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Abstract

One of the most important characteristics observed in
metabolic networks is that they produce themselves. This
intuition, already advanced by the theories of Autopoiesis
and (M,R)-systems, can be mathematically framed in a weird
looking equation, full of implications and potentialities:
f(f) = f . This equation (here referred as Ouroboros equa-
tion), arises in apparently dissimilar contexts, like Robert
Rosen’s synthetic view of metabolism, hyperset theory and,
importantly, untyped lambda calculus. In this paper we sur-
vey how Ouroboros equation appeared in those contexts, with
emphasis on Rosen’s (M,R)-systems and Dana Scott’s work
on reflexive domains, and explore different approaches to
construct solutions to it. We envision that the ideas behind
this equation, a unique kind of mathematical concept, initially
found in biology, would play an important role towards the
development of a true systemic theoretical biology.

Introduction
Ouroboros (also written Uroboros), the ancient symbol of
the snake eating its own tail, is often taken nowadays to
represent self-reference and circularity. In this vein we
call in this paper ”Ouroboros equation”, the ultimate self-
referential equation f(f) = f .

Notice that f (supposedly a function) applies to itself, as
an argument, the result being again f . So f plays simulta-
neously the roles of argument, function and value.

Recall that equation solving in mathematics has a long
history, beginning with equations like 2x = 1, x + 3 = 1,
up to x2 = 2 and x2 = −1.

Each of these equations was solved introducing new
species of numbers, some of them meeting strong resis-
tance, like negative and imaginary numbers. Indeed meth-
ods developed to construct the irrational

√
2 and the imag-

inary
√
−1 may serve as metaphors to tackle the bigger

and subtler challenge of constructing somehow solutions of
Ouroboros equation x(x) = x. Since this equation suggests
that x should be some sort of function, we will write it

f(f) = f.

in the sequel. However the main motivation to consider
Ouroboros equation did not arise from everyday mathe-
matics proper. It arose from various fields ranging from

Logic and Computer Science to Theoretical Biology. For
these reasons, we call ”Ouroboros avatars”, the various
manifestations or ways in which Ouroboros equation has
emerged in different domains (although ”avatar” means
in fact ”descent” in Sanskrit). We have then avatars of
Ouroboros in Logic (Löfgren, 1968; Scott, 1972, 1973), Hy-
perset Theory (Aczel, 1988), Cognitive Sciences (Kampis,
1995; Kauffman, 1987), Computer Science and Informatics
(Scott, 1972; Kampis, 1995; Milner, 2006), Systems The-
ory and Theoretical Biology (Rosen, 1991; Soto-Andrade
and Varela, 1984; Maturana and Varela, 1980; Letelier et al.,
2006, 2005), and others, that we review in the next sections.

A most remarkable fact, commented below, is the sim-
ilarity of methods of constructing solutions to Ouroboros,
developed in fields apparently as unrelated as logic (Scott,
1972, 1973) and metabolic systems theory (Letelier et al.,
2006, 2005), motivated by the construction of actual mathe-
matical models for untyped lambda calculus and virtual in-
finite regress in metabolic systems, respectively.

Ouroboros is not an oxymoron
To begin with, it can be proved that Ouroboros is not an
oxymoron, i.e. that the existence of an object f such that
f(f) = f , belonging to its own domain and range, is not
logically inconsistent (Löfgren, 1968; Kampis, 1995). It had
been argued nevertheless that this was impossible (Wittgen-
stein, 1961) or paradoxical (Rosen, 1959). Instead, it turns
out that an atomically self-reproducing entity can be ax-
iomatized, and in this sense it really does exist (Löfgren,
1968). In fact Löfgren (1968) has shown that the axiom of
complete self-reference is independent from usual set the-
ory and logic, and can therefore be added to it as a new
primitive axiom, that it is impossible to derive from the
other axioms. Solutions to Ouroboros, as Quine’s atoms
Q = {Q} (Quine, 1980), appear then as completely self-
referential, inapproachable, a perfectly closed class in itself
(Kampis, 1995). Varela takes a similar stance, when he in-
troduces self-referentiality from scratch as a third mark for
self-indication or autonomous value (Varela, 1975), extend-
ing the indicational calculus of Spencer Brown (1969), and



later as a third logical value, besides true and false (Varela,
1979; Kampis, 1995).

Our viewpoint is however that Ouroboros lives indeed
outdoors, with respect of our usual logical - mathematical
realm, but just outside, in front of the door, say, so that it can
be approximated stepwise ” from within”. This intuition has
been captured to a great extent, in different guises, in Scott
(1972, 1973); Soto-Andrade and Varela (1984), in Varela’s
further work (Varela and Goguen, 1978) and in Letelier et al.
(2006), as we explain below.

Ouroboros in Self-referential formalisms
As already said, Ouroboros equation f(f) = f involves
self-reference, or more precisely, recursion (for a system-
atic overview of fields that deal with different forms of self-
reference see Kauffman (1987)).

An interesting notion of recursion arises when dealing
with its operative issues. This approach, linked with the the-
ory of computing, has a strong relationship with the notion
of application. It is not surprising that formalisms for ab-
stracting the notions of function and program, like lambda
calculus and the theory of recursion, are at the center of these
developments.

The paradigmatic theory of functional application is the
simple lambda calculus (i.e. with no distinction of types)
(Barendret, 1984), introduced by Church (1951). In the un-
typed lambda calculus the equation f(f) = f has a trivial
solution: λx.x, that is, the identity function. The crucial
point here is the absence of typing, something that cannot be
realized with the identity function in classical mathematical
structures (like vector spaces, groups, etc.), where argument
and function belong to different types.

The very essence of the power of this formalism resides
in that it overcomes the traditional mathematical notion of
function as a set of pairs (input, output), by focusing in-
stead on the composition and evaluation of functions. So for-
malisms like the lambda calculus are much better suited for
the formalization of fields where the process of evaluation is
most relevant or even the core of the the phenomenon itself.
Lambda calculus was disregarded by the logical and mathe-
matical communities until the seventies. What brought their
attention to lambda calculus was the work of Dana Scott pro-
viding mathematical models for this formalism. The idea is
simple (not so much its implementation however...): finding
spaces where these objects (lambda terms, that is, general-
ized functions) may live. To see the difficulties, let us exem-
plify the hierarchy of objects that can be created from a set
U : functions with zero parameters (these are the elements of
U ); functions with one parameter, that is, f : U → U ; func-
tions with two parameters, g : U × U → U and so on. All
of them can be expressed in lambda calculus, that is, they
should be elements of the wanted space D. In particular, in
this typeless environment it should be possible to apply a
function f : D → D to itself, as another element of D.

It is worth reviewing the basic construction in Scott (1972,
1973), where continuity and limits play a central role, by
restricting the universe of functions to be considered. The
central question is:

“Are there nontrivial spaces D that can be identified (as
topological spaces) with their function spaces [D → D],
consisting of all continuous functions from D to D?”

Scott showed that indeed there are many of them, and
called them “reflexive domains”. His idea was to start with a
spaceD0, with suitable properties (e.g. a continuous lattice),
and try to identify its function space D1 = [D0 → D0] with
D0. A difficult task indeed, but we may notice that D0 can
be embedded in D1, by identifying each element d0 ∈ D0

with the constant function in D1 with value d0, and also that
D1 can be projected onto D0 by sending each (continuous)
function d1 ∈ D1 to its minimum value d1(⊥) (where ⊥ is
the least element of the complete lattice D0). Call i0 and
p0 the embedding and the projection so defined. This al-
lows us to embed in a clever way D1 = [D0 → D0] into
D2 = [D1 → D1], by sending each d1 to i0 ◦ d1 ◦ p0 and -
dually - to project D2 onto D1 by sending d2 to p0 ◦ d2 ◦ i0
and so on, to obtain iteratively a double chain of embeddings
from Dn into Dn+1 = [Dn → Dn], and projections from
Dn+1 onto Dn, for all n. We obtain then the wanted reflex-
ive domain as the limiting spaceD∞ of this double sequence
of continuous maps between continuous lattices.

Regarding our interest here, the later result shows that
there is a space where Ourboros equation at least makes
sense, i.e it “types”. To the best of our knowledge, Scott
did not consider this equation explicitly, although several
notions of his come close to it.1

Scott’s construction inspired the limiting construction of
a self-referential extension of Spencer Brown (1969) calcu-
lus of indications by Varela and Goguen (1978), where they
endow the collection of all forms that can be constructed in
Brown’s setting with the same sort of structure that Scott
(1972) considered, i.e. chain complete partially ordered sets
(posets). In their setting fully self-referential equations like
Ouroboros’ would have solutions. That is a different way to
extend Brown’s setting that the one in Varela (1975).

Scott’s construction also inspired later the construction
of reflexive domains in the context of posets and monotone
mappings with suitable continuity properties, carried out in
Soto-Andrade and Varela (1984), where the relationship be-
tween the existence of fixed points and several instances of
self - reference is also discussed (notice that a reflexive do-
main D is a fixed point for the function D 7→ [D → D]).

Another formalism where Ouroboros equation arises nat-
urally is hyperset theory (also called non well founded set
theory). Hypersets constitute an extension of usual set
theory, that allow sets to be members of themselves, like
Quine’s atom Q = {Q} (Quine, 1980; Aczel, 1988). We

1See for example Proposition 3.14 in Scott (1972)



meet among them baby Ouroboros like f = {(f, f)} =
{{f, {f}}}, that satisfy f(f) = f , if we identify the func-
tion f with its graph and choose the usual set theoretical
model {a, {b}} for ordered pairs (a, b).

As discussed in Löfgren (1968) and Kampis (1995), self-
reference is closely tied to language. Hence it is not surpris-
ing that formalisms that allow to break the classical hierar-
chies between language and metalanguage, or as in hyper-
sets, between container and containee, can provide solutions
to the Ouroboros equation. Up to now however, these for-
malisms do not seem to have been meaningfully exploited in
the context of biological self-reference and circularity (see
Cárdenas et al. (2010) more a more detailed survey).

Ouroboros in (M,R) systems: Infinite regress
face to face

We turn now to Rosen’s synthetic insights regarding
metabolic circularity, that he developed completely indepen-
dently of Scott (for a comprehensive survey of references
about Rosen’s work see Cárdenas et al. (2010)). In his for-
malism of (M,R) systems, the collective action of the thou-
sands of catalysts in a metabolic network M coalesces into a
single mapping f from A, the collection of all sets of reac-
tants, to B, the collection of all sets of products, that trans-
forms inputs a ∈ A into outputs b = f(a) ∈ B.

But in any metabolic system, catalysts are subject to
degradation, wear and tear, and therefore need to be regen-
erated or replaced by the system. To meet this requirement,
Rosen looked upon the replacement mechanism as a proce-
dure, denoted by Φ, that, from a suitable b = f(a) ∈ B
as input, reproduces f according to Φ(b) = f . Because
the net effect of Φ is to select from the relatively large set
H(A,B) ⊂Map(A,B), of all possible metabolisms, a spe-
cific f such that f(a) = b, using b ∈ B as an input, Rosen
calls it a selector. Thus, the procedure Φ representing re-
placement appears as a map from B to H(A,B).

Then an (M,R) system has the following algebraic de-
scription based on two mappings f,Φ acting in synergy:

A
f−→ B

Φ−→ H(A,B)

a 7−→ f(a) = b 7−→ Φ(b) = f

But now, it is possible to go further and demand the sys-
tem to be capable of replacing the replacer, or selector, Φ: a
replicative (M,R) system in Rosen’s terminology (this prop-
erty is also referred as organizational invariance (Cárdenas
et al., 2010)). More precisely, Φ should be generated with
the help of a procedure that, given a metabolism f , pro-
duces the corresponding Φ that selects metabolism f , that
is a mapping β : H(A,B) −→ H(B,H(A,B)) such that
β(f) = Φ, and so on. . . The big question is then, how can
this be, without implying infinite regress?

Rosen’s solution to avoid infinite regress, was to posit that
the equation Φ(b) = f is to have only one solution Φ (a

most demanding constraint indeed!) so that the mapping
β sends f to this unique selector Φ. In other words, β is
“just” the inverse of the “evaluation at b” operator (acting
on functions whose domain contains b) so that no further
procedure is needed to construct β itself. It is in this sense
that Rosen claims that his construction solves the problem of
infinite regress. Rosen was however unable to give concrete
examples where this hypothesis was fulfilled.

The operation of an organizationally invariant (M,R) sys-
tem can therefore be viewed as three mappings (f,Φ, β) act-
ing in synergy:

A
f−→ B

Φ−→ H(A,B)
β−→ H(B,H(A,B))

f(a) = b, Φ(b) = f, β(f) = Φ.
where β is the inverse of the “evaluation at b” operator.

Now, if instead of shunning infinite regress, as Rosen did,
we look at it ”face to face”, a recursive construction emerges,
whose first step is motivated by the question:

If you have a map f : A → B, can you find a new map
f1 : B → C such that for a suitable a ∈ A you have
f1(f(a)) = f or, equivalently f1(b) = f ; b = f(a)?

Of course, the answer to this question, taken at face value,
when A, B and C are plain (unstructured) sets and f and
f1 are set mappings, is ”Obviously, yes”, since you have
plenty of maps from one set to another which take a pre-
scribed value on a given point. Just take C to be the set
Map(A,B) of all mappings from A to B and f1 to be
any mapping from B to C such that f1(b) = f.

However this question becomes more intelligent when
stated in a categorical framework, typically when we con-
sider our sets endowed with some sort of structure and have
our maps preserve this structure.

Then, if we take our structured sets to be vector spaces,
our maps would be linear; if our sets are posets (i.e. par-
tially ordered sets), our maps ought to be monotone (or-
der preserving). If our sets were endowed with a metric,
or distance, then our allowed mappings might be continu-
ous, or even “isometric”, i. e. “distance - preserving” map-
pings. Structure preserving mappings are usually called “ho-
momorphisms”. For instance, the homomorphisms between
vector spaces are linear mappings.

Now we can state the categorical version of our question:
In a category (of structured sets and structure preserving
mappings, say), given a homomorphism f : A → B, can
you find a new homomorphism f1 : B → C such that for a
suitable a ∈ A you have f1(b) = f, where b = f(a)?

The subtlety now lies in the fact that to carry over our ob-
vious set theoretical solution to the categorical setting, we
need to find among all mappings f1 such that f1(b) = f,
one which is well behaved enough to be a homomorphism
from the structured set B to another structured set C. We
would be happy then to know that the set H(A,B), consist-
ing of all homomorphisms from A to B, may be endowed
with the same (type of) structure than A and B. If it is the
case, we would take C to be H(A,B), and we would be



all set up to seek a homomorphism f1 from B to C =
H(A,B), which takes the value f at point b ∈ B.

Recall now that Rosen, to avoid infinite regress, posited
the uniqueness of such a function f1, called Φ in his setup
(Rosen, 1991; Letelier et al., 2006).

It is clear however that in the category of sets, where the
existence of such an f1 is obvious, uniqueness is impossible
(unless B is a singleton). Nevertheless, if you change the
underlying category (i.e. the stage for the problem) so as to
have a category whose sets of homomorphisms H(X,Y )
are much smaller than Map(X,Y ), i.e. become more and
more selective, existence may become less and less obvious
and uniqueness may become more and more possible.

We may hope then for the existence of a turning point in
the choice of our category, at which the sets of homomor-
phisms H(X,Y ) would have the right size so as to have
simultaneously existence and uniqueness of our homomor-
phism f1. Rosen’s dream was that such turning points (or
better, turning categories) exist, where his hypothesis would
be fulfilled! They might indeed be dubbed “metabolic cate-
gories.”

If we look however infinite regress face to face and we do
not care about uniqueness, we could continue our construc-
tion above forever, in the spirit of Soto-Andrade and Varela
(1984) under a mild hypothesis of existence of our homo-
morphisms f1, in the framework of a concrete category C, i.e
a category of structured sets and structure preserving maps
(the only ones that we will consider in this article).

Hypothesis 1. (Existence of “replacing homomorphisms”)
We assume that given any homomorphism f : A → B in

our concrete category C, we can choose a ∈ A such that
the following hold:
- there exists a homomorphism f1 : B → H(A,B), such
that f1(f(a)) = f (we say then that a ∈ A is an f−generic
element),
- there exists a homomorphism f2 : H(A,B) →
H(B,H(A,B)), such that f2(f1(f(a))) = f1 (i.e. f(a) is
f1 − generic), and so on...

Notice that this hypothesis requires implicitly that, A
and B being any objects in C, the set of homomorphisms
H(A,B) should also be an object in C , i.e. it can be en-
dowed with the same structure as A and B. Also, simple
examples (see below) show that it is not to be expected that
every a ∈ A be f−generic for a given f : A→ B.

Example 1. In the category of (finite dimensional) vector
spaces and linear mappings, our hypothesis is clearly ful-
filled. Indeed, if f is the null mapping 0, we just take a = 0
and f1, f2, ... to be 0 all the way. If f 6= 0, take a to be
any non zero vector in A, such that f(a) 6= 0 and then f1

to be any linear mapping from B to H(A,B) sending f(a)
to f, f2 to be any linear mapping sending f to f1, and so
on. These (non zero!) linear maps exist recursively by the
well known elementary “linear extension property” for finite

dimensional vector spaces, saying that you can always con-
struct linear mappings from one vector space V to another
that take a prescribed value at a given non zero vector in V .

Example 2. In the category of additive groups and addition
preserving maps, we take A = B = Z+

3 , the set of integers
0, 1, 2 mod 3 endowed with the operation + of addition
mod 3. Notice that 1 + 1 + 1 = 0 mod 3. Then H(A,A) =
{ha|a ∈ A} ' A, where ha is the “scaling map” with ratio
a, that sends b to ab (b ∈ A), which we identify with
a ∈ A, writing ha = a. So we identify the mapping ha
with its value a at 1. The set H(A,A) endowed with the
operation of addition of mappings is also an additive group,
isomorphic to A, and ha + hb = ha+b (a, b ∈ A).

If we take now f to be the null mapping h0 = 0, we see
that for any a ∈ A, every f1 : A → H(A,A), satisfies
f1(f(a)) = f, since f1(f(a)) = f1(0) = 0 = h0 = f.
Hence any a ∈ A is h0 - generic and we may take f1 to
be h0, h1 or h2 (i.e. such that f1(1) = h0, h1 or h2).
The choice of f1 becomes relevant when we go one step
further, asking now for a homomorphism f2 : H(A,A) →
H(A,H(A,A)) such that f2(f) = f1. In a diagram:

A
f→ A

f1→ H(A,A)
f2→ H(A,H(A,A))

a 7→ f(a) 7→ f 7→ f1

Indeed, since f = h0, we have that necessarily f2(f) =
f(0) = 0 = h0, so f is f1−generic only for f1 = h0,
but not for h1 or h2. On the other hand, if we begin with
f = h2 instead of h0, then for any non zero a ∈ A, we
find a unique f1 : A → H(A,A) such that f1(f(a)) = f,
since the equation amounts to f1(2a) = 2, i.e. x2a = 2, i.e.
x = a−1, if we write f1 = hx. So every non zero a ∈ A is
f−generic in this case but 0 is not, since f1(f(0)) = h0.

Applying now our hypothesis recursively, we can con-
struct the following infinite sequence of homomorphisms
(and objects) in our concrete category C, issued from any
homomorphism C0

Φ0→ C1 in C :

C0
Φ0→ C1

Φ1→ C2
Φ2→ C3

Φ3→ ...
Φn−1→ Cn

Φn→ Cn+1
Φn+1→ ...

c0 → c1 → c2 → c3 → ... → cn → cn+1 → ...
satisfying the following:

C2 = H(C0, C1), ..., Cn+1 = H(Cn−1, Cn)
so that Φn ∈ H(Cn, Cn+1) = Cn+2,

Φ1(Φ0(c0)) = Φ0 for a suitable c0 ∈ C0,
Φn(cn ) = cn+1 ∈ Cn+1 (n ≥ 0) and

Φn+1(Φn(cn)) = Φn for all n ≥ 1;
Notice that to have consistent notations, we have renamed
A to C0, B to C1, C to C2; f to Φ0, f1 to Φ1.
Moreover, since Φ0(c0) = c1 we have Φ0 = Φ1(c1)) =

c2, and inductively,
Φn = Φn+1(Φn(cn)) = Φn+1(cn+1) = cn+2 (n ≥ 0),

in other words, cn = Φn−2 for all n ≥ 2, so that
Φn+1(Φn(cn)) = Φn+1(cn+1) = Φn+1(Φn−1) = Φn,

showing how the homomorphisms Φn play here alterna-
tively the role of argument, function and value...



We have then three different but equivalent ways to state
the recursive relationship between the Φn’s:

1. Φn+1(Φn(cn)) = Φn
2. Φn+1(Φn−1) = Φn
3. Φn+1(cn+1) = Φn
Remark now that the last one may be written

evcn+1(Φn+1) = Φn
in terms of the “evaluation at x” mappings evx : f 7→ f(x).
So the following “reverse” sequence of mappings and ele-
ments emerges, where each Cn “projects” onto Cn−1 :

C1

evc0←− C2

evc1←− C3

evc2←− ..
evcn−2←− Cn

evcn−1←− ...

c1
evc0←− Φ0

evc1←− Φ1

evc2←− ... evn−2←− Φn−2

evcn−1←− ...
This sequence of evaluation maps evcn forms what math-

ematicians call a projective (or inverse) system of mappings.
In the category of sets and mappings, every such system of
mappings, call it
C1

p1←− C2
p2←− C3

p3←− ... pn−1←− Cn
pn←− Cn+1

pn+1←− ...

has a (projective) “limit”, which is rigorously characterized
as the set C∞ consisting of all sequences (c1, c2, ..., cn, ...)
of “coherent” choices of elements cn ∈ Cn (“coherent”
meaning here that each cn “projects” onto cn−1, i.e.
pn−1(cn) = cn−1). This projective limit set C∞ “projects”
also in a natural way onto each Cn, sending each sequence
to its n−th term cn. Intuitively, this construction allows us
to get hold as elements in the limit set C∞, of “mythical” or
“ideal” objects” that cast a series of approximating down to
earth ”shadows” (the cn’s). In concrete categories we may
expect moreover that the structure we have on all Cn’s will
carry over to the limit set C∞, which will become then a
bona fide object in our category, projecting itself by homo-
morphisms onto each Cn.

Disgression: A baby projective limit. To convey a better
insight into projective limits, we recall here a baby example
from Soto-Andrade and Varela (1984), that highlights their
elementary set theoretical nature.

Consider the increasing nested sequence of finite sets
Cn = {1, 2, ..., n} (n = 1, 2, 3, ...),

whose union is the set N of all natural numbers. This se-
quence of sets becomes a projective system if we “project
downwards”, or “contract inwards” each Cn+1 onto the
smallerCn by sending everym ≤ n to itself and n+1 to n.
Call these projections (or contractions) pn. So on Cn+1 we
have pn(n) = n = pn(n+ 1). The projective limit C∞ can
be intuited now as the set of all numbers in N plus an extra
“mythical boundary point” +∞, situated at the far right of
all natural numbers.

Indeed, going back to the precise definition of C∞, we
see that the points m ∈ N appear as “limits” of the se-
quences of coherent choices (1, 2, ...,m − 1,m, ...,m, ...)
that after a while “stutter” indefinitely or become “constant”.
But we also have the coherent chain of choices given by
1 ∈ C1, 2 ∈ C2, 3 ∈ C3, and so on. Notice that each
m ∈ Cn is the “ancestor” of the preceding m− 1 ∈ Cm−1.

This sequence of choices represents then our “mythical far
right boundary point” +∞, whose n−th projection is n.
Analogously, we may obtain {−∞} ∪ Z ∪ {+∞} as a pro-
jective limit. This shows concretely how the projective limit
allows us to get hold of “mythical” or “ideal” objects that
cast a a series of approximating down to earth ”shadows”.

Recall that also fractals, a paradigmatic example of
”mythical shapes”, may be looked upon in this way, as pro-
jective limits of everyday shapes (loc. cit.).

Properties of the limit objects C∞ and Φ∞. The coher-
ent sequence Φn in the system of evaluation maps evcn is
an element of the projective limit C∞. We call it Φ∞ and
we write Φ∞ = lim

n→∞
Φn to convey the intuition that Φ∞ is

a kind of ”limit” of the Φn’s as n tends to ∞. Notice that
this quite analogous to the way in which a “rational” person
constructs

√
2 with the help of Cauchy sequences of ratio-

nal numbers. Now, intuitively, by passing to the limit as n
tends to∞ in the recursive relation Φn+1(Φn−1) = Φn we
obtain the stunning self referential equation

Φ∞(Φ∞) = Φ∞,
saying that Φ∞ is a solution to Ouroboros equation!

Analogously, making n tend to ∞ in the equation
Cn+1 = H(Cn−1, Cn), we get

C∞ = H(C∞, C∞),
so that C∞ is a reflexive domain, as in Soto-Andrade and
Varela (1984). We will not go here into the rigorous justifi-
cation of this passage to the limit, since it involves a more
precise description of Φ∞ as a mapping in H(C∞, C∞),
taking into account the double system of mappings Φn :
Cn → Cn+1 and evcn : Cn ← Cn+1, as in Scott (1972).

Apparently no mathematician imagined this recursive
procedure to construct solutions of Ouroboros equation be-

fore Rosen introduced his A
f→ B

Φ→ H(A,B) setup as
a formal description of metabolism (Rosen, 1958; Letelier
et al., 2005) . Notice that this construction is quite different
although formally analogous to Scott’s (Scott, 1972, 1973).

An arithmetical avatar of Ouroboros. Generalizing ex-
ample 2 above, we put C0 = C1 = A = Z+

m , the set of
integers 0, 1, 2, . . .m − 1 mod m, endowed with the oper-
ation + of addition mod m. Then C2 = H(A,A) =
{ha|a ∈ A} ' A, where ha : b 7→ ab for all b ∈ A and
we identify as before each ha with a. We endow H(A,A)
with the operation of addition of mappings.

Now, since recursively H(A,A) ' A,
H(A,H(A,A)) ' H(A,A) ' A,

H(H(A,A), H(A,H(A,A))) ' H(A,A) ' A
and so on, we have that all Cn are isomorphic to A.

To identify the mappings Φn we need then only to solve
multiplicative equations ax = b mod m in A. If m = 3, as
in example 2 we choose c0 = 1 mod 3 and Φ0 = h2 = 2.
Then c1 = 2 and Φ1 = h1 = 1, and our coherent sequence
begins 1

h2← 2
h1← 2. Next, we must look for Φ2 such that



Φ2(2) = h1, i.e. for a ∈ A such that a · 2 = 1, so a = 2.
It follows recursively that our sequence will look like

1
h2← 2

h1← 2
h2← 1

h2← 2
h1← 2

h2← 1
h2← 2

h1← 2
h2← . . .

so, intuitively, Φ∞ is the “limit” of this “wave like” oscil-
lating sequence, although formally Φ∞ is this sequence.

Notice also that our sequence Φ∞ is a multiplicative ana-
logue mod 3 of the ubiquitous Fibonacci sequence: Instead
of cn+1 = cn+ cn−1 we have cn+1 = cn · cn−1 mod 3.

If we take now m = 10, for instance, and we put c0 = 3
and Φ0 = h9, so that c1 = 7, we find recursively that Φ∞ is
embodied in the projective sequence

3
h9← 7

h3← 9
h7← 7

h9← 3
h7← 9

h3← 3
h9← 7

h3← 9
h7← 7

h9← 3 . . .

Translating back into Rosen’s original terminology, we
have here a = 3, b = 7, f = 9, Φ = 7, but β = (evb)

−1 =
3, the inverse of b. So β may be reasonably identified with
b−1 but not with b, as pointed out in Cárdenas et al. (2010).

A linear avatar of Ouroboros. We sketch here a linear ex-
ample where sets of “metabolites” are vector spaces instead
of integers modulom, so that structure preserving mappings
are linear. We denote by Mm,n the set of all real matrices
with m rows and n columns, identified as usual with linear
mappings from Rn to Rm. We put

C0 = R2 = M2,1, c0 = ( 1
0 ) , C1 = R = M1,1

and Φ0 = ( 1 0 ) (the first projection of R2 onto R1). Then
we find recursively
c1 = 1;C2 = H(C0, C1) = M1,2 ' R2; c2 = Φ0 = ( 1 0 );
Φ1 = ( 1

0 ) , since Φ1(c1) = Φ0;

C3 = H(C1, C2) = M2,1 ' R2; c3 = ( 1
0 ) ; Φ2 = Id2 ∈

M2,2 or any matrix with first column ( 1
0 ) ;

C4 = H(C2, C3) = M2,2 ' R4; c4 = Φ2, Φ3 being any

matrix with first column
(

1
0
0
1

)
if Φ2 = Id2;

C5 = H(C3, C4) = M4,2 ' R8, and so on, where we iden-
tify matrices with row or column vectors reading their co-
efficients as usual text. Notice the recursive multiplicative
Fibonacci rule dn+1 = dn · dn−1 for dn = dim Cn.

Notice that Rosen’s demanding assumption on the invert-
ibility of the evaluation at b(= c1) is satisfied in the arith-
metical realization above, where in fact all evaluation maps
are invertible. In the linear example, the map evc1 is still
invertible, although the subsequent evaluation maps are not.
In particular, any 2 × 2 matrix with first column ( 1

0 ) would
do as Φ2.

Ouroboros in Autocatalytic Sets
Here we will approach Ouroboros equation in the spirit
of Jaramillo et al. (2010), where attempting to relate the
theories of (M,R) systems and Replicative Autocatalytic
Sets (Hordijk and Steel, 2004), a framework for treating
molecules as operators was proposed. We will use here the
term “metabolism” as synonym of “metabolic network”.

We look upon a metabolism as a directed graphM whose
set of nodes P (X) is the collection of all subsets of the setX
of all metabolites and catalysts involved in the metabolism
and whose set of arrows R is given by the reactions A →
B in the metabolism (A,B ⊂ X). Molecules x in X not
produced by the metabolism are coded as reactions of the
form ∅ → x, where the empty set symbol ∅ stands for the
environment seen as a virtual molecule. We assume further
that every metabolite x ∈ X appears in the target of some
arrow inM. Catalysts are defined by a mapC : R→ X that
assigns a molecular identity to the catalyst of each reaction
in R. Of course, we assign the empty catalyst ∅ to any arrow
(reaction) with source ∅.

A premetabolismM′ of the metabolismM is generated
by a subset X ′ ⊂ X , by taking P (X ′) as the set of nodes of
M′ and all arrows inM whose source lies in P (X ′), as its
set of arrows.

There is now a natural sense in which a premetabolism
M′ may be applied to itself, giving raise to a new
premetabolism noted M′yM′: look at M′ and just carry
out every possible reaction indicated byM′; then collect all
the resulting metabolites together to form the metabolite set
X ′′ of the premetabolismM′yM′.

Ouroboros avatar in this context reads then
M′yM′ =M′

To illustrate this formalism let us introduce a simple
molecular system which is an (M,R) system and a Replica-
tive Autocatalytic Set, taken from Letelier et al. (2006):

S + T
STU−−−→ ST

S + U
STU−−−→ SU

ST + U
SU−−→ STU

This defines a metabolism M based on X =
{S, T, U, ST, SU, STU}, with R and C given by the three

reactions above together with ∅ ∅−→ S, ∅ ∅−→ T, ∅ ∅−→ U.
Now, writing just X ′ for a premetabolism M′, we can
calculate for instance:
{S, T, SU, STU}y{S, T, SU, STU} = {S, T, ST},
{S, T, ST}y{S, T, ST} = {S, T},
{S, T}y{S, T} = {S, T},

so this premetabolism dies out to a trivial solution of
Ouroboros equation (i.e. one whose associated reactions

are all of the form ∅ ∅−→ x. On the contrary, we have
{S, T, U, SU, ST, STU}y{S, T, U, SU, ST, STU} =

= {S, T, U, SU, ST, STU},
i.e. {S, T, SU, ST, STU} defines a non trivial solution to
Ouroboros equation!

Ouroboros in Autopoietic systems
Before concluding we would like to bring in the theory
of Autopoiesis, as it has deep connections to the idea of



Figure 1: Original cover of the book introducing autopoietic
systems (Maturana and Varela, 1973). Although the notion
of self-reference is not explicitly mentioned in the book, the
authors chose an Ouroboros to illustrate its cover.

self-reference. In fact one of its creators, Varela spent al-
most a decade looking for a suitable framework to formal-
ize the notions behind this connection (Varela, 1975; Varela
and Goguen, 1978; Varela, 1981; Soto-Andrade and Varela,
1984). We won’t attempt to reproduce his results, but instead
show why self-reference arises from the conceptualization
of Autopoiesis theory.

First, we should introduce the perspective of Maturana
and Varela for defining a system. A system (or machine)
is defined as a unity distinguishable from its surroundings,
characterized by two concepts: organization and structure.
The former relates to all processes (or relations) that de-
fine the system as a unit and that determine the dynamics
of transformations and interactions that the system may un-
dergo as such a unit. The latter are all actual relations that
hold between the components of the system in a given space
and time (Maturana and Varela (1980), pages 77-84). Now
we can define an Autopoietic system (loc. cit.) as a network
of processes of production, such that its components satisfy
the following:

i) through their interactions and transformations regener-
ate and realize the network of processes that produced
them;

ii) constitute the system as a concrete unity in the space in
which the components exist by specifying the topolog-
ical domain of its realization.

The first property of Autopoietic systems can be inter-
preted as a description of a closed network of production
or metabolic closure, where the elements needed for the oc-
currence of each step of the network (such as catalysts) are
produced by the network itself. From a dynamical perspec-
tive, can also be viewed as non trivial fixed-points of the
network dynamics. The notion of metabolic closure is com-

mon and comparable between several theories of living sys-
tems (see Cárdenas et al. (2010) for references). However,
Autopoiesis demands more than self-production. What is
maintained and reconstituted through the system’s dynam-
ics is its organization, i.e. what makes it distinguishable as
a unit. This is secured in time by the first property and in
space by the second. Therefore, if we were to define an au-
topoietic system we would be tempted to say something like
“a unit that regenerates what distinguishes itself as a unit...”.

As the last idea suggests, organizational invariance can
be understood as an ultimate case of recursion or self-
reference. In the previous sections we have discussed how
to find consistent and non trivial cases where self-reference
is possible; future challenges would involve bringing both
properties of autopoietic systems into our framework.

Conclusion and final remarks
As we have surveyed here, f(f) = f is an intriguing equa-
tion that abstracts phenomena from many fields. It must be
underlined that our interest in this topic arose from a very
basic (and unsolved) question in theoretical biology: “What
is a correct theoretical framework to formalize systems that
construct themselves?”. Metabolism is an outstanding ex-
ample, as the action of metabolism results in the reconstitu-
tion of the components that were responsible for its occur-
rence in the first place.

We are of the opinion that, in order to construct a formal-
ism that captures Metabolism from the perspective of Au-
topoiesis and (M,R)-systems, self-reference is an unavoid-
able point to consider - not to be confused with simulations
of Metabolism, which we regard as complementary efforts.
As presented in this paper, dealing with self-reference math-
ematically, even if it seems to challenge our classical con-
ceptions, is certainly feasible.

Nevertheless, we are aware that the methods exposed are
still halfway towards a definitive theory. In particular we
should be able to move beyond hypothetical examples into
a framework closer to concrete biological systems. Towards
this goal there are several avenues for improvement. For in-
stance, so far we have interpreted Metabolism as a network
of reactions and catalysis, leaving for later other dimensions
of Metabolism, such as time. Self-reference could be re-
garded as identity conservation under the Metabolic dynam-
ics (Varela, 1975; Varela and Goguen, 1978), and we expect
that adding the temporal dimension should allow us to ask
more complex questions, closer to molecular systems. Also,
we haven’t looked closely at the physicochemical properties
of Metabolism, which which may provide a grounding as
well as a guide for our mathematical models.

In another avenue, one of the main lessons is the van-
ishing dichotomy between operand and operator, implicit in
f(f). This suggest that the phenomena of interaction more
than application (in the old functional sense), or concurrency
more than sequentiality, may constitute a more appropriate



metaphor. As it is well known, life phenomena are intrin-
sically concurrent, and as such, it appears natural that the
emerging formalisms for concurrency are beginning to be
applied to this field (Milner, 2009; Cardelli, 2005). We won-
der whether there may be avatars of Ouroboros lurking in the
concurrent world, an interesting question to explore in future
work.
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