
Updating RDFS: from Theory to Practice

Claudio Gutierrez1, Carlos Hurtado2, and Alejandro Vaisman3

1 Universidad de Chile
2 Universidad Adolfo Ibañez, Chile
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Abstract. There is a comprehensive body of theory studying updates
and schema evolution of knowledge bases, ontologies, and in particular
of RDFS. In this paper we turn these ideas into practice by presenting
a feasible and practical procedure for updating RDFS. Along the lines
of ontology evolution, we treat schema and instance updates separately,
showing that RDFS instance updates are not only feasible, but also de-
terministic. For RDFS schema update, known to be intractable in the
general abstract case, we show that it becomes feasible in real world
datasets. We present for both, instance and schema update, simple and
feasible algorithms.

1 Introduction

RDF has become one of the prime languages for publishing data on the Web,
thanks to initiatives like Linked Data, Open Data, Datagovs, etc. The next
step is to work on the evolution of such data, thus, facing the issue of informa-
tion update. If one analyzes the data that is being published, the vocabulary
used includes the core fragment of RDFS plus some OWL features. This poses
strong challenges to the goal of updating such information. It is well-known
that the problem of updating and schema evolution in Knowledge Bases is both,
intractable and non-deterministic in the general case. For example, erasing a
statement ϕ (that is, updating the knowledge base so that the statement ϕ can
not be deduced from it) not only could take exponential time, but, there could be
many different and equally reasonable solutions. Thus, there is no global solution
and the problem has to be attacked by parts.

In this paper we study the problem of updating data under the RDFS vo-
cabulary, considering the rest of the vocabulary as constant. Many proposals
on updates in RDFS and light knowledge bases (e.g. DL-lite ontologies) have
been presented and we discuss them in detail in Section 5. Nevertheless, such
proposals have addressed the problem from a strictly theoretical point of view,
making them –due to the inherent complexity of the general problem– hard or
impossible to be used in practice.

Using the Katsuno-Mendelzon theoretical approach (from now on, K-M ap-
proach) for update and erasure [7], which has been investigated and proved
fruitful for RDFS (see [2, 3, 5]), we show that updates in RDFS can be made
practical. We are able to get this result by (a) following the approach typical in



ontology evolution, where schema and instance updates are treated separately;
(b) focusing on the particular form of the deductive rules of RDFS; and (c) con-
sidering blank nodes as constants (which for current big data sets is a rather safe
assumption). In this paper we concentrate in the erasure operation (‘deleting’ a
statement), because update (adding information) in RDFS, due to the positive
logic nature of it, turns out to be almost trivial [5]. Our two main results are,
a deterministic and efficient algorithm for updating instances, and a reduction
of the update problem for schema to a graph theoretical problem in very small
graphs.

Regarding instance update, we show that due to the particular form of the
rules involved in RDFS [12], and using a case by case analysis, instance erasure
(i.e., erasing data without touching the schema) is a deterministic process for
RDFS, that is, it can be uniquely defined, hence opening the door to automate it.
Then, we show that this process can be done efficiently, and reduces essentially to
compute reachability in small graphs. We present pseudo-code of the algorithms
that implement this procedure.

As for schema erasure, the problem is intrinsically non-deterministic, and
worst, untractable in general. A trivial example is a chain of subclases (ai, sc, ai+1)
from where one would like to erase the triple (a1, sc, an). The minimal solutions
consist in deleting one of the triples. In fact, we show that in general, each so-
lution corresponds bi-univocally to the well-known problem of finding minimal
cuts for certain graphs constructed from the original RDF graph to be updated.
This problem is known to be untractable. The good news here is that the graphs
where the cuts have to be performed are very small (for the data we have, it
is almost of constant size: see Table 1). They correspond essentially to the sub-
graphs containing triples with predicates subClassOf and subPropertyOf. Even
better, the cuts have to be performed over each connected component of these
graphs (one can avoid cuts between different connected components), whose size
is proportional to the length of subClassOf (respectively subPropertyOf) chains
in the original graph. We also present pseudo-code for this procedure.

The remainder of the paper is organized as follows. Section 2 reviews RDF
notions and notations and the basics of the K-M approach to erasure. Section 3
studies the theoretical basis of the erasure operations proposed, and Section 4
puts to practice the ideas presenting algorithms for efficiently computing erasure
in practice. Section 5 discusses related work. We conclude in Section 6.

2 Preliminaries

To make this paper self-contained we present in this section a brief review of
basic notions on RDF, and theory of the K-M approach to update in RDFS.
Most of the material in this section can be found in [4, 5, 12] with more detail.

Definition 1 (RDF Graph). Consider infinite sets U (URI references); B =
{Nj : j ∈ N} (Blank nodes); and L (RDF literals). A triple (v1, v2, v3) ∈ (U ∪
B) × U × (U ∪ B ∪ L) is called an RDF triple. The union of U,B,L will be
denoted by UBL.



Dataset # Triples # Schema #Instances {sc, sp}-Chain-length Most used voc.

bio2rdf (1) 2,024,177 685 1,963,738 3 type, label
data.gov.uk 22,504,895 16 22,503,962 1 type, value
bibsonomy 13,010,898 0 12,380,306 0 type, value
dbtune 58,920,361 418 58,248,647 7 type, label
geonames 9,415,253 0 9409247 0 type
uniprot 72,460,981 12295 72458497 4 type, reif.

Table 1. Statistics of triples in schema, instances and sc, sp chains of some RDF
datasets. (The difference between # triples and #(schema + instances) is due the
predicates sameAs, sameClass, which being schema, do not have semantics in RDFS.)

An RDF graph (just graph from now on) is a set of RDF triples. A subgraph
is a subset of a graph. A graph is ground if it has no blank nodes. ⊓⊔

A set of reserved words defined in RDF Schema (called the rdfs-vocabulary)
can be used to describe properties like attributes of resources, and to represent
relationships between resources. In this paper we restrict to a fragment of this
vocabulary which represents the essential features of RDF and that contains the
essential semantics (see [12]): [range], rdfs:domain [dom], rdf:type [type], rdfs:
subClassOf [sc] and rdfs:subPropertyOf [sp]. The following set of rule schemas
captures the semantics of this fragment [12]. In each rule schema, capital letters
A, B, C, D, X, Y,... represent variables to be instantiated by elements of UBL.

GROUP A (Subproperty)

(A, sp, B) (B, sp, C)

(A, sp, C)
(1)

(A, sp, B) (X, A, Y )

(X, B, Y )
(2)

GROUP B (Subclass)

(A, sc, B) (B, sc, C)

(A, sc, C)
(3)

(A, sc, B) (X, type, A)

(X, type, B)
(4)

GROUP C (Typing)

(A, dom, C) (X, A, Y )

(X, type, C)
(5)

(A, range, D) (X, A, Y )

(Y, type, D)
(6)

Definition 2 (Proof Tree, Deduction). Let G,H be RDF graphs, and t a
triple. Then a proof tree of t from G is a tree constructed as follows: (1) The
root is t; (2) The leaves are elements of G; (3) If t is a node, then t has children



t1, t2 iff t1 t2
t

is the instantiation of a rule (see rules above). If t has a proof tree
from G we will write G ⊢ t.

A deduction of H from G is a set of proof trees from G, one for each t ∈ H.
⊓⊔

Definition 3 (Closure). Let G be an RDF graph. The closure of G, denoted
cl(G), is the set of triples that can be deduced from G (under Definition 2), that
is, cl(G) = {t : G ⊢ t}. ⊓⊔

The formalization of the K-M approach is based on the models of a theory.
Thus we need the logical notion of a model of a formula (of an RDF graph). The
model theory of RDF (given in [6]) follows standard classical treatment in logic
with the notions of model, interpretation, and entailment, denoted |= (see [4]
for details). Also, throughout this paper we work with Herbrand models, which
turn out to be special types of RDF graphs themselves. For a ground graph G,
a Herbrand model of G is any RDF graph that contains cl(G) (in particular,
cl(G) is a minimal model). Mod(G) will denote the set of such models of G. The
deductive system presented is a faithful counterpart of these model-theoretic
notions:

Proposition 1 (See [4, 12]). (1) G |= H iff cl(H) ⊆ cl(G); (2) The deduc-
tive system of Definition 2 is sound and complete for |= (modulo reflexivity of
sc and sp).4

2.1 Semantics of Erase in RDF

From a model-theoretic point of view, the K-M approach can be characterized
as follows: for each model M of the theory to be changed, find the set of models
of the sentence to be inserted that are ‘closest’ to M . The set of all models
obtained in this way is the result of the change operation. Choosing an update
operator then reduces to choosing a notion of closeness of models.

Working with positive theories like RDFS, the problem of adding positive
knowledge (e.g. a triple, a graph H) to a given graph G is fairly straightforward.
In fact, for ground graphs it corresponds to the union of the graphs. (See [5]).
Thus, in what follows we concentrate in the ‘erase’ operation, that is, ‘deleting’
a triple t (or a graph H) from a given graph G. A standard approach in KB
is to ensure that, after deletion, the statement t should not be derivable from
G, and that the deletion should be minimal. The result should be expressed by
another formula, usually in a more expressive language. We next characterize the
erase operation using the K-M approach, which essentially states that, erasing
statements from G means adding models to Mod(G), the set of models of G.

Definition 4 (Erase Operator). The operator •, representing the erasure, is
defined as follows: for graphs G and H, the semantics of G • H is given by:

Mod(G • H) = Mod(G) ∪
⋃

m∈Mod(G)

min(((Mod(H))c,≤m) (7)

4 As in [12], we are avoiding triples of the form (a, sc, a) and (b, sp, b), because this
causes no harm to the core of the deductive system (see [12]).



where ( )c denotes complement. In words, the models of (G • H) are those of G

plus the collection of models mH 6|= H such that there is a model m |= G for
which mH is ≤m-minimal among the elements of Mod(H)c. ⊓⊔

The following standard notion of distance between models gives an order
which is the one we will use in this paper. Recall that the the symmetric difference
between two sets S1 and S2, denoted as S1 ⊕ S2, is (S1 \ S2) ∪ (S2 \ S1).

Definition 5 (Order ≤m). Let G,G1, G2 be models of RDF graphs, and let G
be a set of models of RDF graphs. Then : (1) G1 ≤G G2 (G1 is ‘closer’ to G

than G2) if and only if G1 ⊕G ⊆ G2 ⊕G; (2) G1 is ≤G-minimal in G if G1 ∈ G,
and for all G2 ∈ G, if G2 ≤G G1 then G2 = G1. ⊓⊔

Representing faithfully in RDF the notions of erase defined above is not
possible in the general case, given its lack of negation and disjunction. The next
example illustrates the problems.

Example 1. Let us consider the graphs G = {(a, sc, b), (b, sc, c)}, and H =
{(a, sc, c)}. Any graph G′ representing the result of this update cannot contain
both (a, sc, b), and (b, sc, c), since this would derive (a, sc, c). Then, the result of
the update should be {(a, sc, b)}∨{(b, sc, c)}. Elaborating on this a little further,
in Equation 7, Mod(H)c are the models that cannot derive (a, sc, c). From these
models, min((Mod(H))c,≤m) contains the ones at distance ‘1’ from Mod(G),
namely {{(a, sc, b)}, {(b, sc, c)}}. Any model that does not include (a, sc, b) or
(b, sc, c) is at distance ≥ 2 from Mod(G). Moreover, any model including both
triples would not be in (Mod(H))c since it would derive (b, sc, c). ⊓⊔

2.2 Approximating Erase in RDF

Knowing that it is not possible in general to find RDF graphs representing the
new state after erasure, we study the ‘closest’ RDF formulas that express it. In
this direction, we introduce the notion of erase candidate, which gives a workable
characterization of erase (expressed previously only in terms of sets of models).

Definition 6 (Erase Candidate). Let G and H be RDF graphs. An erase
candidate of G • H is a maximal subgraph G′ of cl(G) such that G′ 6|= H. We
denote ecand(G,H) the set of erase candidates of G • H. ⊓⊔

Example 2. For the RDF graph G of Figure 1 (a), the set ecand(G, {(a, sc, d)})
is shown in Figure 2 (a). ⊓⊔

The importance of ecand(G,H) resides in that it defines a partition of the
set of models of G •H, and a set of formulas whose disjunction represents erase:

Theorem 1 (See [5]). Let G,H be RDF graphs.

1. If E ∈ ecand(G,H), then E ∈ Mod(G • H).
2. If m ∈ Mod(G•H) and m 6∈ Mod(G), then there is a unique E ∈ ecand(G,H)

such that m |= E.
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Fig. 1. (a) An RDF Graph G. (b) The closure of G.
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Fig. 2. (a) The set of erase candidates ecand(G, {(a, sc, d)}). (b) The set of minimal
bases minbases(cl(G), {(a, sc, d)})

3. For all formulas F of RDF, (
⋂

E∈ecand(G,H) E) |= F if and only if Mod(G •

H) ⊆ Mod(F ).

Items (1) and (2) in Theorem 1 state that if we had disjunction in RDF, erasure
could be expressed by the following finite disjunction of RDF graphs:

G • H “=” G ∨ E1 ∨ · · · ∨ En,

where Ej are the erase candidates of G •H. Item (3) states the fact that all the
statements entailed by G •H expressible in RDF are exactly represented by the
RDF graph defined by the intersection of all the erase candidates graphs.

Note that the smaller the size of ecand(G,H), the better the approximation
to G • H, being the limit the case when it is a singleton:

Corollary 1. If ecand(G,H) = {E}, then (G • H) ≡ E. ⊓⊔



3 Computing the Erase in RDF

From the discussion above, it follows that approximating G • H reduces to find
the erase candidates of this operation. For working purposes, it is easier to work
with the ‘complement’ of them in cl(G), that we will call delta candidates:

Definition 7 (Delta Candidates dcand(G,H)). The set of delta candidates,
denoted dcand(G,H), is the set of minimal graphs D ⊆ cl(G) such that (cl(G) \
D) 6|= H. ⊓⊔

Thus, the relationship between delta and erase candidates is the following:

dcand(G,H) = {(cl(G) \ E) : E ∈ ecand(G,H)}. (8)

The remainder of this section provides a characterization of delta candidates,
based in the notion of proof tree (Definition 2).

Definition 8 (Bases and Minimal Bases). (1) The set of leaves of a proof
tree (of H from G) is called the base of such proof.

(2) A base B of H from G, is a minimal base iff it is minimal under set-
inclusion among all the bases of proofs of H from G (that is, for every base B′

of H from G, it holds B ⊆ B′). We denote minbases(G,H) the set of minimal
bases of G,H. ⊓⊔

Example 3. For the graph G given in Figure 1 (a), the set minbases(cl(G),
{(a, sc, d)}) contains the graphs given in Figure 2 (b). ⊓⊔

We now need to define the notion of a hitting set.

Definition 9 (Hitting Set). A hitting set for a collection of sets C1, . . . , Cn

is a set C such that C ∩ Ci is non-empty for every Ci. C is called minimal if it
is a minimal under set-inclusion. ⊓⊔

Theorem 2. Let G,H,C be RDF graphs. Then, C is a hitting set for the col-
lection of sets minbases(G,H) iff (cl(G) \ C) 6|= H. Moreover, C is a minimal
hitting set iff cl(G)\C is a maximal subgraph G′ of cl(G) such that G′ 6|= H. ⊓⊔

Proof. (sketch) Note that if C is a hitting set, its minimality follows from the
maximality of its complement, G \ C, and vice versa. Hence we only have to
prove that C is a hitting set for minbases(G,H) iff (G \ C) 6|= H.

Now we are ready to give an operational characterization of delta candidates
in terms of hitting sets and minimal bases.

Corollary 2. Let G,H,C be RDF graphs. C ∈ dcand(G,H) if and only if C is
a minimal hitting set for minbases(cl(G),H). ⊓⊔

Proof. Follows from the Definition 7, Theorem 2, and the observation that C ⊆
cl(G) is minimal iff cl(G) \ C is maximal. ⊓⊔



3.1 Erasing a Triple from a Graph

Now we are ready to present algorithms to compute the delta candidates. We re-
duce computing erase candidates to finding minimal multicuts in certain directed
graphs. The essential case is the deletion of one triple.

Definition 10 (Minimal Cut). Let (V,E) be a directed graph. A set of edges
C ⊆ E disconnects two vertices u, v ⊆ V iff each path from u to v in the graph
passes through a vertex in C. In this case C is called a cut. This cut is minimal
if the removal of any node from C does not yield another cut.

Cuts can be generalized to sets of pairs of vertices yielding multicuts. A min-
imal multicut for a set of pairs of nodes (u1, v1), (u2, v2g), . . . , (un, vn) is a min-
imal set of edges that disconnects ui and vi, for all i. ⊓⊔

For a triple t in a graph G, we will show that the graphs in dcand(G, t)
correspond to certain cuts defined in two directed graphs derived from G, that
we denote G[sc] and G[sp], defined as follows:

Definition 11 (Graphs G[sc] and G[sp]). Given an RDF graph G, we denote
G[sc] = (N,E) the directed graph defined in Table 2. For each triple of the form
specified in the first column of the table, we have the corresponding edges in E.
The set of nodes N is composed of all the nodes mentioned in the edges given in
the table. The directed graph G[sp] is defined similarly in Table 2. We use the
letters n and m to refer to nodes in G[sc] and G[sp], respectively. ⊓⊔

Triple in G Edge in G[sc]

(a, sc, b) (na, nb)
(a, type, b) (nt,a, nb)

Triple in G Edges in G[sp]

(p, sp, q) (mp, mq)
(a, p, b) (ma,b, mp)
(p, dom, c) (mp, mv,dom) for each nc →∗ nv in G[sc]
(p, range, c) (mp, mv,range) for each nc →∗ nv in G[sc]

Table 2. Description of the construction of the graphs G[sc] (above) and G[sp] (below).

For an RDF triple t, the set of multicuts (set of pairs of nodes) associated to
the erasure of t from an RDF graph G, is defined as follows:

Definition 12 (Set of edges t[sc, G] and t[sp, G]). The set t[sc, G] contains
the pairs of nodes (u, v) as described in Table 3 (second column) with u, v nodes
in G[sc]. Analogously, we define t[sp, G] using Table 3 (third column). ⊓⊔

Example 4. Let us consider graph G on the left hand side of Figure 3. The center
part and the right hand side show, respectively, the graphs G[sp] and G[sc], built
according to Table 2. For example, for the triple t = (d, sc, c), the sets of edges
are (d, sc, c)[sc, G] = {(nd, nc)} and (d, sc, c)[sp, G] = ∅. There are triples which
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give rise to multiple pairs of nodes. For example, for the triple t = (a, type, c) and
the graph in Figure 3, the sets contain the pairs (a, type, c)[sc, G] = {(nt,a, nc)}∩
G[sc] = ∅, and (a, type, c)[sp, G] = {(mab,mc,dom), (mba,mc,dom)}. ⊓⊔

t ∈ G t[sc, G] t[sp, G]

(a, sc, b) (na, nb) –
(a, sp, b) – (ma, mb)
(a, p, b) – (mab, mp)
(a, type, c) (nt,a, nc) pairs (ma,x, mc,dom) for all x

pairs (mx,a, mc,range) for all x

Table 3. Construction of the pairs of nodes t[sc, G] and t[sp, G] associated to a triple
t. The minimal multicuts of them in G[sc] and G[sp] respectively, will give the elements
of dcand(G, t) (Theorem 3).

The next theorem shows that computing the delta candidates can be reduced
to compute minimal multicuts, in particular the set of cuts defined in Table 3 in
the graphs defined in Table 2.

Theorem 3. The elements of dcand(G, t) are precisely the triples of G that
correspond (according to the mapping in Table 2) to the minimal multicuts of
t[sc, G] in G[sc] plus the minimal multicuts of t[sp, G] in G[sp].

Proof. The proof is a case-by-case analysis of each form of t. For t = (a, dom, c)
or t = (a, range, c), the set dcand(G, t) = {t}, because t cannot be derived by
any rule, thus, G 6|= t if and only if t 6∈ G.

Case t = (a, sc, b). From the deduction rules in Section 2, t can be deduced
from G if and only if there is a path in G[sc] from na to nb (note that the only
rule that can derive t is (3)). Hence dcand(G, t) is in correspondence with the
set of the minimal cuts from na to nb in G[sc].



Case t = (a, sp, b). This is similar to the previous one. ¿From the deduction
rules, it follows that t can be only be deduced from G if there is a path in G[sp]
from ma to mb (by rule (1)). Thus dcand(G, t) is the set of the minimal cuts
from ma to mb in G[sp].

Case t = (a, type, c). To deduce t we can use rules (4), (5) and (6). Rule
(4) recursively needs a triple of the same form (a, type, d) and additionally the
fact that (d, sc, c). Thus, t can be derived from G if there is path in G[sc]
from nt,a to nc. Triple t can also be derived from (5) and (6). Let us analyze
(5) (the other case is symmetric). We need the existence of triples (a, P, x) and
(P, dom, u) and u →∗ c in G[sc], i.e., (u, sc, c). Then (a, P, x) can be recursively
derived by rule(2) (and by no other rule); (P, dom, u) should be present; and the
last condition needs (u, sc, c). Hence t can be derived if for some x there is a
path from ma,x to mc,dom in G[sp] (this explains the two last lines of Table 1).

Analyzing the rules, we can conclude that t is derivable from G if and only
if we can avoid the previous forms of deducing it. That is, producing a minimal
cut between nt,a and nc in G[sc] and a minimal multicut between the set of
pairs (max,mc,dom) for all x, and the set of pairs (my,a,mrange,c) for all y, in
the graph G[sp].

Case t = (a, p, b). Here, t can only be derived using rule (2). This needs the
triples (a, q, b) and (q, sp, p). With similar arguments as above, it can be shown
that t can be derived from G iff there is path in G[sp] from ma,b to mp. Hence
dcand(G, t) is the set of minimal cuts from ma,b to mp in G[sp]. ⊓⊔

The complexity of the above process is given essentially by the complexity
of finding minimal multicuts:

Theorem 4. Let G,H be ground RDF graphs, and t be a ground triple. The
problem of deciding whether E ∈ ecand(G, t) is in PTIME.

Proof. From Definition 6, the problem reduces to determine if D = cl(G)\E is a
delta candidate in dcand(G, t). Let G′ = cl(G), G′ can be computed in polytime.
Theorem 3 shows that we have to test (i) whether t[sc, G′] is a minimal cut in
G′[sc] and (ii) whether t[sp, G′] is a minimal (multi)cut in G′[sp]. In both cases
the test can be done in PTIME by simple reachability analysis in the graphs
G′[sc] and G′[sp], respectively. Testing whether a set of edges S is a minimal
cut for (v1, u1) in a graph (V,E) can be done performing polytime reachability
analysis in the graph as follows. To test whether S is a cut, delete from E the
edges in S, and test whether v1 reaches u1 in this new graph. To test minimality,
do the same test for each set of edges S′ ⊂ S resulting from removing a single
edge from S. S is minimal iff all of the S′s are not cuts. We proceed similarly
for testing if a set of edges is a minimal multicut. ⊓⊔

3.2 Erasing a Graph from a Graph

The problem of computing erase candidates ecand(G,H) for the case where H

has several triples can be easily reduced to the previous one when H = {t}.



Lemma 1. Let G,H be ground RDF graphs in normal form (i.e. without re-
dundancies, see [4]). (i) If E ∈ ecand(G,H), then there exists a triple ti ∈ H

such that E ∈ ecand(G, {ti}); (ii) If D ∈ dcand(G,H), then there exists a triple
ti ∈ H such that D ∈ dcand(G, {ti}).

Proof. (i) Suppose G 6|= H, then there is a triple ti ∈ H such that G 6|= ti, which
yields ecand(G,H) = {G} = ecand(G, {ti}). Now we assume that G |= H.
That is H ⊆ nf(G). Let T = (H \ I). T is non-empty because I 6|= H and
nf(E) = E. Now if T has more than one triple, then we add one triple of T to
I and obtain I ′ ∈ ecand(G,H) which is greater than I contradicting that E is
maximal. Therefore T must have exactly one triple, say tj . In this case can be
easily verified that E = ecand(G, {tj}). (ii) Follows directly from (ii).

The intuition of Lemma 1 is that each delete candidate in dcand(G,H) is
also a delete candidate of dcand(G, {ti}) for some triple ti in H. Therefore,
the problem of computing delete candidates reduces to finding the minimal sets
among the delete candidates associated to each triple in H.

The following result, consequence of Lemma 1(ii), yields a basic procedure
for computing delete candidates: find the minimal cuts for ecand(G, {t}) for each
triple t ∈ H, and then find the minimum among them.

Proposition 2. Let G and H be ground RDF graphs. Then
dcand(G,H) = min{D : D ∈

⋃
t∈H dcand(G, t)}.

4 Computing the Delta Candidates in Practice

We have seen that if we had disjunction, erase could be expressed as G • H =
G ∨ E1 ∨ · · · ∨ En, where the Ei’s are the erase candidates. From each Ei we
get a delta candidate Di = cl(G) \ Ei. In Section 3 we studied how to compute
the Di’s borrowing standard machinery from graph theory. This computation
is hard in the general case. In practice, however, there are two factors which
turn this computation feasible. First, in RDFS data, as in most data models,
schemas are small and stable, and data are large and dynamic. Second, what
really matters when computing RDFS updates of schemas are small parts of the
schema, essentially the length of the subclass and subproperty chains. Table 1
shows some examples of well-known RDF datasets.

Taking into account these observations, we present practical and feasible
algorithms for updating RDF data. We concentrate in the case of a single triple
which is the kernel of the operation (as can be deduced from Lemma 1).

4.1 Computing RDF Schema Erasure

We have already reduced the computation of erasure to that of computing the
set ecand(G, t). Algorithm 1 indicates the steps to be done. We have so far
studied the decision problem related to computing the set of erase candidates.
Generating ecand(G,H) (respectively dcand(G,H)) requires, in the worst case,



Algorithm 1 Compute dcand(G, t) (General Case)

Input: Graph G, triple t

Output: dcand(G, t)
1: Compute G := cl(G)
2: Compute G[sc]
3: Compute G[sp]
4: Compute t[sc, G]
5: Compute t[sp, G]
6: Compute minimal multicults for t[sc, G] in G[sc, G]
7: Compute minimal multicults for t[sp, G] in G[sp, G]

time exponential in the size of the graphs G[sp] and G[sc]. Indeed, the number of
cuts could be exponential. Standard algorithms on cut enumeration for directed
graphs can be adapted to our setting [9].

The good news is that what really matters is the size of the maximal con-
nected component of the graphs (one can avoid cuts between disconnected com-
ponents). In our case, the size of the connected components of G[sc] and G[sp]
are small, and a good estimation of it is the length of the maximal chain of sc
and sp respectively (very small in most real-world datasets). Based on the above,
Algorithm 2 would be a feasible one for updating schemas in most practical cases.

Algorithm 2 Update schema of G by erasing t

Input: Graph G, triple t

Output: G • t

1: Choose an ordering on predicates (see e.g. [8], 2.3)
2: Compute dcand(G, t)
3: Order the elements D ∈ dcand(G, t) under this ranking
4: Delete the minimal D from G

4.2 Computing RDF Instance Erasure

For the case of instances, the situation is optimal. Instance erasure assumes
that the schema of the graph should remain untouched. In this setting, we will
show that (i) the procedure is deterministic, that is, there is a unique choice of
deletion (or in other words, dcand(G, t) has a single element); (ii) this process
can be done efficiently.

Algorithm 3 computes dcand(G, t) for the case of instances. The key fact to
note is that for instances t, that is, triples of the form (a, type, b) or (a, p, b),
where p does not belong to RDFS vocabulary, the minimal multicut is unique.
For triples of the form (a, p, b), it follows from Table 3 that one has to cut paths
from mab to mp in G[sp]. Note that nodes of the form mp are non-leaf ones, hence
all edges in such paths in G[sp] come from schema triples (u, sp, v) (see Table



Algorithm 3 Compute dcand(G, t) (Optimized version for Instances)

Input: Graph G, triple t

Output: dcand(G, t)
1: Compute G′ := cl(G)
2: Compute G′[sc]
3: Compute G′[sp]
4: Compute t[sc, G′]
5: Compute t[sp, G′]
6: if t = (a, type, b) then
7: D ← {(a, type, z) ∈ G : nz reaches nb in G′[sc] }
8: D ← D ∪ {(a, p, x) ∈ G : max reaches mb,dom in G′[sp] }
9: D ← D ∪ {(y, p, a) ∈ G : mya reaches mb,range in G′[sp] }

10: else
11: if t = (a, p, b) then
12: D ← {(a, w, b) ∈ G : mab reaches mp in G′[sp] }
13: end if
14: end if
15: dcand(G, t) ← D

2). Because we cannot touch the schema, if follows that if there is such path, the
unique option is to eliminate the edge mab, which corresponds to triples (a,w, b)
in G. For triples of the form (a, type, b) the analysis (omitted here for the sake
of space) is similar, though slightly more involved. The cost of Algorithm 3 is
essentially the computation of the graphs G[sc] and G[sp] and then reachability
tests. Once the triples are ordered by subject and object (time O(n lg n)), the
rest can be done in linear time.

5 Related Work

Updates have attracted the attention of the RDF community, although so far
only addressing updates to the instance part of an RDF graph. Sarkar [14] iden-
tifies five update operators: and presented algorithms for two of them. Zhan [17]
proposes an extension to RQL, and defines a set of update operators. Both works
define updates in an operational way, and semantic issues are considered to a
very limited extent. Ognyanov and Kiryakov [13] state that the two basic types
of updates in an RDF repository are the addition and the removal of a statement
(triple), and describe a graph updating procedure. Magiridou et al [11] introduce
RUL, a declarative update language for RDF with three operations: insert, delete
and modify Schema updates are not studied, however. SPARQL/Update [16] is
an extension to SPARQL where update operations are performed over a col-
lection of RDF graphs. The treatment is purely syntactic, not considering the
semantics of RDFS vocabulary. In this sense, the work of the present paper can
be considered as input for future enrichments of this language to include the
semantics of RDF.



Konstantinidis et al. [8] introduce a framework for RDF/S ontology evolution,
based on the belief revision principles of Success and Validity. The authors map
RDF to First-Order Logic (FOL), and combine FOL rules (representing the
RDF ontology), with a set of validity rules (which capture the semantics of the
language), showing that this combination captures an interesting fragment of
the RDFS data model. Finally, an ontology is represented as a set of positive
ground facts, and an update is a set of negative ground facts. If the update causes
side-effects on the ontology defined above, they chose the best option approach
based on the principle of minimal change, for which they define an order between
the FOL predicates. Note that the paper overrides the lack of disjunction and
negation in RDF, by means of working with FOL. Opposite to this approach, in
the present paper we remain within RDF.

Chirkova and Fletcher [2], building on [5] and in [8], present a preliminary
study of what they call well-behaved RDF schema evolution (namely, updates
that are unique and well-defined). They focus in the deletion of a triple from an
RDF graph, and define a notion of determinism, showing that when deleting a
triple t from a graph G, an update graph for the deletion exists (and is unique),
if and only if t is not in the closure of G, or t is deterministic in G. Although
closely related to our work, the proposal does not study instance and schema
updates separately, and practical issues are not discussed.

There is an important corpus of work in the field of Description Logics ontolo-
gies. These knowledge bases are composed of two parts denoted TBox and ABox,
expressing intensional and extensional knowledge, respectively. Currently exist-
ing work (discussed below) only address the case of updates to the extensional
part (i.e., instance updates). De Giacomo et al. [3] study the non-expressibility
problem for erasure. The non-expressibility problem states that given a fixed
Description Logic L, the result of an instance level update/erasure is not ex-
pressible in L (for update, this has already been proved by Liu et al. [10]). That
is, they study the problem of updating only the ABox part of a DL ontology,
assuming that the schema (i.e., the TBox) remains unchanged. For update they
use the possible models approach [15], and for erasure, the K-M approach we
use in this paper. They address the problem by means of approximation, build-
ing also in the ideas expressed in [5]. The authors show that, for a fragment of
Description Logic, updates can be performed in polynomial time with respect
to the sizes of the original knowledge base and the update formula. Finally, Cal-
vanese et al. also study updates to ABoxes in DL-Lite ontologies. The authors
present a classification of the existing approaches to evolution, and show that
ABox evolution under what they define as bold semantics is uniquely defined [1].

6 Conclusions

In this paper, following the K-M approach to update in RDFS, we focus in
bringing to practice the theory developed on this topic. Following the approach
typical in ontology evolution, where schema and instance updates are treated



separately, we proposed practical procedures for computing schema and instance
RDF erasure.

One of the main results presented in this paper is that instance erasure is
a deterministic and feasible process for RDFS. Further, we presented an algo-
rithm to perform it. For schema erasure, the problem is non-deterministic and
untractable in the general case. However, we show that since schemas are very
small in practice, it can become tractable. Thus, we proposed an algorithm to
compute schema updates, based on computing multicuts in graphs. Complexity
analysis are provided in all cases.

Future work includes developing an update language for RDF based on the
principles studied here, and implementing the proposal at big scale.
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