
The Expressive Power of SPARQL

Renzo Angles and Claudio Gutierrez

Technical Report TR/DCC-2008-5
Department of Computer Science, Universidad de Chile

{rangles,cgutierr}@dcc.uchile.cl

Abstract. This paper studies the expressive power of SPARQL. The
main result is that SPARQL and non-recursive safe Datalog with nega-
tion have equivalent expressive power, and hence, by classical results,
SPARQL is equivalent from an expressive point of view to Relational
Algebra. We present explicit generic rules of the transformations in both
directions. Among other findings of the paper are the proof that negation
can be simulated in SPARQL, that non-safe filters are superfluous, and
that current SPARQL W3C semantics can be simplified to a standard
compositional one.

1 Introduction

Determining the expressive power of a query language is crucial for understand-
ing its capabilities and complexity, that is, what queries a user is able to pose,
and to understand how complex the evaluation of queries is, issues that are
central considerations to take into account when designing a query language.

The query language for RDF, SPARQL, has recently become a W3C rec-
ommendation [9]. In the RDF Data Access Working Group (WG) were it was
designed, expressiveness concerns generated ample debate. Among the topics
discussed we can mention the issue of introducing nesting in SPARQL, of defin-
ing a proper semantics for new features like negation, and to understand the
complexity of possible new extensions.

This paper studies in depth the expressive power of SPARQL. A first issue
addressed in this paper is the incorporation of negation to SPARQL. SPARQL
provides explicit operators for join and union of graph patterns, even for speci-
fying optional graph patterns, but it does not define explicitly the difference of
graph patterns. Although intuitively it can be emulated via a combination of
optional patterns and filter conditions (like negation as failure in logic program-
ming), we show that there are several non-trivial issues to be addressed if one
likes to define it inside the language. Being one of the most natural operators,
it is not yet present in the official specification.

A second expressiveness issue refers to patterns with non-safe filter (those
patterns (P FILTER C) for which there are variables in C not present in P). It
turns out that these type of patterns, which have non-desirable properties, can
be simulated by safe ones (i.e. those patterns where every variable occurring in C
also occurs in P). This innocent result has important consequences for defining

a clean semantics, in particular a compositional and context-free one. In fact,
we prove that for the fragment of patterns which have all filters safe, the official
W3C semantics coincides with a standard compositional one. After these results,
one may assume a standard compositional semantics for the whole SPARQL.

Thirdly, we compare the expressive power of SPARQL and non-recursive
safe Datalog with negation (nr-Datalog¬). To determine the expressive power of
SPARQL, first, we show –using the above results– that the W3C specification
is equivalent to a well behaved and studied formalization with compositional
semantics, which we will denote in this paper SPARQLC [6]. Then we compare
SPARQLC with nr-Datalog¬. First we show that SPARQLC is contained in
nr-Datalog¬ by defining transformations (for databases, queries, and solutions)
from SPARQLC to nr-Datalog¬, and we prove that the result of evaluating a
SPARQLC query is equivalent, via the transformations, to the result of evaluat-
ing (in nr-Datalog¬) the transformed query. Second, we show that nr-Datalog¬

is contained in SPARQLC using a similar approach. These two results prove that
nr-Datalog¬ and SPARQLC are equivalent. It is important to remark that the
transformations used are explicit and simple, and in all steps bag semantics is
considered.

Finally, and by far, the most important result of the paper, is the proof
that SPARQL has the same expressive power of Relational Algebra under bag
semantics (which is the one of SPARQL). Relational Algebra is probably one
of the most studied languages, and has become, on one hand, a favorite by
theoreticians because of a proper balance between expressiveness and complexity.
In fact, it is well known that Relational Algebra has the same expressive power as
Relational Calculus (First Order logic without functions) and of nr-Datalog¬ [1].
On the other hand, from a practical point of view, Relational Algebra is at the
core of the most popular and successful database query language, SQL.

The result that SPARQL is equivalent in its expressive power to nr-Datalog¬,
and hence equivalent to Relational Algebra, has important implications which
are not discussed in this paper. Some examples are: the translation of some
results from Relational Algebra into SPARQL, the settlement of several open
questions about expressiveness of SPARQL, the expressive power added by the
operator bound in combination with optional patterns.

Related Work. The W3C recommendation SPARQL is from January 2008. Then
it is no surprise that little work has been done in the formal study of its expressive
power. Several conjectures were raised during the WG sessions 1. Furche et al. [3]
surveyed expressive features of query languages for RDF including (old versions
of) SPARQL in order to compare them systematically. But there is no particular
analysis of the expressive power of SPARQL.

Related to our work here we can mention the following works.
Cyniak [2] presents a translation of SPARQL into Relational Algebra consid-

ering only a core fragment of SPARQL. His work is extremely useful to implement

1 See http://lists.w3.org/Archives/Public/public-rdf-dawg-comments/, espe-
cially the years 2006 and 2007.

2

and optimize SPARQL in SQL engines. At the level of analysis of expressive is-
sues it presents a list of problems that should be solved (many of which still
persist), like the filter scope problem and the nested optional problem.

Polleres [8] proves the inclusion of the fragment of patterns with safe filters
of SPARQL into Datalog by giving a precise and correct set of rules. Schenk [10]
proposes a formal semantics for SPARQL based on Datalog, but concentrates
on complexity more than expressiveness issues. Both works do not consider bag
semantics of SPARQL in their translations.

The work of Perez et al. [6] and the technical report [7], that gave the formal
basis for SPARQLC compositional semantics, addressed several expressiveness
issues, but no systematic study of expressive power of the language was done.

The paper is organized as follows. In Section 2 we present preliminary mate-
rial to make more self contained the paper. Section 3 presents the study of nega-
tion. Section 4 studies non-safe filter patterns. Section 5 proves that SPARQLWG

and SPARQLC have the same expressive power. Section 6 proves that SPARQLC

and nr-Datalog¬ have the same expressive power. Section 7 presents conclusions.
Additionally, we included in this version three optional appendixes (which col-
lects standard reference material that could save time to the reader).

2 Preliminaries

2.1 SPARQL

The essential results of this paper are comparisons of the expressive power of
query languages. We will consider the following languages: SPARQLWG, the
W3C recommendation language SPARQL (it includes syntax and semantics);
SPARQLS

WG, the restriction of SPARQLWG to filter-safe queries, that is, queries
where for each occurrence of a pattern (P FILTER C), it holds that every vari-
able occurring in C also occurs in P ; SPARQLC , the formalization of SPARQL
given in [6], with its algebraic syntax and compositional semantics; and non-
recursive safe Datalog with negation (nr-Datalog¬), a standard language used
in the Database community (see for example [1] and [5]).

We will follow in this paper the algebraic syntax of SPARQLC , better suited
to do formal analysis and processing than the syntax presented by the WG
specification. There is an easy and intuitive way of translating back and forth
between both syntax formalisms, which we will not detail here.

The two star languages in this study will be SPARQLWG and SPARQLC

whose main difference resides in their respective semantics. SPARQLC follows a
compositional semantics, denoted by J·K. The SPARQLWG semantics, denoted
in this study by 〈〈·〉〉, is a mixture of compositional and operational semantics,
where the meaning of certain expressions (patterns) depend on their context. We
will explicitly indicate at each step, when necessary, which semantics is used.

In this paper we restrict to outputs in the form of SELECT queries. Recall
that SPARQL has three other possible outputs: ASK which returns a yes or no if
a query pattern has a solution, CONSTRUCT which outputs a graph constructed

3

using the solution values from graph pattern matching, and DESCRIBE which
returns a single result RDF graph containing RDF data about resources. It is not
difficult to see that this restriction does not harm the generality of the results.

We also will avoid patterns with blank nodes in order to concentrate on the
fragment most common in practice and to avoid features still not well developed
theoretically nor tested extensively.

Finally, for the sake of theoretical cleanness, we will leave out diverse small
features (types, XML literals, some atomic filter constraints, etc.) which do not
affect the essence of our results.

Syntax of SPARQLC . Assume the existence of an infinite set V of variables
disjoint from T . A tuple from (T ∪V)×(I∪V)×(T ∪V) is called a triple pattern.
We denote by var(α) the function which returns the set of variables occurring
in the structure α.

A SPARQL Query is a tuple (R,F, P)2 where R is a result query form, F
is a set –possibly empty– of dataset clauses, and P is a graph pattern. We will
assume the safe result condition, that is, if ?X ∈ var(R) then ?X ∈ var(P). Next
we define each component:

(1) If W ⊂ V is a set of variables and H is a set of triple patterns (called a
graph template), the expressions SELECT W , CONSTRUCT H, and ASK
are result query forms.

(2) If u ∈ I then FROM u and FROM NAMED u are dataset clauses.
(3) A filter constraint is defined recursively as follows:

– If ?X, ?Y ∈ V and u ∈ I ∪ L, then ?X = u, ?X = ?Y , bound(?X),
isIRI(?X), isLiteral(?X), and isBlank(?X) are atomic filter constraints.3

– If C1 and C2 are filter constraints then (¬C1), (C1 ∧C2), and (C1 ∨C2)
are complex filter constraints.

(4) A graph pattern is defined recursively as follows:
– A triple pattern is a graph pattern.
– If P1 and P2 are graph patterns then (P1 ANDP2), (P1 UNIONP2), and

(P1 OPT P2) are graph patterns.
– If P is a graph pattern and C is a filter constraint, then (P FILTER C)

is a graph pattern.
– If P is a graph pattern and u ∈ I ∪ V then (u GRAPH P) is a graph

pattern.

2.2 Comparing Expressive Power of Languages

By the expressive power of a query language, we understand the set of all queries
expressible in that language [1,5]. In order to determine the expressive power of
a query language L, usually one chooses a well-studied query language L′ and

2 In this paper we do not consider solution modifiers.
3 For a complete list of atomic filter constraints see [9].

4

compares L and L′ in their expressive power. Two query languages have the
same expressive power if they express exactly the same set of queries.

A given query language is defined as a triple (Q,D,S, eval), where Q is a set
of queries, D is a set of databases, S is a set of solutions, and eval : Q×D → S is
the evaluation function. The evaluation of a query Q ∈ Q on a database D ∈ D
is denoted eval(Q,D) (usually eval(Q, D) is simply denoted Q(D) if no confusion
arises).

Given a language L = (Q,D,S, eval), two queries Q1, Q2 of L are equivalent,
denoted Q1 ≡ Q2, if they return the same answer for all input databases, i.e.,
eval(Q1, D) = eval(Q2, D) for every D ∈ D. Let L1, L2 be two fragments of L.
We say that L1 is contained in L2, if and only if for every query Q1 in L1 there
exists a query Q2 in L2 such that Q1 ≡ Q2.

To compare two query languages with different syntax and semantics re-
quire having a common data and language setting to do the comparison. Let
L1 = (Q1,D1,S1, eval1) and L2 = (Q2,D2,S2, eval2) be two query languages.
We now say that L1 is contained in L2 if and only if there are bijective data
transformations TD : D1 → D2, and TS : S1 → S2 and query transformation
TQ : Q1 → Q2, such that for all Q1 ∈ Q1 and D1 ∈ D1 it holds

TS(eval1(Q1, D1)) = eval2(TQ(Q1), TD(D1)).

We say that two query languages L1, L2 are equivalent if and only if L1 is
contained in L2 and L2 is contained in L1.

3 Expressing Difference of Patterns in SPARQLW G

We will start the study of expressive capabilities of SPARQL by the difference
operator.

The SPARQL specification indicates that it is possible to test if a graph
pattern does not match ([9] Sec. 11.4.1) via a combination of optional patterns
and filter conditions (like negation as failure in logic programming). Nevertheless,
it seems that this feature has not been studied formally. In this section we analyze
in depth the scope and limitations of this approach.

Let P1 and P2 be two graph patterns and consider a dataset D having active
graph G. We will denote by (P1 MINUSP2) the “difference” of P1 and P2. The
informal meaning for 〈〈P1 MINUSP2〉〉DG would be “the set of mappings that
match P1 and does not match P2”. Formally:

Definition 1 (Semantics of the MINUS operator). Let P1 and P2 be graph
patterns. The evaluation of a graph pattern (P1 MINUSP2) over a dataset G
with active graph G is defined as follows

〈〈P1 MINUSP2〉〉DG = 〈〈P1〉〉DG \ 〈〈P2〉〉DG ,

where the operator \ between two sets of mappings Ω1 and Ω2 is defined as
follows:

Ω1 \Ω2 = {µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible}.

5

A naive implementation of the difference operator by means of the rest of
SPARQL operators would be the graph pattern ((P1 OPT P2) FILTER C) where
C is a clause asserting that there is no mapping matching P2. This means, for
each mapping µ ∈ 〈〈P1 OPT P2〉〉DG at least one variable ?X in P2 does not match
(i.e., ?X is unbounded). We have two problems with this solution:

– The variable ?X cannot be an arbitrary variable. For example, P2 could be
in turn an optional pattern (P3 OPT P4) where only the variables in P3 are
relevant.

– If var(P2) \ var(P1) = ∅ we have no variable ?X to check unboundedness.

The above two problems motivate the introduction of the notions of non-optional
variables and copy patterns.

The set of non-optional variables of a graph pattern P , denoted nov(P), is a
subset of the variables of P defined recursively as follows: nov(t) = var(t) for a
triple pattern t; nov(P1 ANDP2) = nov(P1) ∪ nov(P2); nov(P1 UNIONP2) =
nov(P1) ∪ nov(P2); nov(P1 OPT P2) = nov(P1); nov(n GRAPH P1) is either
nov(P1) when n ∈ I or nov(P1) ∪ {n} when n ∈ V ; and nov(P1 FILTER C) =
nov(P1). Intuitively, a variable in nov(P) is a variable of P which does not occur
in an optional pattern of P , i.e., nov(P) indicates the variables that necessarily
must be bounded in any mapping of P .

Let φ : V → V be a variable-renaming function. Given a graph pattern P ,
assume that φ(P) denotes an isomorphic copy of P whose variables have been
renamed according to φ and satisfying that var(P) ∩ var(φ(P)) = ∅. Then we
say that φ(P) is a copy pattern of P .

Theorem 1 (Difference of graph patterns). Let P1 and P2 be graph pat-
terns. Then:

(P1 MINUSP2) = ((P1 OPT((P2 ANDφ(P2)) FILTERC1)) FILTERC2), (1)

where:

– C1 is the filter constraint (?X1 =?X ′
1∧· · · ∧?Xn =?X ′

n) where ?Xi ∈ var(P2)
and ?X ′

i = φ(Xi) for 1 ≤ i ≤ n.
– C2 is the filter constraint ¬(bound(?X ′

1) ∧ · · · ∧ bound(?X ′
m)) where X ′

j ∈
nov(φ(P2)) for 1 ≤ j ≤ m, such that for each X ′

j = φ(Xj) it satisfies that
Xj ∈ nov(P2) \ var(P1).

Proof. Let P be the graph pattern (P1 MINUSP2) and P ′ be the right hand side
of (1). We will prove that 〈〈P 〉〉 = 〈〈P ′〉〉.

(a) Evaluation of 〈〈P 〉〉: By definition, a mapping µ1 is in 〈〈P 〉〉 if and only if
µ1 ∈ P1 and for every mapping µ2 ∈ 〈〈P2〉〉, µ1 and µ2 are not compatible.

(b) Evaluation of 〈〈P ′〉〉: To simplify the idea of the proof, we will reduce P ′

to the pattern ((P1 OPT P2) FILTERC2) where C2 is ¬(bound(?X1)∧ · · · ∧
bound(?Xm)) for ?Xi ∈ nov(P2). 4

4 This reduction does not diminish the generality of the proof because φ(P2) and C1

occurs into P ′ to solve the case when nov(P2) \ var(P1) = ∅ (See Note 1).

6

Then we have that a mapping µ is in 〈〈P ′〉〉 if and only if µ ∈ 〈〈P1 OPT P2〉〉
and µ |= C2. Given µ1 ∈ 〈〈P1〉〉, we have that µ ∈ 〈〈P1 OPT P2〉〉 if and only if
either (i) µ = µ1 ∪ µ2 when µ1 is compatible with µ2 ∈ 〈〈P2〉〉; or (ii) µ = µ1

when for all µ2 ∈ 〈〈P2〉〉, µ1 and µ2 are not compatible.
Note that, in case (i) µ(?X) is bounded for each variable ?X ∈ nov(P2) \
var(P1), whereas in case (ii) µ(?X) is unbounded. Given that C2 contains
the negation of a conjunction of clauses bound(?X) for each variable ?X ∈
nov(P2) \ var(P1), we have that only case (ii) satisfies µ |= C2 (Note that
here is critical the fact that in C2 are only variables in nov(P2)).
In case (ii) we have that µ = µ1 and we can assure that µ1 ∈ 〈〈P1〉〉 and for
every mapping µ2 ∈ 〈〈P2〉〉, µ1 and µ2 are not compatible, that is, µ1 ∈ 〈〈P ′〉〉.
Therefore, 〈〈P ′〉〉 has exactly the same mappings as the evaluation of 〈〈P 〉〉
showed in (a), and this concludes the proof.

Note 1 (Why the copy pattern φ(P) is necessary?).
Consider to reduce the graph pattern presented in Theorem 1 by avoiding

the copy pattern φ(P2) and the filter constraint C1.5 Then we have the graph
pattern ((P1 OPT P2) FILTER C2) where C2 is a clause asserting that there is
no mapping matching P2. Such restriction can be expressed in SPARQL with
the filter constraint ¬(bound(?X1)∧· · ·∧bound(?Xm)) such that Xj ∈ var(P2)\
var(P1), that is, “there exists no mapping bounding each variable ?Xj occurring
in P2 but not occurring in P1”.

Note that such implementation would be valid when var(P2) \ var(P1) 6= ∅,
i.e., it would work when there exist variables to check unboundedness. How-
ever a problem arises when var(P2) \ var(P1) = ∅. For example, consider the
patterns P1 = (?X, name, ?N), P2 = (?X, lastname,“Perez”). The above for
(P1 MINUSP2) will give a pattern with filter condition C2 = ∅ because there are
no variables in var(P2) \ var(P1), thus, loosing the filtering:

(?X, name, ?N) OPT(?X, lastname,“Perez”).

Note that, it is not possible to check if variable ?X is unbounded in the pattern
(?X, lastname,“Perez”), because –to satisfy the entire pattern– variable ?X must
have already been bound in the pattern (?X, name, ?N).

To avoid this problem, the graph pattern P2 is replaced by the graph pattern
((P2 ANDφ(P2)) FILTERC1) where φ(P2) is a copy of P2 where variables have
been renamed and whose relations of equality with the original ones are defined
in C1. Then, the implementation of (P1 MINUSP2) in the example will be

(((?X, name, ?N) OPT
(((?X, lastname,“Perez”)AND(?X ′, lastname,“Perez”))

FILTER(?X =?X ′))) FILTER(¬bound(?X ′))).

5 To simplify the example, we will assume that P2 does not contain optional patterns,
hence the issue of optional variables does not matter here.

7

where the filter constraint C2 = (¬bound(?X ′)) has been defined using vari-
ables from φ(P2) = (?X ′, lastname,“Perez”).

Note that the inclusion of copy patterns could introduce an exponential blow-
up in the size of the pattern. A possible optimization (still inside the syntax of
SPARQL) is to replace φ(P2) by a “universal” pattern Pu

2 . Here “universal”
means that a variable ?X matches any triple. An implementation of universal
pattern for a variable ?X would be

u(?X) = ((?X, ?Y1, ?Y2) UNION(?Y3, ?X, ?Y4) UNION(?Y5, Y6, ?X)),

where ?Yj are fresh variables. Then, the universal pattern Pu
2 will be:

(u(?X1) AND · · ·ANDu(?Xn)) where ?Xi ∈ var(P2).

Note 2 (Why non-optional variables?).
We justify the use of non-optional variables by showing that the naive imple-

mentation does not work in general. For example, consider the graph pattern

P = ((?X, name, ?N) MINUS((?X, knows, ?Y)OPT(?Y, mail, ?Z)))

and the RDF graph

G = { (a,name,na), (b,name,nb), (b,knows,c), (b,mail,mb), (c,name,nc),
(c,knows,d), (d,name,nd), (d,mail,md) }

The evaluation of P over graph G is the set of mappings:
?X ?N
a na

d nd

(*)

Now, consider the naive implementation of difference between graph pat-
terns without enforcing the restriction of non-optional variables presented in
Theorem 1, that is, the restriction X ′

j ∈ nov(φ(P2)) in filter constraint C2. Let
us denote P1 = (?X,name, ?N), P2 = (?X,knows, ?Y), and P3 = (?Y,mail, ?Z),
and P4 = (P2 OPT P3). We would get the following pattern:

P ′ = ((P1 OPT(P2 OPT P3)) FILTER(¬(bound(?Y) ∧ bound(?Z))))6.

Note that the restriction of non-optional variables has been violated here, be-
cause although variable ?Z is optional in pattern (P2 OPT P3), it occurs in the
filter constraint (¬(bound(?Y) ∧ bound(?Z)).

The evaluation of P ′ over graph G is described step-by-step as follows:

JP1KG =

?X ?N
a na

b nb

c nc

d nd

JP2KG =
?X ?Y
b c
c d

JP3KG =
?Y ?Z
b mb

d md

JP4KG =
?X ?Y ?Z
b c
c d md

6 For simplicity we do not consider the copy pattern φ(P4).

8

J(P1 OPT P4)KG =

?X ?N ?Y ?Z
a na

b nb c
c nc d md

d nd

JP ′KG =

?X ?N ?Y ?Z
a na

b nb c
d nd

It is not difficult to see that the evaluation of P ′ differs from P for variables
?X and ?N . To show the problem, consider the following informal semantics:
a mapping µ matches pattern P ′ if and only if µ matches P1 and µ does not
match P4 (recall that P4 is ((?X, knows, ?Y) OPT(?Y, mail, ?Z))). This latter
condition means: it is false that every variable in var(P4) \ var(P1) is bounded.
But to say “every variable” is not correct in this context, because P4 contains
the optional pattern (?Y,mail,?Z).

In fact, consider the mapping µ1(?X) = b, µ1(?N) = nb, and µ1(?Y) = c.
This mapping does not match (P1 MINUSP4), because it matches P4, since
it matches (?X,knows,?Y) although it does not match the optional pattern
(?Y,mail,?Z). On the other hand, we have that µ1 matches P ′ because it matches
(P1 OPT P4) and µ1 satisfies the filter constraint ¬(bound(?Y) ∧ bound(?Z)).

The problem is produced by the expression bound(?Z), because the bounding
state of variable ?Z introduces noise when testing if pattern P4 gets matched.
In fact, this variable is optional for pattern P4.

Now, if we consider the condition of “being optional” of variables when trans-
forming P , we have that in this case ?Y is the unique non-optional variable oc-
curring in P4 but not occurring in P1, i.e., variable ?Y works exactly as the test
to check if a mapping matching P1 matches P4 as well. Hence, instead of P ′, the
graph pattern

P ′′ = ((P1 OPT P4) FILTER(¬bound(?Y))

is the one that expresses faithful the graph pattern (P1 MINUSP4), and in fact,
the evaluation of P ′′ will be exactly the same set of mappings for P .

(Note that this type of patterns –double nested optionals– will arise with
double-difference P1 MINUS(P2 MINUSP3).)

4 Avoiding Unsafe Patterns in SPARQLW G

One influential point in the design of the evaluation of patterns in the SPARQL
semantics is the behavior of filters. What is the scope of a filter? What is the
meaning of a filter condition having variables that do not occur in the graph
pattern to be filtered?

In [6] it was proposed that, for reasons of simplicity for the user, and cleanness
of the semantics, the scope of filters should be the expression which they filter,
and free variables should be disallowed in the filter condition. Formally, given a
pattern of the form (P FILTER C), it is said to be safe if var(C) ⊆ var(P). In [6]
only safe filter expressions were allowed in the syntax, and hence the scope of
the filter C is the pattern P which defines the filter expression. The evaluation

9

thus is the natural one: 〈〈P FILTER C〉〉 = {µ ∈ 〈〈P 〉〉 | µ |= C}. This approach
is further supported by the fact that non-safe filter are rare in practice.

The WG decided to follow a different approach, and defined that the scope
of a condition C in a filter expression is a case-by-case and context-dependent
feature:

1. The scope of a filter is defined as follows: a filter “is a restriction on solutions
over the whole group in which the filter appears”.

2. There is one exception, though, when filters combine with optionals. If
FILTER C belongs to the group graph pattern of an optional, the scope
of C is local to the group where the optional belongs to.

The complexities that this approach brings were recognized in the discussion
of the WG, and can be witnessed by the reader by following the specification of
the WG evaluation of patterns.

In what follows we will show that in the frame of the WG semantics, non-
safe filters are superfluous, and hence the above non-standard and case-by-case
semantics can be avoided. In fact, we will prove that non-safe filters do not
add expressiveness to the language, or in other words, that SPARQLWG and
SPARQLS

WG have the same expressive power, that is, for each query q there is
a filter-safe query q′ which computes exactly the same results as q.

The transformation is given by Algorithm 1. This algorithm works as the
identity for most patterns. The key part is the treatment of patterns which
combine filters and optionals. Lines 8, 9, 10 and 11 are exactly the codification
of the WG evaluation of filters inside optionals. For non-safe filters, it replaces
the filter condition where the free variable occurs by a logical value of false.

Note 3 (On Algorithm 1). The complex pattern in lines 8, 9, 10 and 11 can
be simplified to T (P) ← (T (P1)OPT((T (P1) AND T (P2)) FILTERC)) if one
would need only set-semantics. Lines 14 and 15 work similarly for the atomic
filter expressions isIRI, isLiteral and isBlank.

Lemma 1. For every pattern P , the pattern T (P) defined by Algorithm 1 is
filter-safe and it holds 〈〈P 〉〉 = 〈〈T (P)〉〉.

Proof. We present the proof for the most relevant cases.

Note 4. In this proof we use concepts defined in the SPARQL specification (See
Appendix I).

1. If P = (P1 AND | UNION | OPT (P2 FILTER C)) and ?X is a variable in
var(C) and not in var(P1) ∪ var(P2).
We consider the following semantics defined in the SPARQL specification [9]:
– Apart from bound(·), all functions and operators operate on RDF Terms

and will produce a type error if any arguments are unbound (Sec. 11.2).
– Function bound(var) returns true if var is bound to a value. Returns

false otherwise (Sec. 11.4.1).
– Let Ω be a set of solution mappings and expr be an expression.

10

Algorithm 1 Transformation of patterns to safe patterns
1: if P = (P1 AND P2) then
2: T (P)← (T (P1)AND T (P2))
3: else if P = P1 UNION P2 then
4: T (P)← (T (P1)UNION T (P2))
5: else if P = (P1 FILTER C) and var(C) ⊆ var(P1) then
6: T (P)← (T (P1) FILTER C)
7: else if P = (P1 OPT(P2 FILTER C)) and var(C) ⊆ var(P1) ∪ var(P2) then
8: T (P ← ((T (P1)AND T (P2)) FILTER C)UNION
9: (T (P1)MINUS T (P2))UNION

10: ((T (P1)MINUS(T (P1)MINUS T (P2)))
11: MINUS((T (P1)AND T (P2)) FILTER C))
12: else if P = (P1 AND | UNION | OPT (P2 FILTER C) then
13: for all variable ?X in var(C) and not in var(P1) ∪ var(P2) do
14: for all expression (?X = a) or (?X =?Y) or bound(?X) occurring in C do
15: Replace in C the expression by false
16: end for
17: end for
18: else if P = (P1OPT P2) then
19: T (P)← (T (P1)OPT T (P2))
20: end if

Filter(expr, Ω) = {µ | µ ∈ Ω and expr(µ) is an expression that
has an effective boolean value of true} (Section 12.4)

Given a variable ?X ∈ var(C) but ?X /∈ var(P2), we have that ?X is not
bounded for every mapping µ ∈ 〈〈P2〉〉, then 〈〈P2 FILTER C〉〉 = ∅. To attain
the same result, we replace C by the logical value of false.

2. Let P be the pattern (P1 OPT(P2 FILTER C)) and P ′ be the pattern:
((P1 ANDP2) FILTER C)) UNION (P1 MINUSP2) UNION
((P1 MINUS(P1 MINUSP2))MINUS((P1 ANDP2) FILTER C))

We need to prove that for every dataset D with active graph G, it satisfies
that 〈〈P 〉〉 = 〈〈P ′〉〉.

[Evaluation of P] .
Transforming P in a SPARQL algebra expression:

Transform(P) = LeftJoin(P1, P2, expr)
Suppose that Ω1 = eval(D(G), P1) and Ω2 = eval(D(G), P2). The evaluation
of Transform(P) over dataset D with active graph G is defined as

eval(D(G),Filter(expr, Join(P1, P2))) ∪ eval(D(G),Diff(P1, P2, expr)).

where:
– eval(D(G),Filter(expr, Join(P1, P2))) defines the set:

{merge(µ1, µ2) | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 and µ2 are compatible, and
expr(merge(µ1, µ2)) is true}

– eval(D(G),Diff(P1, P2, expr)) defines the union of sets:
{µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible} ∪
{µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1,

expr(merge(µ1, µ2)) is false}

11

[Evaluation of P ′] .
The SPARQL algebra expression for P ′ will be (to simplify the expression
we represent the operator Union by the symbol ∪):

Filter(expr, Join(P1, P2)) ∪ Diff(P1, P2, true) ∪
Diff(Diff(P1,Diff(P1, P2, true), true),Filter(expr, Join(P1, P2)), true)(?)

The evaluation of the above expression over dataset D with active graph G
is the union of the following evaluations:
– eval(D(G),Filter(expr, Join(P1, P2))) which defines the set

{merge(µ1, µ2) | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 and µ2 are compatible, and
expr(merge(µ1, µ2)) is true}

– eval(D(G),Diff(P1, P2, true)) which defines the union of sets
{µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible} ∪
{µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1,

expr(merge(µ1, µ2)) is false}
Note that second set is empty because the condition expr is true.

– eval(D(G), ?) which defines the set
{µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1,

expr(merge(µ1, µ2)) is false}
Let M1 be the set of mappings Ω1, M2 be the subset of mappings in Ω1

that are incompatible with some mapping in Ω2, M3 be the subset of
mappings in Ω1 that are compatible with some mapping in Ω2 and that
satisfies the filter condition C, and M be the subset of mappings in Ω1

that are compatible with some mapping of Ω2 and that does not satisfy
the filter condition C.
It is clear that M = (M1 −M2)− (M3).
If we consider that M2 is Diff(P1, P2, true) and M3 is Filter(C, Join(P1, P2)).
Then Diff(Diff(P1,Diff(P1, P2, true), true),Filter(C, Join(P1, P2)), true)
represents the set of mapping M .

Note that the sets that conforms the evaluation of P are the same in the
evaluation of P ′. Then, patterns P and P ′ are equivalent.

Thus we proved:

Theorem 2. SPARQLWG and SPARQLS
WG have the same expressive power.

5 Expressive power of SPARQLW G is equivalent to
SPARQLC

As we have been showing, the semantics that the WG gave to SPARQL de-
parted in some aspects from a compositional semantics. We also indicated that
there is an alternative formalization, with a standard algebraic syntax and a
compositional semantics, which was called SPARQLC [6].

The good news is that, albeit these apparent differences, these languages
are equivalent in expressive power, that is, although differing in the syntax and
semantics, they compute the same class of queries. In fact, the only differences
are produced by the treatment of non-safe filters in patterns and the evaluation of
filters inside optional. For this reason and because SPARQLS

WG and SPARQLC

do not have non-safe filters, the following result can be proved.

12

Theorem 3. SPARQLS
WG is equivalent to SPARQLC under bag semantics.

Proof. We have to show that for each safe-filter graph pattern P , it holds that
for the corresponding pattern P ′ in SPARQLC (recall, the syntactic translation)
JP ′K = 〈〈P 〉〉. This is an induction on the structure of patterns.

By comparing both evaluations, it is easy to see that the only non-evident
case where the semantics of SPARQLS

WG and SPARQLC differ, is a particular
evaluation of filters inside optionals, specifically: given a graph pattern P =
(P1 OPT(P2 FILTER C)), we have that SPARQLS

WG evaluates the algebra ex-
pression LeftJoin(P1, P2, C), whereas SPARQLC evaluates JP K to the expression
JP1Kqyon JP2 FILTER CK, which clearly is the same as LeftJoin(P1,Filter(C,P2), true)
in the SPARQLWG formalism.

Next, we show in detail that for a pattern P = (P1 OPT(P2 FILTER C))
where var(C) ⊆ var(P2) (i.e., P is filter safe) it satisfies that 〈〈P 〉〉DG = JP KD

G , for
every dataset D with active graph G.

[Evaluation in sparqlsWG] .
Following the SPARQL specification, we transform P in the algebra expression:

Transform(P) = LeftJoin(P1, P2, expr).

Suppose that Ω1 = eval(D(G), P1) and Ω2 = eval(D(G), P2). The evaluation of
Transform(P) over dataset D with active graph G is defined as

eval(D(G),Filter(expr, Join(P1, P2))) ∪ eval(D(G),Diff(P1, P2, expr))

where:

– eval(D(G),Filter(expr, Join(P1, P2))) which defines the set
(a) {merge(µ1, µ2) | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 and µ2 are compatible, and

expr(merge(µ1, µ2)) is true}
– eval(D(G),Diff(P1, P2, expr)) which defines the union of the sets

(b) {µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible}
(c) {µ1 ∈ Ω1 | for all µ2 ∈ Ω2 compatible with µ1,

expr(merge(µ1, µ2)) is false}
If we redefine (b) by changing the universal quantifier by an existential quan-
tifier: {µ1 ∈ Ω1 | @µ2 ∈ Ω2 satisfying that µ1 and µ2 are compatible }.
Now, we have two cases: (�) if Ω2 = ∅, then there exists no µ2 ∈ Ω2; (��)
if Ω2 6= ∅, then for all µ2 ∈ Ω2, µ1 is not compatible with µ2 and either
µ2 |= C or µ2 2 C. Then, we have that (b) encodes three cases:
(b1) {µ1 | µ1 ∈ Ω1, @µ2 ∈ Ω2}
(b2) {µ1 | µ1 ∈ Ω1,∀µ2 ∈ Ω2, µ1 is not compatible with µ2, µ2 |= C}
(b3) {µ1 | µ1 ∈ Ω1,∀µ2 ∈ Ω2, µ1 is not compatible with µ2, µ2 2 C}

[Evaluation in sparqlC] .
The evaluation of P in SPARQLC is given by the expression

JP1KD
Gqyon JP2 FILTER CKD

G .

13

Suppose that Ω1 = JP1KD
G , Ω2 = JP2KD

G , and Ω3 = {µ2 ∈ Ω2 | µ2 |= C}, then
JP KD

G is given by the set-union of two sets:

(1) {µ1 ∪ µ3 | µ1 ∈ Ω1, µ3 ∈ Ω3, µ1 and µ3 are compatible}
(2) {µ1 ∈ Ω1 | for all µ3 ∈ Ω3, µ1 and µ3 are not compatible}

If we redefine (1) by solving µ3, we have that:
{µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 and µ2 are compatible, and µ2 |= C}
Considering that µ1 is compatible with µ2 we can write
(1.1) {µ1∪µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 and µ2 are compatible, and (µ1∪µ2) |= C}
If we redefine (2) by changing the universal quantifier by an existential quanti-
fier: {µ1 | µ1 ∈ Ω1, @µ3 ∈ Ω3, µ1 and µ3 are compatible}.
Now, we have two cases:
(i) When Ω3 = ∅. It implies two cases: (?) @µ2 ∈ Ω2; and (??) ∀µ2 ∈ Ω2, µ2 2 C
(and either µ1 is compatible with µ2 or µ1 is not compatible with µ2).
(ii) When Ω3 6= ∅. Then ∀µ2 ∈ Ω2, µ2 |= C, µ1 and µ2 are not compatible.
Considering (?), (??), and (ii), we have that (2) encodes four cases:
(2.1) {µ1 | µ1 ∈ Ω1, @µ2 ∈ Ω2}
(2.2) {µ1 | µ1 ∈ Ω1,∀µ2 ∈ Ω2, µ1 and µ2 are compatible, and µ2 2 C}
(2.3) {µ1 | µ1 ∈ Ω1,∀µ2 ∈ Ω2, µ1 and µ2 are not compatible, and µ2 |= C}
(2.4) {µ1 | µ1 ∈ Ω1,∀µ2 ∈ Ω2, µ1 and µ2 are not compatible, and µ2 2 C}
Considering that µ1 is compatible with µ2 we redefine (2.2) into
(2.2.1) {µ1 | µ1 ∈ Ω1,∀µ2 ∈ Ω2, µ1 and µ2 are compatible, and (µ1 ∪ µ2) 2 C}

Finally, we have that (1.1) is (a), (2.1) is (b1), (2.3) is (b2), (2.4) is (b3), and
(2.2.1) is (c). Then, we have proven the claim.

6 Expressive Power of SPARQLC

In this section we study the expressive power of SPARQLC by comparing it
against non recursive safe Datalog with negation (just Datalog from now on).
(For Datalog details see Appendix III). Informally, Datalog facts correspond to
RDF graphs, Datalog rules correspond to graph patterns, goal queries correspond
to SELECT clauses, and the set of substitutions returned by a Datalog query
corresponds to the set of mappings returned by a SPARQLC query.

6.1 From SPARQLC to Datalog

Note that because SPARQLC and Datalog programs have different type of input
and output formats, we have to normalize them to be able to do the comparison.

Let Ls = (Qs,Ds,Ss, anss) and Ld = (Qd,Dd,Sd, ansd) be the SPARQLC

language and the Datalog language respectively. To prove that Ls is contained in
Ld, we define transformations TQ : Qs → Qd, TD : Ds → Dd, and TS : Ss → Sd.
That is, TQ transforms a SPARQLC query into a Datalog query, TD transforms
a SPARQLC dataset into a set of Datalog facts, and TS transforms a set of
SPARQLC solution mappings into a set of Datalog substitutions.

14

The rough idea of the transformations is the following. For transforming
RDF Datasets, a function TD is defined, which uses the unary predicates iri,
blank, and literal to encode IRIs, blank nodes, and literals respectively. The
unary predicate Null encodes the null value 7. The IRI of each named graph
is encoded using the predicate graph. A fact triple(u, v1, v2, v3) models a triple
(v1, v2, v3) which occurs in the graph identified by IRI u. The unary predicate
term encodes the domain of values.

With respect to solutions, note that naturally sets of mappings in SPARQL
correspond bijectively to sets of substitutions in Datalog.

RDF data as Datalog facts . Let D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉} be an
RDF dataset. We denote by TD(D) the function which transforms a dataset D
into a set of Datalog facts. The function TD is defined by the following algorithm:

F ← ∅
for each u ∈ term(D) ∩ I do

add the fact iri(u) to F
end for
for each b ∈ term(D) ∩B do

add the fact blank(b) to F
end for
for each l ∈ term(D) ∩ L do

add the fact literal(l) to F
end for
Add the Datalog fact Null(null) to F
for each triple (v1, v2, v3) ∈ G0 do

Add the fact triple(g0, v1, v2, v3) to F
end for
for each named graph 〈u, G〉 ∈ D do

Add the fact graph(u) to F
for each triple (v1, v2, v3) ∈ G do

Add the fact triple(u, v1, v2, v3) to F
end for

end for
Add to F the rules

term(X)← iri(X)
term(X)← blank(X)
term(X)← literal(X)

return F

SPARQLC solutions (solution mappings) as Datalog solutions (sub-
stitutions) . Given a mapping µ, define the notion of extended domain of µ,
denoted extdom(µ), as a finite set of variables containing its domain. Given a
set of mappings Ω, the set of substitutions obtained from Ω, denoted TS(Ω), is

7 We use null values to represent unbounded values.

15

defined as follows: for each mapping µ ∈ Ω there exists a substitution θ ∈ TS(Ω)
satisfying that, for each x ∈ extdom(µ) there exists x/t ∈ θ such that t = µ(x)
when µ(x) is bounded and t = null otherwise.

Graph patterns as Datalog rules. Let P be a graph pattern to be eval-
uated against a dataset D with active graph identified by g. We denote by
δ(P, g)D (or simply δ(P, g) when D is clear from the context) the function
which transforms the graph pattern P into a set of Datalog facts. A predi-
cate comp implements the notion of compatible mappings: comp(X, X, X) ←
term(X), comp(X, null,X) ← term(X), comp(null,X, X) ← term(X), and
comp(X, X, X)← Null(X).

The transformation follows essentially the intuitive transformation presented
by Polleres [8] with the improvement of the necessary code to support faithful
translation of bag semantics. Specifically we changed the transformations for
complex filter expressions by simulating them with double negation.

The complete rules work as follows. Let p, p1, p2 be predicate names for graph
patterns P , P1 and P2 respectively. Additionally, we denote by var(P), a tuple of
variables obtained from a lexicographical ordering of the variables in the graph
pattern P . Then, the function δ(P, g)D is defined recursively as follows:

(1) If P is a triple pattern (x1, x2, x3), then δ(P, g)D is:
p(var(P))← triple(g, x1, x2, x3)

(2) If P is (P1 ANDP2), then δ(P, g)D is:
δ(P1, g)D

δ(P2, g)D

p(var(P))← ν1(p1(var(P1))) ∧ ν2(p2(var(P2)))∧
x∈var(P1)∩var(P2)

comp(ν1(x), ν2(x), x)
where νj : V → V is a variable-renaming function, and νj(L) renames
the variables in the literal L according to νj . Additionally, it satisfies that
dom(ν1) = dom(ν2) = var(P1) ∩ var(P2) and range(ν1) ∩ range(ν2) = ∅.

(3) If P is (P1 UNIONP2), then δ(P, g)D is:
δ(P1, g)D

δ(P2, g)D

p(var(P))← p1(var(P1))
∧

x∈var(P2)∧x/∈var(P1)
Null(x)

p(var(P))← p2(var(P2))
∧

x∈var(P1)∧x/∈var(P2)
Null(x)

(4) If P is (P1 OPT P2).
Let P3 = (P1 ANDP2). Then δ(P, g)D is:

δ(P1, g)D

δ(P2, g)D

δ(P3, g)D

p′1(var(P1))← p3(var(P3))
p(var(P))← p3(var(P3))
p(var(P))← p1(var(P1))∧¬p′1(var(P1))

∧
x∈var(P2)∧x/∈var(P1)

Null(x)
(5) If P is (n GRAPH P1)

16

(5.1) When n ∈ I then δ(P, g)D is
δ(P1, n)D

p(var(P))← p1(var(P1))

(5.2) When n ∈ V then δ(P, g)D is
δ(P11, u1)D

p(var(P))← p11(var(P11)) ∧ graph(n) ∧ n = u1

...
δ(P1n, un)D

p(var(P))← p1n(var(P1n)) ∧ graph(n) ∧ n = un

where ui ∈ names(D), each P1i is a copy of P1, and p1i is its respective
predicate.

(6) If P is (P1 FILTER C) and

(6.1) C is an atomic filter constraint, then δ(P, g)D is:
δ(P1, g)D

p(var(P))← p1(var(P1)) ∧ cond
where cond is defined as follows. If ?X, ?Y ∈ V and u ∈ I ∪ L then,
cond is C when C is either (?X = u) or (?X=?Y); cond is iri(?X) when
C is (isIRI(?X)); cond is literal(?X) when C is (isLiteral(?X)); cond is
blank(?X) when C is (isBlank(?X)).

(6.2) C is (¬C1), then δ(P, g)D is:
δ(P1, g)D

δ(P ′
1, g)D

p(var(P))← p1(var(P1)) ∧ ¬p′1(var(P1))
where P ′

1 = (P1 FILTER C1)

(6.3) C is (C1 ∧ C2), then δ(P, g)D is:
δ(P11, g)D

δ(P12, g)D

p′′(var(P1))← p11(var(P1)) ∧ p12(var(P1))
p′(var(P1))← p1(var(P1)) ∧ ¬p′′(var(P1))
p(var(P))← p1(var(P1)) ∧ ¬p′(var(P1))
where P11 = (P1 FILTER C1) and P12 = (P1 FILTER C2)

(6.4) C is (C1 ∨ C2), then δ(P, g)D is:
δ(P11, g)D

δ(P12, g)D

p′′(var(P1))← p11(var(P1))
p′′(var(P1))← p12(var(P1))
p′(var(P1))← p1(var(P1)) ∧ ¬p′′(var(P1))
p(var(P))← p1(var(P1)) ∧ ¬p′(var(P1))
where P11 = (P1 FILTER C1) and P12 = (P1 FILTER C2)

17

SPARQLC queries as Datalog queries. Let Qs = (SELECT W,F, P) be a
SPARQLC query and D be the dataset obtained from F . The function TQ(Qs)
returns the Datalog query (Π, q(W)) where W is a tuple of variables obtained
from a lexicographically ordering of the variables in W , and Π is the Datalog
program

TD(D)
δ(P, g0)D

q(W)← p(var(P))

where q and p are predicate names for Qs and P respectively, and g0 identifies
the default graph in D.

The following theorem states that the transformation works well.

Theorem 4. SPARQLC is contained in non-recursive safe Datalog with nega-
tion.

Proof. Consider transformations TQ, TD, and TS defined above. We have to prove
that for every query Qs = (SELECT W,F, P) and dataset D = dataset(F), it
satisfies that TS(anss(Qs, D)) = ansd(TQ(Qs), TD(D)).

We have that TQ(Qs) is the Datalog query (Π, q(W)) where Π is given
by rules TD(D), δ(P, g0), and q(var(W)) ← p(var(P)). A substitution θ is in
ansd(TQ(Qs), TD(D)) if it satisfies that θ(q(var(W))) ∈ facts∗(Π). The latter
applies if there exists θ(p(var(P))) ∈ facts∗(TD(D) ∪ δ(P, g0)).

On the other hand, a mapping µ is in anss(Qs, D) if and only if µ = µ′| var(W)

and µ′ ∈ JP KD
dg(D). Then, for the graph pattern P , we need to prove that µ′

is in JP KD
dg(D) if and only if substitution θ = TS(µ′) satisfies θ(p(var(P))) ∈

facts∗(TD(D) ∪ δ(P, g0)).
Let P be a graph pattern, D be a dataset, and G be the active graph of D

identified by IRI g. We will show that for each mapping µ ∈ JP KD
G there exists a

substitution θ = TS(µ) such that θ(p(var(P))) ∈ facts∗(TD(D) ∪ δ(P, g)). The
proof is by induction on the structure of P .

(1) Base case: P is a triple pattern (x1, x2, x3).
We have that δ(P, g) is the rule p(var(P))← triple(g, x1, x2, x3).
Given a substitution θ, it satisfies that θ(p(var(P))) ∈ facts∗(TD(D) ∪ δ(P, g))
if and only if there is fact θ(triple(g, x1, x2, x3)) ∈ TD(D).
On the other hand, a mapping µ is in JP KD

G if and only if dom(µ) = var(P)
and µ((x1, x2, x3)) = (v1, v2, v3) ∈ G. Then µ(xi) = vi when xi ∈ var(P). If we
transform µ into a substitution, that is TS(µ) = {xi/vi | xi ∈ var(P)}. Then
θ = TS(µ) and we are done.

Inductive case: Let P1 and P2 be patterns. We need to consider several cases:

(2) P is (P1 ANDP2).
We have that δ(P, g) is the set of rules

18

{ δ(P1, g), δ(P2, g),
p(var(P))← ν1(p1(var(P1))) ∧ ν2(p2(var(P2))),
comp(ν1(x1), ν2(x1), x1), . . . , comp(ν1(xn), ν2(xn), xn) }

where xi ∈ var(P1) ∩ var(P2).
Given a substitution θ, a fact θ(p(var(P))) ∈ facts∗(TD(D)∪ δ(P, g)) if and
only if θ(ν1(p1(var(P1)))) ∈ facts∗(TD(D) ∪ δ(P1, g)), θ(ν2(p2(var(P2)))) ∈
facts∗(TD(D) ∪ δ(P2, g)), and for each xi ∈ var(p1) ∩ var(P2) we have
that θ(comp(ν1(xi), ν2(xi), xi)) ∈ facts∗(TD(D)) i.e., θ(xi) = θ(ν1(xi)) =
θ(ν2(xi)), or θ(ν1(xi)) = null and θ(xi) = θ(ν1(xi)), or θ(ν2(xi)) = null and
θ(xi) = θ(ν1(xi)), or θ(xi) = θ(ν1(xi)) = θ(ν2(xi)) = null.
On the other hand, a mapping µ is in J(P1 ANDP2)KD

G if and only if µ =
µ1 ∪ µ2 such that µ1 ∈ JP1KD

G , µ2 ∈ JP2KD
G , and µ1 is compatible with µ2

i.e, for each x ∈ var(P1) ∩ var(P2) it applies that either µ1(x) = µ2(x) or
µ1(x) is unbounded or µ2(x) is unbounded. For induction hypothesis, we
have substitutions θ1 = TS(µ1), θ2 = TS(µ2) such that θ1(p1(var(P1))) ∈
facts∗(TD(D) ∪ δ(P1, g)), θ2(p2(var(P2))) ∈ facts∗(TD(D) ∪ δ(P2, g)), and
for each x ∈ var(P1)∩ var(P2) we have that either θ1(x) = θ2(x), or θ1(x) is
null, or θ2(x) is null. Considering that TS(µ) = θ1∪θ2 we have that θ = TS(µ)
and we are done.

(3) If P is (P1 UNIONP2).
We have that δ(P, g) is the set of rules
{ δ(P1, g), δ(P2, g),

p(var(P))← p1(var(P1))
∧

x∈var(P2)∧x/∈var(P1)
Null(x),

p(var(P))← p2(var(P2))
∧

x∈var(P1)∧x/∈var(P2)
Null(x) }

Given a substitution θ, it satisfies that θ(p(var(P))) ∈ facts∗(TD(D) ∪
δ(P, g)) if and only if either (a) θ(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, g))
and x is null for each x ∈ var(P1)\var(P2); or (b) θ(p2(var(P2))) ∈ facts∗(TD(D)∪
δ(P2, g)) and x is null for each x ∈ var(P2) \ var(P1). In case (a), we have
that θ = {x/v | x ∈ var(P1)} ∪ {x/null | x /∈ var(P1)}. In case (b), we have
that θ = {x/v | x ∈ var(P2)} ∪ {x/null | x /∈ var(P2)}.
On the other hand, a mapping µ is in J(P1 UNIONP2)KD

G if and only if ei-
ther (a) µ = µ1 ∈ JP1KD

G or (b) µ = µ2 ∈ JP2KD
G . For induction hypothesis,

we have that there exist substitutions θ1 = TS(µ1), θ2 = TS(µ2) satisfy-
ing that θ1(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, g)) and θ2(p2(var(P2))) ∈
facts∗(TD(D) ∪ δ(P2, g)). Assuming that θ1 = {x/v | x ∈ var(P1)} and
θ2 = {x/v | x ∈ var(P2)}. In case (a), µ(x) is unbounded for each x ∈
var(P2)\var(P1), that is {x/null | x /∈ var(P1)}, then TS(µ) = θ1∪{x/null |
x /∈ var(P1)}. In case (b), µ(x) is unbounded for each x ∈ var(P1) \ var(P2),
that is {x/null | x /∈ var(P2)}, then TS(µ) = θ2 ∪ {x/null | x /∈ var(P2)}.
We have that θ = TS(µ) and we are done.

(4) P is (P1 OPT P2).
Considering that P3 = (P1 ANDP2), we have that δ(P, g) is the set of rules
{ δ(P1, g), δ(P2, g), δ(P3, g),

p′1(var(P1))← p3(var(P3)),
p(var(P))← p3(var(P3)),
p(var(P))← p1(var(P1))∧¬p′1(var(P1))

∧
x∈var(P2)∧x/∈var(P1)

Null(x)}.

19

Given a substitution θ, we have that θ(p(var(P))) ∈ facts∗(TD(D)∪δ(P, g))
if and only if one of two cases applies:
(i) θ(p3(var(P3))) ∈ facts∗(TD(D) ∪ δ(P3, g)); that is, it satisfies that
θ(p3(var((P1 ANDP2)))) ∈ facts∗(TD(D) ∪ δ((P1 ANDP2), g)).
(ii) θ(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, g)); that is, it is false that
θ(p′1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P ′

1, g)) and x is null for each variable
x ∈ var(P2) \ var(P1).
Additionally, θ(p′1(var(P1))) /∈ facts∗(TD(D) ∪ δ(P ′

1, g)) iff case (i) is false.
Then, θ satisfies that: θ(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, g)); for each
θ2(p2(var(P2))) ∈ facts∗(TD(D) ∪ δ(P2, g)), θ(x) 6= θ2(x) for all variable
x ∈ var(P1)∩var(P2); and x/null ∈ θ for each variable x ∈ var(P2)\var(P1).
On the other hand, a mapping µ is in J(P1 OPT P2)KD

G if and only if one of
two cases applies:
(i) µ is in JP3KD

G where P3 = (P1 ANDP2). From (2) we have a substitution
θ′ = TS(µ) satisfying that θ′(p3(var(P3))) ∈ facts∗(TD(D) ∪ δ(P3, g)).
(ii) µ = µ1 ∈ JP1KD

G such that for all µ2 ∈ JP2KD
G it satisfies that µ1 and µ2

are not compatible. Additionally, µ(x) is unbounded for each x ∈ var(P2) \
var(P1). For induction hypothesis, we have substitutions θ1 = TS(µ1) and
θ2 = TS(µ2) satisfying that θ1(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, g)) and
θ2(p2(var(P2))) ∈ facts∗(TD(D) ∪ δ(P2, g)). Suppose that θ′ = TS(µ). Fol-
lowing definition of µ, we have that: θ′ = θ1; for each θ2(p2(var(P2))) ∈
facts∗(TD(D)∪δ(P2, g)), θ′(x) 6= θ2(x) for all variable x ∈ var(P1)∩var(P2);
and x/null ∈ θ′ for each variable x ∈ var(P2)\var(P1). Then θ = θ′ = TS(µ)
for cases (i) and (ii), and we are done.

(5) P is (n GRAPH P1).
We consider two cases:

(5.1) When n ∈ I.
We have that δ(P, g) is the set of rules
{δ(P1, n), p(var(P))← p1(var(P1))}

Given a substitution θ, we have that θ(p(var(P))) ∈ facts∗(TD(D) ∪
δ(P, g)) if and only if θ(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, n)). On
the other hand, a mapping µ is in JP KD

G if and only if µ ∈ JP1KD
G′ such

that G′ = graph(n). In both cases, the active graph identified g has been
changed by the graph identified n. Then by induction hypothesis we have
that θ = TS(µ).

(5.2) When n ∈ V .
For each named graph identified ui in dataset D, we have the set of rules
{δ(P1i, ui), p(var(P))← p1i(var(P1i)) ∧ graph(n) ∧ n = ui}.

Considering that P1i is a copy of P1 and using result (5.1) we can prove
that p(var(P))← p1i(var(P1i)) is correct. Additionally, given that var(P)
is n∪var(P1i), we use predicate graph(n) and condition n = ui to assign
the respective IRI ui to variable n, then we are changing the active graph
to the graph identified by ui. As conclusion, a substitution θ is in δ(P, g)
if θ is a substitution for a some δ(P1i, ui) where ui ∈ names(D).

(6) If P is (P1 FILTER C). By induction on the structure of C.

20

(6.1) Base case: C is an atomic filter constraint.
We have that δ(P, g) is the set of rules
{ δ(P1, g), p(var(P))← p1(var(P1)) ∧ cond }.

Given a substitution θ, we have that θ(p(var(P))) ∈ facts∗(TD(D) ∪
δ(P, g)) if and only if θ(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, g)) and
θ(cond) is true.
On the other hand, a mapping µ is in JP KD

G if and only if µ ∈ JP1KD
G

and µ satisfies C. By induction hypothesis (1) and considering that
cond is a Datalog literal equivalent to filter constraint C; it applies
that there exists substitution θ = TS(µ) satisfying that θ(p1(var(P1))) ∈
facts∗(TD(D) ∪ δ(P1, g)) and θ(cond) is true. We have proved the base
case.

Inductive case:
(6.2) C is (¬C1).

We have that δ(P, g) is the set of rules
{ δ(P1, g), δ(P ′

1, g), p(var(P))← p1(var(P1)) ∧ ¬p′1(var(P1)) }
where P ′

1 = (P1 FILTER C1).
Given a substitution θ, it satisfies that θ(p(var(P))) ∈ facts∗(TD(D) ∪
δ(P, g)) if and only if θ(p1(var(P1))) ∈ facts∗(TD(D) ∪ δ(P1, g)) and
θ(p′1(var(P ′

1))) /∈ facts∗(TD(D) ∪ δ(P ′
1, g)). If cond1 is the Datalog lit-

eral equivalent to C1, we have that θ satisfy that θ(p1(var(P1))) ∈
facts∗(TD(D) ∪ δ(P1, g)) and θ(cond1) is not true;
On the other hand, we have that a mapping µ is in JP KD

G if and only
if µ ∈ J(P1 FILTER C1)KD

G and it is not true that µ satisfies C1. By
induction hypothesis θ = TS(µ) is a substitution which satisfies that
θ(p1(var(P1))) ∈ facts∗(TD(D)∪δ(P1, g)) and θ(cond1) is not true; Then
we have proved the case.

(6.3) C is (C1 ∧ C2). We have that δ(P, g) is the set of rules
{ δ(P11, g)D, δ(P12, g)D,

p′′(var(P1))← p11(var(P1)) ∧ p12(var(P1)),
p′(var(P1))← p1(var(P1)) ∧ ¬p′′(var(P1)),
p(var(P))← p1(var(P1)) ∧ ¬p′(var(P1)) }

where P11 = (P1 FILTER C1) and P12 = (P1 FILTER C2).
Note that the graph pattern (P1 FILTER(C1 ∧ C2)) can be rewritten
as ((P1 FILTER C2) AND(P1 FILTER C2)) (it is showed in the rule for
predicate p′′ and by the patterns P11 and P12). Note that this trans-
formation is true under set-semantics but it fails when we consider
bag-semantics, because it duplicates the bag of solutions. To solve this
problem, we consider a double negation of the filter condition, that is
(¬(¬(C1∧C2))) (as is showed by the rules for predicates p and p′). Given
that negated literals does not increase solutions, in the rule for predicate
p we will have only solutions from predicate p1, which satisfies the bag
semantics.

(6.4) C is (C1 ∨ C2). We have that δ(P, g) is the set of rules
{ δ(P11, g)D, δ(P12, g)D,

p′′(var(P1))← p11(var(P1)),

21

p′′(var(P1))← p12(var(P1)),
p′(var(P1))← p1(var(P1)) ∧ ¬p′′(var(P1)),
p(var(P))← p1(var(P1)) ∧ ¬p′(var(P1)) }

where P11 = (P1 FILTER C1) and P12 = (P1 FILTER C2).
Note that the graph pattern (P1 FILTER(C1 ∨C2)) can be rewritten as
((P1 FILTER C1) UNION(P1 FILTER C2)) (it is showed by the rules for
predicate p′′ and by the patterns P11 and P12). As was explained in (6.3),
this transformation fails when we consider bag-semantics, and we also
consider a double negation of the filter condition to solve such problem.

Note that, for each graph pattern P the transformation δ(P, g) preserves the
bag semantics of the SPARQL WG specification. Consider the cardinality m of
a solution s for P (and for the equivalent solution for δ(P, g)), then it can be
checked that: in case (1), the value of m is 1 because each triple occurs once in
the active graph; in case (2), m is the product of the cardinalities for s in two
bags of solutions. in case (3), m is the sum of the cardinalities for s in two bags
of solutions. in case (4), m is given by the product of cardinalities for s in two
bags of solutions, plus the cardinalities for s in a bag of solutions. In case (5.1),
m is given by the cardinality of s in the bag of solutions for named graph n. In
case (5.2), m is given by the sum of cardinalities for s in the bag of solutions for
each named graph in the dataset. In cases (6.1),(6.2),(6.3), and (6.4), n is given
by the cardinality of s in the bag of solutions for P1.

6.2 From Datalog to SPARQLC

Let Ld = (Qd,Dd,Sd, ansd) be the Datalog language and Ls = (Qs,Ds,Ss, anss)
be the SPARQLC language. To prove that Ld is contained in Ls, we define
transformations T ′Q : Qd → Qs, T ′D : Dd → Ds, and T ′S : Sd → Ss. That is,
T ′Q transforms a Datalog Query into an SPARQLC query, T ′D transforms a set
of Datalog facts into an SPARQLC dataset, and T ′S transforms a set of Datalog
substitutions into a set of SPARQLC solution mappings.

Datalog facts as a Dataset. A Datalog fact p(c1, ..., cn) can be described by
a set of RDF triples as follows

desc(p(c1, . . . , cn)) = {(:b,predicate,p), (:b,rdf: 1, c1), . . . , (:b,rdf: n, cn)}, (2)

where :b is a fresh blank node. Given a set of Datalog facts F , we define

T ′D(F) = {desc(f) | f ∈ F},

where blank(desc(fi)) ∩ blank(desc(fj)) = ∅ for each fi, fj ∈ F where i 6= j.
Then, T ′D(F) returns an RDF graph which describes the set of Datalog facts F .

22

Datalog substitutions as solution mappings. Given a set of substitutions
Θ, the set of mappings obtained from Θ, denoted T ′S(Θ), is defined as follows:
for each substitution θ ∈ Θ there exists a mapping µ ∈ T ′S(Θ) satisfying that, if
x/t ∈ θ then x ∈ dom(µ) and µ(x) = t.

Due to the similarity of the objects and to avoid complicating the notation,
we will not distinguish between substitutions and maps (that is, will consider
T ′S as the identity).

Datalog rules as SPARQLC graph patterns. Let Π be a Datalog program,
and L = p(x1, . . . , xn) be a literal where p is a predicate in Π and each xi

is a variable. We will define recursively a function gp(L)Π which returns an
SPARQLC graph pattern encoding the program (Π,L), that is, the fragment of
the Datalog program Π used for evaluating literal L.

The translation works intuitively as follows. For facts, same as (2) above. Let
Leq

k literals of the form t1 = t2 or ¬(t1 = t2). Consider the following rule of a
program Π:

L← p1 ∧ · · · ∧ ps ∧ ¬q1 ∧ · · · ∧ ¬qt ∧ Leq
1 ∧ · · · ∧ Leq

u . (3)

In this case gp(L)Π returns a graph pattern with the structure

(((· · · ((gp(p1)Π AND · · ·AND gp(ps)Π)
MINUSgp(q1)) · · ·)MINUSgp(qt))

FILTER(Leq
1 ∧ · · · ∧ Leq

u)). (4)

The formal definition is Algorithm 2.

Datalog queries as SPARQLC queries. Now we can define the transforma-
tion T ′Q as follows: given a Datalog query Qd = (Π,L) where L = p(x1, . . . , xn),
the SPARQLC query defined by T ′Q(Qd) is

(SELECT x1 · · ·xn,FROM g, gp(L)Π),

where graph(g) = T ′D(facts(Π)).

Theorem 5. nr-Datalog¬ is contained in SPARQLC .

Proof. Consider transformations T ′Q, T ′D, and T ′S as defined above. We need
to prove that for every Datalog query Qd with database Dd, it satisfies that
T ′S(ansd(Qd, Dd)) = ansk(T ′Q(Qd), T ′D(Dd)),

Let Qd = (Π,L) be a Datalog query where L = p(x1, . . . , xn), and Dd be the
Datalog database facts(Π). Then, we have to show that

T ′S(ansd((Π,L), Dd)) = Jgp(L)ΠKD
dg(D).

The proof is by induction on the level l of the program (Π,L). The level l of a
program (Π,L) is the number defined recursively as follows: l(Π,¬p) = l(Π, p)

23

Algorithm 2 Transformation of Datalog predicates into SPARQLC patterns
1: if predicate p is extensional in Π then
2: gp(p(x1, . . . , xn))Π ← ((z, predicate, p)AND(z, rdf: 1, x1)AND · · ·AND(z, rdf n, xn)),

where z is a fresh variable.
3: else if predicate p is intensional in Π then
4: P ← ∅
5: for each rule r ∈ Π with head p(x′

1, . . . , x
′
n) do

6: P ′ ← ∅
7: C ← ∅
8: Let r′ = ν(r) where ν is a substitution such that ν(x′

i) = xi

9: for each positive literal q(y1, . . . , ym) in the body of r′ do
10: if P ′ = ∅ then
11: P ′ ← gp(q)Π

12: else
13: P ′ ← (P ′ AND gp(q)Π)
14: end if
15: end for
16: for each negative literal ¬q(y1, . . . , ym) in the body of r′ do
17: P ′ ← (P ′ MINUS gp(q))
18: end for
19: for each equality formula t1 = t2 in r′ do
20: if C = ∅ then
21: C ← (t1 = t2)
22: else
23: C ← C ∧ (t1 = t2)
24: end if
25: end for
26: for each negative literal ¬(t1 = t2) in r′ do
27: if C = ∅ then
28: C ← ¬(t1 = t2)
29: else
30: C ← C ∧ ¬(t1 = t2)
31: end if
32: end for
33: if C 6= ∅ then
34: P ′ ← (P ′ FILTER C)
35: end if
36: if P = ∅ then
37: P ← P ′

38: else
39: P ← (P UNION P ′)
40: end if
41: end for
42: gp(p)Π ← P
43: end if

for a predicate p; l(Π, p) = 0 if p is an extensional predicate; l(Π, p) = 1 +
maxi(l(Π,Li)) if p is intensional and Li are all literals which occur in any rule

24

with head p in Π. (The function is well defined because the programs considered
are not recursive).

Base case: l(Π,L) = 0. Note that in this case L matches line 1, hence gp(L)Π

returns the graph pattern

((z,predicate, p)AND(z, rdf: 1, x1) AND · · ·AND(z, rdf: n, xn)).

Now, a mapping µ is in Jgp(L)ΠKD
dg(D) if and only if dom(µ) = {x1, . . . , xn} and

for every triple pattern t in gp(L)Π it satisfies that µ(t) ∈ dg(D). Considering
that dg(D) = T ′D(facts(Π)), we have that

{(µ(z),predicate, p), (µ(z), rdf: 1, µ(x1)), . . . , (µ(z), rdf n, µ(xn))}
⊆ T ′D(facts(Π)). (5)

Now, a substitution θ is in ansd((Π,L), Dd) if and only if θ(L) ∈ facts(Π),
that is p(θ(x1), . . . , θ(xn)) ∈ facts(Π). Note that, we only consider the initial
database facts(Π) because predicate p is extensional. So, if we transform θ(L) =
p(θ(x1), . . . , θ(xn)) in a set of RDF triples we get:

desc(θ(L)) = {(θ(z),predicate, p), (θ(z), rdf: 1, θ(x1)), . . . , (θ(z), rdf n, θ(xn))}.

Hence it is easy to see that T ′S maps bijectively substitutions of ansd((Π,L), Dd)
to mappings in Jgp(L)ΠKD

dg(D).

Inductive step: l(Π,L) = n > 0. Recall that Qd = (Π,L) and L = p(x1, . . . , xn).
Additionally, we assume that r1, . . . , rm are all the rules of Π with head p(. . .).
A substitution θ is in ansd(Qd, Dd) if and only if there is a rule ri in the set
{r1, . . . , rm}, such that θ′(ri) is true in Π.

On the other hand, in this case L matches line 3 of the algorithm, hence it
returns the graph pattern

(gp(L1)Π UNION · · ·UNIONgp(Lm)Π),

where gp(Li)Π is the graph pattern obtained for rule ri ∈ {r1, . . . , rm}. In this
case it clearly holds that Jgp(L)ΠKD

dg(D) =
⋃

iJgp(Li)ΠKD
dg(D). Using the fact

ans((Π,L), Dd) =
⋃

Li
ans(ΠLi

, Dd) and the fact that the programs are not
recursive, it is enough to prove that for each particular rule j:

T ′S(ans((Π,Lj), Dd)) = Jgp(Lj)KD
dg(D). (6)

To prove this, assume that this rule has the following general structure (we
are not writing explicitly the variables):

p← p1 ∧ · · · ∧ ps ∧ ¬q1 ∧ · · · ∧ ¬qt ∧ Leq
1 ∧ · · · ∧ Leq

u , (7)

where pi, qj are predicates and and each Leq
k is a literal of the form t1 = t2 or

¬(t1 = t2). (We are including here literals of the form t = c for c constant.)

25

Let us compute the SPARQL evaluation first. We have that gp(p)Π returns
a graph pattern with the structure

(((· · · ((gp(p1)Π AND · · ·ANDgp(ps)Π)
MINUSgp(q1)) · · ·)MINUSgp(qt))

FILTER(Leq
1 ∧ · · · ∧ Leq

u)), (8)

Observe that a mapping µ is in Jgp(p)ΠKD
dg(D) if and only if

(i) for each pi, there exists a mapping µ′i ∈ Jgp(pi)ΠKD
dg(D) satisfying that µ and

µ′i are compatible;
(ii) for each qj , there exists no mapping µ′′j ∈ Jgp(qj)ΠKD

dg(D) satisfying that µ

and µ′′j are compatible; and
(iii) for each Leq

k , it satisfies that µ(t1) = µ(t2) when Leq
k is t1 = t2, and µ(t1) 6=

µ(t2) when Leq
k is ¬(t1 = t2) (suppose that µ(t) = t where t is a constant).

Now, let us compute the Datalog evaluation. A substitution θ is in the result
of ansd((Π, p), Dd) if and only if θ(p) ∈ facts∗(Π). This means exactly:

(a) for each pi, there exists a substitution θ′i ∈ ansd((Π, pi), Dd) satisfying that
for each variable x ∈ var(θ′) ∩ var(θ′i), θ(x) = θ′i(x).

(b) for each qj , there exists no substitution θ′′j ∈ ansd((Π, qj), Dd) satisfying
that for each variable x ∈ var(θ) ∩ var(θ′′j), θ(x) = θ′′i (x)

(c) for each literal Leq
k , it satisfies that θ′(t1) = θ′(t2) when Leq

k is t1 = t2, and
θ′(t1) 6= θ′(t2) when Leq

k is ¬(t1 = t2) (assume that θ′(t) = t where t is a
constant).

Note that (because Π is not recursive), for each pair of literal pi, qj , it
holds that l(Π, pi) < n and l(Π, qj) < n. Hence, by induction hypothesis we
have that T ′S(ansd((Π, pi), Dd)) = Jgp(pi)ΠKD

dg(D) and T ′S(ansd((Π, qj), Dd)) =
Jgp(qj)ΠKD

dg(D). These identities plus the conditions (i), (ii), (iii) and (a), (b),
(c) above show the bijections between maps µ ∈ Jgp(p)KD

dg(D) and substitutions
θ ∈ ans((Π, p), Dd), that is:

T ′S(ans((Π, p), Dd)) = Jgp(p)KD
dg(D).

Note 5. It is possible to enhance the transformation T ′ from Datalog to SPARQLC

in order for it to be the inverse of the transformation T from SPARQLC to Dat-
alog. Define T ′′ from SPARQLC to SPARQLC as follows:

Let P be the pattern of query T ′(T (Q)). For each sub-pattern P ′ occurring
in P with the structure

((?Z,predicate,triple) AND(?Z, rdf: 1, x1)AND(?Z, rdf: 2, x2) AND(?Z, rdf: 3, x3))

where ?Z ∈ V and x1, x2, x3 ∈ T , replace P ′ by the graph pattern (x1, x2, x3).
Then it is not difficult to check that JQK = JT ′′(T ′(T (Q)))K.

26

7 Conclusions

We have studied the expressive power of SPARQL. Among the most important
findings are the definition of negation, the proof that non-safe filter expressions
are superfluous, the proof of the equivalence of the WG semantics and the com-
positional one presented in [6].

From these results we can state the most relevant result of the paper:

Theorem 6 (main). SPARQLWG has the same expressive power as relational
algebra under bag semantics.

This result follows from the well known fact (for example, see [1] and [5])
that relational algebra and non-recursive safe Datalog with negation have the
same expressive power, and from theorems 2, 3, 4 and 5.

We will not develop here the consequences of such equivalence. Surely it will
help the design of its extensions and suggest some syntactic restriction which
are today not present. Future work includes the development of the manifold
consequences implied by the Main Theorem.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. R. Cyganiak. A relational algebra for sparql. Technical Report HPL-2005-170, HP
Labs, 2005.

3. T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. RDF Querying:
Language Constructs and Evaluation Methods Compared. In Reasoning Web,
number 4126 in LNCS, pages 1–52, 2006.

4. G. Klyne and J. Carroll. Resource Description Framework (RDF) Concepts and
Abstract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/,
Feb 2004.

5. M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springe-Verlag, 1999.

6. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In
Proceedings of the 5th International Semantic Web Conference (ISWC), number
4273 in LNCS, pages 30–43. Springer-Verlag, 2006.

7. J. Pérez, M. Arenas, and C. Gutierrez. Semantics of SPARQL. Technical Report
TR/DCC-2006-17, Department of Computer Science, Universidad de Chile, 2006.

8. A. Polleres. From sparql to rules (and back). In Proceedings of the 16th Interna-
tional World Wide Web Conference (WWW), pages 787–796. ACM, 2007.

9. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/, January 2008.

10. S. Schenk. A sparql semantics based on datalog. In 30th Annual German Con-
ference on Advances in Artificial Intelligence (KI), volume 4667 of LNCS, pages
160–174. Springer, 2007.

27

8 Appendix I: SPARQL Syntax and Semantics (W3C)

8.1 SPARQL Syntax

A query variable is a member of the set V where V is infinite and disjoint
from RDF-T. A triple pattern is member of the set (RDF-T∪V) × (I ∪ V) ×
(RDF-T∪V) A Basic Graph Pattern is a set of triple patterns.

A SPARQL query string is syntactically represented by a query block which
consists of a query form, zero o more dataset clauses, a where clause, and possibly
solution modifiers.

SPARQL graph patterns. A where clause provides a graph pattern which
is defined using the following forms: GroupGraphPattern, TriplesBlock, Fil-
ter, OptionalGraphPattern, GroupOrUnionGraphPattern, GraphGraphPattern.
The form TriplesBlock denote an expression (t1 . · · · . tn) where each ti is a
triple pattern.

The syntax for graph patterns is defined by the following grammar (we use
GP to abbreviate GraphPattern):

[13] WhereClause ::= ’WHERE’? GroupGP
[20] GroupGP ::= ’{’ TriplesBlock? ((GPNotTriples | Filter) ’.’? TriplesBlock?)* ’}’
[22] GPNotTriples ::= OptionalGP | GroupOrUnionGP | GraphGP
[23] OptionalGP ::= ’OPTIONAL’ GroupGP
[24] GraphGP ::= ’GRAPH’ VarOrIRIref GroupGP
[25] GroupOrUnionGP ::= GroupGP (’UNION’ GroupGP)*
[26] Filter ::= ’FILTER’ Constraint

SPARQL Algebra. A graph pattern in the SPARQL algebra is defined recur-
sively as follows:

– If p is a basic graph pattern, then BGP(p) is a graph pattern.
– If P1, P2 are graph patterns and C is a filter constraint, then Join(P1, P2),

LeftJoin(P1, P2, C), Diff(P1, P2, C), Filter(C,P1), Union(P1, P2) are graph
patterns.

– If P is a graph pattern and n ∈ I ∪ V then Graph(n, P) is a graph pattern.

Transforming graph patterns into algebra expressions. Consider function
Transform which receives a syntax form as input and returns a graph pattern
in the SPARQL algebra. Given a syntax form f , the function Transform(f) is
defined recursively as follows:

– If f is TripleBlock then
Transform(f) = BGP(list of triple patterns)

28

– If f is GroupGraphPattern then Transform(f) = G where G is defined as
follows:

Let FS := the empty set
Let G := the empty pattern, Z, a basic graph pattern which is the empty
set.
for each element E in the GroupGraphPattern do

if E is of the form FILTER(expr) then
FS := FS set-union {expr}

else if E is of the form OPTIONAL{P} then
Let A := Transform(P)
if A is of the form Filter(F,A2) then

G := LeftJoin(G, A2, F)
else

G := LeftJoin(G, A, true)
end if

else if E is any other form then
Let A := Transform(E)
G := Join(G, A)

end if
end for
if FS is not empty then

Let X := Conjunction of expressions in FS
G := Filter(X, G)

end if
return G

– If f is GroupOrUnionGraphPattern of the form G1 UNION · · ·UNIONGn,
then Transform(f) = A where A is defined as follows:

Let A := undefined
for each element G in the GroupOrUnionGraphPattern do

if A is undefined then
A := Transform(G)

else
A := Union(A,Transform(G))

end if
end for
return A

– If f is GraphGraphPattern then
if the form is GRAPH IRI GroupGraphPattern then

Transform(f) = Graph(IRI, Transform(GroupGraphPattern))
else if the form is GRAPH Var GroupGraphPattern then

Transform(f) = Graph(V ar, Transform(GroupGraphPattern))
end if

29

8.2 Evaluation semantics

A solution mapping, µ, is a partial function µ : V → T . The domain of µ,
dom(µ), is the subset of V where µ is defined. Two solution mappings µ1 and µ2

are compatible, if for every variable v in dom(µ1) and in dom(µ2), µ1(v) = µ2(v).
Write µ0 for the mapping such that dom(µ0) is the empty set. If µ1 and µ are
compatible then µ1 set-union µ2 is also a mapping. Write merge(µ1, µ2) for µ1

set-union µ2.
A solution sequence is a multiset of solution mappings, possibly unordered.

A multiset (also known as a bag) is an unordered collection of elements in which
each element may appear more than once. It is described by a set of elements
and a cardinality function giving the number of occurrences of each element from
the set in the multiset. Write card[Ω](µ) for the cardinality of solution mapping
µ in a multiset of mappings Ω.

A Pattern Instance Mapping, ρ, is the combination of an RDF instance map-
ping, σ, and a solution mapping, µ. That is ρ(.) = µ(σ(.))

Basic Graph Pattern Matching. Let BGP be a basic graph pattern and let
G be an RDF graph. A mapping µ is a solution for BGP from G when there
is a pattern instance mapping ρ such that ρ(BGP) is a subgraph of G and µ is
the restriction of ρ to the query variables in BGP .

We have that card[Ω](µ) is given by the number of distinct RDF instance
mappings, Ω, such that ρ(.) = µ(σ(.)) is a pattern instance mapping and
ρ(BGP) is a subgraph of G).

Evaluation of SPARQL Algebra Expressions. Let p be a basic graph
pattern, P1, P2 be graph patterns and expr be a filter constraint. The evaluation
of a graph pattern P with respect to a dataset D having active graph G (the
active graph is initially the default graph), denoted eval(D(G), P), is defined
recursively as follows:

– eval(D(G),BGP(p)) = {µ | µ is a solution for p from G }

– eval(D(G), Join(P1, P2)) = Join(eval(D(G), P1), eval(D(G), P2))

– eval(D(G),LeftJoin(P1, P2, expr)) = LeftJoin(eval(D(G), P1), eval(D(G), P2), expr)

– eval(D(G),Union(P1, P2)) = Union(eval(D(G), P1), eval(D(G), P2))

– eval(D(G),Filter(F, P1)) = Filter(expr, eval(D(G), P1))

– eval(D(G), Graph(IRI, P)) then
if IRI is a graph name in D then

eval(D(G),Graph(IRI, P)) = eval(D(D[IRI]), P)
else if IRI is not a graph name in D then

eval(D(G),Graph(IRI, P)) = the empty multiset
end if

30

– eval(D(G),Graph(?var, P)) then
Let R be the empty multiset
for each IRI i in D do

R := Union(R, Join(eval(D(D[i]), P), Ω(?var → i))
end for
return R

Semantics of SPARQL Algebra operators. Let Ω1 and Ω2 be multisets of
solution mappings, and expr be a filter expression.

– Join(Ω1, Ω2) = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 and µ2 are compatible }
card[Join(Ω1, Ω2)](µ) is given by the following iteration:

for each merge(µ1, µ2) such that µ = merge(µ1, µ2) do
sum over (µ1, µ2), card[Ω1](µ1) ∗ card[Ω2](µ2)

end for

– Diff(Ω1, Ω2, expr) = {µ | µ ∈ Ω1 such that for all µ′ ∈ Ω2, either µ and
µ′ are not compatible or µ and µ′ are compatible and expr(µ ∪ µ′) has an
effective boolean value of false }

card[Diff(Ω1, Ω2, expr)](µ) = card[Ω](µ1)
– LeftJoin(Ω1, Ω2, expr) = Filter(expr, Join(Ω1, Ω2)) ∪Diff(Ω1, Ω2, expr)

card[LeftJoin(Ω1, Ω2, expr)](µ) = card[Filter(expr, Join(Ω1, Ω2))](µ)
+ card[Diff(Ω1, Ω2, expr)](µ)

– Union(Ω1, Ω2) = {µ | µ ∈ Ω1 or µ ∈ Ω2}
card[Union(Ω1, Ω2)](µ) = card[Ω1](µ) + card[Ω2](µ)

– Filter(expr, Ω) = {µ | µ ∈ Ω and expr(µ) is an expression that has an
effective boolean value of true }

card[Filter(expr, Ω)](µ) = card[Ω](µ)

9 Appendix II: Semantics of SPARQLC.

9.1 RDF and Datasets

Assume there are pairwise disjoint infinite sets I, B, L (IRIs, Blank nodes, and
RDF literals respectively). We denote by T the union I ∪B ∪ L (RDF terms).

A tuple (v1, v2, v3) ∈ (I ∪B)× I × T is called an RDF triple, where v1 is the
subject, v2 the predicate, and v3 the object. An RDF Graph [4] (just graph from
now on) is a set of RDF triples. Given a graph G, we denote by term(G) the set
of elements of T appearing in the triples of G and blank(G) denotes the set of
blank nodes in G, i.e. blank(G) = term(G) ∩B. If G is referred to by an IRI u,
then graph(u) returns the graph available in u, i.e, G = graph(u).

We define two operations on two graphs G1 and G2. The union of graphs,
denoted G1∪G2, is the set theoretical union of their sets of triples. The merge of
graphs, denoted G1 + G2, is the graph G1 ∪G′

2 where G2’ is the graph obtained
from G2 by renaming its blank nodes to avoid clashes with those in G1.

31

An RDF dataset is a set {G0, 〈u1, G1〉, . . . , 〈un, Gn〉} where each Gi is a graph
and each uj is an IRI. G0 is called the default graph and each pair 〈ui, Gi〉 is
called a named graph. Every dataset satisfies that: (i) it always contains one
default graph, (ii) there may be no named graphs, (iii) each uj is distinct, and
(iv) blank(Gi) ∩ blank(Gj) = ∅ for i 6= j.

Given a dataset D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}, we denote by term(D)
the set of terms occurring in the graphs of D. The default graph of D is de-
noted dg(D). For a named graph 〈ui, Gi〉 we have that name(Gi)D = ui and
graph(ui)D = Gi; otherwise name(Gi)D = ∅ and graph(ui)D = ∅. We denote by
names(D) the set of IRIs {u1, . . . , un}. Although name(G0) = ∅, we sometimes
will use g0 when referring to G0. Finally, the active graph of D is the graph Gi

used for querying the dataset.

9.2 Semantics of SPARQLC

A mapping µ is a partial function µ : V → T . The domain of µ, dom(µ), is the
subset of V where µ is defined. The empty mapping µ0 is a mapping such that
dom(µ0) = ∅. Two mappings µ1, µ2 are compatible, denoted µ1 µ2, when for all
?X ∈ dom(µ1) ∩ dom(µ2) it satisfies that µ1(?X) = µ2(?X), i.e., when µ1 ∪ µ2

is also a mapping. We define the operations of join, union, difference, and left
outer-join between two sets of mappings Ω1, Ω2 as:

Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}
Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}
Ω1 \Ω2 = {µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible}
Ω1qyon Ω2 = (Ω1 on Ω2) ∪ (Ω1 \Ω2)

Now, we will define the semantics for the components of a SPARQL query:

(1) [Semantics for result query forms] Given a mapping µ and a result query
form R, the result generated by R given µ, denoted result(R,µ), is defined
as follows:
– If R is SELECT W , then result(R,µ) is the restriction of µ to W , that

is the mapping denoted µ|W such that, dom(µ|W) = dom(µ) ∩W and
µ|W (?X) = µ(?X) for every ?X ∈ dom(µ) ∩W .

– If R is CONSTRUCT H, then result(R,µ) is the graph {µ(t) | t ∈ H},
where µ(t) is the triple obtained by replacing the variables in t according
to µ and satisfying that µ(t) ⊂ (I ∪B)× I × T .

– If R is ASK, then result(R,µ) is false if µ = ∅ and result(R,µ) is true
otherwise.

(2) [Semantics for dataset clauses] Given a set of dataset clauses F , the RDF
dataset resulting from F , denoted dataset(F), contains:
(i) A default graph consisting of the merge of the graphs referred to in

the FROM clauses of F . If there is no FROM clause, then the dataset
includes an empty graph G0 = ∅ as the default graph.

(ii) A named graph 〈u, graph(u)〉 for each clause “FROM NAMED u” in F .

32

(3) [Semantics for filter constraints] Given a mapping µ and a filter constraint
C, we say that µ satisfies C, denoted by µ |= C, if:
– C is bound(?X) and ?X ∈ dom(µ);
– C is ?X = u, ?X ∈ dom(µ) and µ(?X) = u.
– C is ?X = ?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y).
– C is (¬C1), C1 is a filter constraint, and it is not the case that µ |= C1.
– C is (C1 ∨C2), C1 and C2 are filter constraints, and µ |= C1 or µ |= C2.
– C is (C1 ∧ C2), C1 and C2 are filter constraints, µ |= C1 and µ |= C2.

(4) [Semantics for graph patterns] Let P1, P2 be graph patterns and C be a filter
constraint. The evaluation of a graph pattern P over a dataset D with active
graph G, denoted JP KD

G , is defined recursively as follows:
– If t is a triple pattern, JtKD

G = {µ | dom(µ) = var(t) and µ(t) ∈ G} where
µ(t) is the triple obtained by replacing the variables in t according to µ.

– J(P1 ANDP2)KD
G = JP1KD

G on JP2KD
G

– J(P1 OPT P2)KD
G = JP1KD

Gqyon JP2KD
G

– J(P1 UNIONP2)KD
G = JP1KD

G ∪ JP2KD
G

– J(P1 FILTER C)KD
G = {µ | µ ∈ JP1KD

G and µ |= C} (var(C) ⊆ var(P).)
– If u ∈ I, then Ju GRAPH P KD

G = JP KD
graph(u)D

.
If ?X ∈ V , then

J(?X GRAPH P)KD
G =

⋃
v ∈ names(D)(JP KD

graph(v)D
on {µ?X→v}),

where µ?X→v is a mapping such that dom(µ) = {?X} and µ(?X) = v.

Given a SPARQL query Q = (R,F, P) and the RDF dataset D = dataset(F).
The answer to Q over database D, denoted anss(Q,D), is defined as follows:

– if R is SELECT W , then anss(Q,D) = {result(R,µ) | µ ∈ JP KD
dg(D)}

– if R is CONSTRUCT H and blank(H) is the set of blank nodes appearing
in H, then anss(Q,D) = {βi(result(R,µi)) | µi ∈ JP KD

dg(D)} where each
βi : blank(H) → (B \ H) is a blank renaming function such that for each
pair of mappings µ1, µ2 ∈ JP KD

dg(D), range(β1) ∩ range(β2) = ∅.
– if R is ASK, then anss(Q, D) = false when JP KD

dg(D) = ∅ (i.e., there exists
no mapping µ ∈ JP KD

G0
) and anss(Q,D) = true otherwise.

9.3 Bag Semantics in SPARQL

The original compositional semantics presented in [6] considered sets of map-
pings. Later, it was extended to include bags [7]. In what follows, we present a
summary of those definitions.

A bag (or multiset) is a set of annotated elements; the annotation of an
element, also called the cardinality (or multiplicity) of the element, is a positive
integer. Intuitively, a bag may contain duplicate occurrences of an element; the
cardinality of an element indicates the number of duplicates for the element in
the set.

The cardinality of a mapping µ in a bag of mappings Ω will be denoted by
cards(µ)[Ω] (or simply cards(µ) when is clear from the context). If µ /∈ Ω then
cards(µ)[Ω] = 0.

33

Definition 2 (Cardinality of Basic Graph Pattern Solutions). Consider
a basic graph pattern P (possibly with blank nodes) and a dataset D with active
graph G. The cardinality of a mapping µ ∈ JP KD

G is defined as the number of
distinct RDF instance mappings σ : blank(P) → term(G) such that µ(σ(P)) ⊆
G, i.e.

cards(µ)[JP KD
G] = | {σ : blank(P)→ term(G) | µ(σ(P)) ⊆ G} |

Note 6. For a basic graph pattern P without blank nodes, every solution µ ∈
JP KD

G has cardinality 1, as in this case the only possible substitution is σ : ∅ →
term(G). Notice that it is consistent with the fact that an RDF graph is a set
(without duplicates).

In section 9.2, we consider operations between set of mappings. Those oper-
ations can be extended to bags, roughly speaking, making the operations not to
discard duplicates. Formally, if Ω1, Ω2 are bags of mappings, then

for µ ∈ Ω1 on Ω2, cards(µ)[Ω1onΩ2] =
∑

µ=µ1∪µ2
cards(µ1)[Ω1] · cards(µ2)[Ω2]

for µ ∈ Ω1 ∪Ω2, cards(µ)[Ω1∪Ω2] = cards(µ1)[Ω1] + cards(µ2)[Ω2]

for µ ∈ Ω1 \Ω2, cards(µ)[Ω1\Ω2] = cards(µ1)[Ω1]

Definition 3. Given a dataset D and a general graph pattern P composed from
basic graph patterns possibly with blank nodes, we define the evaluation of P in
D using a bag/multiset semantics, simply as defined in Section 9.2 but applying
bag operators and with the base case as in Definition 2.

Proposition 1. Let P be a graph pattern without blank nodes and composed
only by AND, FILTER and OPT operators, and let D be an RDF dataset with
active graph G. Then every solution µ ∈ JP KD

G has cardinality 1.

Note 7. The above proposition implies that in absence of blank nodes in graph
patterns, duplicated solutions could be generated only by the use of UNION and
GRAPH operators.

Definition 4 (Cardinality in SELECT Result Form). Informally, given a
query (SELECT W,F, P), for bag/multiset semantics we simply take the pro-
jection of the solutions for P over variables W without discarding duplicates.
Formally, given a query Q = (SELECT W,F, P) and a mapping µ in the answer
of Q in dataset D obtained from F , we define the cardinality of µ as∑

µ′=µ

cards(µ)[JP KD
G]

34

10 Appendix III: Datalog

To make the paper self-contained, we will briefly review notions of Datalog. The
reader can consult the books [1,5] for further details and proofs.

10.1 Syntax of Datalog.

A term is either a variable or a constant. A predicate formula is an expression
p(xi, ..., xn) where p is a predicate name and each xi is a variable 8. An equality
formula is an expression t1 = t2 where t1 and t2 are terms. An atom is either a
predicate or an equality formula. A literal is either an atom (a positive literal L)
or the negation of an atom (a negative literal ¬L). A rule is an expression of the
form L← L1, . . . , Ln where L is a predicate formula called the head of the rule
and the sequence of literals L1, . . . , Ln is called the body of the clause. Note that
may assume that all heads of rules have only variables by adding the respective
equality formula to its body. A Datalog program is a finite set of Datalog rules.

Let Π be a Datalog program. A rule having no variables is called a ground
rule. A ground rule with empty body is called a fact. The set of facts occurring in
Π, denoted facts(Π), is called the initial database of Π. A predicate is extensional
if it occurs only in facts; otherwise it is called intensional.

A variable x occurs positively in a rule r if and only if x occurs in a positive
literal L in the body of r such that: (1) L is a predicate formula; (2) if L is x = c
then c is a constant; (3) if L is x = y or y = x then y is a variable occurring
positively in r. A Datalog rule r is said to be safe if all the variables occurring
in the literals of r (including the head of r) occur positively in r. A Datalog
program Π is safe if all the rules of Π are safe.

The dependency graph of a Datalog program Π is a digraph (N,E) where the
set of nodes N is the set of predicates that occur in the literals of Π, and there
is an arc (p1, p2) in E if there is a rule in Π whose body contains predicate p1

and whose head contains predicate p2. A Datalog program is said to be recursive
if its dependency graph is cyclic, otherwise it is said to be non-recursive.

A Datalog query is a pair (Π,L) where Π is a Datalog program and L is a
predicate formula p(x1, . . . , xn) called the goal literal.

In what follows, we will only consider non-recursive and safe Datalog pro-
grams (nr-Datalog¬).

10.2 Semantics of Datalog

A substitution θ is a set of assignments {x1/t1, . . . , xn/tn} where each xi is a
variable and each ti is a term. Given a rule r, we denote by θ(r) the rule resulting
from applying the substitution θ to the literals in r, i.e., the result of substituting
the variable xi for the term ti in each literal of r. A substitution is ground if
every term ti is a constant.
8 In this paper we assume that a predicate formula only contains variables, but in

general it is also possible to have constants.

35

A rule r in a Datalog program Π is true with respect to a ground substitution
θ, if for each literal L in the body of r one of the following conditions is satisfied:
(1) θ(L) ∈ facts(Π);
(2) θ(L) is an equality, c = c where c is a constant;
(3) θ(L) is a literal of the form ¬p(c1, ..., cn) and p(c1, ..., cn) /∈ facts(Π);
(4) θ(L) is a literal of the form ¬(c1 = c2) and c1 and c2 are distinct constants.

The meaning of a Datalog program Π, denoted facts∗(Π), is the database
resulting from adding to the initial database of Π as many new facts of the form
θ(L) as possible, where θ is a substitution that makes a rule r in Π true and L
is the head of r. Then the rules are applied repeatedly and new facts are added
to the database until this iteration stabilizes, i.e., until a fixpoint is reached.
Note that for nr-Datalog¬ programs this naive algorithm works well. In fact for
nr-Datalog¬ programs, all semantics coincide (the fixpoint, the answer set, and
the well founded) [5].

Given a Datalog query Q = (Π,L) and the initial database D = facts(Π).
The answer to Q over database D, denoted ansd(Q,D), is a set of substitutions
defined as ansd(Q,D) = {θ | θ(L) ∈ facts∗(Π)}.

10.3 Bag Semantics in Datalog

The cardinality of a substitution θ in a bag of substitutions Θ will be denoted by
cardd(θ)[Θ] (or simply cardd(θ) when is clear from the context). If θ /∈ Θ then
cardd(θ)[Θ] = 0.

Let Π be a Datalog program. The cardinality of a substitution θ in a bag of
solutions Θ that makes a rule r true in Π, is defined as

cardd(θ)
Π(r)
[Θ] = cardd(θ)[Θ1] × · · · × cardd(θ)[Θn]

where Θi = ans((Π,Li), D) for each positive literal Li in r.
The cardinality of a substitution θ in a bag of solutions Ω for a literal L in

Π, denoted cardd(θ)ΠL

[Θ] , is defined as follows:

– If L is an extensional literal, then cardd(θ)ΠL

[Θ] is the cardinality of θ(L) in
facts(Π), and 0 otherwise.

– If L is an intensional predicate, then:

cardd(θ)ΠL

[Θ] =
∑

cardd(θ)
Π(r)
[Θ]

where r is a rule having literal L in its head.

Let Q = (Π,L) be Datalog query and D = facts(Π). The cardinality of a
substitution θ in the bag of solutions Θ = anss(Q, D) is given by cardd(θ)ΠL

[Θ] .

36

