
The Logic of Extensional RDFS

Enrico Franconi1, Claudio Gutierrez2, Alessandro Mosca1,
Giuseppe Pirrò1, Riccardo Rosati3

1 KRDB, Free University of Bozen-Bolzano, Bolzano, Italy
2 University of Chile, Santiago, Chile

3 University of Rome La Sapienza, Rome, Italy

Abstract. The normative version of RDFS gives non-standard (inten-
sional) interpretations to some standard notions such as classes and
properties. In this paper we develop the extensional semantics for the
RDFS vocabulary, which surprisingly preserves the simplicity and com-
putational complexity of deduction of the intensional case. This result
will impact current implementations in a positive sense, as reasoning in
RDFS will follow common set-based intuitions and be compatible with
OWL extensions; moreover, the rule system that we present is easily
embeddable in existing libraries such as Jena.

1 Introduction

The Resource Description Framework (RDF) [8] is the standard data model
for publishing and interlinking data on the Web. It enables the making of state-
ments about (Web) resources in the form of triples including a subject, a predicate
and an object expressed in manifold vocabularies. Efforts like the Linked Open
Data project [7] give a glimpse of the magnitude of RDF data today available.
Thousands of datasources covering different domains from general knowledge
(e.g., DBPedia [2]) to specific domains are today interlinked and publicly ac-
cessible via the SPARQL [11] standard query language for RDF. The uptake of
RDF is also witnessed by its adoption by large e-commerce Web sites such as
bestbuy.com, which provides a query interface for posing structured queries over
its RDF datastore. RDF also attracted the attention of companies like Oracle
that are now providing RDF-centered data management solutions.

In many application scenarios, there is the need to have on top of RDF data
a language to structure knowledge domains. To cope with this aspect, the stan-
dard vocabularies are RDFS (RDF Schema) and OWL. RDFS was designed with
a minimalist philosophy and it includes essentially the machinery for express-
ing subclass, subproperty, type and such. On the other hand, OWL is a more
expressive language that includes a richer set of features.

From a standardization point of view the current normative RDFS has two
weaknesses. First, the interpretations of basic notions such as subclass and sub-
property do not have the common sense set-based meaning. For example, in
Fig. 1 one cannot derive the fact that the range of the property :birthCity
must be :Place. Second, the normative semantics of RDFS and OWL differ for
the common vocabularies. RDFS, for historical reasons, follows an intensional

:Stanley
Kubrick Manhattan

:Person :Place

:Historical
Place

:Populated
Place

:City

:birthCity

rdf:type

RDF

RDFSrdfs:domain rdfs:range

rdfs:subClassOf

rdfs:subClassOf

rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

dbp:<http://dbpedia.org/>
dbpo:<http://dbpedia.org/ontology/>

rdfs:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

rdfs:
su

bPropert
yO

f

Not derivable with
intensional RDFS

inference rules

rd
fs

:s
ub

Cl
as

sO
f

rdfs:range

:birthPlace

:birthCity

Fig. 1. An RDF(S) graph taken from dbpedia.org

semantics while OWL adopts a standard extensional set-based semantics. The
intensional semantics of RDFS brings several problems, both at the level of de-
duction and in terms of compatibility with OWL. Consider the example shown
in Fig. 1: the dotted rdfs:range property would be a valid set-based deduction,
thus valid in OWL, while not derivable in RDFS.

The designers of RDFS were aware of this problem, and added in a “non-
normative” status the standard set-based semantics and some sound inference
rules for it. This so-called “extensional” version of RDFS corresponds exactly to
the standard set-based interpretation of the vocabulary (and thus is fully com-
patible with OWL). Until now, there were two relevant open problems regarding
this extensional RDFS semantics that have prevented its usage: i) which are
the computational properties (decidability, complexity) for extensional RDFS?;
ii) can we extend easily normative RDFS inference engines (based on the com-
putation of a completion in a forward-chaining manner) to support completely
extensional RDFS, and at which cost?

Contributions. This paper answer both question in the positive. First, we pro-
vide a simple sound and complete proof system for the extensional semantics of
RDFS. Second, we show that a meaningful completion of the graph computed
by using the rules in a forward-chaining manner can still be computed in poly-
nomial case (as for intensional RDFS) thus spurring on current system that use
completion. These two results can be seen as founding the ground for the develop-
ing of the extensional semantics for the RDFS vocabulary while preserving the
simplicity and computational complexity of deduction of the intensional case.
Our results can be considered as an extension of intensional RDFS. Not only
this is theoretically interesting but it will impact on current implementations
(for the most part based on the normative intensional semantics) in a positive

sense. Indeed, reasoning in RDFS will follow common set-based intuitions and
be compatible with OWL extensions. Moreover, the rule system that we present
is easily embeddable in existing libraries such as Jena.

2 Preliminaries: RDF & RDFS

The Resource Description Framework (RDF) [8] is the W3C’s standard data
model for the publishing and interlinking of data on the Web. As the name
suggests, it is centred around the notion of resource, which can be essentially
anything. Resources are given identifiers by using Uniform Resource Identifiers
(URIs). RDF has a very simple structure; an RDF dataset contains statements,
expressed by triples. Each triple includes a binary predicate (which itself is a
resource) relating a subject with an object ; subjects and objects may be resources
or values, expressed by literals. Blank nodes play the role of generic identifiers
referring to resources or literals.

Let U , L, B three pairwise disjoint sets representing URIs, literals and blank
node identifiers, respectively. For simplicity, we denote unions of these sets by
simply concatenating their names.

Definition 1 (RDF triple, graph). An RDF triple t is a tuple of the form
(s, p, o) ∈ (UB)×U × (UBL), where s, p, o are the subject, predicate and object,
respectively. A triple is ground if it does not contain blank node identifiers. A
(ground) RDF graph G is a set of RDF (ground) triples.

Definition 2 (Vocabulary). The set of terms of a graph G, that is term(G)
is the set of elements in UBL that occur in triples of G. The vocabulary of a
graph G, denoted by V(G), is the set term(G) ∩ UL. Given a graph G and a
vocabulary W we say that G is a graph over W whenever V(G) ⊆ W. The RDFS
vocabulary is a set of reserved resource names in the rdf: namespace (such as,
e.g., rdf:type, rdf:property, etc) and in the rdfs: namespace (such as, e.g.,
rdfs:subClass, rdfs:subProperty, rdfs:domain, rdfs:range, etc).

In RDF only primitive statements about resources can be expressed: a resource
may be an instance of another resource (representing a class) and/or a property
of another resource. In RDFS it is possible to express also hierarchies of classes
and properties and to restrict the domain and range of properties. In what follows
we assume that the set U includes the RDF and the RDFS vocabularies. As an
example of an RDFS graph, see Fig. 1.

The ρdf fragment.
In this paper we focus our attention on an abstraction of RDFS named ρdf,
introduced first in [10], which has been shown to capture the essential semantics
of the full fragment, while avoiding to deal with minor idiosyncrasies related to
the vocabulary. The ρdf vocabulary is restricted to the following subset of the
normative RDFS vocabulary: Vρdf = {sc, sp, dom, range, type}4, and, unlike in

4 Their meaning is rdfs:subClass, rdfs:subProperty, rdfs:domain, rdfs:range,
rdf:type, respectively.

normative RDF, literals may appear in subject position within triples. As it has
been shown in [10], ρdf is self-contained: it does not rely on the RDFS vocabulary
beyond the subset, nor does the rest of the RDFS vocabulary rely on this subset.
ρdf is endowed with a set of inference rules that are derived from the original
RDFS semantics and extended to cope with the incompleteness of the latter [9].

The normative semantics of RDFS [6] is built upon the standard logic notions
of model, interpretation and entailment. In this paper we rephrase the normative
model theory of RDFS using first-order logic (FOL) in the spirit of [4]. The
signature of the language includes a ternary predicate T – to represent RDF
triples – and two unary predicates C and P – to represent the membership of
individuals to “rdfs:Class” and “rdf:Property”, respectively. It can be proved
that, given a ρdf graph {(s1, p1, o1), · · · , (sn, pn, on)}, its models according the
the normative RDFS model theory in the W3C specification [4] are the same as
the models of the FOL formula ∃b T (s1, p1, o1) ∧ · · · ∧ T (sn, pn, on), where b is
the set of blank node symbols appearing in the graph, under the FOL theory
specified by the axioms listed below.
The basic axioms primitively define rdfs:subClass, rdfs:subProperty, rdfs:
domain, rdfs:range in terms of rdf:type in the obvious way – as in set theory5:

∀a, b (a, sc, b) −→ C(a) ∧ C(b) ∧ ∀x (x, type, a)→ (x, type, b) (1)

∀a, b (a, sp, b) −→ P (a) ∧ P (b) ∧ ∀x, y (x, a, y)→ (x, b, y) (2)

∀a, c (a, dom, c) −→ ∀x, y (x, a, y)→ (x, type, c) (3)

∀a, d (a, range, d) −→ ∀x, y (x, a, y)→ (y, type, d) (4)

To cope with reflexivity and transitivity of the subclass and subproperty relations
we have also the following axioms:

∀a, b, c (a, sc, b) ∧ (b, sc, c) −→ (a, sc, c) (5)

∀a C(a) −→ (a, sc, a) (6)

∀a, b, c (a, sp, b) ∧ (b, sp, c) −→ (a, sp, c) (7)

∀aP (a) −→ (a, sp, a) (8)

The following typing axioms are also needed in normative RDFS:

∀a, b (a, dom, b) −→ P (a) ∧ C(b) (9)

∀a, b (a, range, b) −→ P (a) ∧ C(b) (10)

∀a, b (a, type, b) −→ C(b) (11)

∀a, b, c (a, b, c) −→ P (b) (12)

It is important to observe that rdfs:subClass, rdfs:subProperty, rdfs:
domain, rdfs:range are defined only by means of necessary properties according
to the above axioms: the semantics of normative RDFS is a quite weak one, since
the RDFS vocabulary does not express fully the corresponding relations in set
theory. As a matter of facts, given the RDFS graph from figure 1, according the
normative RDFS semantics the statement (:birthCity, rdfs:range, :Place) is

5 Note that for simplicity we may omit the T symbol in FOL formulas.

not entailed. Such an entailment is expected since people do read the properties
in the RDFS vocabulary as the corresponding set-based relations – just like in
OWL. The normative RDFS semantics is called intensional, since it is unable to
define sets in terms of their elements.

The ρdf+ fragment.
[6] introduces also an extensional non normative version of RDFS, in which
rdfs:subClass, rdfs:subProperty, rdfs: domain, rdfs:range are exactly
defined as their set theoretical counterparts, as expected. This is achieved by
adding to the previous definition of the RDFS semantics the axioms (13) to (16)
below, which look like axioms (1) to (4) but where the one sided material im-
plications are replaced with if-and-only-if definitions. Axioms (1) to (16) define
the semantics of the non normative extensional RDFS restricted to the ρdf vo-
cabulary6. From now on we will refer to the non normative RDFS restricted to
the ρdf vocabulary as ρdf+.

∀a, b (a, sc, b)←→ C(a) ∧ C(b) ∧ ∀x (x, type, a)→ (x, type, b) (13)

∀a, b (a, sp, b)←→ P (a) ∧ P (b) ∧ ∀x, y (x, a, y)→ (x, b, y) (14)

∀a, c (a, dom, c)←→ ∀x, y (x, a, y)→ (x, type, c) (15)

∀a, d (a, range, d)←→ ∀x, y (x, a, y)→ (y, type, d) (16)

This (extensional) semantics – which follows exactly the obvious extensional def-
initions of the corresponding set-based operators – has been disregarded by the
W3C working group because of some computational problems that were conjec-
tured during the definition of the specification. In the non normative section of
the W3C specification only a set of incomplete inference rules for extensional
RDFS is provided.

As for the relations with other KR formalisms, and with the family of de-
scription logics in particular, notice that ρdf+ exactly corresponds to the DL-
LiteH{core,pos,safe}, namely the well known DL-LiteH{core} description logic [1] with-

out negation and unqualified existential restrictions on the right-hand side of
the inclusion axioms. Obviously, DL-LiteH{core,pos,safe} includes the normative

RDFS. It is easy to see that the usual unqualified number restrictions of DL−
Litecore, once on the left-hand side of the inclusion axioms, can be used to en-
code the rdfs:domain and rdfs:range statements, while rdfs:subClass and
rdfs:subProperty are nothing but usual DL concept and role inclusion axioms,
respectively.

Although the semantics of RDFS dates back to 2004 and despite the large
amount of research around it, there were still some important open problems
concerning extensional RDFS: i) whether a sound and complete system of infer-
ence rules existed; ii) whether a polynomial algorithm for computing the com-
pletion according to these extensional rules existed; iii) whether the problem of
entailment checking, crucial for query answering, can still be done in the same
complexity bound as for intensional RDFS. In this paper we tackle these three
problems and provide positive answers to each of them.

6 It is easy to see that axioms (1) to (8) are redundant, since they can be derived from
axioms (9) to (16).

1. Subclass:

(a) (A,sc,B) (X,type,A)
(X,type,B)

(b) (A,sc,B) (B,sc,C)
(A,sc,C)

2. Subproperty:

(a) (A,sp,B) (X,A,Y)
(X,B,Y)

(b) (A,sp,B) (B,sp,C)
(A,sp,C)

3. Domain:

(a) (A,dom,B) (X,A,Y)
(X,type,B)

(b) (A,sp,B) (B,dom,C)
(A,dom,C)

(c) (A,dom,B) (B,sc,C)
(A,dom,C)

4. Range:

(a) (A,range,B) (X,A,Y)
(Y,type,B)

(b) (A,sp,B) (B,range,C)
(A,range,C)

(c) (A,range,B) (B,sc,C)
(A,range,C)

5. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A) (B,sc,B)

(b) (X,p,A)
(A,sc,A)

for p ∈ {dom, range, type}

6. Subproperty Reflexivity:

(a) (X,A,Y)
(A,sp,A)

(b) (A,sp,B)
(A,sp,A) (B,sp,B)

(c)
(p,sp,p)

for p ∈ ρdf

(d) (A,p,X)
(A,sp,A)

for p ∈ {dom, range}

7. Extensional A:

(a) (type,sp,A) (A,dom,B)
(X,sc,B)

8. Extensional B:

(a) (type,dom,A)
(X,sc,A)

9. Simple:

(a) G
G′ for a map µ : G′ → G (b) G

G′ for G′ ⊆ G

Fig. 2. The ρdf+ rule system.

3 Reasoning with ρdf+

This section presents a set of sound and complete inference rules for ρdf+ that
captures the extensional semantics of RDFS. Our findings complement the set
of rules in the ρdf fragment with additional rules derived from the analysis of
axioms (13)-(16). The new set of rules shown in Fig. 2 correctly derive the
statement (:birthCity, rdfs: range, :Place) in Fig. 1; this can be achieved
by applying rule 4(b).
We now introduce some definitions that will be useful in the discussion.

Definition 3 (Instantiation of a rule). An instantiation of a rule is a uni-
form replacement of the meta variables occurring in the triples of the rule with
elements in UBL, such that all the triples obtained after the replacement are
well-formed RDF triples.

In every rule in Fig. 2, letters A, B, C, X, and Y , stand for meta variables to
be replaced by actual terms in UBL. As an example, given a, b ∈ U , N ∈ B and
y ∈ L, then (R/R′) with R = {(a, sp, b), (N, a, y)} and R′ = {(N, b, y)} is an
instantiation of rule 2 (a).
We now recall the notions of Map and Proof [10].

Definition 4 (Map). A map is a function µ : UBL → UBL preserving URIs
and literals i.e., µ(u) = u ∀ u ∈ UL. Given a graph G we define µ(G) as the set
of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. By abusing a little bit the above
notation, in the following we speak of a map µ from a graph G1 to a graph G2
and write µ : G1 → G2 if the map µ is such that µ(G1) is a subgraph of G2.

Definition 5 (Proof). Let G and H be graphs. We say that G `ρdf+ H iff
there exists a sequence of graphs P1, P2, . . . , Pk, with P1 = G and Pk = H, and
for each j (2 ≤ j ≤ k) one of the following cases hold:

– there exists a map µ : Pj → Pj−1 (rule 9a),
– Pj ⊆ Pj−1 (rule 9b),

– there is an instantiation R
R′ of one of the rules (2)–(6), such that R ⊆ Pj−1

and Pj = Pj−1 ∪R′.

The sequence of rules used at each step (plus its instantiation or map), is called
a proof of H from G.

The ρdf+ system of rules extends the ρdf system by the six rules 3(b), 3(c),
4(b), 4(c), (7), and (8). The following theorem states the soundness and com-
pleteness of ρdf+.

Theorem 1 (Soundness and completeness). The proof system ρdf+ is sound
and complete for entailment under the extensional ρdf+ semantics (|=ρdf+): let
G and H be two graphs in ρdf+, then G `ρdf+ H iff G |=ρdf+ H.

Proof. The proof is available in the Appendix. ut

Although the natural consequence of Theorem 1 would be that of dropping
the intensional (weaker) semantic conditions in the normative semantics and
replacing them with the extensional (stronger), it is still necessary to investi-
gate whether ρdf+ brings in some source of complexity when applied to the
following important reasoning tasks: i) computation of the closure; ii) checking
of entailment, crucial for query answering.

Computational properties of ρdf+.
The deductive closure of a graph can be obtained by applying systematically the
inference rules in Fig. 2 to all the triples of the graph. Unluckily, the deductive
closure of a ρdf+ graph is infinite, due to rules 7, 8, and 9, so we do not get
directly a constructive way to compute entailment by using the rule system.

In order to get a finite but still useful completion graph approximating the
deductive closure, let’s consider a restricted version of the ρdf+ rule system,
called ρdf+ ground rule system, which includes only rules from 1 to 8, and re-
stricts the meta-variable X in rules 7 and 8 to be instantiated to just elements in

term(G)∪Vρdf. Indeed, with the absence of rules 9 we avoid the over-generation
of bnode names since the bnode names in the data graph are reused systemat-
ically by rules 1-8; with the restriction on the instantiation of the consequent
meta-variables in rules 7 and 8 we avoid to include triples in the completion with
irrelevant new elements. Let clg(G) be the ground closure (or completion) of a
graph G as the closure via the ρdf+ ground rule system.

Definition 6 (Completion). The completion or ground closure of a graph G
– denoted by clg(G) – is obtained by taking the union of all the graphs for which
there exists a proof from G via the ρdf+ ground rule system.

Theorem 2 (Completion complexity). The ground closure of an ρdf+ graph
clg(G) is polynomially larger than the size of the graph G, and it can be computed
in polynomial time by the non-deterministic exhaustive application of the rules
in the ρdf+ ground rule system.

Proof. By inspecting the form of all possible instantiations of the inference rules,
we first prove – by induction over the length of proofs – that graphs for which
there exists a proof from G will only include elements from term(G)∪ Vρdf. It is
easy to see then that the number of triples in the ground closure is within the
order of O(‖term(G)‖3) ut

We can now state the main theorem of this paper, which states how ρdf+
entailment can be constructively reduced to computing (possibly offline) and
materializing the finite polynomial completion of the data graph and then by
querying the completion with a standard RDF simple entailment query engine.
Note that this is the very same procedure which is used in real systems for
the standard normative RDFS entailment – of course with the reduced set of
normative RDFS inference rules.

Theorem 3 (Entailment for ρdf+). Consider a data RDFS graph G and a
query RDFS graph H (i.e., a SPARQL basic graph pattern) such that either (1)
rdf:type never appears in subject or object position within triples of G, or (2)
term(H) ⊆ term(G). Then G |=ρdf+ H iff clg(G) |=RDFsimple

H.

Proof. Due to the completeness theorem, all the graphs entailed by G are in its
completion, with the exception of (a) the entailed graphs using elements outside
term(G)∪Vρdf, due to the restriction to the application of rules 7 and 8, and with
the exception of (b) some entailed graphs where some elements of a graph in the
completion are consistently replaced by bnodes, due to the lack of rule 9(a). If
condition (1) applies, it can be seen that rules 7 and 8 are never applicable –
because there is no way in which rdf:type could go from property position into
the subject position: in all rules, all subject positions come either from subject
positions or from object positions; therefore the lacking entailed graphs of type
(a) do not play any role for checking entailment. Similarly, the lacking entailed
graphs of type (a) do not play any role for checking entailment if condition
(2) applies, since no new elements are expected to appear in H. The lacking
entailed graphs of type (b) are recovered by using the RDF simple entailment
in the entailment checking – because of the homomorphism checking. ut

It can be easily seen that the combined complexity of entailment (in the size
of both graphs) is exactly the same as for normative RDFS and the ρdf system,
which is polynomial if H is a ground graph, and NP-hard otherwise [10]. On the
other hand, the data complexity of entailment (that is, only in the size of the
data graph G) is polynomial [4].

The theorem states very realistic alternative restrictions on the form of the
data graph or of the query: either the data graph does not redefine the rdf:type
property – something that we have never seen happening in any real RDFS
knowledge base, or the query makes use of only URIs already appearing in the
data graph. If the first condition is met, then the ρdf+ ground rule system can
be easily implemented in any RDF rule engine – such as Jena. As a matter of
facts, rules 7 and 8 can’t be implemented within conventional rule engines, since
they imply the assertion of their consequents for all the URI and blank node
names appearing in the graph. But if condition (1) of the theorem is met, then
rules 7 and 8 would never fire, and so they do not need to be implemented. We
can also observe that whenever condition (1) is met, then according to the ρdf+
extensional semantics no additional rdf:type triple is entailed with respect to
the rdf:type triples entailed according to the intensional ρdf semantics.

Materializing all data by computing the completion may cause a waste of
space if most of it is never really used. Deciding whether applying materialization
or checking entailment on the fly with a specific algorithm depends on different
factors such as: i) size of the graph: some graphs may not fit in the main memory
and then the completion cannot be avoided; ii) updates: removing a triple from
the graph, causes implicit data to still exist if no special care is taken to remove
it. Hence, materialization vs. on the fly checking is a trade-off between the better
performance of updates, or better performance of look-ups. For this purpose we
have studied a refutation proof system provably sound and complete for ρdf+
based on tableaux calculus, which in addition to ρdf+ deals also with negative
atoms in the data graph and it does not undergo the restrictive conditions of
Theorem 3. Such a system, which we do not present here, is used to check
entailment on the fly whenever it is not convenient to materialize the completion.

4 Experiments

In Section 3 we have proved that the ρdf+ is a sound and complete set of
rules capturing the extensional non normative RDFS semantics. The aim of this
section is to show the practical impact of ρdf+; we discuss how the ρdf+ system
of rules can be embedded into the Apache Jena library and the impact that it
has on the computation of the completion of an RDFS graph.

Jena inference engine.
Jena is a comprehensive Semantic Web library providing a set of features for
data management and reasoning in OWL and RDF(S). The library features
four predefined reasoning engines: i) transitive reasoner, which just considers
transitive and reflexive properties of RDFS sc and sp; ii) a configurable RDFS
rule reasoner ; iii) a configurable OWL reasoner ; iv) a custom reasoner. This
latter reasoner enables to provide a custom set of inference rules; it supports three

Ontology #Classes #Properties #dom #range #sc #sp

DBpedia 359 1775 1505 1553 369 -
FOAF 24 51 47 46 15 10

NEPOMUK 399 628 535 561 460 258
MusicOnto 70 97 97 97 68 25
VoxPopuli 140 66 61 78 140 -

Fig. 3. Statistics about the ontologies considered.

reasoning strategies: i) one implementing the RETE algorithm; ii) a forward
reasoner ; iii) a backward reasoner.

The availability of the custom reasoner is at the basis of the integration of the
ground ρdf+ rule system; as discussed in the previous section, we haven’t imple-
mented rules 7 and 8, since we assume that data graphs do not have rdf:type
neither in subject nor in object position. As an example the rule 3 (c) in Fig. 2
is specified in Jena as: [3c: (?a dom ?b), (?b sc ?c)->(?a dom ?c)]. The spec-
ification follows the pattern [label: Ant ->Cons] where label is a name as-
signed to the rule, Ant is the antecedent and Cons the consequent. It is also
worth to mention that the reasoner can be configured to log derivations so that
each triples obtained after the reasoning task has associated an “explanation”,
that is, the reasoning steps (in terms of rules triggered) that led to the triple.

Comparing inferences at schema level.
We investigated the impact of ρdf+ on the completion of five existing ontologies.
This experiment only considers triples at schema level; as discussed previously,
we do not need to analyse derived rdf:type triples, since they would be the
same as the rdf:type triples derived by a normative RDFS reasoner. The table
in Figure 3 provides some information about the ontologies considered. As for the
DBpedia ontology, we have replaced OWL datatype and object properties with
the corresponding RDF properties and OWL classes with RDFS classes. The
considered ontologies have different sizes; they range from small ontologies such
as FOAF (Friend-od-a-Friend) or MusicOnto (Music Ontology) to relatively large
ontologies like NEPOMUK and DBpedia. None of these (real-life) ontologies

0	
2000	
4000	
6000	
8000	

10000	
12000	
14000	
16000	
18000	

NEPOMUK	 DBPedia	 Vox	 Populi	 Music	 FOAF	

#	
of
	 tr
ip
le
s	

Intensional	 	
Extensional	
Diff	 between	 closures	
New	 rdfs:domain	
New	 rdfs:range	

(a) Size of the completions.

0	

10	

20	

30	

40	

50	

60	

NEPOMUK	 DBPedia	 Vox	 Populi	 Music	 FOAF	

Ti
m
e	
(m

s)
	

Intensional	
Extensional	

(b) Times for computing the completions.

Fig. 4. Comparing extensional and intensional completions at schema level.

d:Settlement

d:beltwayCity d:City

rdfs:subClassOf

rdfs:range

rdfs:range

(a)

 d:Athlete

d:prospectTeam d:IceHockeyPlayer

rdfs:subClassOf

rdfs:domain

rdfs:domain

(b)

d: <http://dbpedia.org/ontology> rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Fig. 5. Examples of new derivations with ρdf+

includes RDF triples redefining the RDFS vocabulary, that is, containing the
ρdf vocabulary in subject or object position.

Fig. 4 shows some statistics about the completion of the ontologies by con-
sidering the ρdf (intensional RDFS) and ground ρdf+ (extensional RDFS) rule
systems. Fig. 4 (a) shows the comparison between the completions in terms of
number of triples. As it can be observed with ρdf+ we obtain a larger number
of triples. This is due to the presence of the rules 3(b), 3(c), 4(b) and 4(c) in
Fig. 2 in the system that enable to derive new rdfs:domain and rdfs:range
relations. The largest number was obtained when considering DBpedia (∼4000
rdfs:domain and ∼ 1200 rdfs:range). The extensional completion contains an
increasing of triples in the order of 30% for DBpedia and NEPOMUK, 60% fir
VoxPopuli, 20% for FOAF and 5% for MusicOnto. Fig.4 (b) reports the times
(in ms) that the reasoning engine took to compute the completion.

In the extensional case more time is needed because of the presence of addi-
tional inference rules. However, it can be observed that the time remains around
60ms with a large schema like DBpedia.

In order to give a hint on the kind of derivations enabled via ρdf+, Fig. 5
shows two examples from DBpedia. In Fig. 5 (a) it is shown the new rdfs:range
for the property :beltwayCity obtained by applying rule 4 (c). Fig. 5 (b) shows
the derivation of a new rdfs:domain for the property :prospectTeam obtained
via rule 3(c).

5 Related Work

There has been a solid body of research around RDFS. A formalization of RDF
and its links with databases is due to Gutierrez et al. [5]. Marin [9] and ter
Horst [12] came up with counterexample (see Fig. 1) pointing out the incomplete-
ness of RDFS (intensional) inference rules. The merit of Marin was to overcome
the issue while keeping the original rules, adding two additional rules and show
that the new set of rules was sound and complete. Ter Horst instead modified the
rule system by allowing non-legal RDFS triples within the rule system by using
blank nodes in the predicate position. The formalization of the semantics of RDF
in FOL has been studied by de Brujin et al. [4]. Muñoz et al. [10] introduced the
ρdf fragment; this paper also discusses the quadratic lower bound for the size
of the completion of a graph G pointing out how such size is impractical from

a database point of view. To cope with this issue, authors introduce minimal
RDFS, which imposes restrictions on the position of triples of the RDFS vocab-
ulary (they can only appear in predicate position). The advantage of minimal
RDFS is that there exists a logarithm algorithm to check graph entailment in
the case of ground graphs. Authors also showed that if triples contain at most
one blank node the bound remains the same.

The common ground of these approaches is that they stick with the norma-
tive specification, that is, intensional RDFS. Other approaches such as RDF-F-
Logic [13] depart from the normative specification. Finally, yet other approaches
focus on the interplay between RDFS other ontology languages such as OWL
(e.g., RDFS(DL) [3]) and, as we have seen, the family of description logics DL-
Lite [1]. The aim of this paper is to study RDFS from the logical point of view.
Differently from the above mentioned approaches, we provide a bridge between
the normative and non normative part of the RDFS specification. In particular,
we investigated two important open problems: i) whether there exists a sound
and complete set of inference rules for extensional RDFS; ii) whether the com-
pletion of an graph under extensional RDFS can still be computed in polynomial
time. We pointed out the both problems can be answered in the positive.

6 Conclusions

In this paper we investigated two relevant open problems regarding RDFS. These
two problems stem from the non-standard definition of the normative seman-
tics of RDF [6], which although being based on logic notions does not follow a
standard set-theoretical approach. Indeed, the normative semantics of RDF is
intensional while the (natural and set-theory-compliant) extensional semantics
has been included in the non normative part of the specification, and it is used,
e.g., in OWL. We showed that providing a set of sound and complete inference
rules for extensional RDFS is possible. Moreover, in this new setting, the com-
plexity of computing the completion of an RDFS graph remains the same as in
the normative case. We also discussed how the complexity of the entailment for
RDFS remains the same as that of the normative case. Our results will impact
on current reasoning libraries for RDFS that now can obtain more inferences at
no additional cost, as emphasised by our evaluation.

References

1. Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR),
36:1–69, 2009.

2. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. Dbpedia-a crystallization point for the web of data. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 7(3):154–165, 2009.

3. B. Cuenca Grau. A possible simplification of the semantic web architecture. In
WWW, pages 704–713. ACM, 2004.

4. J. De Bruijn, E. Franconi, and S. Tessaris. Logical reconstruction of normative
RDF. In OWL: Experiences and Directions Workshop (OWLED-2005), Galway,
Ireland, 2005.

5. C. Gutierrez, C. A Hurtado, A. O. Mendelzon, and J. Pérez. Foundations of
semantic web databases. Journal of Computer and System Sciences, 77(3):520–
541, 2011.

6. P. Hayes. RDF semantics. W3C recommendation. 2004.
7. T. Heath and C. Bizer. Linked data: Evolving the web into a global data space.

Synthesis lectures on the semantic web: theory and technology, 1(1):1–136, 2011.
8. G. Klyne, J. J Carroll, and B. McBride. Resource description framework (RDF):

Concepts and abstract syntax. W3C recommendation, 10, 2004.
9. D. Marin. A formalization of rdf. Technical report, Technical Report TR/DCC-

2006-8, TR Dept. Computer Science, Universidad de Chile, 2006.
10. S. Muñoz, J. Pérez, and C. Gutierrez. Simple and efficient minimal RDFS. Journal

of Web Semantics, 7(3):220–234, 2009.
11. E. PrudHommeaux, A. Seaborne, et al. SPARQL query language for rdf. W3C

recommendation, 15, 2008.
12. H. J ter Horst. Completeness, decidability and complexity of entailment for RDF

schema and a semantic extension involving the OWL vocabulary. Web Semantics:
Science, Services and Agents on the World Wide Web, 3(2):79–115, 2005.

13. G. Yang and M. Kifer. Reasoning about anonymous resources and meta statements
on the semantic web. In Journal on Data Semantics I, pages 69–97. Springer, 2003.

Appendix: Proof sketch of Theorem 1

In the following we provide a sketch of the argument that proves the complete-
ness of the ρdf+ rule system. Assuming that the graphs G and H are in the
ρdf+ vocabulary, the main statement was:

G `ρdf+ H iff G |=ρdf+ H.

While the soundness theorem (from left to right) follows straightforwardly from
the observation that each rule in ρdf+ preserves validity (i.e., given the validity
of the antecedent, the validity of the consequent is guaranteed), the completeness
theorem (from right to left) requires a bit of effort to be proved.

First, we need the following auxiliary notion of extended closure.

Definition 7. The extended closure of a graph G – called ĉl(G) – is made by all
the triples entailed by G under the ρdf entailment together with the axioms (13)
- (16).

We now rephrase ĉl(G) using the ρdf rule system instead of ρdf entailment.

Lemma 1. The extended closure of a graph G is made by all the triples derived
from G using the ρdf rule system plus the triples entailed from those by the axioms
(13) - (16).

Proof. Use the known fact (Theorem 8 from [10]) that, if graphs G and H are
in the ρdf vocabulary, G `ρdf H iff G |=ρdf H. ut

The next lemma is at the core of the proof of the theorem.

Combination Rule obtained Rule in ρdf+ Rule in intensional RDFS

13ay13a (A,sc,B) (B,sc,C)
(A,sc,C)

1b rdfs 11

14ay14a (P,sp,Q) (Q,sp,R)
(P,sp,R)

2b rdfs 5

14ay15a (P,sp,Q) (Q,dom,A)
(P,dom,A)

3b not available

14ay16a (P,sp,Q) (Q,range,A)
(P,range,A)

4b not available

15ay13a (P,dom,A) (A,sc,B)
(P,dom,B)

3c not available

16ay13a (P,range,A) (A,sc,B)
(P,range,B)

4c not available

Fig. 6. Inference rules obtained by combining rules (13a)-(16a)

Lemma 2. If graphs G and H are in the ρdf vocabulary, then

ĉl(G) `ρdf H iff G `ρdf+ H.

Proof. From Lemma 1 above it follows that we only have to show how each
triple derived with the axioms (13) - (16) can be also derived with the ρdf+ rule
system and viceversa.
Since of the presence of the axiomatic system defining the semantics of the non
normative RDFS (see axioms from (13) to (16)), the strategy we introduce here
aims at showing, through an exhaustive combinatorics analysis that whatever
can be derived by the axioms can be derived in the the ρdf+ rule system as well.
No surprisingly, what can be done using the introduced finite axiomatisation is
basically driven by two operations working at the syntactic level: axiom instan-
tiation, and pattern matching. By means of these two operations, one can start
combining together the axioms, until no more new syntactically well formed sen-
tences is derivable. The proof strategy then is grounded on the fact that the only
significant ways the axioms can be combined together give rise to nothing but
the atoms that are present in ρdf+, and this proved our claim. Note that we can
restrict to the case when H is one atom. In fact, for ground atoms p, q it holds
Σ |= p ∧ q iff Σ |= p and Σ |= q.

To this aim, we introduce for convenience auxiliary extended deductive rules
allowing “implications” in the antecedent or in the consequent. This allows to
codify formulas (13)-(16) as follows:

13a (A,sc,B)

(x,type,A)
∀x−→(x,type,B) 13b (x,type,A)

∀x−→(x,type,B)
(A,sc,B)

(rdfs:subClassOf)

14a (P,sp,Q)

(x,P,y)
∀xy−→(x,Q,y) 14b (x,P,y)

∀xy−→(x,Q,y)
(P,sp,Q)

(rdfs:subPropertyOf)

15a (P,dom,A)

(x,P,y)
∀xy−→(x,type,A) 15b (x,P,y)

∀xy−→(x,type,A)
(P,dom,A)

(rdfs:domain)

16a (P,range,A)

(x,P,y)
∀xy−→(y,type,A) 16b (x,P,y)

∀xy−→(y,type,A)
(P,range,A)

(rdfs:range)

The following are a few remarks to be made on the usage of this new system:

1. Rules with an implication in the antecedent (being universally quantified)
cannot be fired from the graph G because of the presence of the open world
assumption, we cannot know from G if it is valid or not.

2. Two implications can be matched if the meaning of the formulas allow so.

For example, (x, type, A)
∀x−→ (x, type, B) and (y, type, B)

∀y−→ (y, type, C)
would produce another rule:

(x, type, A)
∀x−→ (x, type, B) (y, type, B)

∀y−→ (y, type, C)

(z, type, A)
∀z−→ (z, type, C)

(17)

3. The only way to use an implication in a combination of rules is, either:

(a) to combine it with another implication to derive a third implication (e.g.,
to form rules of the form (17)). The table in Figure 6 summarises the
only admissible results one can obtain out the combination operation (we
use the notation r1 y r2 to indicate that rule r1 is combined with rule
r2). Notice that the only possible relevant formula one could get with
this procedure is a formula of the type ∀x(x, type, A) → (x, type, B),
thus, to deduce a triple of the form (u, sc, v) using rule (13b). Note also
that one cannot use the rules (14b), (15b) or (16b), because they need
both variables universally quantified.

(b) To instantiate the implication in the consequent, and using the Deduc-
tion Theorem (p ` q→r iff p, q ` r). Consider for instance rule (13a); we

have: (A, sc, B) ` (x, type, A)
∀x−→ (x, type, B). By using the deduction

theorem, we obtain: (A, sc, B) (x, type, A) ` (x, type, B). By systemat-
ically applying this process to rules (13a)-(16a), we obtain the rules in
the table of Figure 7.

(c) To use instantiation that make it possible to combine rules. For example
the new rule ‘Extensional B’ directly follows from rule (15a) instantiated
with P = type, which combined with rule for subclass (13b), gives the
implication ∀x(x, type, y) → (x, type, B) which using rule (13a) gives
(y, sc, B). The table in Figure 8 is about the results of the application
of the instantiation-plus-combination operation.

The presented proof system is the collection of all rules obtained. In particu-
lar, an exhaustive combinatorics indicates that the only possible cases are those
considered in ρdf+. The idea is as follows:

Rule Instantiated Rule obtained Rule in ρdf+ Rule in intensional RDFS

13a (A,sc,B) (X,type,A)
(X,type,B)

1a rdfs 9

14a (P,sp,Q) (X,P,Y)
(X,Q,Y)

2a rdfs 7

15a (P,dom,A) (X,P,Y)
(X,type,A)

3a rdfs 2

16a (A,range,B) (X,A,Y)
(Y,type,B)

4a rdfs 3

Fig. 7. Set of inference rules obtained by instantiating rules (13a)-(16a)

Instantiation/Combination Rule obtained Rule in ρdf+ Rule in RDFS

(14a-inst)y15ay13b (type,sp,A),(A,dom,B)
(X,sc,B)

7a not available

(15a-inst)y13by13a (type,dom,A)
(X,sc,A)

8a not available

Fig. 8. Inference rules obtained by instantiating and combining rules (13a)-(16a)

1. Notice that the only possible relevant formula one could get with the in-
troduced procedure is a formula of the type ∀x(x, type, A) → (x, type, B),
thus, to deduce a triple of the form (u, sc, v) using rule (13b). Note that one
cannot use the other rules (14b), (15b) or (16b), because they need both
variables universally quantified.

2. With (1) in mind, one should start looking for the successful combinations.
(a) Those that begin with (x, type, y): could be rules (14a), (15a) or (16a) in-

stantiated with P = type. As for Rule (14a), we should instantiate also
y = C, but in this case the rule will give ∀x(x, type, C) → (x,Q,C),
whose consequent cannot be further combined unless Q = type, which
gives nothing. As for rule (15a), it gives our rule Extensional B, while
rule (16a) is useless for this argument (notice that in (16a) the y in the
implication changes its position from third to first thus making impos-
sible the combination with (13b)).

(b) Those that end with (x, type, y): here rule (15a) is relevant once y is
instantiated to a constant; and rules (15a) and (16a) with the restriction
x = y. It is not difficult to note that the first case is useful only for
the instantiation P = type. In the second case, the only productive
combination is to combine it with rule (14a) weakened to x = y. ut

We will need a simple and trivial corollary to Lemma 2.

Lemma 3. For a ρdf graph G: G `ρdf+ ĉl(G).

Now we have the proof of the main theorem 1.

Proof.
G |=ρdf+ H
iff G |=RDFS+ H (by definition of ρdf+)
iff G ∪ {axioms 13− 16} |=RDFS+ H (by definition of ρdf+)
iff G ∪{axioms 13−16} |=ρdf H (Theorem 5 from [10], because left and right

hand sides have only ρdf vocabulary)

iff ĉl(G) |=ρdf H (by Definition 7)

iff ĉl(G) `ρdf H (Theorem 8 from [10], because there is only ρdf vocabulary)

iff ĉl(G) `ρdf+ H (by Lemma 2)
iff G `ρdf+ H (by Lemma 3 and transitivity of `ρdf+). ut

