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Abstract: In this paper, we experimentally compare the efficiency of
various database engines for the purposes of querying the Wikidata
knowledge-base, which can be conceptualised as a directed edge-labelled
graph where edges can be annotated with meta-information called quali-
fiers. We take two popular SPARQL databases (Virtuoso, Blazegraph), a
popular relational database (PostgreSQL), and a popular graph database
(Neo4J) for comparison and discuss various options as to how Wikidata
can be represented in the models of each engine. We design a set of
experiments to test the relative query performance of these representa-
tions in the context of their respective engines. We first execute a large
set of atomic lookups to establish a baseline performance for each test
setting, and subsequently perform experiments on instances of more com-
plex graph patterns based on real-world examples. We conclude with a
summary of the strengths and limitations of the engines observed.

1 Introduction

Wikidata is a new knowledge-base overseen by the Wikimedia foundation and
collaboratively edited by a community of thousands of users [21]. The goal of
Wikidata is to provide a common interoperable source of factual information for
Wikimedia projects, foremost of which is Wikipedia. Currently on Wikipedia,
articles that list entities – such as top scoring football players – and the info-
boxes that appear on the top-right-hand side of articles – such as to state the
number of goals scored by a football player – must be manually maintained.
As a result, for example, factual information in different locations will often be
inconsistent. The aim of Wikidata is to instead keep such factual knowledge in
one place: facts need be edited only once and can be drawn upon from multiple
locations. Since the launch of Wikidata in October 2012, more than 80 thousand
editors have contributed over 86 million statements about 17 million entities.

To allow users issue bespoke queries over the knowledge-base, Wikimedia has
begun hosting an official query service3 which according to internal statistics4
receives in the order of hundreds of thousands of queries per day. The query
3 https://query.wikidata.org/
4 https://grafana.wikimedia.org/dashboard/db/wikidata-query-service
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service runs over an RDF representation of Wikidata that is indexed in the
Blazegraph SPARQL store (formerly known as BigData) [20].

In Wikidata, items are connected either to related items or datatype values
by directed, named relations. There is thus a close correspondence between Wiki-
data and RDF. However, relations in Wikidata can be annotated with attribute–
value pairs, such as qualifiers and references, to specify a further context for the
relation (e.g., validity, cause, degree, etc.). This complicates the representation
of Wikidata in RDF somewhat, requiring some form of reification [11] to capture
the full knowledge-base in RDF. In previous work [12], we thus investigated vari-
ous ways in which Wikidata can be represented in RDF and how that affects the
query performance in various SPARQL engines; more specifically we tested n-ary
relation, standard reification, singleton property and named graph representa-
tions of Wikidata against five SPARQL stores – 4store [7], Blazegraph (formerly
BigData) [20], GraphDB (formerly (Big)OWLIM) [2], Jena TDB [22], and Vir-
tuoso [4] – with respect to answering an initial selection of 14 real-world queries.
Our results suggested that while engines struggled with the singleton property
representation, no other representation was an outright winner. In terms of en-
gines, we found that Virtuoso exhibited the best and most reliable performance,
with GraphDB and Blazegraph following behind.

A follow-up question arising from our initial previous work was how the per-
formance of these SPARQL engines would compare with that of other technolo-
gies. In this paper, we thus extend on our previous work by comparing a selection
of SPARQL, relational and graph databases for the purposes of querying Wiki-
data. We select these families of databases since they correspond with the inher-
ent structure of Wikidata and they offer support for comprehensively-featured
declarative query languages as needed for the public query service (which rules
out, for example, key–value stores, document stores and column-family stores).
To conduct these comparisons, we design and apply a range of novel experiments.

However, there are still too many databases engines within these three fami-
lies for all to be considered experimentally in the current scope; hence we must be
selective in what we test. For SPARQL, we select Virtuoso [4], which performed
best overall in our previous experiments, and Blazegraph [20], which is currently
deployed in Wikimedia’s official query service. For graph databases, we select
Neo4J [19], which is based on property graphs: not only is it arguably the most
popular graph database,5 it is the only (non-SPARQL) graph database we know
of that supports a mature query language (Cypher) in the declarative style of
the example queries listed for the official query service. For relational databases,
we select PostgreSQL [18] as a mature open-source solution supporting the SQL
standard. Although we could consider other databases for testing – such as var-
ious relational databases or other SPARQL engines such as Allegrograph [14] or
Stardog [13] – our selection allows us to draw initial conclusions with respect to
how well prominent databases from each family of technologies perform relative
to each other, and indeed how the solution selected by Wikimedia (Blazegraph)
compares with these other alternatives.

5 We can refer (informally) to, e.g., http://db-engines.com/en/ranking/graph+dbms
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Towards testing these diverse engines, we first discuss some representations
for encoding the Wikidata knowledge-base such that it can be loaded into each
type of engine. We then introduce various novel experiments. Our first set of
experiments that are based on the idea of performing sets of lookups for “atomic
patterns” with exhaustive combinations of constants and variables; these results
give an initial idea of the low-level performance of each configuration. Next we
perform experiments on sets of instances of basic graph patterns that generalise
the graph motifs we found to commonly occur in the use-case queries listed at
the public query service. We also discuss how well the various engines support
the query features commonly used for these use-case queries.

Before we continue, however, we first introduce Wikidata in more detail.

2 The Wikidata Model

In Figure 1, we see an example Wikidata statement describing the U.S. presi-
dency of Abraham Lincoln [12]. Internal identifiers are in grey: those beginning
with Q refer to entities, and those referring to P refer to properties. These iden-
tifiers map to IRIs, where information about that entity or relationship can be
found on Wikidata. Entities and relationships are also associated with labels,
where the example shows labels in English. The statement contains a primary
relation with Abraham Lincoln as subject, position held as predicate, and President
of the United States of America as object ; this relation is associated with pairs of
qualifier predicates (e.g., start time, follows) and their qualifier values (e.g., “4
March 1861”, James Buchanan); we call each such pair a qualifier. Statements are
also often associated with one or more references that support the claims and
with a rank that marks the most important statements for a given property, but
herein we can treat references and ranks as special types of qualifiers. As such,
we can define a Wikidata statement as a primary relation and a set of qualifiers.

At its core, Wikidata then consists of a set of such statements and a mapping
from identifiers to labels in various languages. However, some statements may
not contain any qualifiers (though in theory all statements should contain a
reference, the knowledge-base is, by its nature, incomplete). Datatype values
can themselves be associated with meta-data, where for example dates or times
can be associated with a specific calendar. Likewise, objects can occasionally
be existential (for example, when someone is known to have been murdered
but their killer is unknown) or non-existential (to explicitly state that an entity
has no such relation); however, these types of values are quite rare and hence
for brevity we do not consider them directly.6 Finally, it is important to note
that Wikidata can contain multiple distinct statements with the same binary
relation: for example, Clover Cleveland was the U.S. President for two non-
consecutive terms (i.e., with different start and end times, different predecessors
and successors). In Wikidata, this is represented as two separate statements
whose primary relations are both identical, but where the qualifiers (start time,
end time, follows, followed by) differ.
6 See https://tools.wmflabs.org/wikidata-todo/stats.php
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Abraham Lincoln [Q91]
position held [P39] President of the United States of America [Q11696]

start time [P580] “4 March 1861”
end time [P582] “15 April 1865”
follows [P155] James Buchanan [Q12325]
followed by [P156] Andrew Johnson [Q8612]

Fig. 1: A Wikidata statement about Abraham Lincoln (reused from [12])

3 Wikidata Representations

In the context of querying Wikidata, our goal is to compare the performance of a
selection of database engines from three different families: SPARQL, relational
and graph. Each family is associated with a different data model : named (RDF)
graphs, relations, and property graphs, respectively. Each data model may per-
mit multiple possible representations of Wikidata, for example, different RDF
reification schemes, different relational schema, etc. Although the representa-
tions we present (aside from corner cases [12]) encode the same data and do
not change the computational complexity of query evaluation – since, loosely
speaking, translating between the representations is cheaper than query evalua-
tion – as we will see, different representations carry different performance costs,
particularly for more low-level atomic lookups. We now discuss different repre-
sentations of Wikidata suitable for each of the three data models we consider.

3.1 RDF/Named Graph Representations

With respect to representing Wikidata for querying in SPARQL, in our previous
work, we considered four well-known reification schemes [12].7 Each such scheme
associates the primary relation of a statement with a statement identifier onto
which qualifiers can be associated. In Figure 2a, we give an example RDF graph
where :X1 is the statement identifier and its four outgoing edges represent the
four qualifiers from Figure 1; we also show how complex datatypes can be repre-
sented. For each of the following representations, all we are left to do is associate
the primary relation of Figure 1 – namely (Q91,P39,Q11696) – with the state-
ment identifier :X1 already associated with the qualifier information; in other
words, we wish to encode a quad (s, p, o, i) where (s, p, o) is the primary relation
of the statement and i is an identifier for the statement. We again recap these
four schemes, where more details are available from our previous paper [12].

Standard Reification (SR) [11]: an RDF resource is used to denote a triple.
Using this scheme, we can use a reified triple to encode a Wikidata statement,
as depicted in Figure 2b. We can encode n quadruples with 3n triples.

7 We refer here to “reification” in the general sense of describing triples, whereas we
refer to the specific proposal in the RDF specifications as “standard reification” [11].



:X1

:Q12325 :P155

:Q8612 :P156

:D1:P580

:D2:P582

1861-03-04
:time

1865-04-15
:time

11

:precision

:precision

:Q1985727

:calendar

:calendar

(a) Qualifier information common to all formats

:X1:Q91

r:subject

:P39

r:predicate

:Q11696

r:object

(b) Standard reification

:Q91 :X1
:P39

:Q11696
:P39v

:propertyValue

(c) n-ary relations

:Q91 :Q11696
:X1

:P39

:singletonPropertyOf

(d) Singleton properties

:X1

:Q91 :Q11696
:P39

(e) Named graphs

Fig. 2: RDF representations encoding data from Figure 1 (adapted from [12])

n-ary Relation (NR) [5]: an RDF resource is used to identify a relation. Figure 2c
shows such a scheme analogous to that proposed by Erxleben et al. [5] for repre-
sentingWikidata (modified slightly to reflect current data). The :propertyValue
edge is important to explicitly link the original property with its twin. To rep-
resent n quads with m unique properties, we require 2n+m triples.

Singleton Properties (SP) [16]: a unique property represents each statement.
The idea is captured in Figure 2d. To encode n quads, we need 2n triples.

Named Graphs [8] (NG): this is a set of pairs of the form (G, i) where G is an
RDF graph and i is an IRI (which can be omitted in the case of the default
graph). We can “flatten” this representation by taking the union over G×{i} for
each such pair, resulting directly in quads, as illustrated in Figure 2e.

3.2 Relational representations

Figure 3 exemplifies the relational representation we use for Wikidata, which
involves three tables: Statement stores the primary relation and a statement
id; Qualifier associates one or more qualifiers with a statement id; and Label
associates each entity and property with one or more multilingual labels. We



Statement
id s p o odate

X1 Q91 P39 Q11696 ⊥

Qualifier
q v vdate id

P155 Q12325 ⊥ X1
P156 Q8612 ⊥ X1
P580 ⊥ 1861-03-04 X1
P582 ⊥ 1865-04-15 X1

Label
e label lang

P39 position held en
... ... ...
Q91 Abraham Lincoln en
... ... ...

Fig. 3: Relational representation of data from Figure 1

keep the Label table separate from Statement since we wish to keep a lang
column for lookup/filtering, where labels are not qualified in Wikidata.

One complication with the relational model is that certain values – in partic-
ular the object (o) and qualifier value (v) – can have multiple types. Aside from
entities, properties and logical values (e.g., exists, not exists), Wikidata contains
four data-types – numeric, time, coordinates and strings – where as previously
mentioned, each datatype can contain meta-information such as a calendar, pre-
cision, etc. One option is to store all values in one column as strings (e.g., JSON
objects); however, this precludes the possibility of using such datatype values in
filters, doing range queries, ordering, etc. Another possibility is to create sepa-
rate columns, such as exemplified in Figure 3 with odate and vdate; however, we
would need at least five such columns to support all Wikidata datatypes, leading
to a lot of nulls in the table, and we still cannot store the meta-information. A
third option would be to create separate tables for different datatype values, but
this increases the complexity of joins. We currently use JSON strings to serialise
datatype values, along with their meta-information, and store different types in
different columns (i.e., as per Figure 3 with, e.g., odate and vdate).

3.3 Property graph representations

Graph databases commonly model data as property graphs [9]: directed edge-
labelled graphs where nodes and edges are associated with ids, where each node
and edge id can be associated with a type and a set of attributes that provide
additional meta-information.8 In Figure 4, we show how the Wikidata statement
in Figure 1 could be represented as a “direct” property graph. In this case, Q91
and Q11696 are node ids, X1 is an edge id, P39 is an edge type, pairs of the form
label_en=* are node attributes, and pairs of the form P*=* are edge attributes.
Though not used in this case, nodes can also have node types.

One may argue that property graphs offer a natural fit for Wikidata, where
we first tried to represent Wikidata in Neo4J analogous to the “direct represen-
tation” given in Figure 4, but we encountered a number of fundamental issues.
Firstly, Neo4J only allows one value per attribute property: this could be cir-
cumvented by using list values or special predicates such as label_en. Secondly,

8 Types are sometimes called “labels” and attributes are often called “properties” [9].
We avoid such terms, which clash with entity labels, RDF properties, etc.



label_en = "Abraham Lincoln"

Q91
label_en = "President of

the U.S.A."

Q11696

P580 = "1861/04/03"
P582 = "1865/04/15"
P155 = Q12325
P156 = Q8612

X1 : P39

Fig. 4: A direct property graph encoding data from Figure 1

and more generally, Neo4J does not currently support queries involving joins or
lookups on any information associated with edges, including edge ids, edge types
or edge attributes. For example, one could not query for the president who fol-
lowed (P155) James Buchanan (Q12325) without checking through all edges in
the graph; this also means that we could not retrieve the labels of properties from
such statements.9 Hence, after initial experiments revealed these limitations for
the direct representation, we sought another option.

Ultimately we chose to use a reified property graph representation to encode
Wikidata in Neo4J, as depicted in Figure 5. Conceptually the idea is similar to
standard reification for RDF, where we use a node to represent the statement and
use fixed edges to connect to the subject, predicate and object of the primary
relation. We can likewise connect to a qualifier object, which in turn points
to a qualifier predicate and value (which can be an item or a datatype). Most
importantly, this model avoids putting any domain terms (e.g, P39, P580, Q8612,
etc.) on edges, which avoids the aforementioned indexing limitations of Neo4J.
Likewise, we had to store the domain identifiers (e.g., Q91, P39) as id attributes
on nodes since node ids (and edge ids) in Neo4J are internally generated.

4 Experimental Setting

We now describe the setting for our experiments. Note that further details,
including scripts, queries, raw data, configuration settings, instructions, etc., are
provided at https://dx.doi.org/10.6084/m9.figshare.3219217. All original
material and material derived from Wikidata is available under CC-BY (cb).
The raw Wikidata dump is available under CC-0 (cz). The use of engines is
governed by the respective vendor licences.

Data: We use the Wikidata dump in JSON format from 2016/01/04, which
we converted to each representation using custom scripts. The dump contains
67 million claims describing 18 million entities, using 1.6 thousand properties,
where 493 thousand claims are qualified with 1.5 million qualifiers (not including
references or ranks), and 24 million claims have a datatype value.

9 One option would be to store property meta-data such as labels locally using at-
tributes, but this would require duplicating all such meta-data every time the prop-
erty was used; we thus ruled this out as a possibility.
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X1 : Statement

id = Q91
label_en = "Abraham Lincoln"

N2 : Entity

E1 : subject

id = P39
label_en = "position held"

N3 : Property

E2 : predicate

id = Q11696
label_en = "President of

the U.S.A."

N4 : Entity

E3 : object

N1 : Qualifier

E4 : qualifier

id = P580
label_en = "start time"

N5 : Property

E5 : qual_predicate

val = "1861-03-04"
calendar = Q1985727

precision = 11

D1 : DatatypeE6 : qual_value

Fig. 5: A reified property graph encoding a subset of the data from Figure 1

Machine: All experiments were run on a single machine with 2× Intel Xeon
Quad Core E5-2609 V3 CPUs, 32GB of RAM, and 2× 2TB Seagate 7200 RPM
32MB Cache SATA hard-disks in a RAID-1 configuration.

Engines: We used Blazegraph 2.1.0 (with Java SE "1.7.0_80"), and set 6GB of
RAM (per the vendor’s recommendations to not use larger heaps, but rather to
leave memory for OS-level caching).10 Although Blazegraph supports a setting
called RDF* to support reification [10], this model is non-standard and cannot
directly encode multiple Wikidata statements with the same primary relation: in
RDF*, each RDF triple must be unique. Though RDF* could be used to emulate
named graphs, we instead use “Quad Mode” with standard SPARQL settings.

We used Virtuoso 7.2.3-dev.3215-pthreads, where we set NumberOfBuffers
= 2720000 and MaxDirtyBuffers = 2000000 per vendor recommendations. We
used the default indexes labelled PSOG, POGS, SP, OP and GS, where S, P and O
correspond to the positions of a triple and G to the name of a graph. Each such
index is sorted and allows for prefix lookups, where for example for the index
PSOG, given a predicate p and a subject s as input, we can find all o and g in a
single lookup such that (s, p, o) is the graph named g in the data.

We used PostgreSQL 9.1.20 set with maintenance_work_mem = 1920MB and
shared_buffers = 7680MB. A secondary index (i.e. B-tree) was set for each
attribute that stores either entities, properties or data values (e.g. dates) from
Wikidata. Specifically, in the statement table (Figure 3), each attribute s, p, o,
and odate has an index as well as the attributes q, v, and vdate in the qualifier
table. In all other tables, only foreign keys attributes were indexed like, for
example, attribute e in the Label table (Figure 3).

10 https://wiki.blazegraph.com/wiki/index.php/IOOptimization
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We used Neo4J-community-2.3.1 setting a 20GB heap. We used indexes to
map from entity ids (e.g., Q42) and property ids (e.g., P1432) to their respective
nodes. By default, Neo4J indexes nodes in the graph and their adjacent nodes
in a linked-list style structure, such that it can navigate from a node to its
neighbour(s) along a specific edge without having to refer back to the index.

Aside from this, we used default vendor-recommended settings. Given that
the main use-case scenario we consider is to offer a public query service for Wiki-
data, we use REST APIs in the case of Blazegraph, Virtuoso and Neo4J. Un-
fortunately, however, we could not find a first-party REST API for PostgreSQL
and thus resorted to using a direct command-line client.

We verified the completeness of (non-timeout) results by comparing result-
sizes for the various representations. While we found minor differences (e.g.,
Blazegraph rejects dates like 2016-02-30), these were �1% of all results.

5 Experimental Results

Atomic lookups: In our first experiments, we wish to test the performance of
atomic lookups over Wikidata statements, where we focus in particular on qual-
ified statements that require more complex representations to encode. Recall that
qualified statements consist of five types of terms: subject (s), predicate (p), ob-
ject (o), qualifier predicate (q), and qualifier value (v). Hence we can consider
abstract query patterns based on quins of the form (s, p, o, q, v), where any term
can be a variable or a constant.11 For example, a pattern (?, p, o, q, ?) may have
an instance (?u1, P39, Q4164871, P580, ?u5), asking for all US presidents and the
date when their presidency started. We can consider 25 = 32 abstract patterns
of this form, where each position is either a constant or a unique variable.

To begin, we generated a set of 1.5 million (data) quins from Wikidata,
shuffled them, and used them to randomly generate 300 unique instances for
each of the 31 patterns (we exclude the open pattern (?, ?, ?, ?, ?), which only
has one instance). We select 300 since there are only 341 instances of (?, p, ?, ?, ?)
(i.e., there are 341 unique properties used on qualified statements); hence 300
allows us to have the same number of instances per pattern. In total, we have
9,300 instances, which we translate into concrete queries for our six experimental
representations. Since instances of patterns such as (?, p, ?, ?, ?) would generate
millions of results, we set a limit of 10,000 results on all queries.

We then test these queries against our four engines, where we reset the engine,
clear the cache, and start with the 300 instances of the first pattern, then moving
to the second pattern, etc., in sequence. Given that we wish to run 9,300 queries
for each representation, we set an internal server-side query timeout of 60 seconds
to ensure a reasonable overall experiment time.

11 Note that quins are not sufficient to represent Wikidata [12], where some form of
statement identifier is needed to distinguish different statements with the same pri-
mary relation; however, such identifiers are not part of the domain but rather part
of the representation, hence we do not consider them in our query patterns.



Figure 6 gives the mean runtimes for each set of 300 instances per each
pattern, where the y-axis is presented in log-scale (each horizontal line represents
an order of magnitude), and where the presented order of patterns corresponds to
the order of execution. We also include the mean considering all 9,300 instances.
The x-axis labels indicate the pattern and the mean number of tuples that should
be returned over the 300 instances (9,300 instances in the case of All). For the
purposes of presentation, when computing the mean, we count a query timeout
as 60 seconds (rather than exclude them, which would reduce the mean). Thus,
for any set of instances that encountered a timeout – indicated by (red) dots in
Figure 6 – the mean values represent a lower-bound.

We see that PostgreSQL performs best for all but three patterns, and is often
an order of magnitude faster than the next closest result, most often in the lower
range of query times from 1–100 ms, where we believe that the choice of client
may have an effect: the direct client that PostgreSQL offers does not incur the
overhead of REST incurred by other engines, which may be significant in this
range. In addition, PostgreSQL can answer instances of some patterns with a
mean in the 1–10 ms range, suggesting that PostgreSQL is perhaps not touching
the hard-disk in such cases (an SATA hard-disk takes in the order of 10 ms to
seek), and is making more efficient use of RAM than other engines.

More conceptually, PostgreSQL also benefits from its explicit physical schema:
every such pattern must join through the id columns of the Statement and
Qualifier table, which are designated and indexed as primary/foreign keys. On
the other hand, in other representations, no obvious keys exists. For example, in
the named graphs representation, which is most similar to the relational version,
a quin is encoded with a quad (s, p, o, i) (a triple in named graph i) and a triple
(i, q, v) (in the default graph). There is no special key position, but Virtuoso, with
its default indexes – PSOG, POGS, SP, OP, GS – is best suited to cases where predi-
cates are bound along with a subject or object value. The pattern (?, p, ?, ?, v) in
named graphs then illustrates a nasty case for Virtuoso: if the engine starts with
the much more selective v constant (starting with p would generate many more
initial results), its only choice is to use the OP index (the only index where O is
key) to get q from (i, q, v) using v, then POGS to get i from the same triple (i, q, v)
using (q, v), then GS to get s from (s, p, o, i) using i, then SP to get p again from
(s, p, o, i) using s, then PSOG to get o again from (s, p, o, i) using (s, p), and so we
end up joining across all five indexes in Virtuoso instead of two in the case of
PostgreSQL. Similar cases can be found for other patterns and representations,
where the lack of explicit keys complicates performing joins.

On the other hand, we see from the mean of All queries that the gap between
Virtuoso and PostgreSQL closes somewhat: this is because Virtuoso is often
competitive with PostgreSQL for more expensive patterns, even outperforming
it for the least selective pattern (?, p, ?, ?, ?). These patterns with higher runtimes
have a greater overall effect on the mean over all queries.

Conversely, we see that Neo4J and Blazegraph often fare the worst. In both
cases, we found that one query would timeout and cause a subsequent series of
queries to timeout, often early in the experiment. This occurred in quite a non-
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Fig. 6: Mean response times for the 31 patterns, and mean response times for
All patterns, where N , B, V and P refer to Neo4J, Blazegraph, Virtuoso and
Postgres, resp.; w/Lab and wo/Lab refer to Neo4J representations with and with-
out label information, resp.; NR, SR, SP, and NG refer to n-ary relations, standard
reification, singleton properties and named graphs, resp.; one, two and three
(red) dots on a bar indicate that ]0–33%], ]33–66%] and ]66–100%] of queries
timed out, resp.; timeouts are counted as 60 seconds; the x-axis labels indicate
the pattern and the mean number of complete results for the instances



deterministic manner when dealing with low-selectivity instances: in repeated
runs, different queries would instigate the issue. Given this non-determinism and
our observations of memory usage and various settings, we believe this instability
is caused by poor memory management, which leads to swapping and garbage
collector issues. On the other hand, for patterns and representations where we
did not encounter timeouts, we found that Blazegraph was often competitive
and in some cases faster than Virtuoso, with Neo4J being the slowest.

Investigating Neo4J’s performance, we speculated that the manner in which
Neo4J operates – traversing nodes in a breadth-first manner – could be negatively
affected by storing lots of embedded labels and aliases in different languages on
the nodes, adding a large I/O overhead during such traversals. To test this, we
built a version of Neo4J without labels. We found that this indeed improved
performance, but typically by a constant factor: i.e., it was not the sole cause
of slow query times. Investigating further, we found that the engine does not
seem to make use of reliable selectivity estimates. One such example of this is to
compare the results of (s, ?, ?, ?, ?) versus (s, ?, o, ?, ?) where the performance of
the latter query is much worse than the former despite the fact that the latter
could be run as the former, applying a simple filter thereafter. Investigating
these curious results, we found that Neo4J often naively chooses to start with
o rather than s, where objects often have low selectivity; for example, they can
be countries of birth, or genders, etc. In general, we found the query planning
features of Neo4J to be ill-suited to these sorts of queries.

Basic graph patterns: The atomic-lookup experiments show a clear distinction
between two pairs of engines: Neo4J–Blazegraph and Virtuoso–PostgreSQL. Al-
though PostgreSQL generally outperformed Virtuoso, these results may not hold
for other types of queries. Thus having analysed atomic lookups involving qual-
ifiers, next we wished to focus on queries involving joins. To guide the design of
these queries, we studied the 94 example queries present on the official Wikidata
query service12 – queries submitted by the Wikidata community as exemplary
use-cases of the service – to see what are the most common types of joins that
appear. From this study, we identified that queries most commonly feature “s–s”
joins – joins from subject to subject – and “s–o” joins – joins from subject to
object, specifically on the primary relation. These observations correspond with
other analyses of real-world SPARQL queries [6,17]. We also identified that for
almost all queries, p is bound and that patterns form trees. About 80/94 queries
followed this pattern: 11/94 involved qualifier information and 3/94 involved
variables in the predicate position. We thus designed a set of experiments to
generate a large number of instances of basic graph patterns (bgps) that follow
the same abstract structure as most commonly observed in the use-case queries.

The first query pattern, which we refer to as depth-1 “snowflake”, starts with
a subject variable and adds between 1 and 6 edges to it. The predicate of each
edge is bound, and each object is made a constant or a variable with equal proba-
bility. The subject variable is projected; object variables are projected or not with

12 https://query.wikidata.org/, see “Examples”.

https://query.wikidata.org/
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Fig. 7: Mean response times and result sizes for the snowflake queries of depth-1
and depth-2 (please see caption of Figure 6 for explanation of legend, etc.)

equal probability. An example depth-1 bgp is as follows, with projected vari-
ables underlined: {(?s, P19, Q2280), (?s, P106, ?v1), (?s, P31, ?v2), (?s, P27, ?v3)},
which asks for entities born in Minsk (P19,Q2280), their occupation(s) (P106),
their citizenship(s) (P27), and checks that they are an instance (P31) of some-
thing. Each such instance thus tests s–s joins. We run an SQL query to generate
10,000 clusters of six unique primary relations from the data (joined by sub-
ject). We then randomly select 300 clusters to generate the depth-1 bgps we
use in the experiments. These are then converted into concrete queries for each
representation. Each such query is guaranteed to return at least one result.

The second query pattern, which we call depth-2 “snowflake”, adds a second
layer to the query. More specifically, we start with a depth-1 query and then se-
lect an object variable at random to be used as the subject variable for a nested
depth-1 bgp (with out-degree of 0–4); e.g. {(?s, P140, Q9592), (?s, P27, Q30),
(?s, P725, ?v1), (?s, P39, ?o), (?o, P511, Q1337757), (?o, P910, ?u1)} is a depth-
2 bgp that asks for entities with religion Catolicism (P140,Q9592), who are cit-
izens of the U.S. (P27,Q30), who have a given name (P725), and who have a
position (P39) with the title “His Eminence” (P511,Q1337757), additionally re-
questing the main category (P910) of that position. The result is a tree of depth
two that tests s–s joins and s–o joins. We again use an SQL query to generate
10,000 clusters of data that can answer such patterns, randomly selecting 300 to
generate instances that we convert into concrete queries in each representation.

For each setting, we run each batch of 300 queries sequentially and separately,
clearing the cache and resetting the engine before each such batch. As before,
each query is set to return a limit of 10,000 results and each engine is assigned
an internal timeout of 60 seconds where, in Figure 7, we see the results of these
experiments, using similar conventions as before. The mean result sizes show
that these queries tend to have low selectivity (i.e., lots of results).

We see that this time, Virtuoso performs best overall, where in particular
the n-ary relations and named graph representations experience zero timeouts
and outperform PostgreSQL (with a 15–19% timeout rate) by an order of mag-
nitude in both experiments. Regarding these two engines, the situation is almost
the inverse of that for the previous experiments. In these experiments, under
the standard reification and named graphs settings, the predicates are always



bound, and the queries require a lot of self-joins (joins on the same table, for
example for multiple distinct tuples about a given subject entity, which are par-
ticular common in SPARQL due to the structure of RDF). Virtuoso’s indexing
scheme – which in a relational sense considers predicates as a form of key for
complete quads – is well-tuned for this morphology of query and excels for these
settings. In more depth, Virtuoso can perform prefix lookups, meaning that a
pattern (s, p, ?) or (?, p, o) can be performed in one lookup on its PSOG/POGS
indexes respectively. On the other hand, PostgreSQL must join s/o with p (non-
key attributes), through the statement ids (the key attribute), incurring a lot
more work. In the case of singleton properties for Virtuoso, since the predicate
encodes the statement identifier, these remain as a variable, which again means
that Virtuoso struggles. We also observe that s–o joins cause some difficulty for
Virtuoso in the n-ary relation setting for depth-2 queries.

On the other hand, we see that most of the queries time-out for Neo4J and
Blazegraph; more specifically, we encountered the same “domino effect” where
one timeout causes a sequence of subsequent timeouts. Note that we only tested
Neo4J without labels (the setting in which it is most efficient).

Query features: The aforementioned 94 use-case queries (taken from the public
query service) use a mix of query features, where from SPARQL 1.0, 45/94
queries use ORDER BY, 38/94 use OPTIONAL, 21/94 use LIMIT, and 10/94 use
UNION; and from SPARQL 1.1, 27/94 use GROUP BY, 18/94 use recursive property
paths (i.e., * or +, mainly for traversing type hierarchies), 10/94 use BIND, and
5/94 use negation in the form of NOT EXISTS. Likewise, queries often use FILTER
and occasionally sub-queries, though usually relating to handling labels. In any
case, we see that a broad range of SPARQL (1.1) features are often used.

Testing all of these combinations of features in a systematic way would re-
quire extensive experiments outside the current scope but as an exercise, we
translated a selection of eight such queries using a variety of features to our six
representations. During that translation, we encountered a number of difficulties.

The first issue was with recursive property paths. With respect to SPARQL,
these queries cannot be expressed for SR and SP due to how the RDF is struc-
tured, and are only possible in NG assuming the default graph contains the union
(or merge) of all named graphs.13 Although Neo4J specifically caters for these
sorts of queries, the necessity to use a reified representation means that they
are no longer possible. One solution in such cases would be to store the “di-
rect” unqualified relations also. With PostgreSQL, it is in theory possible to use
WITH_RECURSIVE to achieve paths, though being a more general operator, it is
more difficult for the engine to optimise, thus incurring performance costs.

The second issue was with datatype values. In the case of PostgreSQL, a num-
ber of queries involve filters on dates, where currently we store datatype values
as a JSON string, where SQL does not allow for parsing such objects. In order
to better handle datatypes, one possibility is to create a different table for each

13 Paths cannot be traversed across named graphs in SPARQL unless loaded into the
default graph by FROM clauses, which would require using specific statement ids.



datatype, with columns for the meta-information it can carry (calendar, preci-
sion, etc.). Another option is to use a non-standard feature for semi-structured
data, where PostgreSQL has recently released support for accessing values in
JSON objects stored in a table through its JSONB functionality.

Aside from these issues, the user queries can be expressed in any of the
settings. We refer the interested reader to our previous work [12], where we
present some example results for a selection of fourteen such queries over five
different SPARQL engines and four representations.

6 Related Work

The goal of our work was to compare SPARQL, relational and graph databases
for the purposes of querying Wikidata. Other authors have performed similar
experimental comparisons across database families. Abreu et al. [1] compared a
SPARQL engine (RDF-3X [15]) with a number of graph databases, showing that
RDF-3X outperformed existing graph databases for the task of graph pattern
matching. Bizer and Schultz [3] proposed the Berlin SPARQL Benchmark for
comparing SPARQL engines with SPARQL-to-SQL engines and MySQL directly,
concluding that MySQL easily outperformed the best performing SPARQL en-
gine; however, these results were published in 2009 when SPARQL had only
been standardised for one year, and likewise the dataset selected was inherently
relational in nature. Our results complement such studies.

7 Conclusions

Our experiments revealed a number of strength and weaknesses for the tested en-
gines and representations in the context of Wikidata. In terms of where systems
could be improved, we recommend that Blazegraph and Neo4J should better
isolate queries such that one poorly performing query does not cause a domino
effect. Likewise, our results show that Neo4J would benefit from better query
planning statistics and algorithms, as well as the provision of more customisable
indices, particular on edge information. With respect to Virtuoso, it falls behind
PostgreSQL in our first experiments due to the default indexing scheme chosen,
but performs better in our second experiments based on real-world queries where
predicates are bound and joins follow more “typical” patterns. On the other hand,
PostgreSQL could benefit from better support for semi-structured information,
where JSONB is indeed a step in the right direction. Regarding representations,
we found that standard reification and named graphs performed best, with n-ary
relations following in third, and singleton properties not being well-supported.

In this paper, we have not covered all pertinent issues for choosing an en-
gine and representation – issues such as licensing, standardisation, support for
inference, federation, etc. – but based on our results for query performance, the
best configuration for a Wikidata query service would probably (currently) use
Virtuoso and named graphs: a combination that performed well in experiments
and that supports the various query features needed, including property paths.
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