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Abstract. Qualitative reasoning uses a limited set of relevant distinc-
tions of the domain to allow a flexible way of representing and reasoning
about it. This work presents a conceptual framework for qualitative rea-
soning about information networks from a spatial-topological point of
view. We consider the properties of connectivity and some topological
invariants to describe the structural characteristics of and the topologi-
cal relationships between networks. The paper presents a data model for
networks which generalizes the notion of graph, founded in algebraic and
topological considerations. Such conceptual tool can be useful in different
domains, from social to technological networks.

1 Introduction

Topological properties are related to the concept of connectivity, upon which
different relations may be defined; for example, overlapping, inside, disjoint and
meet. An important extension beyond the power of traditional query languages
for graph and networks is the incorporation of topological relationships into the
primitves of query languages. These facts have already been recognized in the
spatial domain, where topological relations have played an important role for
spatial reasoning [9,1] and query languages [13].

A formal approach to this subject is beneficial for several reasons. The for-
malism serves as a tool to identify and derive systematically relationships while
avoiding redundant and contradicting relations and notions, and helps proving
the completeness of the set of relationships. The formal method can be applied
to determine the relation between any two networks and to reason formally
about them. Algorithms to determine relationships can be specified exactly, and
mathematically sound models will help to define formally the relationships. The
formalism can extend definitions on networks to more general concepts on net-
works.

Topological and spatial reasoning is a well established subject dealing with
the development of formal models for defining and reasoning about topological
characteristics of spatial objects and topological relations [10]. When trying to
extend these techniques to sets of overlapping networks the following important
issues arise:
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– The standard notion of graph does not suffice to represent faitfully the in-
formation. Note that an edge could be part of a network which does not
have both of its end-nodes (e.g. the sub-network of Latin American routes
consisting of Chilean cities and LanChile’s routes: a flight going out of the
country is an edge which has only one node in the sub-network).

– Graphs do not behave like sets of point nor as “point-less objects.” Hence
from a topological point of view, the approach should be a mixture of point-
set topology and point-less topology

– The classic set of operations on graphs must be enriched to be able to express
in a flexible manner spatio-topological relations among networks.

– Standard spatial notions cannot be taken as on-the-shelf technology for
networks.

This work presents a formal framework for topological reasoning on relation-
ships among network properties, particularly focusing on connectivity aspects.
It discusses the level of abstraction needed, that is, what are the “good” objects
in this domain, and what are the “good” operations to act over these objects. It
presents several operations on them and studies their properties. In addition, it
introduces the main approaches used in spatial reasoning for defining topological
relations between networks. Such definitions can be applied to broad application
domains, such as social networks, technological networks, and conceptual or
metadata networks. In particular we:

Related Work. To the best of our knowledge the subject of this paper has not
been addressed formally. There is related work on spatial reasoning which is
useful in our context, and that we describe below.

In the spatial domain, qualitative reasoning of topological relations has ob-
tained particular attention from the research community, since it allows auto-
matic reasoning based on a cognitively plausible representation of spatial con-
cepts [10]. Most of the work on topological qualitative reasoning define ontolo-
gies of spatial entities, where some fundamental concepts are contact, parthood
and boundary [4,1,9]. Stell and Worboys [14] present a theory of parthood and
boundary that can be connected to different formalisms for topological relations.
This formalism represents set of regions as a bi-Heyting algebra [7] and expresses
certain important constructors on the regions purely in terms of the operations
presented in the algebra. One of the examples they give is the algebra of graphs.
We follow some of these ideas when looking for the right data structure for
networks and operations over it, but consider a more general notion of graph.

Two well known ontologies for topological spatial relations are the Region
Connected Calculus (RCC) [1] and the point-set topological model [9,8]. RCC is
a logic-based formalization of topological relations that uses a basic connectivity
relation between closed regions. The point-set topological model defines topolog-
ical relations based on the set intersection of the interior, boundary and exterior
of spatial objects. Such formalism uses relation algebra [6] to create an inference
mechanism given by the composition of topological relations [11]. Although both
models result in the same set of topological relations between spatial regions,
they differ in their reasoning capabilities. While reasoning with relation algebras
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has computational advantages, axiomatic theories are richer in their expressive
power.

2 The (abstract) Model

In this section we introduce a general framework to model networks and present
the algebraic properties of different categories of objects and their operations.
We will use the basic graph terminology as in Diestel’s Book [12].

Definition 1 (Semigraph). Let U = (VU , EU ) be a graph.

1. A semigraph over U is a pair (V, E), where V ⊆ VU and E ⊆ EU .
2. A net is a semigraph (V, E) such that for each uv ∈ E it holds that either

u ∈ V or v ∈ V .

Note that a graph (in the classical sense) is a semigraph such that E ⊆ V × V .
In what follows, there will be always a universe graph U = (VU , EU ) which will
be the “space” on which the objects we deal with live in.

(a) (b) (c)

Fig. 1. Basic notions: (a) semigraph, (b) net, and (c) graph. Dark nodes and edges
belong to the semigraph, net or graph, respectively.

Notations. Let V ⊆ VU be a set of nodes, let E ⊆ EU be a set of edges, and let
G be an arbitrary semigraph. We will denote by VG its set of nodes and by EG

its set of edges.
Use uv to denote the undirected edge {u, v}. A node v and an edge e are

incident if e = vw for some w. inc(V ) is the set of edges {uv ∈ EU : u ∈ V ∨ v ∈
V }. Similarly, inc(E), is the set of nodes {v ∈ VU : uv ∈ E} sg(V ) will denote the
semigraph (V, inc(V )). Similarly, sg(E) will denote the semigraph (inc(E), E),
and sg(G) will denote the semigraph (VG ∪ inc(E), EG ∪ inc(V )).

Definition 2 (Basic operations on semigraphs). Let G1 = (V1, E1) and
G2 = (V2, E2) be semigraphs.

1. The union of G1 and G2 (denoted G1∪G2) is the semigraph (V1∪V2, E1∪E2).
2. The intersection of G1 and G2 (denoted G1 ∩ G2) is the semigraph (V1 ∩

V2, E1 ∩ E2).
3. The difference of G1 and G2 (denoted G1−G2) is the semigraph (V1−V2, E1−

E2). In particular, the complement of G2, denoted Gc
2, is the semigraph

U − G2.
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Using the fact that the product of two Boolean algebras with the operations
defined pairwise is again a Boolean algebra we get:

Proposition 1. The set of semigraphs with the operations of union, intersection
and complement, together with 0 defined as (∅, ∅) and 1 = (U, U×U) is a Boolean
algebra.

The Algebraic Structure of Networks. One can enrich the Boolean Algebra struc-
ture of semigraphs described above by defining closure operators over semi-
graphs, and hence, a structure of Topological space (Kuratowski space).

A closure operator (cl) must satisfy some properties for each element of the
domain. Two basic properties are cl(∅) = ∅ and G ⊆ cl(G). In addition, by
property cl(G∪H) = cl(G)∪cl(H), one needs to specify only cl over single nodes
and single edges. From the idempotence property (cl(cl(G)) = cl(G)) it follows
that cl(v) should add no nodes (or do trivial things like adding nodes independent
of v, e.g. the whole universe, all isolated nodes, etc.) Similarly for cl(e) for an edge
e. In fact, the only two natural choices for closure are: (1) clE(G) = sg(E(G)),
and (2) clV (G) = sg(V (G)). But the topologies they generate are not essentially
different:

Lemma 1. Let TE and TV the topologies induced by the closure operators clE
and clV respectively. Then G is open in TE if and only if G is closed in T2.

Heyting Algebras Via Closure Operators. Every topology provides a complete
Heyting algebra in the form of its open set lattice. The Heyting algebra is de-
fined as follows: objects are open sets; operations are set-theoretical union and
intersection; and the element A ⇒ B is the interior of the union of Ac∪B, where
Ac denotes the complement of the open set A.

For the operator clV the open sets are standard full subgraphs of U (com-
plements of the closed sets in the topology TV ). Here the border (given by the
topology) of G is the set of edges in the complement of G which are incident to
G. The operator clE is the dual of the previous one.

The Heyting Algebra of Nets. Note that the objects defined in the Heyting
algebras induced by the open sets of the topological spaces defined above were
essentially graphs (or complements of graphs).

It is possible to extend the set of objects to be considered to semigraphs
without loose edges (what we have called nets) and still having a structure of
Heyting algebra by slightly modifying the operations of join and meet. Nets are
operationally generated as follows: (1) choose a set of nodes V and (2) choose
a set of edges incident to V . The induced operations (in order to be closed
in this new universe) are the standard union and the meet G1 ∧ G2 defined as
(G1∩G2)∩sg(V (G1∩G2)) (observe that the standard intersection of semigraphs
could leave isolated edges).

Proposition 2. Let R(U) be the set of nets over U . If we define 0 = ∅ (the
empty semigraph), G1∨G2 as the union, G1∧G2 as defined above, and G1 ⇒ G2

as sg(V c
1 ) ∪ G2, then (R(U),∨,∧,⇒, 0) is a Heyting algebra.
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Note that this is not a bi-Heyting algebra because the existence of nets R such
that there are edges uv 
∈ R with u, v ∈ R. Example: let R = U − {uv}. Then
there is no unique minimal solution for U ≤ R ∪ X , because, for example,
X1 = ({u}, uv) and X2 = ({v}, uv) are minimal solutions.

Interestingly, the problem described in the previous paragraph is the only
barrier to have a bi-Heyting algebra.

Proposition 3. Let R∗(U) the set of full nets over U (i.e. nets such that the
complement has no isolated edges, that is, it is again a net). If we define the same
operations as in Proposition 2 and 1 = U and G1 \ G2 as (sg(Ec

2) ∪ Gc
2) ∧ G1,

then ((U),∨,∧,⇒, \, 1, 0) is a bi-Heyting algebra.

3 Possible Approaches to Define Connectivity in
Networks

We examined the structure and operations over networks. In this section we
will study the notion of when two objects (semigraphs) in this universe are
“connected” or have “relationships”.

3.1 A Pure Topological Approach

Although pure topological notions are oriented to capture the concept of con-
tinuity, several notions from topology can be borrowed to speak of spatial no-
tions [8,9]. We start from these notions, but will be interested in the notions
of connectivity or relationship, and thus some concepts will naturally not be
applicable in our context.

Following the approach of Egenhofer [8] we will build the framework on the
notions of boundary and interior. Due to the particularities of our domain, we
will add a third notion, that of frontier.

Definition 3 (Interior, Frontier, Boundary, Closure). Let U be the uni-
versal graph, and H a semigraph in U .

1. The boundary of a semigraph H (in U), denoted ∂(H), is the set of edges
which are incident to H and its complement, i.e., the set of edges uv of U
such that u ∈ H and v /∈ H. (Note that edges uv /∈ H with u ∈ H and v ∈ H
are not in the boundary).
In particular, we define δ(H) = ∂(H) ∩ H as the real boundary.

2. The frontier of a semigraph H (in U), denoted fr(H), is the set of nodes
of H adjacent to nodes not in H. (Or equivalently: the set of nodes of H
incident to ∂(H).)
In particular, we define fr′(H), the real frontier, as the subset of the nodes
of fr(H) incident to edges not in H.

3. The interior of a semigraph H (in U), denoted int(H), is the semigraph
consisting of all nodes and edges of H not incident with elements not in H.

4. The closure of a semigraph H (in U), denoted cl(H), is the semigraph H ∪
∂(H).
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(a) (b) (c) (d)

Fig. 2. Basic topological notions. Dark nodes and edges constitute the semigraph. (a)
reference semigraph; (b) boundary (continuous dark line is the real boundary); (c)
frontier (filled dark nodes form the real frontier); and (d) interior.

Proposition 4 (The boundary ∂)

1. ∂(H) has no interior.
2. ∂(H) = cl(H) ∩ cl(G − H), i.e. the boundary of H is the intersection of the

closure of H and its complement.
3. ∂(H) = ∂(G − H), i.e. the boundary of H equals the boundary of its com-

plement.
4. ∂(H) = ∅ iff H = ∅ or H = G.

Based on these definitions, one can derive topological relations between networks
by considering the intersections between their topological invariants (i.e., inte-
rior, boundary and frontier), that is, the intersections between the components of
networks that do not change under topological transformations (e.g. translation,
scaling, and rotation).

Given any two connected nets H1 and H2 in U , let int(H1) and int(H2)
be their interiors, and D(H1) and D(H2) be the union of their respective real
frontiers with real boundary. Table 1 presents the eight matrices that derive the
10 possible 4-intersection matrices between nets.

3.2 The Region Connected Calculus RCC

RCC is a formalism for spatial reasoning that takes regions of space instead of
points of classical geometry as primitives. For this, a primitive notion of connec-
tivity is introduced by means of a binary predicate C(x, y), whose semantics is
that of “x is connected to y.’”

In the context of networks, the basic primitive is naturally defined as follows:

Definition 4. C(x, y) is true iff there is a path from x to y in x∪y (where path
is the standard notion in graph theory [12])

Note that if x ∩ y 
= ∅ then C(x, y), but the notion defined allow C(x, y) to be
true even though x ∩ y = ∅.

The RCC definitions (we will use the RCC-8 framework) are axiomatized
in standard first-order logic using quantifiers over variables ranging over the
objects of the domain (regions in the spatial case) (see Table 2). The axioms
for semigraphs concides roughly with the naive intuition in the spatial domain.
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Table 1. The basic 2x2 matrices upon which all possible 4-intersections matrices are
derivable. Dark nodes and edges belong to one or both nets.

Matrices Examples Matrices Examples

int(H2) D(H2)

int(H1) 0 0
D(H1) 0 0

int(H2) D(H2)

int(H1) 0 0
D(H2) 0 1

int(H2) D(H2)

int(H1) 1 0
D(H1) 0 0

int(H2) D(H2)

int(H1) 1 0
D(H1) 0 1

int(H2) D(H2)

int(H1) 1 0
D(H1) 1 0

int(H2) D(H2)

int(H1) 1 0
D(H1) 1 1

int(H2) D(H2)

int(H1) 1 1
D(H1) 1 0

int(H2) D(H2)

int(H1) 1 1
D(H1) 1 1

Table 2. RCC-8 definitions depending on the range of the quantification of the vari-
ables involved: over semigraphs and over nets. inc(x, y) means x is incident to y.

Relation Interpretation Quantif. over semigraphs

DC(x, y) x is disconnected from y No path between
x and y in x ∪ y

P (x, y) x is a part of y x ⊆ y
PP (x, y) x is a proper part of y x ⊂ y
EQ(x, y) x is equivalent with y x = y
O(x, y) x overlaps y x ∩ y �= ∅
DR(x, y) x is discrete from y x ∩ y = ∅
PO(x, y) x partially overlaps y x ∩ y �= ∅ ∧ x �⊆ y ∧ y �⊆ x
EC(x, y) x is externally connected to y x ∩ y = ∅ ∧ inc(x, y)
TPP (x, y) x is a tangential proper part of y x ⊂ y ∧ inc(x, yc)
NTTP (x, y) x is a nontangential proper part of y x ⊂ y ∧ ¬ inc(x, yc)

The problems are subleties centered on non-existent edges between two nodes
of the domain. In this framework it is more evident the insufficiency of graphs
as basic data structure for qualitative reasoning. In such case, C(x, y) must be
defined as intersection of nodes and the definitions would colapse into standard
set theoretical notions among nodes.

4 Conclusions

This work presents a formal framework for qualitative reasoning about topologi-
cal properties of networks. It studies the structure of sets of overlapping networks
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from a spatio-topological point of view, defines a data structure and operations
associated with networks, and states and proves main properties of them.

For future work, we plan to select a standard set of operations that serves as
basic for a query language design and that can relate the abstract model to the
approaches for defining the connectivity in networks.
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