rule (2b), which forces a
triple of the form (A, sp, dom) ∈ R. By Propo-
sition 16, this fact contradicts the assumption
about G. Therefore (a, dom, b) ∈ G.

(ii) The proof of G ⊢mrdf (a, range, b) iff
(a, range, b) ∈ G is similar to the previous
proof, replacing dom by range. 2

The next lemma characterizes mrdf-entailment of
non-reflexive triples with sc and sp predicates:
Lemma 24 Let G be a mrdf–graph. Let a, b ∈ UBL
and assume a, b do not belong to ρdf and that a 6= b.
Then

(i) G ⊢mrdf (a, sc, b) iff G|{sc} ⊢mrdf (a, sc, b).
(ii) G ⊢mrdf (a, sp, b) iff G|{sp} ⊢mrdf (a, sp, b).

PROOF.
(i) We only need to prove that G|sc ⊢mrdf

(a, sc, b) under the assumption G ⊢mrdf

(a, sc, b) (the other direction is trivial). As-
sume G ⊢mrdf (a, sc, b). Thus a proof sequence
P1, . . . Pk−1, Pk exists with Pk = {(a, sc, b)}.

As (a, sc, b) is ground, it may be in G, in
which case it is true that G|sc ⊢mrdf (a, sc, b),
or it was obtained at some step by the appli-
cation of an instance of a rule among (2)-(4).
In this last case, let i be the step (Pi−1, Pi)
where (a, sc, b) was introduced, by means of
the instance R

R′ of a rule among (2)-(4); we can
assume that i is the least index with this prop-
erty. But as a 6= b, the rule must be (3a), with
premises R = {(a, sc, C), (C, sc, b)}. If a = C
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Algorithm (Minimal RDFS Entailment)
Input: G, triple (a, p, b)
1. IF p ∈ {dom, range} THEN check if (a, p, b) ∈ G.
2. IF p = sp, a 6= b, THEN check if there is a path from a to b in G(sp).
3. IF p = sc, a 6= b, THEN check if there is a path from a to b in G(sc).
4. IF p /∈ ρdf THEN check if (a, p, b) ∈ G∅; if it is not:

LET G(sp)∗ be the graph G(sp) with the following marks:
For each (u, v, w) ∈ G∅, if v ∈ G(sp) then mark v with (u, w).

IN Check in G(sp)∗ if there is a path from a vertex marked with (a, b) which reaches p.
5. IF p = type THEN

LET G(sp)′ be the graph G(sp) with the following marks:
- For each triple (u, dom, v) ∈ G, mark the vertex u in G(sp) with d(v).
- For each triple (z, e, y) ∈ G∅, if e ∈ G(sp), mark the node e with s(z).

LET Ld be the ordered list of elements d(v) such that there is a path from v to b in G(sc)
LET Ls be the ordered list of elements s(z) such that either:

1) in G(sp)′ there is a path from a node marked s(z) to a node marked with an element in Ld, or

2) there is (z, type, v) ∈ G, for d(v) ∈ Ld.
IN Check if s(a) is in Ls.

6. Repeat point 5 symmetrically for range instead of dom.
(making the corresponding changes)

Table 2
Algorithm for checking entailment for minimal RDFS.

or C = b, then (a, sc, b) ∈ R ⊆ Pi−1 contra-
dicting the assumption about i. Thus a 6= C
and C 6= b. We can now apply the same argu-
ment again to (a, sp, C) and (C, sc, b).

(ii) The argument for G ⊢mrdf (a, sp, b) iff
G|sp ⊢mrdf (a, sp, b) is similar to the used
above for the proof of G ⊢mrdf (a, sc, b)
iff G|sc ⊢mrdf (a, sc, b), replacing sp by sc

and (3a) by (2a). 2

It turns out that type is the most complex to deal
with, as next lemma shows:
Lemma 25 Let G and H be mrdf–graphs. Assume
G ⊢mrdf H. Then:

(i) If type /∈ voc(H) then

G|voc(H)∪{sp} ⊢mrdf H.

(ii) If type ∈ voc(H) then

G|voc(H)∪{dom,range,sp,sc} ⊢mrdf H.

PROOF. The first statement of the lemma follows
directly from Lemmas 22, 23, and 24. The second
statement of the lemma follows from the observa-
tion that there are two cases for deriving (x, type, b)
using rules (2)–(4):
– It can be derived applying rule (3b) from triples

(x, type, a) and (a, sc, b), thus, the statement fol-
lows recursively from Lemma 24; or

– it can be derived applying rule (4) from triples
(a, dom, b) or (a, range, b), plus a triple (x, a, y),

G(sp)′

e

u dom

a
y

v

type

d(v)

s(a)

w

sp

sc

s(a) ∈ Ls

G(sc)
sc

b

v, w ∈ Ld

Figure 1. Point 5 of the algorithm for checking entailment
for minimal ρdf.

thus, the statement follows recursively from
Lemma 23 and Lemma 22. 2

Correctness and completeness of the algorithm
follows from an inspection of the rules and from the
previous interpolation lemmas. The algorithm uses
the rules in a bottom-up fashion. There are some
subtleties in points 4 and 5. Point 4 follows from
Lemma 22, which states that the deduction of a
triple (a, b, c) with b not belonging to ρdf depends
only on the subgraph of G generated by the vo-
cabulary {a, b, c, sp}. Hence rules (2a) and (2b) are
the only relevant: (2a) constructs the graph G(sp)
and (2b) puts the marks. The construction of G(sp)∗

can be done in |G| log |G| steps: order G∅ and then
while traversing G(sp) do binary search on G∅.

For point 5 we are checking (a, type, b) (see Fig-
ure 1). The crucial observation is that in G(sp)′, if
there is a path from a vertex marked s(z) to a ver-
tex u marked d(v), then G ⊢mrdf (z, u, y) for some
y, and hence G ⊢mrdf (z, type, v) using rule (4a) (or
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rule (4b) ). From here it follows that if there is a
path in G(sc) from a node v (with d(v) ∈ Ld) to b,
then using iteratively the rule (3b) we get G ⊢mrdf

(z, type, b). Hence a check in the list Ls for s(a) will
determine if G |= (a, type, b) or not.

Now it rest to check if all this can be done effi-
ciently. First, it is no difficult to see that the con-
struction of G(sp)′ can be done in time |G| log |G|.
The construction of the list Ld takes time |G| log |G|:
List all d(v), order them, and then expand the
graph G(sc) from b each time looking at Ld to
mark the corresponding element. At the end, delete
unmarked elements. The construction of Ls takes
time |G| log |G| as well: First list all elements s(z)
(no more than |G|) in a list L′

s. Then in the directed
graph G(sp)′, mark green each node marked with
an element of Ld. Now recursively do the follow-
ing: (1) if a node green is marked with an s(z0),
mark that element in L′

s; (2) Expand the green
nodes. At the end of the process, delete from L′

s all
non-marked elements to get Ls.

The next result shows that the above algorithm
cannot be essentially improved, in the sense that,
any other algorithm for testing the ground entail-
ment G ⊢mrdf t would take time proportional to
|G| log |G| in the worst case.
Theorem 26 Let t be a mrdf–triple and let G
be a mrdf–graph. Then testing G ⊢mrdf t uses
Ω(|G| log |G|) comparisons between RDF terms in
the worst case.

PROOF. The bound is obtained by coding the
problem of determining whether two sets are dis-
joint, which is a well known problem that needs
Ω(n log n) comparisons in the worst case [2]. Given
the sets A = {a1, . . . , an} and B = {b1, . . . , bn},
construct a graph G as follows:

G = {(ai−1, sp, ai)}2≤i≤n ∪ {(x, bj , y)}1≤j≤n.

Then, we have that G ⊢mrdf (x, an, y) iff A ∩ B 6=
∅. 2

Finally, we can state a bound for deciding G ⊢mrdf

H .
Corollary 27 Let G and H be mrdf–graphs.
Then deciding if G ⊢mrdf H can be done in time
O(|H ||G| log |G|).

4.2. An extension with blank nodes

For the sake of completeness, we state here the
complexity of deduction for graphs including blank
nodes. The hardness part of the following complexity
result has appeared in several papers in different
formulations and for different fragments of RDFS
(for example [17], [16], [1], [24], and [9]), that is, it
belongs to the folklore of RDF.
Theorem 28 (Folklore) Given (not necessarily
ground) graphs G and H, deciding if G ⊢ρdf H is
NP-complete.

In spite of the above apparently bad complexity
behavior, polynomial bounds for the problem can be
derived from well-known databases and constraint
satisfaction results [6,9,1,14], by considering special
forms of interaction between blank nodes and ap-
plying Theorem 10.

For the purposed uses of RDFS, the whole Web,
polynomial bounds are still not satisfactory. In the
next result we provide a tight bound for entailment
for a big class of RDFS graphs containing blank
nodes, that are likely to occur in practice. Indeed
the theorem shows that for that class, testing ρdf
entailment in general can be done asymptotically as
fast as for the ground case.
Theorem 29 Let G and H be graphs in minimal
RDFS extended by allowing that each triple in H
has at most one blank node. Then deciding whether
G ⊢ρdf H can be done in time O(|H ||G| log |G|).

PROOF. Let H0 be the subset of ground triples of
H . We already know that checking G ⊢ρdf H0 can be
done in time O(|H0||G| log |G|). For the non-ground
part, let H ′ = H r H0, and assume that k blank
nodes occur in H ′. For each such blank node Xj

(1 ≤ j ≤ k) in H ′ consider the graph Hj consisting
of all triples of H ′ in which Xj occurs. Because each
triple has at most one blank node, H ′ is the disjoint
union of the Hj for j = 1, . . . k, and, if G ⊢ρdf H ′

then the map of the last step in Theorem 10 is as well
a disjoint union of the maps µj which witness each
G ⊢ρdf Hj . Hence, it is enough to check if G ⊢ρdf Hj

for each j = 1, . . . , k.
Now, for each graph Hj with j = 1, . . . , k do the

following: For each triple t ∈ Hj build a list Lt with
all instantiations v of Xj for which G ⊢ρdf t[v/Xj].
Each such list has at most voc(G) elements, and then
each list is of size at most |G|. Using the algorithm
for ground entailment, it is not difficult to check that
this list can be built in time O(|G| log |G|). In fact,
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for the cases (1) to (3) in the algorithm, the result
is trivial. For (4), expand the graph G(sp)′ from p
looking for nodes marked (x, b) (resp. (a, x)) and
each time one is found, include the value x is the
list. For (5), and (Xj , type, b) note that the list Ls

gives all the solutions. For (6) and triple of the form
(a, type, Xj), the list Ld should include all nodes
reachable from any d(v). Finally, let L1, . . . , L|Hj|

be the lists obtained. Order each of them, and then,
compute the intersection of L1, L2, compute the in-
tersection of this list with L3 and so inductively, and
test if the result is non-empty. This process takes
time O(|Hj ||G| log |G|), and then the whole process
takes O(|H ||G| log |G|). 2

5. Related work and concluding remarks

The normative semantics of RDFS [17] has two
drawbacks: it is formulated in highly non-standard
fashion and is complex to read, which makes it dif-
ficult to deal with for the common database, logi-
cian or even developers. Several works have dealt
with the problem of providing a more clean (or stan-
dard) semantics for the normative RDFS seman-
tics. Among them, the first formalizations we can
mention is Mendelzon et al. [16] which emphasizes
database features, the formalization by Marin [20],
and the formalization by ter Horst [24], the last two
providing a formal semantics for the whole language,
but deviating little from the normative approach. A
further discussion on the logical foundations of the
RDF specification was done by Bruijn et al [9].

There are other approaches to define a semantics
for RDFS which definitively depart from the nor-
mative approach. Although, the focus in our work
is not to provide a standard semantic definition for
RDFS, but to study fragments of the normative se-
mantics with a good compromise between expres-
siveness and computational complexity, some of our
results have a close relationship with these works.

In RDFS(FA) [22], the authors are motivated by
the problem of RDFS having a non-standard meta-
modelling architecture. The paper is mostly focused
in describing the RDFS(FA) semantics for RDFS, a
semantics that can interoperate with conventional
first-order languages like DAML+OIL and OWL.
The central idea is to have a fixed-layer architec-
ture for RDFS, in order to clear possible confusions
in the usage of the same term for multiple roles.
The authors claim that these confusions may arise
in RDFS, for example, when the same name is used

as standing for an object, a predicate, a class, etc.
in a single ontology. RDFS(FA) is a sublanguage of
RDFS, and its semantics explicitly divides the set of
discourse in strata or layers. The authors came up
with a semantics that has clear differences with the
normative RDFS semantics. In our work, although
we have different motivations, we tackle the same
problem but from a completely different perspec-
tive. We keep the normative RDFS semantics and
show that, in an fragment of the language that com-
prises the core functionalities, a standard semantics,
equivalent to the normative one, can be developed,
and moreover, show that the remaining ones can be
safely avoided.

In RDF-F-Logic [25] the authors propose a se-
mantics for RDFS using an extension of the F-Logic
formalism [18]. This extension is expressive enough
to deal with anonymous resources (blank nodes) and
reification. With the F-Logic formalism for RDFS
the authors obtain by free an expressive framework
for modeling ontologies, and a powerful deductive
system. The authors claim that an important ad-
vantage of their approach is that F-Logic would gave
RDFS a standard (second order) logical semantics.
As we have mentioned, instead of extending the ex-
pressive power of RDFS, our main interest have been
to study fragments with less but enough expressive
capabilities for most uses, yet having an efficient rea-
soning system.

A third group of proposals deal with the relation-
ship/interplay of RDFS and ontology languages,
namely OWL and the family of description log-
ics known as DL-Lite. Cuenca Grau [15] proposes
RDFS(DL), a sublanguage of the RDFS(FA) dis-
cussed above. RDF-Schema(DL) essentially amount
to suppress the meta-modelling architecture of
RDFS(FA) and takes advantage of developments
in description logics, particularly OWL-Lite. The
motivation for this design decision is that this meta-
modelling feature in RDFS(FA) does not seem to
increase the expressive power of the language. A
relevant development for the RDFS(DL) proposal
is a family of description logics, DL-Lite that was
introduced to deal with the complexity concerns
while keeping as much expressive power as possible,
and improving on some database aspects like query-
ing [4]. The RDFS(DL) approach differs from ours
in that its main goal is more directed to compati-
bility with OWL and upper layers than to design
a minimalist sublanguage of RDFS with low com-
plexity directly oriented to database processing.

13



Concluding Remarks. We presented a streamlined
fragment of RDFS which includes the most impor-
tant and used vocabulary for describing data, avoid-
ing vocabulary and semantics that ideally should
be part of the structure of the language. We gave a
semantics and a set of rules that captures for this
fragment precisely the standard semantics of RDF
as defined in the W3C Recommendation.

Based on this fragment, we isolated a minimal sys-
tem for RDFS. This fragment avoids features that
are rarely used such as reflexivity and distinguished
vocabulary in object and subject positions. We have
presented a very simple deductive system for this
fragment, we have proved some complexity bounds
for the entailment problem, and we have provided an
algorithm to test entailment that is asymptotically
optimal. This fragment should work as an essential
minimal and efficient floor from where to extend the
language in different directions.

We think that the minimal RDFS deductive sys-
tem that we have presented in this paper, by their
simplicity and efficiency, could be of help for devel-
opers, designers, and theoreticians that work at the
data level in the Semantic Web.
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Appendix A. RDFS definitions

In this and the following section we denote by
rdfsV the RDFS vocabulary (as shown in Table A.1).
Recall that we assume that the RDFS vocabulary
already contains the RDF vocabulary [17].
Definition 30 (cf. [17,20]) The interpretation
I = (Res, Prop, Class, Ext, CExt, Lit, Int) is an
RDFS model for an RDF graph G, denoted by
I |= G, iff I is an interpretation over vocabulary
rdfsV ∪ terms(G) that satisfies the RDFS axiomatic
triples [17] (see Table A.2) and the following seman-
tic conditions:

(i) Simple:
(a) there exists a function A : B → Res such that for each

(s, p, o) ∈ G, Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈
Ext(Int(p)), where IntA is the extension of Int using
A.

(ii) RDF:
(a) x ∈ Prop iff (x, Int(prop)) ∈ Ext(Int(type))
(b) If l ∈ terms(G) is a well-typed XML literal [17]

with lexical form w, then Int(l) is the XML literal
value of w, Int(l) ∈ Lit, and (Int(l), Int(xmlLit)) ∈
Ext(Int(type)). Otherwise, if l is an ill-typed XML lit-
eral [17] then Int(l) /∈ Lit and (Int(l), Int(xmlLit)) /∈
Ext(Int(type)).

(iii) RDFS Classes:
(a) x ∈ Res iff x ∈ CExt(Int(res))
(b) x ∈ Class iff x ∈ CExt(Int(class))
(c) x ∈ Lit iff x ∈ CExt(Int(literal))

(iv) RDFS Subproperty:
(a) Ext(Int(sp)) is transitive and reflexive over Prop
(b) if (x, y) ∈ Ext(Int(sp)) then x, y ∈ Prop and

Ext(x) ⊆ Ext(y)

(v) RDFS Subclass:
(a) Ext(Int(sc)) is transitive and reflexive over Class
(b) if (x, y) ∈ Ext(Int(sc)) then x, y ∈ Class and

CExt(x) ⊆ CExt(y)

(vi) RDFS Typing:
(a) x ∈ CExt(y) iff (x, y) ∈ Ext(Int(type))
(b) if (x, y) ∈ Ext(Int(dom)) and (u, v) ∈ Ext(x) then

u ∈ CExt(y)
(c) if (x, y) ∈ Ext(Int(range)) and (u, v) ∈ Ext(x) then

v ∈ CExt(y)

(vii) RDFS Additionals:
(a) if x ∈ Class then (x, Int(res)) ∈ Ext(Int(sc)).
(b) if x ∈ CExt(Int(datatype)) then (x, Int(literal)) ∈

Ext(Int(sc))
(c) if x ∈ CExt(Int(contMP)) then (x, Int(member)) ∈

Ext(Int(sp))

Now, given two graphs G and H we say that G
RDFS entails H and write G |= H, iff every RDFS
model of G is also an RDFS model of H.

Appendix B. Proofs

Proof of Theorem 5

In the proof of this Theorem we use Definition 30
of Appendix A for RDFS models.
⇐) Assume that G |=ρdf H and let I be an RDFS

model of G, that is, I satisfies all the conditions in
Definition 30 for G. We need to show that I is an
RDFS model of H .

As I satisfies conditions (i), (iv), (v), and (vi) of
Definition 30, we have that I interprets every ele-
ment in ρdf as a property name, and it also satisfies
the axiomatic triples

(dom, dom, prop), (dom, range, class),

(range, dom, prop), (range, range, class),

and (type, range, class)

Thus I also satisfies all conditions in Definition 4
and so I is also a ρdf model for G. Now I is a ρdf
model for H that satisfies all the conditions of Defi-
nition 30 and then I is also an RDFS model for H ,
completing this part of the proof.
⇒) Assume that G |= H , and let I = (Res, Prop,

Class, Ext, CExt, Lit, Int) be a ρdf-model of G. We
need to show that I is a ρdf-model of H . To prove
this property, we first construct an RDFS model I ′

of G from I.
First, we assume that for each e ∈ rdfsV there

is an element xe that is used to interpret e in
I ′. Further assume that Int(e) = xe for every
e ∈ ρdf in I. Since I is an interpretation under
ρdf, it follows that Int(e) is not defined for each
e ∈ rdfsV − ρdf (the set difference). Now, let Ax
be the set of all RDFS axiomatic triples [17] (see
Table A.2). With the above observation we con-
struct the interpretation I ′ as follows. Let I ′ =
(Res′, P rop′, Class′, Ext′, CExt′, Lit′, Int′) be the
interpretation defined on the top of I by:
– Res′ = Res ∪ Prop ∪ {xe | e ∈ rdfsV}.

– Prop′ = Prop ∪ {xe | e ∈ ρdf} ∪
{xe | (e, type, prop) ∈ Ax} ∪
{xe | (e, sp, y), (z, sp, e), (e, dom, u), or

(e, range, v) ∈ Ax} ∪
{x | (x, y) ∈ Ext(xsp), (z, x) ∈ Ext(xsp),

(x, u) ∈ Ext(xdom), or (x, v) ∈ Ext(xrange)}.

– Class′ = Class ∪
{xe | (y, type, e) ∈ Ax} ∪
{xe | (e, sc, y), (z, sc, e), (u, dom, e), or

(v, range, e) ∈ Ax} ∪
{x | (y, x) ∈ Ext(xtype)} ∪
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rdfs:Resource [res] rdf:type [type] rdfs:isDefinedBy [isDefined]

rdf:Property [prop] rdfs:domain [dom] rdfs:comment [comment]

rdfs:Class [class] rdfs:range [range] rdfs:label [label]

rdfs:Literal [literal] rdfs:subClassOf [sc] rdf:value [value]

rdfs:Datatype [datatype] rdfs:subPropertyOf [sp] rdf:nil [nil]

rdf:XMLLiteral [xmlLit] rdf:subject [subj] rdf: 1 [ 1]

rdfs:Container [cont] rdf:predicate [pred] rdf: 2 [ 2]

rdf:Statement [stat] rdf:object [obj] . . .

rdf:List [list] rdfs:member [member] rdf: i [ i]

rdf:Alt [alt] rdf:first [first] . . .

rdf:Bag [bag] rdf:rest [rest]

rdf:Seq [seq] rdfs:seeAlso [seeAlso]

rdfs:ContainerMembershipProperty [contMP]

Table A.1
RDFS vocabulary [17], with shortcuts in brackets

(1) Type (2) Domain (3) Range (4) Subclass

(type, type, prop)

(subj, type, prop)

(pred, type, prop)

(obj, type, prop)

(first, type, prop)

(rest, type, prop)

(value, type, prop)

( 1, type, prop)

( 1, type, contMP)

( 2, type, prop)

( 2, type, contMP)

. . .

( i, type, prop)

( i, type, contMP)

. . .

(nil, type, prop)

(xmlLit, type, datatype)

(type, dom, res)

(dom, dom, prop)

(range, dom, prop)

(sp, dom, prop)

(sc, dom, class)

(subj, dom, stat)

(pred, dom, stat)

(obj, dom, stat)

(member, dom, res)

(first, dom, list)

(rest, dom, list)

(seeAlso, dom, res)

(isDefined, dom, res)

(comment, dom, res)

(label, dom, res)

(value, dom, res)

( 1, dom, res)

( 2, dom, res)

. . .

( i, dom, res)

. . .

(type, range, class)

(dom, range, class)

(range, range, class)

(sp, range, prop)

(sc, range, class)

(subj, range, res)

(pred, range, res)

(obj, range, res)

(member, range, res)

(first, range, res)

(rest, range, list)

(seeAlso, range, res)

(isDefined, range, res)

(comment, range, literal)

(label, range, literal)

(value, range, res)

( 1, range, res)

( 2, range, res)

. . .

( i, range, res)

. . .

(alt, sc, cont)

(bag, sc, cont)

(seq, sc, cont)

(contMP, sc, prop)

(xmlLit, sc, literal)

(datatype, sc, class)

(5) Subproperty

(isDefined, sp, seeAlso)

Table A.2
RDFS axiomatic triples [17,20]
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{x | (x, y) ∈ Ext(xsc), (z, x) ∈ Ext(xsc),
(u, x) ∈ Ext(xdom), or (v, x) ∈ Ext(xrange)}.

– Lit′ = Lit.

– Int′ is such that Int′(e) = xe for each e ∈ rdfsV,
and Int′(x) = Int(x) in other case.

– Ext′ is an extension function such that:
· Ext′(xtype) =

Ext(xtype) ∪
{(xs, xo) | (s, type, o) ∈ Ax} ∪
{(y, xres) | y ∈ Res′} ∪
{(y, xprop) | y ∈ Prop′} ∪
{(y, xclass) | y ∈ Class′} ∪
{(y, xliteral) | y ∈ Lit′} ∪
{(x, y) | x ∈ Res′, (xe, y) ∈ Ext(xdom)∪

Ext(xrange) with e ∈ ρdf}.
· Ext′(xdom) =

Ext(xdom) ∪
{(xs, xo) | (s, dom, o) ∈ Ax}.

· Ext′(xrange) =
Ext(xrange) ∪
{(xs, xo) | (s, range, o) ∈ Ax}.

· Ext′(xsc) =
Ext(xsc) ∪
{(xs, xo) | (s, sc, o) ∈ Ax} ∪
{(x, x) | x ∈ Class′} ∪
{(y, xres) | y ∈ Class′}.

· Ext′(xsp) =
Ext(xsp) ∪
{(xs, xo) | (s, sp, o) ∈ Ax} ∪
{(x, x) | x ∈ Prop′} ∪
{(x 1, xmember), (x 2, xmember), . . .}.

· Ext′(xe) = ∅ for every xe ∈ Prop′ such that
e ∈ rdfsV − ρdf.

· Ext′(x) = Ext(x) in all other cases.

– CExt′ is such that:
· CExt′(xres) = Res′.
· CExt′(xprop) = Prop′.
· CExt′(xclass) = Class′.
· CExt′(xliteral) = Lit′.
· CExt′(xcontMP) = {x 1, x 2, . . .}.
· CExt′(xdatatype) = {xxmlLit}.
· CExt′(xe) = ∅ for e ∈ {xmlLit, cont, alt, bag,
seq, list, stat}.

· CExt′(x) = CExt(x) ∪ Res′ if (xe, x) ∈
Ext(xdom) ∪ Ext(xrange) for e ∈ ρdf.

· CExt′(x) = CExt(x) in all other cases.
Note that I ′ is well defined in the sense that every
one of its components is defined in terms of notions
defined before.

Now we prove that I ′ is an RDFS model of G.

First note that for every RDFS axiomatic triple
(s, p, o) we have that p ∈ ρdf. From the con-
struction of Prop′, Int′, and Ext′, we have that
Int′(p) = xp ∈ Prop′ and (Int′(s), Int′(o)) =
(xs, xo) ∈ Ext′(xp) = Ext′(Int′(p)) for every
RDFS axiomatic triple (s, p, o). Thus I ′ satisfies all
RDFS axiomatic triples.

Now we prove that I ′ satisfies all the conditions
en Definition 30. First observe that I satisfies con-
ditions (i), (iv), (v), and (vi) of Definition 30 for G,
because I is a ρdf model for G. Now for I ′:

(i) Simple:
(a) For every e ∈ ρdf we have that Int′(e) =

xe = Int(e) and Ext(xe) ⊆ Ext′(xe), and
Int′ and Ext′ are defined exactly as Int and
Ext in all other cases. Note also that G does
not mention RDFS vocabulary outside ρdf.
Hence for every triple (s, p, o) ∈ G we have
that (Int′(s), Int′(o)) = (Int(s), Int(o)) ∈
Ext(Int(p)) ⊆ Ext′(Int(p)) = Ext′(Int′(p)).
Therefore I ′ satisfies this condition for G.

(ii) RDF:
(a) We have that G does not mention prop, so I

does not interpret prop and thus there is no
y such that (y, xprop) ∈ Ext(xtype) in I. By
definition of Ext′(xtype) in I ′, we have that
(y, xprop) ∈ Ext′(xtype) iff y ∈ Prop′, and so
I ′ satisfies this condition for G.

(b) Since G is a ρdf-graph we have that there is
no XML typed literal in G. Thus, by the def-
inition of Ext′(xtype) and CExt′(xxmlLit), we
have that I ′ satisfies this condition for G.

(iii) RDFS Classes:
(a) By the construction of I ′ we have CExt′(xres) =

Res′.
(b) By the construction of I ′ we have CExt′(xclass) =

Class′.
(c) By the construction of I ′ we have CExt′(xliteral) =

Lit′.

(iv) RDFS Subproperty:
(a) By the construction of I ′ we have that

Ext′(xsp) is reflexive over Prop′. Now,
note that the only axiomatic triple that
mention sp in its predicate position is
(isDefined, sp, seeAlso). Thus we must only
prove that

Ext(xsp) ∪ {(xisDefined, xseeAlso),

(x 1, xmember), (x 2, xmember), . . .}

is a transitive relation, which is a direct conse-
quence of the fact that Ext(xsp) is transitive
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and that G does not mention isDefined, nor
seeAlso, nor i for any i.

(b) Let (x, y) ∈ Ext′(xsp) = Ext(xsp) ∪
{(xisDefined, xseeAlso)}∪{(x, x) | x ∈ Prop′}∪
{(x 1, xmember), (x 2, xmember), . . .}. For (x, y) ∈
Ext(xsp) the condition holds because I sat-
isfies this condition. For (xisDefined, xseeAlso)
we have that xisDefined, xseeAlso ∈ Prop′ and
Ext′(xisDefined) = ∅ ⊆ Ext′(xseeAlso). For
(x i, xmember) we have that x i, xmember ∈ Prop′

and Ext′(x i) = ∅ ⊆ Ext′(xmember). Finally,
for (x, x) ∈ Ext′(xsp) we have x ∈ Prop′ and
so the condition holds.

(v) RDFS Subclass:
(a) By the construction of I ′ we have that

Ext′(xsc) is reflexive over Class′. Note that
(c3, sc, c4) for every pair of axiomatic triples
(c1, sc, c2), so we have that c2 6= c3, and also
that c1, c2, c3, c4 ∈ rdfsV − ρdf (see Table 2).
Consider (x, y), (y, z) ∈ Ext′(xsc): if x = y or
y = z, we have (x, z) ∈ Ext′(xsc); if x 6= y and
y 6= z, by the previous observation and the
fact that G does not mention RDFS vocabu-
lary outside ρdf, we have that (x, y), (y, z) ∈
Ext(xsc) and then by transitivity of Ext(xsc)
we have that (x, z) ∈ Ext(xsc) ⊆ Ext′(xsc).
Finally Ext′(xsc) is a transitive relation.

(b) Let (x, y) ∈ Ext′(xsc) = Ext(xsc) ∪
{(xs, xo) | (s, sc, o) ∈ Ax} ∪ {(x, x) | x ∈
Class′} ∪ {(y, xres) | for every y ∈ Class′}.
For (x, y) ∈ Ext(xsc), the condition holds
because I satisfies this condition. Now, note
that for every axiomatic triple (c1, sc, c2), by
the construction of I ′ we have that xc1 , xc2 ∈
Class′ and CExt′(xc1) = ∅ except for the
case when c1 is contMP or datatype. Thus,
for (x, y) ∈ {(xs, xo) | (s, sc, o) ∈ Ax} with
x 6= xcontMP and x 6= xdatatype, we have that
x, y ∈ Class′ and CExt′(x) = ∅ ⊆ CExt′(y).
For the case in which x = xcontMP we have
y = xprop, and by the construction of I ′ we
have CExt′(x) = {x 1, x 2, . . .} ⊆ Prop′ =
CExt′(xprop) = CExt′(y). For the case in
which x = xdatatype we have y = xclass, and
by the construction of I ′ we have CExt′(x) =
{xxmlLit} ⊆ Class′ = CExt′(xclass) =
CExt′(y). If (x, y) ∈ {(y, xres) | y ∈ Class′}
we have that x, y = xres ∈ Class′, and by
the construction of I ′, CExt′(x) ⊆ Res′ =
CExt′(xres) = CExt′(y) (note that Res′ is a
superset of Prop′, Class′, and Lit′, and that

in I for every x ∈ Class we have CExt(x) ⊆
Res). Finally, if (x, y) ∈ {(x, x) | x ∈ Class′}
then x = y ∈ Class′ and CExt′(x) ⊆
CExt′(y), completing the proof of this condi-
tion for I ′.

(vi) RDFS Typing:
(a) (⇒) Let x ∈ CExt′(y), we have several

cases: First note that y 6= xe for every e ∈
{xmlLit, cont, alt, bag, seq, list, stat} be-
cause in these cases CExt′(y) = ∅. If y = xe

for e ∈ {res, prop, class, literal}, we have
(x, y) ∈ Ext′(xtype) by the construction of
Ext′(xtype) in I ′. If y = xcontMP then x = x i

for some i, and because for every i there
is an axiomatic triple ( i, type, contMP), we
have that (x, y) ∈ Ext′(xtype). If y = xdatatype

then x = xxmlLit, and because there is an ax-
iomatic triple (xmlLit, type, datatype), we
have that (x, y) ∈ Ext′(xtype). Now if y is
such that (xe, y) ∈ Ext(xdom) ∪ Ext(xrange)
for e ∈ ρdf, we get x ∈ CExt′(y) = Res′ and
therefore by the construction of Ext′(xtype)
we have (x, y) ∈ Ext′(xtype). In other case
CExt′(y) = CExt(y) and so, as I satisfies this
condition, we have that (x, y) ∈ Ext(xtype) ⊆
Ext′(xtype).

(⇐) Now, if we consider (x, y) ∈ Ext′(xtype),
we have several cases. If (x, y) ∈ {(y, xres) | y ∈
Res′}∪{(y, xclass) | y ∈ Class′}∪{(y, xprop)| y ∈
Prop′} ∪ {(y, xliteral) | y ∈ Lit′}, by the
construction of I ′ we have x ∈ CExt′(y). If
(x, y) ∈ Ext(xtype), as I satisfies this condi-
tion and G does not mentions RDFS vocab-
ulary outside ρdf we have x ∈ CExt(y) ⊆
CExt′(y). If (x, y) ∈ {(xs, xo) | (s, type, o) ∈
Ax}, by the construction of Prop′, CExt′(xprop),
CExt′(xcontMP), and CExt′(xxmlLit), and the
specific axiomatic triples that have type

as predicate (see Table 2), we have x ∈
CExt′(y). If (x, y) is such that (xe, y) ∈
Ext(xdom)∪Ext(xrange) with e ∈ ρdf, we have
by construction of CExt′ that CExt′(y) =
Res′ and then because x ∈ Res′ we have x ∈
CExt′(y), completing the proof of this part.

(b) Let (x, y) ∈ Ext′(xdom) and (u, v) ∈ Ext′(x).
First note that x 6= xe for every e ∈ rdfsV−ρdf
with xe ∈ Prop′, because in these cases
Ext′(x) = ∅. Also note that if (x, y) ∈
Ext(xdom) and (u, v) ∈ Ext(x) then, because
I satisfies this condition we have that u ∈
CExt(y). Additionally note that Ext′ is dif-
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ferent to Ext only in elements xe with e ∈ ρdf,
so all remaining cases that left to be checked
are the ones in which (u, v) ∈ Ext′(xe) with
e ∈ ρdf. We consider now all the remaining
cases.

Case x = xtype: If (xtype, y) ∈ Ext′(xdom), and
(u, v) ∈ Ext′(xtype) we must prove that u ∈
CExt′(y). First, for (xtype, y) ∈ Ext′(xdom) we
have (xtype, y) ∈ Ext(xdom) or y = xres by the
axiomatic triple (type, dom, res). If y = xres

and (u, v) ∈ Ext′(xtype), the condition holds
because u ∈ Res′ = CExt′(xres) = CExt′(y).
Assuming that (xtype, y) ∈ Ext(xdom), by
the construction of CExt′ we have that
CExt′(y) = CExt(y) ∪ Res′ and from u ∈
Res′ we obtain u ∈ CExt′(y).

Case x = xdom: If (xdom, y) ∈ Ext′(xdom),
and (u, v) ∈ Ext′(xdom) we must prove that
u ∈ CExt′(y). First, for (xdom, y) ∈ Ext′(xdom)
we get (xdom, y) ∈ Ext(xdom) or y = xprop

by the axiomatic triple (dom, dom, prop).
If y = xprop and (u, v) ∈ Ext′(xdom), we
have two cases: if (u, v) ∈ {(xs, xo) | (s,
dom, o) ∈ Ax}, by the construction of I ′ we
have u ∈ Prop′ = CExt′(xprop) = CExt′(y);
if (u, v) ∈ Ext(xdom), by the construction of
Prop′ we have u ∈ Prop′. Now for (xdom, y) ∈
Ext(xdom), by the construction of CExt′ we
have that CExt′(y) = CExt(y) ∪Res′ and as
u ∈ Res′ we obtain u ∈ CExt′(y).

Case x = xrange: If (xrange, y) ∈ Ext′(xdom),
and (u, v) ∈ Ext′(xrange) we must prove
that u ∈ CExt′(y). First, for (xrange, y) ∈
Ext′(xdom), we have (xrange, y) ∈ Ext(xdom) or
y = xprop by the axiomatic triple (range, dom,
prop). If y = xprop and (u, v) ∈ Ext′(xrange),
we have two cases: if (u, v) ∈ {(xs, xo) |
(s, dom, o) ∈ Ax}, by the construction of I ′ we
have u ∈ Prop′ = CExt′(xprop) = CExt′(y);
if (u, v) ∈ Ext(xrange), by the construction of
Prop′ we have u ∈ Prop′. Now for (xrange, y) ∈
Ext(xdom), by the construction of CExt′ we
have that CExt′(y) = CExt(y) ∪Res′ and as
u ∈ Res′ we obtain u ∈ CExt′(y).

Case x = xsp: If (xsp, y) ∈ Ext′(xdom), and
(u, v) ∈ Ext′(xsp) we must prove that u ∈
CExt′(y). First, for (xsp, y) ∈ Ext′(xdom)
we get (xsp, y) ∈ Ext(xdom) or y = xprop

by the axiomatic triple (sp, dom, prop). If
y = xprop and (u, v) ∈ Ext′(xsp), we have

several cases: if (u, v) ∈ {(xs, xo) | (s, sp, o) ∈
Ax}, by the construction of I ′ we have
u ∈ Prop′ = CExt′(xprop) = CExt′(y);
if (u, v) ∈ {(x, x) | x ∈ Prop′}, we get
u ∈ Prop′ = CExt′(xprop) = CExt′(y); if
(u, v) = (x i, xmember) for some i, we get
we have u ∈ Prop′, because there is an ax-
iomatic triple ( i, type, prop) for every i

and by the construction of Prop′; and if
(u, v) ∈ Ext(xprop), by the construction of
Prop′ we have u ∈ Prop′. Now for (xprop, y) ∈
Ext(xdom), by the construction of CExt′ we
have that CExt′(y) = CExt(y) ∪ Res′ and
so, since u ∈ Res′, we obtain u ∈ CExt′(y).

Case x = xsc: If (xsc, y) ∈ Ext′(xdom), and
(u, v) ∈ Ext′(xsc) we must prove that u ∈
CExt′(y). First, for (xsc, y) ∈ Ext′(xdom)
we have (xsc, y) ∈ Ext(xdom) or y = xclass

by the axiomatic triple (sc, dom, class). If
y = xclass and (u, v) ∈ Ext′(xsc), we have
several cases: if (u, v) ∈ {(xs, xo) | (s, sc, o) ∈
Ax}, by the construction of I ′ we have
u ∈ Class′ = CExt′(xclass) = CExt′(y); if
(u, v) ∈ {(x, x) | x ∈ Class′}, u ∈ Class′

= CExt′(xclass) = CExt′(y); if (u, v) ∈
{(x, xres) | x ∈ Class′}, u ∈ Class′ =
CExt′(xclass) = CExt′(y); and if (u, v) ∈
Ext(xclass), by the construction of Class′

we have u ∈ Class′. Now if (xclass, y) ∈
Ext(xdom), by the construction of CExt′ we
have that CExt′(y) = CExt(y) ∪Res′ and as
u ∈ Res′, we obtain u ∈ CExt′(y).

Then, in all cases I ′ satisfies this condition for
G.

(c) Let (x, y) ∈ Ext′(xrange) and (u, v) ∈ Ext′(x),
we must prove that v ∈ CExt′(y). The same
observations for the previous case hold here, so
we must concentrate in cases in which (u, v) ∈
Ext′(xe) with e ∈ ρdf.

Case x = xtype: the same proof for xtype in
the previous condition works here considering
v instead of u and changing xdom with xrange.

Case x = xdom: If (xdom, y) ∈ Ext′(xrange), and
(u, v) ∈ Ext′(xdom) we must prove that v ∈
CExt′(y). First, for (xdom, y) ∈ Ext′(xrange)
we get (xdom, y) ∈ Ext(xrange) or y = xclass

by the axiomatic triple (dom, range, class).
If y = xclass and (u, v) ∈ Ext′(xdom), we have
two cases: if (u, v) ∈ {(xs, xo) | (s, range, o) ∈
Ax}, by the construction of I ′ we have
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v ∈ Class′ = CExt′(xclass) = CExt′(y); if
(u, v) ∈ Ext(xrange), by the construction of
Class′ we have v ∈ Class′. Now if (xdom, y) ∈
Ext(xrange), by the construction of CExt′ we
have that CExt′(y) = CExt(y) ∪Res′ and as
v ∈ Res′, we obtain v ∈ CExt′(y).

Case x = xrange: If (xrange, y) ∈ Ext′(xrange),
and (u, v) ∈ Ext′(xrange) we must prove
that v ∈ CExt′(y). First, for (xrange, y) ∈
Ext′(xrange) we have (xrange, y) ∈ Ext(xrange)
or y = xclass by the axiomatic triple
(range, range, class). If y = xclass and
(u, v) ∈ Ext′(xrange), we have two cases: if
(u, v) ∈ {(xs, xo) | (s, range, o) ∈ Ax}, by
the construction of I ′ we have v ∈ Class′ =
CExt′(xclass) = CExt′(y); if (u, v) ∈
Ext(xrange), by the construction of Class′

we have v ∈ Class′. Now if (xrange, y) ∈
Ext(xrange), by the construction of CExt′ we
have that CExt′(y) = CExt(y) ∪Res′ and as
v ∈ Res′, we obtain u ∈ CExt′(y).

Case x = xsp: Almost the same proof for xsp in
the previous condition works here considering
v instead of u and changing xdom with xrange,
because, by the construction of I ′, xmember ∈
Prop′ (axiomatic triple (member, dom, res)).

Case x = xsc: Almost the same proof for xsc in
the previous condition works here considering
v instead of u and changing xdom with xrange,
because, by the construction of I ′, xres ∈
Class′ (axiomatic triple (type, dom, res) ).

Then, in all cases I ′ satisfies this condition for
G.

(vii) RDFS Additionals:
(a) If x ∈ Class′, by the construction of I ′ we

have (x, xres) ∈ Ext′(xsc).
(b) If x ∈ CExt′(xdatatype), we have x =

xxmlLit and, by the construction of I ′ and as
(xmlLit, sc, literal) is an axiomatic triple,
we have (x, xliteral) ∈ Ext′(xsc).

(c) If x ∈ CExt′(xcontMP), we get x = x i for some
i, and by the construction of Ext′(xsp) in I ′,
we have that (x, xmember) ∈ Ext′(xsp).

Now, what we have shown is that I ′ |= G, and
from G |= H we obtain that I ′ |= H . Note that
if we restrict I ′ to vocabulary ρdf we obtain the
initial interpretation I that satisfies all conditions
that have to do with ρdf for H and then I |=ρdf H ,
and so G |=ρdf H , completing the proof.

Proof of Theorem 8

First, in the definition of ρdf models for RDF
graphs (Definition 4), the only condition that in-
volves the graph being modeled is condition (i) (Sim-
ple). The other conditions involve the interpretation
itself. It follows that, for an interpretation I that is
a ρdf model for a graph G, testing if it is also a ρdf
model for a graph H , we only have to test if I sat-
isfies condition (i) for H , because I already satisfies
all other conditions (it is already a ρdf model for G).

We split the proof of Theorem 8 in two parts. We
first prove the following lemma stating the sound-
ness of the set of rules for |=ρdf.
Lemma 31 Let G and H be graphs that do not men-
tion RDFS vocabulary outside ρdf. Assume H → G,
or H ⊆ G, or there is an instantiation R

R′ of a rule 2–
7 such that R ⊆ G and H = G∪R′. Then G |=ρdf H.

PROOF. Let I = (Res, Prop, Class, Ext,
CExt, Int) be an interpretation such that I |=ρdf

G, i.e. I satisfies all the conditions in Definition 4.
We know that I satisfies condition (i) for G. Let
A : B → Res be a function such that Int(p) ∈ Prop
and (IntA(s), IntA(o)) ∈ Ext(Int(p)) for every
triple (s, p, o) ∈ G, We split the proof in cases for
every set of rules from (1) to (7).

(1) Simple:
(a) We must show that G |=ρdf H when H → G.

Let µ be a map such that µ(H) ⊆ G. Consider
the function A′ : B → Res defined as

A′(x) =







A(µ(x)) if µ(x) ∈ B

Int(µ(x)) if µ(x) /∈ B

Note that: (1) if x ∈ B and µ(x) ∈ B we get
IntA(µ(x)) = A(µ(x)) = A′(x) = IntA′(x),
(2) if x ∈ B but µ(x) /∈ B we get IntA(µ(x)) =
Int(µ(x)) = A′(x) = IntA′(x), and (3) if
x /∈ B, we obtain µ(x) = x and IntA(µ(x)) =
Int(x) = IntA′(x). Thus IntA(µ(x)) =
IntA′(x) for all x ∈ UB. Let (s, p, o) ∈ H .
Hence (µ(s), µ(p), µ(o)) = (µ(s), p, µ(o)) ∈ G.
By I |=ρdf G we have that Int(p) ∈ Prop and
(IntA(µ(s)), IntA(µ(o))) ∈ Ext(Int(p)), and
finally (IntA′(s), IntA′(o)) ∈Ext(Int(p)), ob-
taining I satisfies condition (i) of Definition 4
for H (with function A′) and also satisfies all
other conditions of Definition 4. So I |=ρdf H .

(b) If H ⊆ G, we obtain H → G and so G |=ρdf H .

(2) Subproperty:
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(a) Let (a, sp, b), (b, sp, c) ∈ G. It follows
that (IntA(a), IntA(b)) ∈ Ext(Int(sp))
and (IntA(b), IntA(c)) ∈ Ext(Int(sp)).
As I satisfies condition (iv) we have that
IntA(a), IntA(c) ∈ Prop. By transitivity
(IntA(a), IntA(c)) ∈ Ext(Int(sp)), I satis-
fies condition (i) for G ∪ {(a, sp, c)} = H and
so I |=ρdf H .

(b) Let (a, sp, b), (x, a, y) ∈ G. First note that
we need that a, b ∈ U for this rule to be
applicable. We have that Int(a) ∈ Prop
and (IntA(x), IntA(y)) ∈ Ext(Int(a)), and
(Int(a), Int(b)) ∈ Ext(Int(sp)). By condi-
tion (iv), Int(b) ∈ Prop and Ext(Int(a)) ⊆
Ext(Int(b)) and so (IntA(x), IntA(y)) ∈
Ext(Int(b)). Hence I satisfies condition (i)
for G ∪ {(x, b, y)} = H and thus I |=ρdf H .

(3) Subclass:
(a) The same proof for rule (2a) works changing

sp by sc and Prop by Class.
(b) Let (a, sc, b), (x, type, a) ∈ G. Hence (IntA(x),

IntA(a)) ∈ Ext(Int(type)), and (IntA(a),
IntA(b)) ∈ Ext(Int(sc)). By condition (vi)
we have IntA(a) ∈ Class and IntA(x) ∈
CExt(IntA(a)). By condition (v), we get
IntA(b) ∈ Class and CExt(Int(a)) ⊆
CExt(Int(b)), so IntA(x) ∈ CExt(IntA(b)).
By condition (vi) we get (IntA(x), IntA(b)) ∈
Ext(Int(type)). We have that I satisfies con-
dition (i) for G ∪ {(x, type, b)} = H and so
I |=ρdf H .

(4) Typing:
(a) Let (a, dom, b), (x, a, y) ∈ G. First note that

we need that a ∈ U for this rule to be applica-
ble. Now, we have that (1) (Int(a), IntA(b)) ∈
Ext(Int(dom)), and (2) Int(a) ∈ Prop
and (IntA(x), IntA(y)) ∈ Ext(Int(a)).
From condition (vi) we obtain IntA(x) ∈
CExt(IntA(b)), and by condition (vi) again
we have that (IntA(x), IntA(b)) ∈ Ext(Int(type)).
Hence I satisfies condition (i) for G ∪
{(x, type, b)} = H and so I |=ρdf H .

(b) The same proof for rule (4a) works changing
dom by range and x by y.

(5) Implicit Typing:
(a) Let (a, dom, b), (c, sp, a), (x, c, y) ∈ G. First

note that we need that c ∈ U for this rule
to be applicable. Now, we have that (1)
(IntA(a), IntA(b)) ∈ Ext(Int(dom)), (2)
(Int(c), IntA(a)) ∈ Ext(Int(sp)), and (3)
Int(c) ∈ Prop and (IntA(x), IntA(y)) ∈

Ext(Int(c)). From (2) and condition (iv) we
have Int(c), IntA(a) ∈ Prop and Ext(Int(c))
⊆ Ext(IntA(a)), and so from (3) we obtain
that (IntA(x), IntA(y)) ∈ Ext(IntA(a)).
From this last result, (1), and condition (vi) we
obtain that IntA(b) ∈ Class and IntA(x) ∈
CExt(IntA(b)). Finally applying condi-
tion (vi) again we have that (IntA(x), IntA(b))
∈ Ext(Int(type)), and so I satisfies condi-
tion (i) for G ∪ {(x, type, b)} = H and then
I |=ρdf H .

(b) The same proof for rule (5a) works changing
dom by range and x by y.

(6) Subproperty Reflexivity:
(a) Let (x, a, y) ∈ G. First note that we need

that a ∈ U for this rule to be applicable.
Thus Int(a) ∈ Prop, and by the reflexivity
of Ext(Int(sp)) over Prop, we obtain that
(Int(a), Int(a)) ∈ Ext(Int(sp)), and so I sat-
isfies condition (i) for G ∪ {(a, sp, a)} = H .
Thus I |=ρdf H .

(b) Let (a, sp, b) ∈ G. By condition (iv) we have
that Int(a), Int(b) ∈ Prop and the proof fol-
lows the same argument as for rule (6a).

(c) The triples (p, sp, p) with p ∈ ρdf are satis-
fied by any interpretation (see Proposition 11),
and so I |=ρdf G ∪ {(p, sp, p)} for every p ∈
ρdf.

(d) Let (a, p, x) ∈ G with p ∈ {dom, range}. By
the new conditions of ρdf models, we have that
Int(a) ∈ Prop and the proof follows the same
argument as for rule (6a).

(7) Subclass Reflexivity:
(a) Let (a, sc, b) ∈ G. By condition (v) we have

that Int(a), Int(b) ∈ Class and so, by the re-
flexivity of Ext(Int(sc)) over Class, we ob-
tain that

(IntA(a), IntA(a)), (IntA(b), IntA(b)) ∈

Ext(Int(sc))

Thus I satisfies condition (i) for G ∪
{(a, sc, a), (b, sc, b)} = H and so I |=ρdf H .

(b) Assume p ∈ {dom, range, type}. Let (x, p, a) ∈
G. By the new condition of ρdf models, we
have that Int(a) ∈ Class and the proof fol-
lows the same argument as for rule (7a).

Finally because we choose an arbitrary model I we
have that G |=ρdf H . 2

To state the completeness of the set of rules, we
must introduce the following notion of ρdf closure
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of a graph. Define the graph ρdf-cl(G) as the closure
of G under the application of rules (2) to (7). Note
that ρdf-cl(G) is an RDF graph over terms(G)∪ρdf,
that is a superset of G, and that is obtained after a
finite number of application of rules.
Lemma 32 Given a graph G that do not mention
RDFS vocabulary outside ρdf, define the interpreta-
tion IG = (Res, Prop, Class, Ext, CExt, Lit, Int)
such that:
– Res = terms(G) ∪ ρdf.
– Prop = {p ∈ voc(G) | (s, p, o) ∈ ρdf-cl(G)} ∪ ρdf

∪ {p ∈ terms(G) | (p, sp, x), (y, sp, p), (p, dom, z),
or (p, range, v) ∈ G}.

– Class = {c ∈ terms(G) | (x, type, c) ∈ G} ∪
{c ∈ terms(G) | (c, sc, x), (y, sc, c), (z, dom, c), or
(v, range, c) ∈ G}.

– Ext : Prop → 2Res×Res the extension function
such that:
· if p ∈ U∩Prop then Ext(p) = {(s, o) | (s, p, o) ∈

ρdf-cl(G)}
· if p ∈ B∩Prop then Ext(p) = {(s, o) | (p′, sp, p),

(s, p′, o) ∈ ρdf-cl(G)}.
– CExt : Class → 2Res a function such that

CExt(c) = {x ∈ terms(G) | (x, type, c) ∈
ρdf-cl(G)}.

– Lit = terms(G) ∩ L.
– Int the identity function over terms(G) ∪ ρdf.
Then for every RDF graph G, we have that IG |=ρdf

G.

PROOF. We must show that IG satisfies all the
conditions of Definition 4 for G.

(i) Simple:
(a) First note that by construction of ρdf-cl(G),

Res = terms(ρdf-cl(G)) = terms(G) ∪ ρdf.
Take the function A : B → terms(G) ∪ ρdf
such that its restriction to the set of blanks
nodes of G results in the identity function.
Now let (s, p, o) ∈ G, then p ∈ U and
Int(p) = p ∈ Prop by construction of Prop
because G ⊆ ρdf-cl(G). We also have that
(IntA(s), IntA(o)) = (s, o) ∈ Ext(Int(p)) =
Ext(p) by the definition of Ext because G ⊆
ρdf-cl(G). Finally we have that IG satisfies
condition (i) for G.

(ii) Subproperty:
(a) Let (a, b), (b, c) ∈ Ext(Int(sp)) = Ext(sp).

By construction of IG (because sp /∈ B) we
have that (a, sp, b), (b, sp, c) ∈ ρdf-cl(G).
thus a, b, c ∈ Prop. As ρdf-cl(G) is closed
under application of rule (2a), we have

that (a, sp, c) ∈ ρdf-cl(G) and so (a, c) ∈
Ext(sp) = Ext(Int(sp)). We conclude that
Ext(Int(sp)) is a transitive relation. We
must show that Ext(Int(sp)) is also re-
flexive over Prop. Let a ∈ Prop. By the
definition of Prop we have three cases: (1)
(x, a, y) ∈ ρdf-cl(G); (2) a ∈ ρdf; (3) (a, sp, b),
(b, sp, a), (a, dom, x), or (a, range, x) ∈
ρdf-cl(G). Because ρdf-cl(G) is closed un-
der application of rules (6) we obtain that
in any case (a, sp, a) ∈ ρdf-cl(G) and so
(a, a) ∈ Ext(sp) = Ext(Int(sp)) and hence
Ext(Int(sp)) is reflexive over Prop.

(b) Let (a, b) ∈ Ext(Int(sp)) = Ext(sp), then by
construction of IG we have that (a, sp, b) ∈
ρdf-cl(G), and we also have that a, b ∈ Prop.
We must show that Ext(a) ⊆ Ext(b). If
Ext(a) = ∅ the condition holds. Assuming
that (x, y) ∈ Ext(a), we have two cases:
– If a ∈ U, by definition (x, a, y) ∈ ρdf-cl(G).

Now, if b ∈ U because ρdf-cl(G) is closed
under application of rule (2b) we have
that (x, b, y) ∈ ρdf-cl(G) and then (x, y) ∈
Ext(b). If b ∈ B, as (a, sp, b), (x, a, y) ∈
ρdf-cl(G) by the construction of IG we have
that (x, y) ∈ Ext(b).

– If a ∈ B, by the construction of IG there
exists a′ such that (a′, sp, a), (x, a′, y) ∈
ρdf-cl(G). As ρdf-cl(G) is closed under ap-
plication of rule (2a), we have (a′, sp, b) ∈
ρdf-cl(G). If b ∈ U, as (a′, sp, b), (x, a′, y) ∈
ρdf-cl(G) and ρdf-cl(G) is closed under ap-
plication of rule (2b), we have that (x, b, y) ∈
ρdf-cl(G) and then (x, y) ∈ Ext(b). If b ∈ B,
as (a′, sp, b), (x, a′, y) ∈ ρdf-cl(G) by the
construction of IG, we have that (x, y) ∈
Ext(b).

We have shown that in any case (x, y) ∈
Ext(b) and so Ext(a) ⊆ Ext(b).

(iii) Subclass:
(a) Let (a, b), (b, c) ∈ Ext(Int(sc)) = Ext(sc).

By the construction of IG we have that
(a, sc, b), (b, sc, c) ∈ ρdf-cl(G). Hence a, b, c ∈
Class. As ρdf-cl(G) is closed under application
of rule (3a), we have that (a, sc, c) ∈ ρdf-cl(G)
and so (a, c) ∈ Ext(sc) = Ext(Int(sc)). We
conclude that Ext(Int(sc)) is a transitive
relation. We must show that Ext(Int(sc))
is also reflexive over Class. Let a ∈ Class,
by the definition of Class we have two cases:
(1) (x, type, a) ∈ ρdf-cl(G); (2) (a, sc, b),
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(b, sc, a), (x, dom, a), or (x, range, a) ∈
ρdf-cl(G). Because ρdf-cl(G) is closed under
application of rules (7) we obtain that in any
case (a, sc, a) ∈ ρdf-cl(G), hence (a, a) ∈
Ext(sc) = Ext(Int(sc)) and so Ext(Int(sc))
is reflexive over Class.

(b) Let (a, b) ∈ Ext(Int(sc)) = Ext(sc). By the
construction of IG we have that (a, sc, b) ∈
ρdf-cl(G), and we also have that a, b ∈ Class.
We must show that CExt(a) ⊆ CExt(b).
First, note that the property holds for
CExt(a) = ∅ . If x ∈ CExt(a), by defini-
tion we get (x, type, a) ∈ ρdf-cl(G). Now,
since ρdf-cl(G) is closed under application of
rule (3b) we have that (x, type, b) ∈ ρdf-cl(G)
and by the construction of IG we have x ∈
CExt(b).

(iv) Typing I:
(a) Let (x, a) ∈ Ext(Int(type)) = Ext(type),

by the construction of IG we have that a ∈
Class and (x, type, a) ∈ ρdf-cl(G), and so by
construction of CExt(a) we have that x ∈
CExt(a). Suppose now that a ∈ Class and
x ∈ CExt(a). By construction of CExt(a)
we have that (x, type, a) ∈ ρdf-cl(G) and so
(x, a) ∈ Ext(type) = Ext(Int(type)). We
have shown that (x, a) ∈ Ext(Int(type)) iff
x ∈ CExt(a).

(b) Suppose that (a, b) ∈ Ext(Int(dom)) =
Ext(dom) and (x, y) ∈ Ext(a), we must show
that x ∈ CExt(b). First, by the construction
of IG, (a, dom, b) ∈ ρdf-cl(G), we have two
cases:
– if a ∈ U, by the construction of IG,

(x, a, y) ∈ ρdf-cl(G) and as ρdf-cl(G) is
closed under application of rule (4a), we have
that (x, type, b) ∈ ρdf-cl(G), and by con-
struction of CExt(b) we get x ∈ CExt(b).

– if a ∈ B, as we have (x, y) ∈ Ext(a),
by construction of IG there exists a′ such
that (a′, sp, a), (x, a′, y) ∈ ρdf-cl(G), and
as ρdf-cl(G) is closed under application
of rule (5a), we have that (x, type, b) ∈
ρdf-cl(G), and by construction of CExt(b),
we get x ∈ CExt(b).

We have shown that in any case x ∈ CExt(b).
(c) Suppose that (a, b) ∈ Ext(Int(range)) =

Ext(range) and (x, y) ∈ Ext(a), we must
show that y ∈ CExt(b). First, by construc-
tion of IG, (a, dom, b) ∈ ρdf-cl(G), we have
two cases:

– if a ∈ U we have (x, a, y) ∈ ρdf-cl(G) and
as ρdf-cl(G) is closed under application
of rule (4b), we have that (y, type, b) ∈
ρdf-cl(G), and by construction of CExt(b)
we get y ∈ CExt(b).

– if a ∈ B, as we have (x, y) ∈ Ext(a),
by construction of IG there exists a′ such
that (a′, sp, a), (x, a′, y) ∈ ρdf-cl(G), and
as ρdf-cl(G) is closed under application
of rule (5b) we have that (y, type, b) ∈
ρdf-cl(G), and by construction of CExt(b)
we get y ∈ CExt(b).

We have shown that in any case y ∈ CExt(b).

(v) Typing II: all this condition hold by definition
of Prop and Class.

We have shown that IG, satisfies all the conditions
of Definition 4 for G. Therefore IG |=ρdf G. 2

Lemma 33 Let G, H be RDF graphs that do not
mention RDFS vocabulary outside ρdf. If G |=ρdf H
then there is a map H → ρdf-cl(G).

PROOF. Consider the interpretation,

IG = (Res, Prop, Ext, Int, Class, CExt)

as defined in Lemma 32. thus IG |=ρdf G and as
G |=ρdf H , we have IG |=ρdf H . We know that IG

satisfies condition (i) (Simple) for H , hence there
exists a function A : B → terms(G) ∪ ρdf such
that for each (s, p, o) ∈ H , Int(p) ∈ Prop and
(IntA(s), IntA(o)) ∈ Ext(Int(p)). Now because
p ∈ U (p is the predicate in a triple in H), we know
that Int(p) = IntA(p) = p, and Ext(Int(p)) =
Ext(p) = {(s, o) | (s, p, o) ∈ ρdf-cl(G)}. Finally,
since (IntA(s), IntA(o)) ∈ Ext(Int(p)), we have
that (IntA(s), IntA(p), IntA(o)) ∈ ρdf-cl(G) for
each (s, p, o) ∈ H Thus IntA : H → ρdf-cl(G) is a
map such that IntA(H) ⊆ ρdf-cl(G), that is, a map
H → ρdf-cl(G). 2

From the above lemma it follows that since G |=ρdf

H , then H can be obtained from ρdf-cl(G) by using
rule (1), and thus, since G ⊢ρdf ρdf-cl(G), it holds
that G ⊢ρdf H . Therefore Theorem 8 follows directly
from Lemmas 31 and 33.

Proof of Theorem 10

It follows directly from Lemma 33 and the fact
that G ⊢ρdf ρdf-cl(G) for every G.
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Proof of Proposition 17

As in the proof of Theorem 8, we split the proof
in two parts. We first prove the following lemma
stating the soundness of rules (1b), (2), (3) and (4)
for |=nrx

ρdf .
Lemma 34 Let G and H be mrdf–graphs.If H ⊆
G, or if there is an instantiation R

R′ of a rule (2),
(3) and (4) such that R ⊆ G and H = G ∪ R′, then
G |=nrx

ρdf H.

PROOF. Follows from the proof of Lemma 31 in
Appendix B as the simple observation that reflexiv-
ity of the interpretations of sp and sc are necessary
only for proving that rules (6) and (7) are sound,
which are not part of the rules in the statement of
the lemma. 2

Similarly as we define ρdf-cl(G), define nrx-ρdf-cl(G)
but using only rules from (2) to (4). We now have
the following Lemma.
Lemma 35 For a mrdf–graph G, consider the
interpretation IG as in Lemma 32 but using
nrx-ρdf-cl(G) instead of ρdf-cl(G). Then IG |=nrx

ρdf G.

PROOF. Follows from the simple observation
that, in the proof of Lemma 32, only rules (6)
and (7) are needed to show the reflexivity of the
interpretations of sp and of sc. 2

Proposition 17 follows from Lemmas 34 and 35.
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