
Searching and Browsing LinkedData with SWSE:
the SemanticWeb Search Engine

Aidan Hogan a, Andreas Harth b, Jürgen Umbrich a, Sheila Kinsella a, Axel Polleres a,
Stefan Decker a

aDigital Enterprise Research Institute, National University of Ireland, Galway
bAIFB, Karlsruhe Institute of Technology, Germany

Abstract

In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following
traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for
search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web data –
loosely also known as Linked Data – which implies unique challenges for the system design, architecture, algorithms,
implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for
Web data: the unique challenges of the Web – in terms of scale, unreliability, inconsistency and noise – are largely
overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing
the architecture and later elaborating upon the function, design, implementation and performance of each individual
component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a best-
effort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support
our design choices, and also offer discussion on future directions and open research questions. Later, we also provide
candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream,
and lessons learnt from roughly six years working on the Semantic Web Search Engine project.

Key words: Web search, semantic search, RDF, Semantic Web, Linked Data

1. Introduction

Offering a minimalistic and uncluttered user in-
terface, a simple keyword-based user-interaction

Email addresses: aidan.hogan@deri.org (Aidan Hogan),
harth@kit.edu (Andreas Harth),
juergen.umbrich@deri.org (Jürgen Umbrich),
sheila.kinsella@deri.org (Sheila Kinsella),

axel.polleres@deri.org (Axel Polleres),
stefan.decker@deri.org (Stefan Decker).
1 The work presented in this paper has been funded

in part by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2) and by an IRCSET postgraduate

scholarship.

model, fast response times, and astute prioritisation
of results, Google [18] has become the yard-stick for
Web-search, servicing approximately 64.6% of tra-
ditional Web search queries 2 over billions of Web
documents. Arguably, Google reaches the imminent
limit of providing the best possible search over the
largely HTML data it indexes. However, from the
user perspective, the core Google engine (here serv-
ing as the archetype for traditional HTML search
engines, such as Yahoo, MSN/Bing, AOL, Ask, etc.)
is far from the consummate Web search solution:

2 Statistics taken from Nielsen MegaView Search for
∼11 g searches recorded in Aug. 2009: cf. http://

searchenginewatch.com/3634991

Preprint submitted to Elsevier 14 June 2011

Google does not typically produce direct answers to
queries, but instead typically recommends a selec-
tion of related documents from the Web. We note
that in more recent years, Google has begun to pro-
vide direct answers to prose queries matching cer-
tain common templates – for example, “population
of china” or “12 euro in dollars” – but again, such
functionality is limited to a small subset of popular
user queries. Furthermore, Google now provides in-
dividual and focussed search interfaces over images,
videos, locations, news articles, books, research pa-
pers, blogs, and realtime social media – although
these tools are inarguably powerful, they are limited
to their respective domain.

In the general case, Google is not suitable for com-
plex information gathering tasks requiring aggre-
gation from multiple indexed documents: for such
tasks, users must manually aggregate tidbits of per-
tinent information from various recommended het-
erogeneous sites, each such site presenting informa-
tion in its own formatting and using its own naviga-
tion system. In effect, Google’s limitations are pred-
icated on the lack of structure in HTML documents,
whose machine interpretability is limited to the use
of generic markup-tags mainly concerned with doc-
ument rendering and linking. Although Google ar-
guably makes the best of the limited structure avail-
able in such documents, most of the real content is
contained in prose text which is inherently difficult
for machines to interpret. Addressing this inherent
problem with HTML Web data, the Semantic Web
movement provides a stack of technologies for pub-
lishing machine-readable data on the Web, the core
of the stack being the Resource Description Frame-
work (RDF).

Using URIs to name things – and not just doc-
uments – RDF offers a standardised and flexible
framework for publishing structured data on the
Web (i) such that data can be linked, incorporated,
extended and re-used by other RDF data across the
Web, (ii) such that heterogeneous data from inde-
pendent sources can be automatically integrated by
software-agents, and (iii) such that the meaning of
data can be well-defined using lightweight ontologies
described in RDF using the RDF Schema (RDFS)
and Web Ontology Langauge (OWL) standards.

Thanks largely to the “Linked Open Data”
project [14] – which has emphasised more prag-
matic aspects of Semantic Web publishing – a rich
lode of open RDF data now resides on the Web:
this “Web of Data” includes content exported from,
for example: Wikipedia, the BBC, the New York

Times, Flickr, Last.fm, scientific publishing indexes,
biomedical information and governmental agencies.
This precedent raises an obvious question: assum-
ing large-scale adoption of high-quality RDF pub-
lishing on the Web, could a search engine indexing
RDF feasibly improve upon current HTML-centric
engines? Theoretically at least, such a search en-
gine could offer advanced querying and browsing of
structured data with search results automatically
aggregated from multiple documents and rendered
directly in a clean and consistent user-interface, thus
reducing the manual effort required of its users.
Indeed, there has been much research devoted to
this topic, with various incarnations of (mostly aca-
demic) RDF-centric Web search engines emerging
– e.g., Swoogle, Falcons, Watson, Sindice – and in
this paper, we present the culmination of over six
years research on another such engine: the “Seman-
tic Web Search Engine” (SWSE) 3 .

Indeed, the realisation of SWSE has implied two
major research challenges:

(i) the system must scale to large amounts of
data; and

(ii) the system must be robust in the face of
heterogeneous, noisy, impudent, and possibly
conflicting data collected from a large number
of sources.

Semantic Web standards and methodologies are not
naturally applicable in such an environment; in pre-
senting the design and implementation of SWSE, we
show how standard Semantic Web approaches can
be tailored to meet these two challenging require-
ments, often taking cues from traditional informa-
tion retrieval techniques.

As such, we present the core of a system which
we demonstrate to provide scale, and which is dis-
tributed over a cluster of commodity hardware.
Throughout, we focus on the unique challenges of
applying standard Semantic Web techniques and
methodologies, and show why the consideration of
the source of data is an integral part of creating
a system which must be tolerant to Web data –
in particular, we show how Linked Data principles
can be exploited for such purposes. Also, there are
many research questions still very much open with
respect to the direction of the overall system, as well
as improvements to be made in the individual com-
ponents; we discuss these as they arise, rendering
a road-map of past, present and possible future re-
search in the area of Web search over RDF data.

3 http://swse.deri.org/

2

More specifically, in this paper we:
– present the architecture and modus-operandi of

our system for offering search and browsing over
RDF Web data (Section 2);

– present high-level related work in RDF search en-
gines (Section 3);

– present core preliminaries required throughout
the rest of the paper (Section 4);

– detail the design, distributed implementation and
evaluation of the offline index building compo-
nents, including crawling (Section 5), consolida-
tion (Section 6), ranking (Section 7), reasoning
(Section 8), and indexing (Section 9);

– summarise the runtimes for each of the offline
tasks (Section 10);

– detail the design, distributed implementation and
evaluation of the runtime components, includ-
ing our (lightweight) query-processor (Section 11)
and user-interface (Section 12);

– conclude with discussion of future directions, open
research challenges and current limitations of Web
search over RDF data (Sections 13–14).

2. System Overview

In this section, we outline the functionality of
the SWSE system. We begin with an overview of
the functionality offered to end users (Section 2.1).
Thereafter we present the high-level SWSE archi-
tecture (Section 2.2) and describe the distributed
framework upon which our components operate
(Section 2.3). Wrapping up this section, we detail
the software and hardware environments used for
the experiments detailed herein (Section 2.4).

2.1. Application Overview

To put later discussion into context, we now give
a brief overview of the lightweight functionality of
the SWSE system; please note that although our
methods and algorithms are tailored for the specific
needs of SWSE, many aspects of their implementa-
tion, design and evaluation apply to more general
scenarios.

Unlike prevalent document-centric Web search
engines, SWSE operates over structured data and
holds an entity-centric perspective on search: in con-
trast to returning links to documents containing
specified keywords [18], SWSE returns data rep-
resentations of real-world entities. While current
search engines such as Google, Bing and Yahoo re-

turn search results in different domain-specific cate-
gories (Web, Images, Videos, Shopping, etc.), data
on the Semantic Web is flexibly typed and does not
need to follow pre-defined categories. Returned ob-
jects can represent people, companies, cities, pro-
teins – anything people care to publish data about.

In a manner familiar from traditional Web search
engines, SWSE allows users to specify keyword
queries in an input box and responds with a ranked
list of result snippets; however, the results refer to
entities not documents. A user can then click on
an entity snippet to derive a detailed description
thereof. The descriptions of entities are automati-
cally aggregated from arbitrarily many sources, and
users can cross-check the source of particular state-
ments presented; descriptions also include inferred
data – data which has not necessarily been pub-
lished, but has been derived from the existing data
through reasoning. Users can subsequently navigate
to related entities, as such, browsing the Web of
Data.

Along these lines, Figure 1 shows a screen-
shot containing a list of entities returned as a
result to the keyword search “bill clinton”
– such results pages are familiar from HTML-
centric engines, with the addition of re-
sult types (e.g., DisbarredAmericanLawyers,
AmericanVegitarians, etc.). Results are aggre-
gated from multiple sources. Figure 2 shows a
screenshot of the focus (detailed) view of the
Bill Clinton entity, with data aggregated from
54 documents spanning six domains (bbc.co.uk,
dbpedia.org, freebase.com, nytimes.com,
rdfize.com and soton.ac.uk), as well as novel
data found through reasoning.

2.2. System Architecture

The high-level system architecture of SWSE
loosely follows that of traditional HTML search en-
gines [18]. Figure 3 details the pre-runtime archi-
tecture of our system, showing the components in-
volved in achieving a local index of RDF Web data
amenable for search. Like traditional search engines,
SWSE contains components for crawling, ranking
and indexing data; however, there are also compo-
nents specifically designed for handling RDF data,
namely the consolidation component and the rea-
soning component. The high-level index building
process is as follows:
– the crawler accepts a set of seed URIs and re-

3

Fig. 1. Results view for keyword query Bill Clinton Fig. 2. Focus view for entity Bill Clinton

trieves a large set of RDF data from the Web;
– the consolidation component tries to find synony-

mous (i.e., equivalent) identifiers in the data, and
canonicalises the data according to the equiva-
lences found;

– the ranking component performs links-based
analysis over the crawled data and derives scores
indicating the importance of individual elements
in the data (the ranking component also consid-
ers URI redirections encountered by the crawler
when performing the links-based analysis);

– the reasoning component materialises new data
which is implied by the inherent semantics of the
input data (the reasoning component also requires
URI redirection information to evaluate the trust-
worthiness of sources of data);

– the indexing component prepares an index which
supports the information retrieval tasks required
by the user interface.

Subsequently, the query-processing and user-
interface components service queries over the index
built in the previous steps.

Our methods follow the standards relating to
RDF [92], RDFS [65] and OWL [115], and leverage
the Linked Data principles [9] which state how RDF
should be published on the Web. As such, our meth-
ods should be 100% precise (aka. sound) with re-
spect to data correctly published according to these
documents, but we note that oftentimes, the noise
inherent in heterogenous RDF Web data may create
unintended results. We characterise these problems
as they occur, although we know of no method for
accurately determining the amount of incorrect or
unwanted results generated by these tasks – we note
that such considerations may also be subjective (for

example, see [54]).
We will detail the design and operation of each of

the components in the following sections, but before-
hand, we present the distribution framework upon
which all of our components are implemented.

2.3. Distribution Abstraction

In order to scale, we deploy each of our compo-
nents over a distributed framework which we now
briefly describe; Figure 4 illustrates the distributed
operations possible in our framework. The frame-
work is based on a shared nothing architecture [116]
and consists of one master machine which orches-
trates the given tasks, and several slave machines
which perform parts of the task in parallel.

The master machine can instigate the following
distributed operations:
– scatter: partition a file into chunks given some

local split function, and send the chunks to indi-
vidual machines – usually only used to initialise
a task and seed the slave machines with an initial
set of data for processing;

– run: request the parallel execution of a task by the
slave machines – such a task either involves pro-
cessing of some local data (embarrassingly paral-
lel execution), or execution of the co-ordinate
method by the slave swarm;

– gather: gathers chunks of output data from the
slave swarm and performs some local merge func-
tion over the data – this is usually performed to
create a single output file for a task, or more usu-
ally to gather global knowledge required by all
slave machines for a future task;

4

Pre-Runtime

Intermediary Results

Runtime

RDF Data /
Redirects

Consolidated
Data

Identifier
Ranks

ConsolidateCrawl Rank Reason Index

Reasoned
Data

Query
Processing

Seed
URIs

Fig. 3. System Architecture

– flood: broadcast global knowledge required by all
slave machines for a future task.

The master machine is intended to disseminate in-
put data to the slave swarm, to provide the control
logic required by the distributed task (commencing
tasks, co-ordinating timing, ending tasks), to gather
and locally perform tasks on global knowledge which
the slave machines would otherwise have to repli-
cate in parallel, and to transmit globally required
knowledge. The master machine can also be used to
compute the final result for a given distributed task;
however, the end goal of our distributed framework
is to produce a distributed index over the slave ma-
chines, thus this task is never required in our system.

The slave machines, as well as performing tasks in
parallel, can perform the following distributed op-
eration (on the behest of the master machine):
– co-ordinate: local data on each machine is par-

titioned according to some split function, with
the chunks sent to individual machines in parallel;
each machine also gathers the incoming chunks in
parallel using some merge function.
The above operation allows slave machines to par-

tition and disseminate intermediary data directly
to other slave machines; the co-ordinate operation
could be replaced by a pair of gather/scatter op-
erations performed by the master machine, but we
wish to avoid the channelling of all such intermedi-
ary data through one machine.

We note that our framework resembles the
MapReduce framework [31], with scatter loosely
corresponding to the Map operation, and gather
loosely corresponding to the Reduce operation;
similarly, the split function corresponds loosely to
the Partition function, and the co-ordinate func-
tion loosely corresponds to the Shuffle operation
in the MapReduce setting.

2.4. Software Environment/Hardware

We instantiate this architecture using the stan-
dard Java Remote Method Invocation libraries as

a convenient means of development given our Java
code-base.

All of our evaluation is based on nine machines
connected by Gigabit ethernet 4 , each with uniform
specifications; viz.: 2.2GHz Opteron x86-64, 4GB
main memory, 160GB SATA hard-disks, running
Java 1.6.0 12 on Debian 5.0.4. Please note that much
of the evaluation presented in this paper assumes
that the slave machines have roughly equal specifi-
cations in order to ensure that tasks finish in roughly
the same time, assuming even data distribution.

We currently do not consider more advanced top-
ics in our architecture – such as load-balancing (with
the exception of evenly distributing data), replica-
tion, uptime and counteracting hardware failure –
and discussion of these fall outside of the current
scope.

3. Related Work

In this section, we give an overview of related
work, firstly detailing distributed architectures for
Web search (Section 3.1), then discussing related
systems in the field of “Hidden Web” and “Deep
Web” (Section 3.2), and finally describing current
systems that offer search and browsing over RDF
Web data (Section 3.3) – for a further survey of the
latter, cf. [127]. Please note that we will give further
detailed related work in the context of each compo-
nent throughout the paper.

3.1. Distributed Web Search Architectures

Distributed architectures have long been com-
mon in traditional information-retrieval based Web
search engines, incorporating distributed crawl-
ing, ranking, indexing and query-processing compo-
nents. Although all mainstream search engines are
based on distributed architectures, details are not

4 We observe, e.g., a max FTP transfer rate of 38MB/sec

between machines.

5

split

run(argsn) flood

flood
flood

flood

scattern

scatter1

scatter0

scatter...

splitsplit

split

run(args1)
run(args0)

gathern

gather1

gather0

gather
merge

merge merge

merge

split

merge

coordinate0...n

run(...)
init’ed

rea
dy

send

ready

fin
is

he
d

m

s0

s1

sn

s0

s1

sn

s0

s1

sn

s0

s1

sn

m m

m

s0 s1

sn

.........

...

...

prepare

Fig. 4. Distribution Methods Architecture

commonly published. Again, one of the most well-
known search engine architectures is that previously
described for the Google search engine [18]. More
recent publications relating to the Google architec-
ture relate to the MapReduce framework previously
alluded to [31], and to the underlying BigTable [23]
distributed database system.

Similar system architectures have been defined
in the literature, including WebBase [70] which in-
cludes an incremental crawler, storage manager, in-
dexer and query processor; in particular, the authors
focus on hash- and log-based partitioning for stor-
ing incrementally-updated vast repositories of Web
documents. The authors of [94] also describe a sys-
tem for building a distributed inverted-index over
a large corpus of Web pages, for subsequent analy-
sis and query-processing: they employ an embedded
distributed database system.

Much of the work presented herein is loosely in-
spired by such approaches, and thus constitutes
an adaptation of such works for the purposes of
search over structured data. Since we consider repli-
cation, fault tolerance, incremental indexing, etc.,
currently out of scope, many of our techniques are
more lightweight than those discussed.

3.2. Hidden Web/Deep Web Approaches

So called “Hidden Web” or “Deep Web” ap-
proaches [21] are predicated on the premise that a
vast amount of the information available on the Web
is veiled behind sites with heavy dynamic content,
usually backed by relational databases. Such infor-
mation is largely impervious to traditional crawl-

ing techniques since content is usually generated
by means of bespoke flexible queries; thus, tradi-
tional search engines can only skim the surface of
such information [66]. In fact, such data-rich sources
have lead to early speculative work on entity-centric
search [28].

Approaches to exploit such sources heavily rely
on manually constructed, site-specific wrappers to
extract structured data from HTML pages [21],
or to communicate directly with the underlying
database of such sites [24]. Some works have also
looked into automatically crawling such hidden-
Web sources, by interacting with forms found dur-
ing traditional crawls [112]; however, this approach
is “task-specific” and not appropriate for general
crawling.

The Semantic Web may represent a future direc-
tion for bringing deep-Web information to the sur-
face, leveraging RDF as a common and flexible data-
model for exporting the content of such databases,
leveraging RDFS and OWL as a means of describing
the respective schemata, and thus allowing for au-
tomatic integration of such data by Web search en-
gines. Efforts such as D2R(Q) [13] seem a natural fit
for enabling RDF exports of such online databases.

3.3. RDF-centric Search Engines

Early prototypes using the concepts of ontologies
and semantics on the Web include Ontobroker [32]
and SHOE [67], which can be seen as predecessors
to standardisation efforts such as RDFS and OWL,
describing how data on the Web can be given in
structured form, and subsequently crawled, stored,

6

inferenced and queried over.
Swoogle 5 offers search over RDF documents by

means of an inverted keyword index and a relational
database [38]. Swoogle calculates metrics that allow
ontology designers to check the popularity of certain
properties and classes. In contrast to SWSE, which
is mainly concerned with entity search over instance
data, Swoogle is mainly concerned with more tradi-
tional document-search over ontologies.
Watson 6 provides a similar effort to provide

keyword search facilities over Semantic Web docu-
ments, but additionally provides search over enti-
ties [114,29]. However, they do not include compo-
nents for consolidation or reasoning, and seemingly
instead focus on providing APIs to external services.

Sindice 7 is a registry and lookup service for RDF
files based on Lucene and a MapReduce frame-
work [103]. Sindice originally focussed on provid-
ing an API for finding documents which reference
a given RDF entity or given keywords – again,
document-centric search. More recently however,
Sindice has begun to offer entity search in the form
of Sig.Ma 8 [120]. However, Sig.ma maintains a one-
to-one relationship between keyword search and re-
sults, representing a very different user-interaction
model to that presented herein.

The Falcons Search engine 9 offers entity-centric
searching for entities (and concepts) over RDF
data [27]. They map certain keyword phrases to
query relations between entities, and also use class
hierarchies to quickly restrict initial results. Con-
ceptually, this search engine most closely resembles
our approach. However, there are significant differ-
ences in how the individual components of SWSE
and Falcons are designed and implemented. For ex-
ample, like us, they also rank entities, but using a
logarithm of the count of documents in which they
are mentioned – we employ a links-based analysis
of sources. Also, Falcons supports reasoning involv-
ing class hierarchies, whereas we apply a more gen-
eral rule based approach, applying a scalable subset
of OWL 2 RL/RDF rules. Such differences will be
discussed further throughout this paper, and in the
context of the individual components.

Aside from the aforementioned domain-agnostic
search systems, we note that other systems focus on

5 http://swoogle.umbc.edu/
6 http://watson.kmi.open.ac.uk/WatsonWUI/
7 http://sindice.com/
8 http://sig.ma
9 http://iws.seu.edu.cn/services/falcons/

exploiting RDF for the purposes of domain-specific
querying; for example, the recent GoWeb system 10

demonstrates the benefit of searching structured
data for the biomedical domain [36]. However, in
catering for a specific domain, such systems do not
target the same challenges and use-cases as we do.

4. Preliminaries

Before we continue, we briefly introduce some
standard core notation used throughout the paper
– relating to RDF terms (constants), triples and
quadruples – and also discuss Linked Data princi-
ples. Note that in this paper, we will generally use
bold-face to refer to infinite sets: e.g., G refers to
the set of all triples; we will use calligraphy font to
denote a subset thereof: e.g., G is a particular set of
triples, where G ⊂ G.

4.1. Resource Description Framework

The Resource Description Framework provides a
structured means of publishing information describ-
ing entities through use of RDF terms and RDF
triples, and constitutes the core data model for our
search engine. In particular, RDF allows for option-
ally defining names for entities using URIs and al-
lows for subsequent re-use of URIs across the Web;
using triples, RDF allows to group entities into
named classes, allows to define named relations be-
tween entities, and allows for defining named at-
tributes of entities using string (literal) values. We
now briefly give some necessary notation.

RDF Constant Given a set of URI references U,
a set of blank nodes B, and a set of literals L, the
set of RDF constants is denoted by C = U∪B∪L.
The set of blank nodes B is a set of existensially
quantified variables. The set of literals is given as
L = Lp ∪ Ld, where Lp is the set of plain literals
and Ld is the set of typed literals. A typed literal is
the pair l = (s,d), where s is the lexical form of the
literal and d∈ U is a datatype URI. The sets U, B,
Lp and Lt are pairwise disjoint.

Please note that in this paper, we treat blank
nodes as their skolem versions: i.e., not as existential
variables, but as denoting their own syntactic form.
We also ensure correct merging of RDF graphs [65]
by using blank-node labels unique for a given source.

10http://gopubmed.org/goweb/

7

For URIs, we use namespace prefixes in this paper
as common in the literature – the full URIs can be re-
trieved from the convenient http://prefix.cc ser-
vice. For space reasons, we sometimes denote owl:

as the default namespace.

RDF Triple A triple t = (s, p, o) ∈ (U∪B)×U×
(U ∪B ∪ L) is called an RDF triple. In a triple (s,
p, o), s is called subject, p predicate, and o object.

RDF Graph We call a finite set of triples an RDF
graph G ⊂ G where G = (U∪B)×U×(U∪B∪L).

RDF Entity We refer to the referent of a URI
or blank-node as an RDF entity, or commonly just
entity.

4.2. Linked Data, Data Sources, Quadruples, and
Dereferencing

In order to cope with the unique challenges of
handling diverse and unverified Web data, many of
our components and algorithms require inclusion of
a notion of provenance: consideration of the source of
RDF data found on the Web. Tightly related to such
notions are the Linked Data Best Practices (here
paraphrasing [9]):
LDP1 use URIs to name things;
LDP2 use HTTP URIs so that those names can be

looked up;
LDP3 provide useful structured information when

a look-up on a URI is made – loosely, called deref-
erencing ;

LDP4 include links using external URIs.
In particular, within SWSE, these best-practices
form the backbone of various algorithms designed
to interact and be tolerant to Web data.

We must thus extend RDF triples with context
to denote the source thereof [53,58]. We also de-
fine some relations between the identifier for a data
source, and the graph it contains, including a func-
tion to represent HTTP redirects prevalently used
in Linked Data for LDP3 [9].

Data Source We define the http-download function
get : U→ 2G as the mapping from a URI to an RDF
graph it may provide by means of a given HTTP
lookup [47] which directly returns status code 200

OK and data in a suitable RDF format. 11 We define

11 2G refers to the powerset of S.

the set of data sources S ⊂ U as the set of URIs
S = {s ∈ U | get(s) 6= ∅}. We define the reference
function refs : C→ 2S as the mapping from an RDF
term to the set of data sources that mention it.

RDF Triple in Context/RDF Quadruple A pair (t,
c) with a triple t = (s, p, o), c ∈ S and t ∈ get(c) is
called a triple in context c. We may also refer to (s, p,
o, c) as an RDF quadruple or quad q with context c.

HTTP Dereferencing We define dereferencing as
the function deref : U→ U which maps a given URI
to the identifier of the document returned by HTTP
lookup operations upon that URI following redirects
(for a given finite and non-cyclical path) [47], or
which maps a URI to itself in the case of failure.
Note that we do not distinguish between the differ-
ent 30x redirection schemes, and that this function
would involve, e.g., stripping the fragment identifier
of a URI [11]. Note that all HTTP level functions
{get, refs, deref} are set at the time of the crawl, and
are bounded by the knowledge of our crawl: for ex-
ample, refs will only consider documents accessed by
the crawl.

5. Crawling

We now begin the discussion of the first compo-
nent required for building the index, and thus for
retrieving the raw RDF documents from the Web:
that is, the crawler. Our crawler starts with a set of
seed URIs, retrieves the content of URIs, parses and
writes content to disk in the form of quads, and re-
cursively extracts new URIs for crawling. We lever-
age Linked Data principles (see Section 4.2) to dis-
cover new sources, where following LDP2 and LDP3,
we consider all http: protocol URIs extracted from
an RDF document as candidates for crawling.

Like traditional HTML crawlers, we identify the
following requirements for crawling:
– Politeness: The crawler must implement po-

liteness restrictions to avoid hammering remote
servers with dense HTTP GET requests and
to abide by policies identified in the provided
robots.txt files 12 .

– Throughput: The crawler should crawl as many
URIs as possible in as little time as is possible
within the bounds of the politeness policies.

12http://www.robotstxt.org/orig.html

8

– Scale: The crawler should employ scalable tech-
niques, and on-disk indexing as required.

– Quality: The crawler should prioritise crawling
URIs it considers to be “high quality”.
Thus, the design of our crawler is inspired by re-

lated work from traditional HTML crawlers. Addi-
tionally – and specific to crawling structured data –
we identify the following requirement:
– Structured Data: The crawler should retrieve

a high percentage of RDF/XML documents and
avoid wasted lookups on unwanted formats: e.g.,
HTML documents.
Currently, we crawl for RDF/XML syntax docu-

ments – RDF/XML is still the most commonly used
syntax for publishing RDF on the Web, and we plan
in future to extend the crawler to support other for-
mats such as RDFa, N-Triples and Turtle.

The following algorithm details the operation of
the crawler, and will be explained in detail through-
out this section.

5.1. High-level Approach

Our high-level approach is to perform breath-first
crawling, following precedent set by traditional Web
crawlers (cf. [15] [69]): the crawl is conducted in
rounds, with each round crawling a frontier. On a
high-level, Algorithm 1 represents this round-based
approach applying Rounds number of rounds. The
frontier comprises of seed URIs for round 0 (Algo-
rithm 1, Line 1), and thereafter with novel URIs
extracted from documents crawled in the previous
round (Algorithm 1, Line 21). Thus, the crawl em-
ulates a breadth-first traversal of inter-linked Web
documents. (Note that the algorithm is further tai-
lored according to requirements we will describe as
the section progresses.)

As we will see later in the section, the round-
based approach fits well with our distributed frame-
work, allowing for crawlers to work independently
for each round, and co-ordinating new frontier URIs
at the end of each round. Additionally, [99] show that
a breadth-first traversal strategy tends to discover
high-quality pages early on in the crawl, with the jus-
tification that well-linked documents (representing
higher quality documents) are more likely to be en-
countered in earlier breadth-first rounds; similarly,
breadth first crawling leads to a more diverse dataset
earlier on, rather than a depth-first approach which
may end up traversing deep paths within a given
site. In [88], the authors justify a rounds-based ap-

Algorithm 1 Algorithm for crawling

Require: Seeds, Rounds, Pld-Limit, Min-
Delay

1: frontier ← Seeds
2: pld0...n ← new queue
3: stats← new stats
4: while rounds+ 1 < Rounds do
5: put frontier into pld0...n
6: while depth+ 1 < Pld-Limit do
7: for i = 0 to n do
8: prioritise(pldi, stats)
9: end for

10: start← current time()
11: for i = 0 to n do
12: curi = calculate cur(pldi, stats)
13: if curi > random([0,1]) then
14: get uri from pldi
15: urideref = deref(uri)
16: if urideref = uri then
17: G = get(uri)
18: output G
19: UG ← URIs in G
20: UG ← prune blacklisted from UG
21: add unseen URIs in UG to frontier
22: update stats wrt. UG
23: else
24: if urideref is unseen then
25: add urideref to frontier
26: update stats for urideref
27: end if
28: end if
29: end if
30: end for
31: elapsed← current time() - start
32: if elapsed <Min-Delay then
33: wait(Min-Delay− elapsed)
34: end if
35: end while
36: end while

proach to crawling according to observations that
writing/reading concurrently and dynamically to a
single queue can become the bottleneck in a large-
scale crawler.

5.1.1. Incorporating Politeness
The crawler must be careful not to bite the

hands that feed it by hammering the servers of
data providers or breaching policies outlined in the
provided robots.txt file [118]. We use pay-level-
domains [88] (PLDs; a.k.a. “root domains”; e.g.,

9

bbc.co.uk) to identify individual data-providers,
and implement politeness on a per-PLD basis.
Firstly, when we first encounter a URI for a PLD,
we cross-check the robots.txt file to ensure that we
are permitted to crawl that site; secondly, we imple-
ment a “minimum PLD delay” to avoid hammering
servers, viz.: a minimum time-period between sub-
sequent requests to a given PLD. This is given by
Min-Delay in Algorithm 1.

In order to accommodate the min-delay policy
with minimal effect on performance, we must refine
our crawling algorithm: large sites with a large inter-
nal branching factor (large numbers of unique intra-
PLD outlinks per document) can result in the fron-
tier of each round being dominated by URIs from
a small selection of PLDs. Thus, näıve breadth-first
crawling can lead to crawlers hammering such sites;
conversely, given a politeness policy, a crawler may
spend a lot of time idle waiting for the min-delay to
pass.

One solution is to reasonably restrict the branch-
ing factor [88] – the maximum number of URIs
crawled per PLD per round – which ensures that
individual PLDs with large internal fan-out are not
hammered; thus, in each round of the crawl, we im-
plement a cut-off for URIs per PLD, given by Pld-
Limit in Algorithm 1.

Secondly, to ensure the maximum gap between
crawling successive URIs for the same PLD, we im-
plement a per-PLD queue (given by pld0...n in Al-
gorithm 1) whereby each PLD is given a dedicated
queue of URIs filled from the frontier, and during
the crawl, a URI is polled from each PLD queue in
a round-robin fashion. If all of the PLD queues have
been polled before the min-delay is satisfied, then
the crawler must wait: this is given by Lines 31–34
in Algorithm 1. Thus, the minimum crawl time for a
round – assuming a sufficiently full queue – becomes
Min-Delay * Pld-Limit.

5.1.2. On-disk Queue
As the crawl continues, the in-memory capacity

of the machine will eventually be exceeded by the
capacity required for storing URIs [88]. Perform-
ing a stress-test, we observed that with 2GB of
JAVA heap-space, the crawler could crawl approx.
199 k URIs (additionally storing the respective fron-
tier URIs) before throwing an out-of-memory ex-
ception. In order to scale beyond the implied main-
memory limitations of the crawler, we implement
on-disk storage for URIs, with the additional ben-

efit of maintaining a persistent state for the crawl
and thus offering a “continuation point” useful for
extension of an existing crawl, or recovery from fail-
ure.

We implement the on-disk storage of URIs using
Berkeley DB which comprises of two indexes – the
first provides lookups for URI strings against their
status (polled/unpolled); the second offers a key-
sorted map which can iterate over unpolled URIs in
decreasing order of inlink count. The inlink count
reflects the total number of documents from which
the URI has been extracted thus far; we deem a
higher count to roughly equate to a higher priority
URI.

The crawler utilises both the on-disk index and
the in-memory queue to offer similar functionality
as above. The on-disk index and in-memory queue
are synchronised at the start of each round:

(i) links and respective inlink counts extracted
from the previous round (or seed URIs if the
first round) are added to the on-disk index;

(ii) URIs polled from the previous round have
their status updated on-disk;

(iii) an in-memory PLD queue is filled using an
iterator of on-disk URIs sorted by descending
inlink count.

Most importantly, the above process ensures that
only the URIs active (current PLD queue and fron-
tier URIs) for the current round must be stored in
memory. Also, the process ensures that the on-disk
index stores the persistent state of the crawler up to
the start of the last round; if the crawler unexpect-
edly dies, the crawl can be resumed from the start of
the last round. Finally, the in-memory PLD queue
is filled with URIs sorted in order of inlink count, of-
fering a cheap form of intra-PLD URI prioritisation
(Algorithm 1, Line 8).

5.1.3. Multi-threading
The bottle-neck for a single-threaded crawler will

be the response times of remote servers; the CPU
load, I/O throughput and network bandwidth of a
crawling machine will not be efficiently exploited
by sequential HTTP GET requests over the Web.
Thus, crawlers are commonly multi-threaded to mit-
igate this bottleneck and perform concurrent HTTP
lookups. At a certain point of increasing the num-
ber of lookup threads operating, the CPU load,
I/O load, or network bandwidth becomes an im-
mutable bottleneck; this becomes the optimal num-
ber of threads.

10

In order to find a suitable thread count for our
particular setup (with respect to processor/network
bandwidth), we conducted some illustrative small-
scale experiments comparing a machine crawling
with the same setup and input parameters, but with
an exponentially increasing number of threads: in
particular, we measure the time taken for crawling
1,000 URIs given a seed URI 13 for 1, 2, 4, 8, 16,
32, 64, and 128 threads. Also, to alleviate the pos-
sible effects of remote caching on our comparison of
increasing thread counts, we pre-crawled all of the
URIs before running the benchmark.

For the different thread counts, Figure 5 overlays
the total time taken in minutes to crawl the 1,000
URIs, and also overlays the average percentage CPU
idle time. 14 Time and CPU% idle noticeably have
a direct correlation. As the number of threads in-
creases up until 64, the time taken for the crawl de-
creases – the reduction in time is particularly pro-
nounced in earlier thread increments; similarly, and
as expected, the CPU idle time decreases as a higher
density of documents are retrieved and processed.
Beyond 64 threads, the effect of increasing threads
becomes minimal as the machine reaches the limits
of CPU and disk I/O throughput; in fact, the total
time taken starts to increase – we suspect that con-
tention between threads for shared resources affects
performance. Thus, we settle upon 64 threads as an
approximately optimal figure for our setup.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 64 128 256
 0

 20

 40

 60

 80

 100

to
ta

l c
ra

w
l t

im
e

(m
in

s.
)

av
er

ag
e

%
C

P
U

 id
le

threads

total crawl time (mins.)
average %CPU idle

Fig. 5. Total time (mins.) and average percentage of CPU

idle time for crawling 1,000 URIs with a varying number of
threads

13http://sw.deri.org/~aidanh/foaf/foaf.rdf
14 Idle times are measured as (100 - %CPU Usage), where
CPU usage is extracted from the UNIX command ps taken

every three seconds during the crawl.

5.1.4. Crawling RDF/XML
Since our architecture is currently implemented

to index RDF/XML, we would feasibly like to max-
imise the ratio of HTTP lookups which result in
RDF/XML content; i.e., given the total HTTP
lookups as L, and the total number of downloaded
RDF/XML pages as R, we would like to maximise
the useful ratio: ur = R/L.

In order to reduce the amount of HTTP lookups
wasted on non-RDF/XML content, we implement
the following heuristics:

(i) firstly, we blacklist non-http protocol URIs;
(ii) secondly, we blacklist URIs with common file-

extensions that are highly unlikely to return
RDF/XML (e.g., html, jpg, pdf, etc.) follow-
ing arguments we previously laid out in [121];

(iii) thirdly, we check the returned HTTP header
and only retrieve the content of URIs reporting
Content-type: application/rdf+xml; 15

(iv) finally, we use a credible useful ratio when
polling PLDs to indicate the probability that
a URI from that PLD will yield RDF/XML
based on past observations.

Our third heuristic involves rejecting con-
tent based on header information; this is per-
haps arguable in that previous observations [76]
indicate that 17% of RDF/XML documents
are returned with a Content-type other than
application/rdf+xml. Thus, we automatically ex-
clude such documents from our crawl; however, here
we put the onus on publishers to ensure correct re-
porting of Content-type.

With respect to the fourth heuristic above, we im-
plement an algorithm for selectively polling PLDs
based on their observed useful ratio; since our
crawler only requires RDF/XML, we use this score
to access PLDs which offer a higher percentage of
RDF/XML more often. Thus, we can reduce the
amount of time wasted on lookups of HTML doc-
uments and save the resources of servers for non-
RDF/XML data providers.

The credible useful ratio for PLD i is derived from
the following credibility formula:

curi =
rdfi + µ

totali + µ

where rdfi is the total number of RDF documents
returned thus far by PLD i, totali is the total num-
ber of lookups performed for PLD i excluding redi-

15 Indeed, one advantage RDF/XML has over RDFa is an

unambiguous MIME-type useful in such situations

11

rects, and µ is a “credibility factor”. The purpose of
the credibility formula is to dampen scores derived
from few readings (where totali is small) towards the
value 1 (offering the benefit-of-the-doubt), with the
justification that the credibility of a score with few
readings is less than that with a greater number of
readings: with a low number of readings (totali �
µ), the curi score is affected more by µ than actual
readings for PLD i; as the number of readings in-
creases (totali � µ), the score is affected more by
the observed readings than the µ factor. Note that
we set this constant to 10. 16

Example 1 If we observe that PLD a = deri.org

has returned 1/5 RDF/XML documents and PLD b
= w3.org has returned 1/50 RDF/XML documents,
and if we assume µ = 10, then cura = (1 + µ)/(5 +
µ) = 0.73 and curb = (1 + µ)/(50 + µ) = 0.183. We
thus ensure that PLDs are not unreasonably pun-
ished for returning non-RDF/XML documents early
on (i.e., are not immediately assigned a cur of 0. �

To implement selective polling of PLDs according
to their useful ratio, we simply use the cur score as a
probability of polling a URI from that PLD queue in
that round (Algorithm 1, Lines 12–13). Thus, PLDs
which return a high percentage of RDF/XML doc-
uments – or indeed PLDs for which very few URIs
have been encountered – will have a higher prob-
ability of being polled, guiding the crawler away
from PLDs which return a high percentage of non
RDF/XML documents.

We evaluated the useful ratio scoring mechanism
on a crawl of 100k URIs, with the scoring enabled
and disabled. In the first run, with scoring dis-
abled, 22,504 of the lookups resulted in RDF/XML
(22.5%), whilst in the second run with scoring
enabled, 30,713 lookups resulted in RDF/XML
(30.7%). Table 1 enumerates the top 5 PLDs which
were polled and the top 5 PLDs which were skipped
for the crawl with scoring enabled, including the
useful ratio (ur – the unaltered ratio of useful doc-
uments returned to non-redirect lookups) and the
weighted useful ratio score (cur). The top 5 polled
PLDs were observed to return a high-percentage of
RDF/XML, and the top 5 skipped PLDs were ob-
served to return a low percentage of RDF.

16 Admittedly, a ‘magic number’; however, the presence of

such a factor is more important than its actual value: without
the credibility factor, if the first document returned by a PLD
was non-RDF/XML, then that PLD would be completely

ignored for the rest of the crawl

PLD polled skipped ur cur % polled

top five polled

linkedmdb.org 1,980 0 1 1 100

geonames.org 1,971 26 0.996 0.996 98.7

rdfabout.com 1,944 0 1 1 100

fu-berlin.de 1,925 74 0.947 0.949 96.3

bbc.co.uk 1,917 33 0.982 0.982 98.3

top five skipped

deri.ie 233 1,814 0.013 0.054 11.4

megginson.com 196 1,795 0 0.049 9.8

xbrl.us 206 1,785 0 0.046 10.3

wikipedia.org 203 1,784 0 0.051 10.2

uklug.co.uk 215 1,776 0 0.044 10.7

Table 1

Useful ratio (ur) and credible useful ratio (cur) for the top

five most often polled/skipped PLDs

5.2. Distributed Approach

We have seen that given a sufficient number of
threads, the bottleneck for multi-threaded crawling
becomes the CPU and/or I/O capabilities of one ma-
chine; thus, by implementing a distributed crawling
framework balancing the CPU workload over multi-
ple machines, we expect to increase the throughput
of the crawl. We apply the crawling to our frame-
work as follows:

(i) scatter: the master machine scatters a seed
list of URIs to the slave machines, using a
hash-based split function;

(ii) run: each slave machine adds the new URIs to
its frontier and performs a round of the crawl,
writing the retrieved and parsed content to the
local hard-disk, and creating a frontier for the
next round;

(iii) co-ordinate: each slave machine then uses the
split function to scatter new frontier URIs to
its peers.

Steps (ii) & (iii) are recursively applied until
Rounds has been fulfilled. Note that in Step (ii),
we adjust the Min-Delay for subsequent HTTP
lookups to a given PLD value by multiplying the
number of machines: herein, we somewhat relax our
politeness policy (e.g., no more than 8 lookups ev-
ery 4 seconds, as opposed to 1 lookup every 0.5 sec-
onds), but deem the heuristic sufficient assuming a
relatively small number of machines and/or large
number of PLDs.

In order to evaluate the effect of increasing the
number of crawling machines within the framework,
we performed a crawl performing lookups on 100k
URIs on 1, 2, 4 and 8 machines using 64 threads.
The results are presented in Table 2, showing num-

12

#machines 1 2 4 8

mins 360 156 71 63

%delay 1.8 10 81.1 94.6

Table 2
Time taken for a crawl performing lookups on 100 k URIs,

and average percentage of time each queue had to enforce a

politeness wait, for differing numbers of machines

ber of machines, number of minutes taken for the
crawl, and also the percentage of times that the in-
memory queue had to be delayed in order to abide
by our politeness policies. There is a clear increase
in the performance of the crawling with respect to
increasing number of machines. However, in moving
from four machines to eight, the decrease in time
is only 11.3%. With 8 machines (and indeed, start-
ing with 4 machines), there are not enough active
PLDs in the queue to fill the adjusted min-delay of
4 seconds (8*500 ms), and so the queue has a delay
hit-rate of 94.6%.

We term this state PLD starvation: the slave
machines do not have enough unique PLDs to
keep them occupied until the Min-Delay has been
reached. Thus, we must modify somewhat the end-
of-round criteria to reasonably improve performance
in the distributed case:
– firstly, a crawler can return from a round if the
Min-Delay is not being filled by the active PLDs
in the queue – the intuition here being that new
PLDs can be discovered in the frontier of the
next round;

– secondly, to ensure that the slave machines don’t
immediately return in the case that new PLDs are
not found in the frontier, we implement a Pld-
Limit which ensures that slave machines don’t
immediately return from the round;

– finally, in the case that one slave crawler returns
from a round due to some stopping criteria, the
master machine will request that all other slave
machines also end their round such that machines
do not remain idle waiting for their peers to re-
turn.
The above conditions help to somewhat miti-

gate the effect of PLD starvation on our distributed
crawl; however, given the politeness restriction of
500 ms per PLD, this becomes a hard-limit for per-
formance independent of system architecture and
crawling hardware, instead imposed by the nature
of the Web of Data itself. Also, as a crawl pro-
gresses, active PLDs (PLDs with unique content still
to crawl) will become less and less, and the perfor-
mance of the distributed crawler will approach that
of a single-machine crawl. As Linked Data publish-

ing expands and diversifies, and as the number of
servers offering RDF content increases, better per-
formance would be observed for distributed crawling
on larger numbers of machines: for the moment, we
observe that 8 machines currently approaches the
limit of performance given our setup and policies.

5.3. Full-Scale Evaluation

To perform scale-up experiments for the crawler –
and indeed to achieve a large dataset for evaluation
of later components – we ran the crawler continu-
ously for 52.5 h on 8 machines from a seed list of
∼8 m URIs extracted from an old dataset with cur
scoring enabled. 17 In that time, we gathered a total
of 1.118 g quads, of which 11.7 m were duplicates
(∼1% – representing duplicate triples being asserted
in the same document); we provide a selection of
statistics characterising the dataset in Appendix A.

We observed a mean of 140 m quads per machine
and an average absolute deviation of 1.26 m across
machines: considering that the average absolute de-
viation is ∼1% of the mean, this indicates near op-
timal balancing of output data on the machines.

The crawl attempted 9.206 m lookups, of which
448 k (4.9%) were for robots.txt files. Of the
remaining 8.758 m attempted lookups, 4.793 m
(54.7%) returned response code 200 Okay, 3.571 m
(40.7%) returned a redirect response code of the
form 3xx, 235 k (2.7%) returned a client error code
of the form 4xx and 95 k (1.1%) returned a server
error of the form 5xx; 65 k (0.7%) were disallowed
due to restrictions specified by the robots.txt file.
Of the 4.973 m lookups returning response code
200 Okay, 4.022 m (83.9%) returned content-type
application/rdf+xml, 683 k (14.3%) returned
text/html, 27 k (0.6%) returned text/turtle, 27 k
(0.6%) returned application/json, 22 k (0.4%) re-
turned application/xml, with the remaining 0.3%
comprising of relatively small amounts of 97 other
content-types. Of the 3.571 m redirects, 2.886 m
(80.8%) were 303 See Other as used in Linked
Data to disambiguate general resources from infor-
mation resources, 398 k (11.1%) were 301 Moved

Permanently, 285 k (8%) were 302 Found, 744
(∼0%) were 307 Temporary Redirect and 21 (∼0%)
were 300 Multiple Choices. In summary, of the
non-robots.txt lookups, 40.7% were redirects and

17 The crawl was conducted in late May, 2010

13

45.9% were 200 Okay/application/rdf+xml (as re-
warded in our cur scoring mechanism).

An overview of the total number of URIs crawled
per each hour is given in Figure 6; in particular, we
observe a notable decrease in performance as the
crawl progresses. In Figure 7, we give a breakdown
of three categories of lookups: 200 Okay/RDF/XML
lookups, redirects, and other – again, our cur scoring
views the latter category as wasted lookups. We note
an initial decrease in the latter category of lookups,
which then plateaus and varies between 2.2% and
8.8%.

During the crawl, we encountered 140 k PLDs,
of which only 783 served content under 200

Okay/application/rdf+xml. However, of the non-
robots.txt lookups, 7.748 m (88.5%) were on
the latter set of PLDs: on average, 7.21 lookups
were performed on each PLD which returned no
RDF/XML, whereas on average, 9,895 lookups
were performed on each PLD which returned some
RDF/XML. Figure 8 gives the number of active
and new PLDs per crawl hour, where ‘active PLDs’
refers to those to whom a lookup was issued in that
hour period, and ‘new PLDs’ refers to those who
were newly accessed in that period; we note a high
increase in PLDs at hour 20 of the crawl, where a
large amount of ‘non-RDF/XML PLDs’ were dis-
covered. Perhaps giving a better indication of the
nature of PLD starvation, Figure 9 renders the same
information for only those PLDs who return some
RDF/XML, showing that half of said PLDs are ex-
hausted after the third hour of the crawl, that only
a small number of new ’RDF/XML PLDs’ are dis-
covered after the third hour (between 0 and 14 each
hour), and that the set of active PLDs plateaus at
∼50 towards the end of the crawl.

5.4. Related Work

Parts of our architecture and some of our design
decisions are influenced by work on traditional Web
crawlers; e.g., the IRLBot system of Lee et al. [88]
and the distributed crawler of Boldi et. al. [15].

The research field of focused RDF crawling is still
quite a young field, with most of the current work
based on the lessons learnt from the more mature
area of traditional Web crawling. Related work in
the area of focused crawling can be categorised [7]
roughly as follows:
– classic focused crawling : e.g., [22] uses primary

link structure and anchor texts to identify pages

about a topic using various text similarity of link
analysis algorithms;

– semantic focused crawling : is a variation of classi-
cal focused crawling but uses conceptual similar-
ity between terms found in ontologies [41,40]

– learning focused crawling : [37,107] uses classifica-
tion algorithms to guide crawlers to relevant Web
paths and pages.
However, a major difference between these ap-

proaches and ours is that our definition of high qual-
ity pages is not based on topics or ontologies, but
instead on the content-type of documents.

With respect to crawling RDF, the Swoogle search
engine implements a crawler which extracts links
from Google, and further crawls based on various
– sometimes domain specific – link extraction tech-
niques [38]; like us, they also use file extensions to
throw away non-RDF URIs. In [27], the authors pro-
vide a very brief description of the crawler used by
the FalconS search engine for obtaining RDF/XML
content; interestingly, they provide statistics identi-
fying a power-law type distribution for the number
of documents provided by each pay-level domain,
correlating with our discussion of PLD-starvation.
In [114], for the purposes of the Watson engine, the
authors use Heritrix 18 to retrieve ontologies using
Swoogle, Google and Protégé indexes, and also crawl
by interpreting rdfs:seeAlso and owl:imports as
links – they do not exploit the dereferencability of
URIs popularised by Linked Data. Similarly, the
Sindice crawler [103] retrieves content based on a
push model, crawling documents which pinged some
central service such as PingTheSemanticWeb 19 ;
they also discuss a PLD-level scheduler for ensuring
politeness and diversity of data retrieved.

However, none of the above RDF crawlers pro-
vide significant analysis of performance, nor do
they discuss a distribution model for crawling.
Also for example, none discuss punishing/rewarding
PLDs based on previous experience of the ratio of
RDF/XML content retrieved therefrom.

5.5. Future Directions and Open Research
Questions

From a pragmatic perspective, we would priori-
tise extension of our crawler to handle arbitrary
RDF formats – especially the RDFa format which
is growing in popularity. Such an extension may

18http://crawler.archive.org/
19http://pingthesemanticweb.com

14

 0

 50000

 100000

 150000

 200000

 250000

 10 20 30 40 50

lo
ok

up
s

hour

total lookups

Fig. 6. Number of HTTP lookups per crawl hour.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

%
 o

f t
ot

al
 lo

ok
up

s

hour

200 Okay RDF/XML
redirects

other

Fig. 7. Breakdown of HTTP lookups per crawl hour.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10 20 30 40 50

no
. o

f p
ld

s

hour

active plds
new plds

Fig. 8. Breakdown of PLDs per crawl hour.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50

no
. o

f p
ld

s

hour

active ’RDF’ plds
new ’RDF’ plds

Fig. 9. Breakdown of RDF/XML PLDs per crawl hour.

mandate modification of the current mechanisms
for ensuring a high percentage of RDF/XML doc-
uments: for example, we could no longer blacklist
URIs with a .html file extension, nor could we rely
on the Content-type returned by the HTTP header
(unlike RDF/XML, RDFa does not have a specific
MIME-type).

Along these lines, we could perhaps also investi-
gate extraction of structured data from non-RDF
sources; these could include Microformats, meta-
data embedded in documents such as PDFs and im-
ages, extraction of HTML meta-information, HTML
scraping, etc. Again, such a process would require re-
visitation of our RDF-centric focused crawling tech-
niques.

The other main challenge posed in this section is
that of PLD starvation; although we would expect
this to become less of an issue as the Semantic Web
matures, it perhaps bears further investigation. For
example, we have yet to fully evaluate the trade-off

between small rounds with frequent updates of URIs
from fresh PLDs, and large rounds which persist
with a high delay-rate but require less co-ordination.
Also, given the inevitability of idle time during the
crawl, it may be practical from a performance per-
spective to give the crawler more tasks to do in or-
der to maximise the amount of processing done on
the data, and minimise idle time.

Finally, we have not discussed the possibility of
incremental crawls: choosing URIs to recrawl may
lead to interesting research avenues. Besides obvi-
ous solutions such as HTTP caching, URIs could be
re-crawled based on, e.g., detected change frequency
of the document over time, some quality metric for
the document, or how many times data from that
document was requested in the UI. More practically,
an incremental crawler could use PLD statistics de-
rived from previous crawls, and the HTTP headers
for URIs – including redirections – to achieve a much
higher ratio of lookups to RDF documents returned.

15

Such considerations would largely countermand the
effects of PLD starvation, by reducing the amount
of lookups the crawler needs in each run.

6. Entity Consolidation

In theory, RDF enables excellent data-integration
over data sourced from arbitrarily many sources
– as is the case for our corpora collected by our
crawler. However, this integration is premised on the
widespread sharing and re-use – across all sources
– of URIs for specific entities. In reality, different
RDF documents on the Web published by indepen-
dent parties often speak about the same entities us-
ing different URIs [75]; 20 to make matters worse,
RDF allows for the definition of anonymous entities
– entities identified by a blank node – without a pre-
scribed URI.

As an example, in our 1.118 g statement Linked
Data corpus we found 23 different URIs identify-
ing the person Tim Berners-Lee – these identifiers
spanned 9 different PLDs. 21 Now, given a keyword
query for “tim berners lee”, the data using each
of the 23 different identifiers would be split over 23
different results, even though they all refer to the
same entity.

Offering search and querying over a raw RDF
dataset collected from the Web would thus entail
many duplicate results referring to the same entity,
emulating the current situation on the HTML Web
where information about different resources is frag-
mented across source documents. Given a means of
identifying equivalent entities in RDF data – enti-
ties representing the same real-world individual but
identified incongruously – would enable the merging
of information contributions on an entity given by
heterogeneous sources without the need for consis-
tent URI naming of entities.

In fact, OWL [115] provides some standard so-
lutions to such problems. Firstly, OWL defines the
owl:sameAs property which is intended to relate
two equivalent entities; the property has symmet-
ric, transitive and reflexive semantics as one would
expect. Many sources on the Web offer owl:sameAs
links between entities described locally and equiva-
lent entities described remotely.

20 In fact, Linked Data principles could be seen as encourag-

ing this practice, where dereferencable URIs must be made
local.
21 These equivalent identifiers were found through explicit

owl:sameAs relations.

Further, OWL provides some other mechanisms
for discovering implicit owl:sameAs relations in the
absence of explicit relations: the most prominent
such example is provision of the class owl:Inverse-
FunctionalProperty, which defines a class of prop-
erties whose value uniquely identifies an entity. One
example of an inverse-functional property would be
an ISBN property, where ISBN values uniquely iden-
tify books. If two entities share the same ISBN
value, a same-as relation can be inferred between
them. Using OWL, same-as relations can also be
detected using owl:FunctionalProperty, owl:-

maxCardinality, and owl:cardinality (and, now
in OWL2RL using owl:maxQualifiedCardinality
and owl:qualifiedCardinality): however, the re-
call of inferences involving the latter OWL con-
structs are relatively small [77] and thus considered
out of scope here.

In [75], we provided a simple batch-processing
based approach for deriving owl:sameAs rela-
tions between individuals using inverse-functional
properties defined in the data. However, in our
experience, the precision of such inferences can
be quite poor. As an example, in [75] we found
85,803 equivalent individuals to be inferable
from a Web dataset through the incongruous
values 08445a31a78661b5c746feff39a9db6e4e2cc5cf

and da39a3ee5e6b4b0d3255bfef95601890afd80709

for the prominent inverse-functional property
foaf:mbox sha1sum: the former value is the sha1-
sum of an empty string and the latter is the
sha1-sum of the ‘mailto:’ string, both of which
are erroneously published by online Friend Of A
Friend (FOAF – a very popular vocabulary used
for personal descriptions) exporters. 22 Aside from
obvious pathological cases – which can of course be
blacklisted – publishers commonly do not respect
the semantics of inverse-functional properties [76].

More recently, in [72] we showed that we could
find 1.31x sets of equivalent identifiers by includ-
ing reasoning over inverse-functional properties and
functional-properties, than when only considering
explicit owl:sameAs. These sets contained 2.58x
more identifiers. However, we found that the addi-
tional equivalences found through such an approach
were mainly between blank-nodes on domains which
do not use URIs to identify resources, common for
older FOAF exporters: we found a 6% increase in
URIs involved in an equivalence. We again observed

22 See, for example http://blog.livedoor.jp/nkgw/foaf.

rdf

16

that the equivalences given by such an approach
tend to offer more noise than when only considering
explicit owl:sameAs relations.

In fact, the performance of satisfactory, high-
precision, high-recall entity consolidation over large-
scale Linked Data corpora is still an open research
question. At the moment, we rely on owl:sameAs

relations which are directly asserted in the data
to perform consolidation, and this section briefly
outlines our distributed approach, provides perfor-
mance evaluation for the algorithm, and provides
some insights into the fecundity of such an approach
– with respect to finding equivalence – over Linked
Data.

6.1. High-level Approach

The overall approach involves two scans of the
main body of data, with the following high-level
steps:

(i) owl:sameAs statements are extracted from the
data: the main body of data is scanned once,
identifying owl:sameAs triples and buffering
them to a separate location;

(ii) the transitive/symmetric closure of the
owl:sameAs statements are computed, infer-
ring new owl:sameAs relations;

(iii) for each set of equivalent entities found (each
equivalence class), a canonical identifier is
chosen to represent the set in the consolidated
output;

(iv) the main body of data is again scanned and
consolidated: identifiers are rewritten to their
canonical form – we do not rewrite identifiers
in the predicate position, objects of rdf:type
triples, or literal objects.

In previous work, we have presented two ap-
proaches for performing such consolidation; in [75],
we stored owl:sameAs in memory, computing the
transitive/symmetric closure in memory, and per-
forming in-memory lookups for canonical identi-
fiers in the second scan. In [77], we presented
a batch-processing technique which uses on-disk
sorts and scans to execute the owl:sameAs transi-
tive/symmetric closure, and the canonicalisation of
identifiers in the main body of data. The former
approach is in fact much faster in that it reduces
the amount of time consumed by hard-disk I/O op-
erations; however, the latter batch-processing ap-
proach is not limited by the main-memory capacity
of the system. Either approach is applicable with our

consolidation component (even in the distributed
case); however, since for the moment we only operate
on asserted owl:sameAs statements (we found ∼12
m owl:sameAs statements in our full-scale crawl,
which we tested to be within our 4GB in-memory
capacity using the flyweight pattern), for now we
apply the faster in-memory approach.

Standard OWL semantics mandates duplication
of data for all equivalent terms by the semantics of
replacement (cf. Table 4, [51]). However, this is not a
practical option at scale. Firstly, the amount of du-
plication will be quadratic with respect to the size of
an equivalence class – as we will see in Section 6.3,
we find equivalence classes with 8.5 k elements. If
one were to apply transitive, reflexive and symmet-
ric closure of equivalence over these identifiers, we
would produce 8.5k2 = 72.25m owl:sameAs state-
ments alone; further assuming an average of 6 unique
quads for each identifier – 51 k unique quads in to-
tal – we would produce a further 433.5 m repetitive
statements by substituting each equivalent identifier
into each quad. Secondly, such duplication of data
would result in multitudinous duplicate results be-
ing presented to end-users, with obvious impact on
the usability of the system.

Thus, the practical solution is to abandon stan-
dard OWL semantics and instead consolidate the
data by choosing a canonical identifier to represent
the output data for each equivalence class. Canon-
ical identifiers are chosen with preference of URIs
over blank-nodes, and thereafter we arbitrarily use a
lexicographical order – the canonical identifiers are
only used internally to represent the given entity. 23

Along these lines, we also preserve all URIs used
to identify the entity by outputting owl:sameAs re-
lations to and from the canonical identifier (please
note that we do not preserve redundant blank-node
identifiers which are only intended to have a local
scope, have been assigned arbitrary labels during
the crawling process, and are not subject to re-use),
which can subsequently be used to display all URIs
originally used to identify an entity, or to act as a
“redirect” from an original identifier to the canoni-
cal identifier containing the pertinent information.

In the in-memory map structure, each equivalence
class is assigned a canonical identifier according to
the above ordering. We then perform a second scan
of the data, rewriting terms according to canonical

23 If necessary, the ranking algorithm presented in the next
section could be used to choose the most popular identifier

as the canonical identifier.

17

identifiers. Please note that according to OWL Full
semantics, terms in the predicate position and ob-
ject position of rdf:type triples should be rewrit-
ten (referring to term positions occupied by prop-
erties and classes respectively in membership asser-
tions; again, cf. Table 4, [51]). However, we do not
wish to rewrite these terms: in OWL, equivalence be-
tween properties can instead be specified by means
of the owl:equivalentProperty construct, and be-
tween classes as the owl:equivalentClass con-
struct. 24 We omit rewriting class/property terms in
membership assertions, handling inferences involv-
ing classes/properties by alternate means in Sec-
tion 8.

Thus, in the second scan, the subject and object
of non-rdf:type statements are rewritten according
to the canonical identifiers stored in the in-memory
map, with rewritten statements written to output. If
no equivalent identifiers are found, the statement is
buffered to the output. When the scan is complete,
owl:sameAs relations to/from canonical URIs and
their equivalent URIs are appended to the output.
Consolidation is now complete.

6.2. Distributed Approach

Assuming that the target-data of the consolida-
tion is arbitrarily and preferably evenly split over
multiple machines – as is the result of our crawling
component – we can apply the consolidation process
in a distributed manner as follows:

(i) run: owl:sameAs statements are extracted
from the data in parallel on each slave ma-
chine;

(ii) gather: the owl:sameAs statements are gath-
ered onto the master machine, which computes
the transitive/symmetric closure over them,
and chooses the canonical identifiers;

(iii) flood: the closed owl:sameAs statements and
chosen canonical identifiers are sent (in their
entirety) to the slave machines;

(iv) run: in parallel, the slave machines scan the
main body of data, rewriting identifiers to
their canonical form and outputting canoni-
calised triples to a new file.

In the above process, only the owl:sameAs state-
ments need be transferred between machines. The

24 As an example of näıve usage of owl:sameAs between

classes and properties on the Web, please see: http:

//colab.cim3.net/file/work/SICoP/DRMITIT/DRM_OWL/

Categorization/TaxonomyReferenceModel.owl

#machines 1 2 4 8

mins 12 6.2 3.2 1.8

Table 3

Time taken for consolidation of ∼31.3 m statements for dif-

fering numbers of machines

more expensive on-disk scans can be conducted in
parallel, and thus we would reasonably expect near-
linear scale with respect to the number of machines
for consolidation over a fixed dataset – the assump-
tions being that the data has been pre-distributed,
that the proportion of owl:sameAs statements is rel-
atively small compared to the main body of data,
and that the dataset is relatively large compared
with the number of machines (all of which apply in
our setting).

In order to evaluate the above claim, we ran a
small scale experiment over 1, 2, 4 and 8 machines
using a dataset of 31.3 m statements extracted from
one of the 100 k URI crawls from the previous
section. The dataset contained 24.9 k owl:sameAs

statements. Table 3 presents the total time taken for
each experiment, where in particular, performance
appears to be a near-linear function on the number
of machines.

6.3. Full-scale Evaluation

Using the above setup, we ran consolidation over
our full-scale (1.118 g) RDF crawl with one master
and 8 slave machines. The entire consolidation pro-
cess took 63.3 min.

The first scan extracting owl:sameAs statements
took 12.5 min, with an average idle time for the
servers of 11 s (1.4%) – i.e., on average, the slave ma-
chines spent 1.4% of the time idly waiting for peers
to finish. Transferring, aggregating and loading the
owl:sameAs statements on the master machine took
8.4 min. In total, 11.93 m owl:sameAs statements
were extracted; 2.16 m equivalence classes were
found, containing 5.75 m terms – an average of 2.65
elements per equivalence class. Figure 10 presents
the distribution of sizes of the equivalence classes,
where the largest equivalence class contains 8,481
equivalent entities and 1.6 m (74.1%) equivalence
classes contain two equivalent identifiers.

Table 4 shows the canonical URIs for the largest
5 equivalence classes, and whether the results were
verified as correct/incorrect by manual inspection.
Indeed, results for class 1 and 2 were deemed in-
correct due to overly-liberal use of owl:sameAs for
linking drug-related entities in the DailyMed and

18

LinkedCT exporters. 25 Results 3 and 5 were veri-
fied as correct consolidation of prominent Semantic
Web related authors, resp.: Dieter Fensel and
Rudi Studer – authors are given many duplicate
URIs by the RKBExplorer co-reference index. 26

Result 4 contained URIs from various sites gener-
ally refering to the United States, mostly from DB-
Pedia and LastFM. With respect to the DPPedia
URIs, these (i) were equivalent but for capitilisa-
tion variations or stop-words, (ii) were variations of
abbreviations or valid synonyms, (iii) were differ-
ent language versions (e.g., dbpedia:États Unis),
(iv) were nicknames (e.g., dbpedia:Yankee land),
(v) were related but not equivalent (e.g.,
dbpedia.org:American Civilization), (vi) were
just noise (e.g., dbpedia:LOL Dean).

Besides the largest equivalence classes – which we
have seen are prone to errors perhaps due to the
snowballing effect of the transitive and symmetric
closure – we also randomly sampled 100 equivalent
sets and manually checked for errors based on label
(as an intuitive idea of what the identifier refers to)
and type. We verified that all 100 were correct (or,
more accurately, were not obviously incorrect). 27

The second scan rewriting the data according to
the canonical identifiers took in total 42.3 min, with
an average idle time of 64.7 s (2.5%) for each machine
at the end of the round. The slower time for the
second round is attributable to the extra overhead
of re-writing the data to disk, as opposed to just
reading. Identifiers in 188 m positions of the 1.118 g
statements were rewritten.

From a overall performance perspective, we note
that 86.6% of the time is spent in parallel execution,
and during that time, peers are idle for <2.3% of
total parallel execution time without any bespoke
load-balancing. However, we note that aggregating
and loading the same-as statements on the master
machines is somewhat slow (13.3% of computation

25 Please see http://groups.google.com/group/

pedantic-web/browse_thread/thread/ad740f7052cc3a2d

for Pedantic Web discussion on this issue – we contacted
the publishers to request a fix.
26 For example, see the co-reference re-

sults given by http://www.rkbexplorer.com/

sameAs/?uri=http://acm.rkbexplorer.com/id/

person-53292-22877d02973d0d01e8f29c7113776e7e, which
at the time of writing correspond to 436 out of the 443
equivalent URIs found for Dieter Fensel.
27 Many were simple ‘syntactic’ equivalences from the

opiumfield.com LastFM data exporter; for reference, we’ve
published the 100 sets at http://aidanhogan.com/swse/

eqcs-sample-100.txt.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 10 100 1000 10000

nu
m

be
r

of
 c

la
ss

es

equivalence class size

Fig. 10. Distribution of sizes of equivalence classes (log/log
scale)

time) where the slave swarm – the bulk of processing
power – is idle for this period; also, this becomes
the lower bound on computation time for increasing
machines. However, in absolute terms, we deem 8.4
min not to be so significant for off-line processing.

6.4. Related Work

Entity consolidation has an older related stream of
research relating largely to databases, with work un-
der the names of record linkage, instance fusion, and
duplicate identification; cf. [102,95,25] and a survey
at [42]. Due to the lack of formal specification for de-
termining equivalences, these older approaches are
mostly concerned with probabilistic methods.

With respect to RDF, Bouquet et al. [17] motivate
the problem of (re)using common identifiers as one
of the pillars of the Semantic Web, and provide a
framework for mapping heterogeneous identifiers to
a centralised naming-scheme for re-use across the
Web – some would argue that such a centralised
service would not be in-tune with the architecture
or philosophy of the Web.

The Sindice and Sig.ma search systems internally
uses inverse-functional properties to find equiva-
lent identifiers [103,120] – Sindice uses reasoning to
identify a wider range of inverse-functional prop-
erties [103]. Online systems RKBExplorer [50] 28 ,
<sameAs> 29 and ObjectCoref 30 offer on-demand
querying for owl:sameAs relations found for a given
input URI, which they internally compute and
store; as previously alluded to, the former publish

28http://www.rkbexplorer.com/sameAs/
29http://sameas.org/
30http://ws.nju.edu.cn/objectcoref/

19

Canonical Term (Lexically Lowest in Equivalence Class) Size Correct?

1 http://bio2rdf.org/dailymed_drugs:1000 8,481 ×
2 http://bio2rdf.org/dailymed_drugs:1042 800 ×
3 http://acm.rkbexplorer.com/id/person-53292-22877d02973d0d01e8f29c7113776e7e 443 X
4 http://agame2teach.com/#ddb61cae0e083f705f65944cc3bb3968ce3f3ab59-ge_1 353 X/×
5 http://acm.rkbexplorer.com/id/person-236166-1b4ef5fdf4a5216256064c45a8923bc9 316 X

Table 4
Largest 5 equivalence classes

owl:sameAs relations for authors and papers in the
area of scientific publishing.

The authors of [124] present Silk : a framework
for creating and maintaining inter-linkage between
domain-specific RDF datasets; in particular, this
framework provides publishers with a means of dis-
covering and creating owl:sameAs links between
data sources using domain-specific rules and param-
eters. Thereafter, publishers can integrate discov-
ered links into their exports, enabling better linkage
of the data and subsequent consolidation by data
consumers: this framework goes hand-in-hand with
our approach, producing the owl:sameAs relations
which we consume.

In [54], the authors discuss the semantics and cur-
rent usage of owl:sameAs in Linked Data, discussing
issues relating to identity, and providing four cate-
gories of owl:sameAs usage to relate entities which
are closely related, but for which the semantics of
owl:sameAs – particularly substitution – does not
quite hold.

6.5. Future Directions and Open Research
Questions

In this section, we have focused on the perfor-
mance of what we require to be a distributed and
scalable consolidation component. We have not pre-
sented analysis of the precision or recall of such con-
solidation – such evaluation is difficult to achieve in
practice given a lack of gold-standard, or suitable
means of accurately verifying results. The analysis
of the precision and recall of various scalable con-
solidation methods on current Web data would rep-
resent a significant boon to research in the area of
querying over Linked Data.

We are currently investigating statistical consol-
idation methods, with particular emphasis on ex-
tracting some notion of the quality or trustworthi-
ness of derived equivalences [79]. Presently, we try
to identify “quasi-inverse-functional” and “quasi-
functional” properties (properties which are useful
for distinguishing identity) using statistical analysis

of the input data. We then combine shared prop-
erty/value pairs for entities and derive a fuzzy value
representing the confidence of equivalence between
said entities. However, this preliminary work needs
further investigation – including scalability and per-
formance testing, and integration with more tra-
ditional reasoning-centric approaches for consolida-
tion – before being included in the SWSE pipeline.

A further avenue for research in the same vein is
applying “disambiguation”, or attempting to assert
that two entities cannot (or are likely not) to be
equivalent using statistical approaches or analysis of
inconsistencies in reasoning: disambiguation would
allow for increasing the precision of the consolida-
tion component by quickly removing “obvious” false
positives.

Again, such approaches would likely have a sig-
nificant impact on the quality of data integration
possible in an engine such as SWSE operating over
RDF Web data.

7. Ranking

Ranking is an important mechanism in the search
process with the function of prioritising data ele-
ments. Herein, we want to quantify the importance
of consolidated entities in the data, such that can
be used for ordering the presentation of results re-
turned when users pose a keyword query (e.g., see
Figure 1), such that the most “important” results
appear higher in the list. (Note that we will com-
bine these ranking scores with relevance scores later
in Section 9.)

As such, there is a significant body of related
work on link-based algorithms for the Web (sem-
inal works include [106,85]). A principal objective
when ranking on the Web is rating popular pages
higher than unpopular ones – further, ranks can be
used for performing top-k processing, allowing the
search engine to retrieve and process small segments
of results ordered by their respective rank. Since we
share similar goals, we wish to leverage the benefits
of links-based analysis, proven for the HTML Web,

20

for the purposes of ranking Linked Data entities.
Along these lines, we identify the following require-
ments for ranking Linked Data, which closely align
with those of HTML-centric ranking schemes:
– the methods should be scalable, and applicable

in scenarios involving large corpora of RDF;
– the methods should be automatic and domain-

agnostic, and not inherently favouring a given
domain or source of data;

– the methods should be robust in the face of spam-
ming.
With respect to ranking the entities in our corpus

in a manner sympathetic with our requirements, we
further note the following:
– on the level of triples (data level), publishers can

provide arbitrary information in arbitrary loca-
tions using arbitrary identifiers: thus, to discour-
age low-effort spamming, the source of informa-
tion must be taken into account;

– following traditional link-based ranking intuition,
we should consider links from one source of infor-
mation to another as a ‘positive vote’ from the
former to the latter;

– in the absence of sufficient source-level ranking,
we should infer links between sources based on
usage of identifiers on the data level, and some
function mapping between data-level terms and
sources;

– data providers who reuse identifiers from other
sources should not be penalised: their data sources
should not lose any rank value.

In particular, our methods are inspired by Google’s
PageRank [106] algorithm, which interprets hyper-
links to other pages as positive votes. However,
PageRank is generally targeted towards hypertext
documents, and adaptation to Linked Data sources
is non-trival, given that the notion of a hyperlink
(interpreted as a vote for a particular page) is miss-
ing: Linked Data principles mandate implicit links
to other Web sites or data sources through re-use of
dereferenceable URIs. Also, the unit of search is no
longer a document, but an entity.

In previous work [61], we proposed a scalable al-
gorithm for ranking structured data from an open,
distributed environment, based on a concept we
term naming authority. We re-introduce select im-
portant discussion from [61] and extend here by im-
plementing the method in a distributed way and re-
evaluating with respect to performance.

7.1. High-level Approach

Although we wish to rank entities, our ranking
algorithm must consider the source of information
to avoid low-effort data-level spamming. Thus, we
must first have a means of ranking source-level iden-
tifiers and thereafter can propagate such ranks to
the data-level.

In order to leverage existing links-based analy-
sis techniques, we need to build a graph encoding
the interlinkage of Linked Data sources. Although
one could examine use of, e.g., owl:imports or
rdfs:seeAlso links, and interpret them directly as
akin to a hyperlink, the former is used solely in the
realm of OWL ontology descriptions and the latter
is not restricted to refer to RDF documents; sim-
ilarly, both ignore the data-level linkage that ex-
ists by means of LDP4 (include links using exter-
nal URIs). Thus, we aim to infer source-level links
through usage of data-level URIs in the corpus.

To generalise this idea, we previously defined the
notion of “naming authority” for identifiers: a nam-
ing authority is a data source with the power to de-
fine identifiers of a certain structure [61]. Naming
authority is an abstract term which could be ap-
plied to a knowable provenance of a piece of infor-
mation, be that a document, host, person, organisa-
tion or other entity. Data items which are denoted
by unique identifiers may be reused by sources other
than the naming authority.

Example 2 With respect to Linked Data princi-
ples (see Section 4.2), consider for example the data-
level URI http://danbri.org/foaf.rdf#danbri.
Clearly the owner(s) of the http://www.danbri.

org/foaf.rdf document (or, on a coarser level, the
danbri.org domain) can claim some notion of ‘au-
thority’ for this URI: following LDP4, the usage of
the URI on other sites can be seen as a vote for the
respective data source. We must also support redi-
rects as commonly used for LDP3 – thus we can re-
use the deref function given in Section 4.2 as a func-
tion which maps an arbitrary URI identifier to the
URI of its naming authority document (or to itself
in the absence of a redirect). �

Please note that there is no obvious function for
mapping from literals to naming authority, we thus
omit them from our source-level ranking (one could
consider a mapping based on datatype URIs, but
we currently see no utility in such an approach).
Also, blank nodes may only appear in one source
document and are not subject to re-use: although

21

one could reduce the naming authority of a blank-
node to the source they appear in, clearly only self-
links can be created.

Continuing, we must consider the granularity
of naming authority: in [61], we discussed and
contrasted interpretation of naming authorities on
a document level (e.g., http://www.danbri.org/
foaf.rdf) and on a PLD level (danbri.org). Given
that the PLD-level linkage graph is significantly
smaller than the document-level graph, the overhead
for aggregating and analysing the PLD-level graph
is significantly reduced, and thus we herein perform
ranking at a PLD-level.

Please note that for convenience, we will assume
that PLDs are identified by URIs; e.g. (http://
danbri.org/). We also define the convenient func-
tion pld : U→ U which extracts the PLD identifier
for a URI (if the PLD cannot be parsed for a URI, we
simply ignore the link) – we may also conveniently
use the function plds : 2U → 2U for sets of URIs.

Thus, our ranking procedure consists of the fol-
lowing steps:

(i) Construct the PLD-level naming authority
graph: for each URI u appearing in a triple
t in the input data, create links from the
PLDs of sources mentioning a particular URI
to the PLD of that URI: plds(refs(u)) →
pld(deref(u)).

(ii) From the naming authority graph, use the
PageRank algorithm to derive scores for each
PLD.

(iii) Using the PLD ranks, derive a rank value for
terms in the data, particularly terms in U∪B
which identify entities.

7.1.1. Extracting Source Links
As a first step, we derive the naming authority

graph from the input dataset. That is, we construct
a graph which encodes links between data source
PLDs, based on the implicit connections created via
identifier reuse.

Given PLD identifiers pi, pj ∈ U, we specify the
naming authority matrix A as a square matrix de-
fined as:

ai,j =

1 if pi 6= pj and pi uses an identifier

with naming authority pj

0 otherwise

This represents an n×n square-matrix where n is the
number of PLDs in the data, and where the element

at (i, j) is set to 1 if i 6= j and PLD i mentions a
URI which leads to a document hosted by PLD j.

As such, the naming authority matrix can be arbi-
trarily derived through a single scan over the entire
dataset. Note that we (optionally, and in the case
of later evaluation) do not consider URIs found in
the predicate position of a triple, or the object posi-
tion of an rdf:type triple, in the derivation of the
naming authority graph, such that we do not want
to overly inflate scores for PLDs hosting vocabular-
ies: we are concerned that such PLDs (e.g., w3.org,
xmlns.org) would receive rankings orders of mag-
nitude higher than their peers, overly inflating the
ranks of arbitrary terms appearing in that PLD; fur-
ther, users will generally not be interested in results
describing the domain of knowledge itself [61].

7.1.2. Calculating Source Ranks
Having constructed the naming authority matrix,

we now can compute scores for data sources. For
computing ranking scores, we perform a standard
PageRank calculation over the naming authority
graph: we calculate the dominant eigenvector of the
naming authority graph using the Power iteration
while taking into account a damping factor (see [106]
for more details).

7.1.3. Calculating Identifier Ranks
Based on the rank values for the data sources,

we now calculate the ranks for individual identifiers.
The rank value of a constant c ∈ C is given as the
summation of the rank values of the PLDs for the
data sources in which the term occurs:

idrank(c) =
∑

pld∈plds(refs(c))

sourcerank(pld)

This follows the simple intuition that the more
highly-ranked PLDs mentioning a given term, the
higher the rank of that term should be. 31 Note again
– and with similar justification as for deriving the
named authority graph – we do not include URIs
found in the predicate position of a triple, or the
object position of an rdf:type triple in the above
summation for our evaluation. Also note that the
ranking for literals may not make much sense de-
pending on the scenario – in any case, we currently
do not require ranks for literals.

31 This generic algorithm can naturally be used to propagate
PLD/source-level rankings to any form of RDF artefact,

including triples, predicates, classes, etc.

22

7.1.4. User Evaluation
Herein, we summarise the details of our user eval-

uation, where the full details are available in [61]. We
conducted a study asking 10–15 participants to rate
the ordering of SWSE results given for five different
input keyword queries, including the evaluators own
name. We found that our method produced prefer-
able results (with statistical significance) for rank-
ing entities than the baseline method of implement-
ing PageRank on the RDF node-link graph (an ap-
proach which is similar to existing work such as Ob-
jectRank [6]). Also, we found that use of the PLD-
level graph and document-level graph as input for
our PageRank calculations yielded roughly equiva-
lent results for identifier ranks in our user evalua-
tion.

7.2. Distributed Approach

We now discuss our approach for applying the
ranking analysis over our distributed framework –
we again assume that the input data are evenly dis-
tributed across the slave machines:

(i) run: each slave machine scans its segment of
the data in parallel, and extracts PLD level
links;

(ii) gather: the master machine gathers the PLD
graph from the slave machines, aggregates the
links, executes the PageRank algorithm, and
derives the scores for each PLD;

(iii) flood: the master machine sends the PLD
scores to all machines;

(iv) run: the slave machines calculate and sum-
mate the identifier-ranks given the PLD
scores and their local view on the seg-
ment of data, outputting and sorting/uniquing
(id, pld, pldrank) tuples;

(v) gather: the master machine must now gather
the identifier-ranks from the slave machines,
and aggregate the scores – importantly, rank
contributions for a given identifier from a
given PLD must be uniqued across machines,
and so the sorted (id, pld, pldrank) tuples
streamed from the slave machines are merge-
sorted/uniqued with pldrank values subse-
quently summated for each id.

We again performed some smaller-scale experi-
ments to illustrate the performance advantages of
distribution for our ranking methods, demonstrat-
ing again over 31.3 m statements with 1, 2, 4, and
8 machines. Table 5 presents the results. The dis-

#machines 1 2 4 8

mins 19.7 11 6.3 4.3

Table 5

Time taken for ranking of 31.3 m statements for differing

numbers of machines

tribution exhibits near-linear scale with respect to
the number of machines, with the most expensive
tasks being run in an embarrassingly parallel fash-
ion – the non-linear aspect (∼2 min) is given by ini-
tialisation costs and the gather and flood opera-
tions dealing with the aggregation, preparation and
analysis of globally-required knowledge (viz.: aggre-
gating and calculating the PLD and identifier ranks
on the master machine). We will see more detailed
evaluation in the following.

7.3. Full-Scale Evaluation

We now discuss the results of applying the rank-
ing procedure over our full-scale crawl (1.118b state-
ments) over 8 machines. We extract the PLD graph
from the unconsolidated data: to derive said graph
as it was natively found on the Web, unaffected by
the consolidation process; and apply identifier rank-
ing over the consolidated data: to ensure that the
identifier ranks were aggregated correctly for canon-
icalised identifiers in the consolidated data, thus rep-
resenting ranks for entities derived from all sources
in which all of the original referent identifiers ap-
peared. This, however, would have minimal effect on
the performance evaluation presented.

The entire process took 126.1 min.
Roughly 2 min were spent loading redirects infor-

mation on the slave machines. The PLD-level graph
– detailed below – was extracted in parallel in 27.9
min, with an average idle time of 35 s (2% of total
task time) for machines waiting for their peers to
finish. The PLD graph consisted of 566 k irreflexive
links between 507 k PLDs (due to the crawling pro-
cess, all PLDs enjoyed at least one in-link), with an
average indegree of 1.118; on the other hand, only
704 PLDs offered outlinks (roughly speaking, those
PLDs which offered RDF/XML content), with an
average out-degree of 804.6. The significant variance
in indegree/outdegree is attributable to those small
number of PLDs offering RDF/XML content offer-
ing a large number of links to those PLDs from which
we did not find RDF/XML content. Along these
lines, 5.1 k links were to PLDs which themselves
contained outlinks, roughly equating to an average
indegree of 7.25 for those PLDs hosting RDF/XML

23

content.
The PageRank calculation – with ten iterations

performed in memory – took just over 25 s. Ta-
ble 6 presents the top 5 ranked PLDs. The PLDs
identi.ca and status.net host services for users
of the micro-blogging platform StatusNet, link-
ing between user profiles exported in FOAF 32 ;
status.net had 108 unique inlinking PLDs and 999
outlinks, and identi.ca had 179 inlinks and 36.6
k outlinks. The geonames.org domain – a promi-
nent RDF publisher of geographical data – had 167
inlinks and 9 outlinks. In fourth place, ldodds.com
had 98 inlinks (and 52 outlinks) mostly through the
admin:generatorAgent property from FOAF-a-
matic 33 generated FOAF files. The PLD w3.org en-
joyed 116 inlinks, and provided 658 outlinks; inlinks
were diverse in nature, but included some use of core
RDF/RDFS/OWL terms in non-class/property po-
sitions as discussed previously (e.g., statements of
the form ?s rdfs:range rdfs:Resource given in
vocabularies), as well as, for example, links to Tim
Berners-Lee’s personal FOAF profile.

It is worth remembering that a higher inlink count
does not necessarily imply a higher PageRank –
the outdegree of those inlinking nodes is also im-
portant: indeed, it seems that at the very top of
our ranking table, PLDs (such as ldodds.com) are
highly rewarded for offering a means of exporting
or publishing often simple RDF/XML on many ex-
ternal sites, not necessarily for hosting high-quality
RDF/XML themselves, where they benefit from be-
ing linked from a single document on many low-
ranked PLDs with low outdegree. More prestigious
RDF publishing domains share a similar indegree
from higher ranked PLDs, but the inlinking PLDs
themselves have a much higher outdegree, and thus
split their vote more evenly. For example, the promi-
nent Linked Data publisher dbpedia.org [5] was
ranked 9th with 118 inlinks – an inlink count which is
comparable with some of the top ranked PLDs, but
in this case the inlinks generally spread their rank
more evenly: e.g., the median outdegree of the PLDs
linking to ldodds.com was 6, whereas the median
outdegree of PLDs linking to dbpedia.org was 19.
That said, we are still satisfied by the rankings, and
are encouraged by the user-evaluation from [61]. We
are reluctant to amend our PLD ranking algorithm

32 For example, see inter-linkage between http://rant.

feebleforce.com/dantheman/foaf and http://identi.ca/

methoddan/foaf
33http://www.ldodds.com/foaf/foaf-a-matic

for the purposes of punishing the aforementioned
PLDs, although such practices may eventually be
required to counter-act deliberate link-farming: we
are not yet at that stage. Indeed, part of the prob-
lem could be attributable to the relatively small
number of PLDs (and thus parties) hosting signifi-
cant RDF/XML content. As Linked Data publish-
ing grows in popularity and diversity, we would ex-
pect more PLDs with higher rates of inter-linkage,
hopefully enabling more high-quality results from
our link-analysis techniques.

Extracting the identifier rank tuples in paral-
lel took 67.6 min– the slower time is associated
with sorting and uniquing tuples which encode
(id, pld, pldrank) – with an average idle time of 86
s (2.1% of total task time). Locally aggregating and
summating the ID ranks took 27.7 min. 34 Table 6
also gives the top 5 ranks for consolidated entities.
The top result refers to “Sir Tim Berners-Lee”; the
second result refers to “Dan Brickley”, co-founder
of the FOAF vocabulary and a prominent member
of the Semantic Web community; the third and fifth
results are commonly referenced in StatusNet ex-
porters; the fourth result is the URL for the FOAF-
a-Matic generator previously discussed.

With respect to performance, 77.3% of the compu-
tation time is spent in parallel execution, of which,
on average 2.1% of time is spent idle by slave ma-
chines. In total, 28.6 min execution time is spent on
the master machine, the majority of which is spent
calculating PLD ranks and aggregating ID ranks.

7.4. Related Work

There have been numerous works dedicated to
comparing hypertext-centric ranking for varying
granularity of sources. Najork et al. [100] compared
results of the HITS [85] ranking approach when per-
formed on the level of document, host and domain
granularity and found that domain granularity re-
turned the best results: in some cases PLD-level
granularity may be preferable to domain or host-
level granularity because some sites like LiveJour-
nal (which export vast amounts of user profile data
in the Friend Of A Friend [FOAF] vocabulary) as-
sign subdomains to each user, which would result in

34 Please note that we have further optimised the algorithm

presented in [61] using LRU caching of seemingly costly PLD
extraction methods, duplicate detection for extracted links,
and other low-level improvements; hence, we see increased

performance.

24

PLD Term

1 status.net http://identi.ca/user/45563

2 identi.ca http://identi.ca/user/226

3 geonames.org http://update.status.net/

4 ldodds.com http://www.ldodds.com/foaf/foaf-a-matic

5 w3.org http://update.status.net/user/1#acct

Table 6
Top 5 ranked PLDs and terms

large tightly-knit communities if domains were used
as naming authorities. Previous work has performed
PageRank on levels other than the page level, for ex-
ample at the more coarse granularity of directories,
hosts and domains [82], and at a finer granularity
such as logical blocks of text [20] within a page.

There have been several methods proposed to
handle the task of ranking Semantic Web data.

Swoogle ranks documents using the OntoRank
method, a variation on PageRank which iteratively
calculates ranks for documents based on references
to terms (classes and properties) defined in other
documents. We generalise the method described
in [39] to rank entities, and perform links-analysis
on the PLD abstraction layer.

ObjectRank [6] ranks a directed labelled graph
using PageRank using “authority transfer schema
graphs”, which requires manual weightings for the
transfer of propagation through different types of
links; further, the algorithm does not include con-
sideration of the source of data, and is perhaps bet-
ter suited to domain-specific ranking over verified
knowledge.

We note that Falcons [27] also rank the impor-
tance of entities (what they call “objects”), but
based on a logarithm of the number of documents
in which the object is mentioned.

In previous work, we introduced ReConRank [74]:
an initial effort to apply a PageRank-type algorithm
to a graph which unifies data-level and source-level
linkage. ReConRank does take data provenance into
account: however, because it simultaneously oper-
ates on the object graph, it is more susceptible to
spamming than the presented approach.

A recent approach for ranking Linked Data called
Dataset rankING (DING) [35] – used by Sindice
– holds a similar philosophy to ours: they adopt a
two-layer approach consisting of an entity layer and
a dataset layer. However, they also apply rankings
of entities within a given dataset, using PageRank
(or optionally link-counting) and unsupervised link-
weighting schemes, subsequently combining dataset
and local entity ranks to derive global entity ranks.

Because of the local entity ranking, their approach
is theoretically more expensive and less flexible than
ours, but would offer better granularity of results –
less entity results with the same rank. However, as
we will see later, we will be combining global entity-
ranks with keyword-query specific relevance scores,
which mitigates the granularity problem.

There are numerous other loosely related ap-
proaches, which we briefly mention: SemRank [3]
ranks relations and paths on Semantic Web data
using information-theoretic measures; AKTiveRank
[1] ranks ontologies based on how well they cover
specified search terms; Ontocopi [2] uses a spreading
activation algorithm to locate instances in a knowl-
edge base which are most closely related to a target
instance; the SemSearch system [89] also includes
relevance ranks for entities according to how well
they match a user query.

7.5. Future Directions and Open Research
Questions

Ranking in Web search engines depends on a mul-
titude of factors, ranging from globally computed
ranks to query-dependent ranks to location, prefer-
ences, and history of the searcher. Factoring addi-
tional signals into the ranking procedure is area for
further research, especially in the face of complex
database-like queries and results beyond the simple
list of objects. For example, we have already seen
that we exclude predicate and class identifiers from
the ranking procedure, in order not to adversely
affect our goal of ranking entities (individuals) in
the data; specific modes and display criteria of the
UI may require different models of ranks, providing
multiple contextual ranks for identifiers in different
roles – e.g., creating a distinctive ranking metric for
identifiers in the role of predicates, reflecting the ex-
pectations of users given various modes of browsing.

Another possibly fruitful research topic relates to
the question of finding appropriate mathematical
representations of directed labelled graphs, and ap-
propriate operations on them [60,48]. Most of the

25

current research in ranking RDF graphs is based
around the directed graph models borrowed from hy-
pertext ranking procedures. A bespoke mathemati-
cal model for RDF (directed, labelled, and named)
graphs may lead to a different view on possible rank-
ing algorithms.

Finally, the evaluation of link-based ranking as a
indicator of trustworthiness would also be a interest-
ing contribution; thus far, we have evaluated the ap-
proach according to user evaluation reflecting pref-
erence for the prioritisation of entity results in the
UI. However, given that we also consider the source
of information in our ranking, we could see if there
was a co-occurrence, for example, of poorly-ranked
PLDs and inconsistent data. Such a result would
have impact for the reasoning component, presented
next, and some discussion is provided in the respec-
tive future work section to follow.

8. Reasoning

Using the Web Ontology Language (OWL) and
the RDF Schema language (RDFS), instance data
(i.e., assertional data) describing individuals can be
supplemented with structural data (i.e., termino-
logical data) describing classes and properties, al-
lowing to well-define the domain of discourse and
ultimately provide machines a more sapient under-
standing of the RDF data. As such, numerous vo-
cabularies have been published on the Web of Data,
encouraging re-use of terms for prescribed classes
and properties across sources, and providing formal
RDFS/OWL descriptions thereof – for a breakdown
of the most instantiated terms and vocabularies, we
refer the reader to Appendix A.

We have already seen that OWL semantics can
be used to automatically aggregate heterogeneous
data – using owl:sameAs relations and, e.g., the
owl:InverseFunctionalProperty to derive said –
where the knowledge is fractured by use of discor-
dant identifiers. 35 However, RDFS and OWL de-
scriptions in the data can be further exploited to
infer new statements based on the terminological
knowledge and provide a more complete dataset
for query answering, and to automatically translate

35 Note that in this paper, we deliberately decouple consoli-

dation and reasoning, since in future work, we hope to view
the unique challenges of finding equivalent identifiers as sep-
arate from those of inferencing according to terminological

data presented here.

data from one conceptual model to another (where
appropriate mappings exist in the data).

Example 3 In our data, we find 43 properties whose
memberships can be used to infer a foaf:page re-
lationship between a resource and a webpage per-
taining to it. These include specialisations of the
property within the FOAF namespace itself, such
as foaf:homepage, foaf:weblog, etc., and special-
isations of the property outside the FOAF names-
pace, including mo:wikipedia, rail:arrivals,
po:microsite, plink:rss, xfn:mePage, etc. All
such specialisations of the property are related
to foaf:page (possibly indirectly) through the
rdfs:subPropertyOf relation in their respective
vocabulary. Similarly, inverses of foaf:page may
also exist, where in our corpus we find that
foaf:topic relates a webpage to a resource it per-
tains to. Here, foaf:topic is related to foaf:page

using the built-in OWL property owl:inverseOf.
Thus, if we know that:

ex:resource mo:wikipedia ex:wikipage .

mo:wikipedia rdfs:subPropertyOf foaf:page .

foaf:page owl:inverseOf foaf:topic .

we can infer through reasoning that:

ex:resource foaf:page ex:wikipage .

ex:wikipage foaf:topic ex:resource .

In particular, through the RDFS and OWL defini-
tions given in the data, we infer a new fact about the
entities ex:resource and ex:wikipage. (Note that
reasoning can also apply over class memberships in
a similar manner.) �

Applying RDFS and OWL reasoning at large
scale has only recently become a more mature area
of research [77,123,126,84,122,78], with most legacy
works focussing on more expressive logics and the-
oretical considerations such as computational com-
plexity and completeness, demonstrating evaluation
typically over clean and domain-specific datasets,
and relying largely on in-memory computation or
database technologies. Most works do not discuss
the application of reasoning to open Web data (we
leave detailed related work to 8.4).

We thus identify the following requirements for
large-scale RDFS and OWL reasoning over Web
data:
– pre-computation: the system should pre-

compute inferences to avoid the runtime expense
of backward-chaining, such that could negatively
impact upon response times;

– reduced output: the system should not produce

26

so many inferences that it over-burdens the con-
sumer application;

– scalability: the system should scale near-linearly
with respect to the size of the Linked Data corpus;

– Web tolerant: the system should be tolerant to
noisy and possibly inconsistent data on the Web;

– domain agnostic: the system should be appli-
cable over data from arbitrary domains, and con-
sider non-core Web ontologies (ontologies other
than RDF(S)/OWL) as equals.
In previous work [77], we introduced the Scal-

able Authoritative OWL Reasoner (SAOR) system
for performing large-scale materialisation using a
rule-based approach over a fragment of OWL, ac-
cording to the given requirements. We subsequently
generalised our approach, extended our fragment to
a subset of OWL 2 RL/RDF, and demonstrated
distributed execution in [78]. We now briefly re-
introduce important aspects from that work, fo-
cussing on discussion relevant to the SWSE use-
case. For a more thorough treatment and formalisa-
tions relating to the following discussions, we refer
the interested reader to [78] and earlier work in [77]
– herein, our aim is to sketch our methods, particu-
larly by means of examples.

8.1. High-level Approach

Firstly, we choose a rule-based approach since
it offers greater tolerance in the inevitable event
of inconsistency than Description Logics based ap-
proaches – indeed, consistency cannot be expected
on the Web (cf. [76] for our discussion on reason-
ing issues in Linked Data). Secondly, rule-based ap-
proaches offer greater potential for scale following
arguments made in [46]. Finally, many Web ontolo-
gies – although relatively lightweight and inexpres-
sive – are not valid DL ontologies: for example,
FOAF defines the data-type property foaf:mbox -

sha1sum as inverse-functional, which is disallowed
in OWL DL – in [8] and [125], the authors provided
surveys of Web ontologies and showed that most are
in OWL Full, albeit for largely syntactic reasons.

However, there does not exist a standard rule-
set suitable for application over arbitrary Web data
– we must compromise and deliberately abandon
completeness, instead striving for a more pragmatic
form of reasoning tailored for the unique challenges
of Web reasoning. 36 In [77] we discussed the tailor-
ing of a non-standard OWL ruleset – pD* given by

36 For interesting discussion on the often infeasible nature

ter Horst in [117] – for application over Web data.
More recently, OWL 2 has become a W3C Rec-
ommendation, and interestingly from our perspec-
tive, includes a standard rule-expressible fragment
of OWL, viz.: OWL 2 RL [51]. In [73], we presented
discussion on the new ruleset from the perspective
of application over Web data, and showed that the
ruleset is not immediately amenable to the require-
ments outlined, and still needs amendment for our
purposes.

Herein, we follow on from discussion in [73] and
implement a fragment of OWL 2 RL/RDF: we
present our ruleset in Appendix B and now briefly
discuss how we tailored the standard ruleset [51] for
our purposes. 37

Firstly, we do not apply rules which specifically
infer what we term as “tautological statements”,
which refer to syntactic RDFS and OWL statements
such as rdf:type rdfs:Resource statements, and
reflexive owl:sameAs statements – statements which
apply to every term in the graph. Given n rules
which infer such statements, and t unique terms in
the dataset, such rules would burden the consumer
application with t ∗ n largely jejune statements – in
fact, we go further and filter such statements from
the output.

Secondly, we identified that separating termino-
logical data (our T-Box) 38 that describes classes
and properties from assertional data (our A-Box)
that describes individuals could lead to certain opti-
misations in rule execution, leveraging the observa-
tion that only <1% of Linked Data is terminologi-
cal, and that the terminological data is the most fre-
quently accessed segment for OWL reasoning [77].
We used such observations to justify the identifica-
tion, separation, and provision of optimised access
to our T-Box, storing it in memory.

Thirdly, after initial evaluation of the system at
scale encountered a puzzling deluge of inferences, we
discovered that incorporating the source of data into

of sound and complete reasoning and alternative metrics for

reasoners, please see [71].
37 Please note that we do not consider rules which infer an

inconsistent (have a false consequent), and consider equality
reasoning separately in the consolidation component: thus we
do not support any of the rules in rule group R2 as defined
in [73] – also of note, we co-incidently do not supported

any rules which use the new OWL 2 constructs, since they
require A-Box joins which – as we will justify herein – our

system currently does not support.
38 For example, we consider the triples mo:wikipedia

rdfs:subPropertyOf foaf:page . and foaf:page

owl:inverseOf foaf:topic . to be terminological.

27

the reasoning algorithm is of utmost importance;
näıvely applying reasoning over the merge of arbi-
trary RDF graphs can lead to unwanted inferences
whereby third parties redefine classes and properties
provided by popular ontologies [77]. For example,
one document 39 defines owl:Thing to be a member
of 55 union classes, another defines nine properties
as the domain of rdf:type 40 , etc. We counter-act
such behavior by incorporating the analysis of au-
thoritative sources for classes and properties in the
data.

We will now discuss the latter two issues in more
detail, but beforehand let us treat some preliminar-
ies used in this section. 41

8.1.1. Reasoning Preliminaries
We briefly reintroduce some notions formalised

in [77,78]; for brevity, in this section, we aim to give
an informative and informal description of terms,
and refer the interested reader to [77,78] for a more
formal description thereof.

Generalised Triple A generalised triple is a triple
where blank-nodes and literals are allowed in all po-
sitions [51]. Herein, we assume generalised triples
internally in the reasoning process and post-filter
non-RDF statements from the output.

Meta-class Informally, we consider a meta-class
as a class specifically of classes or properties;
i.e., the members of a meta-class are themselves
either classes or properties. Herein, we restrict
our notion of meta-classes to the set defined in
RDF(S) and OWL specifications, where exam-
ples include rdf:Property, rdfs:Class, owl:-

Class, owl:Restriction, owl:DatatypeProperty,
owl:FunctionalProperty, etc.; rdfs:Resource,
rdfs:Literal, e.g., are not meta-classes.

Meta-property A meta-property is one which has
a meta-class as its domain; again, we restrict our
notion of meta-properties to the set defined in
RDF(S) and OWL specifications, where examples
include rdfs:domain, rdfs:subClassOf, owl:has-
Key, owl:inverseOf, owl:oneOf, owl:onProperty,

39http://lsdis.cs.uga.edu/~oldham/ontology/wsag/

wsag.owl
40http://www.eiao.net/rdf/1.0
41 Please note that we largely re-use the definitions provided
in [77], which are required here for further discussion of our

reasoning approach.

owl:unionOf, etc.; rdf:type, owl:sameAs, rdfs:-
label, e.g., do not have a meta-class as domain.

Terminological Triple We define the set of termi-
nological triples as the union of the following sets of
generalised triples:

(i) triples with rdf:type as predicate and a meta-
class as object;

(ii) triples with a meta-property as predicate;
(iii) triples forming a valid RDF list whose head

is the object of a meta-property (e.g., a list
used for owl:unionOf, owl:intersectionOf,
etc.).

Example 4 The triples:

mo:wikipedia rdfs:subPropertyOf foaf:page .

foaf:page owl:inverseOf foaf:topic .

are considered terminological, whereas the following
are not:

ex:resource mo:wikipedia ex:wikipage .

ex:resource rdf:type rdfs:Resource .

�

Triple Pattern, Basic Graph Pattern A triple pat-
tern is a generalised triple where variables from the
infinite set V are allowed in all positions. We call
a set (to be read as conjunction) of triple patterns
a basic graph pattern. Following standard notation,
we prefix variables with ‘?’. We say that a triple is
a binding of a triple pattern if there exists a map-
ping of the variables in the triple pattern to some
set of RDF constants such that, subsequently, the
triple pattern equals the triple; we call this mapping
variable binding. The notion of a binding for a graph
pattern follows naturally.

Terminological/Assertional Pattern We refer to
a terminological -triple/-graph pattern as one what
can only be bound by a terminological triple or,
resp., a set thereof. An assertional pattern is any
pattern which is not terminological.

Inference Rule We define an inference rule r as the
pair (Ante, Con), where the antecedent Ante and the
consequent Con are basic graph patterns [110], all
variables in Con are contained in Ante, and if Ante
is non-empty, at least one variable must co-exist in
Ante and Con. Every unique match – in the union of
the input and inferred data – for the graph pattern
Ante leads to the inference of Con with the respec-
tive variable bindings. Rules with empty Ante can

28

be used to model axiomatic statements which hold
for every graph. Herein, we use SPARQL-like syn-
tax to represent graph-patterns, and will typically
formally write inference rules as Ante⇒ Con.

Example 5 The OWL 2 RL/RDF rule prp-
spo1 (Table B.3) supports inferences for
rdfs:subPropertyOf with the following rule:

?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ⇒ ?x ?p2 ?y .

where the antecedent Ante consists of the two pat-
terns on the left side of⇒, and the consequent Con
consists of the pattern on the right side of ⇒. This
can be read as an If–Then condition, where if data
matching the patterns on the left are found, the re-
spective bindings are used to infer the respective
pattern on the right. �

8.1.2. Separating Terminological Data
Given the above preliminaries, we can now de-

fine our notion of a T -split inference rule, whose an-
tecedent is split into two: one part which can only
be matched by terminological data, and one which
can be matched by assertional data.
Definition 1 (T -split inference rule) Let r be
the rule (Ante, Con). We define the T -split version
of r as the triple (AnteT ,AnteG , Con), whereAnteT
is the set of terminological patterns in Ante and
AnteG is given as all remaining antecedent patterns:
Ante \ AnteT .

We generally write (AnteT ,AnteG , Con) as
AnteTAnteG ⇒ Con, identifying terminological
patterns by underlining.

Example 6 Take the rule prp-dom (Table B.3):

?p rdfs:domain ?c . ?x ?p ?y .⇒ ?y rdf:type ?c .

The terminological (underlined) pattern can only
be matched by triples who have rdfs:domain – a
meta-property – as predicate, and thus must be ter-
minological. The second pattern can be matched by
non-terminological triples and so is considered an
assertional pattern. �

Given the general notion of terminological data,
we can constrain our T-Box (Terminological-Box)
to be the set of terminological triples present in our
input data that match a terminological pattern in
our rules – intuitively, our T-Box represents the de-
scriptions of classes and properties required in our
ruleset; e.g., if our ruleset is RDFS, we do not include
OWL terminological triples in our T-Box. We define
our closed T-Box – denoted T – as the set of ter-
minological triples derived from the input, and the

result of exhaustively applying rules with no asser-
tional patterns (axiomatic and ‘schema-level’ rules)
up to a least fixpoint [78]. Again, our ‘A-Box ’ is the
set of all statements, including the T-Box and in-
ferred statements.

When applying a T -split inference rule, AnteT is
strictly only matched by our closed T-Box. Thus,
in our reasoning system, we have a well defined dis-
tinction between T-Box and A-Box information, re-
flected in the definition of our rules, and the applica-
tion of rules over the T-Box split data. This decou-
pling of T-Box and A-Box allows for incorporating
the following optimisations:

(i) knowing that the T-Box is relatively small
and is the most frequently accessed segment of
crawling – e.g., all of the rules in Appendix B
require terminological knowledge – we can
store the T-Box in an optimised index;

(ii) we can identify optimised T -split rules as
those with low assertional-arity – namely, rules
which do not require joins over a large A-Box
can be performed in an optimal and scalable
manner;

(iii) we will later use the separation of the T-Box as
an integral part of our distributed approach.

With respect to the first possible optimisation, at
the moment we store the entire T-Box in memory,
but on-disk indices can be employed as necessary. 42

We will refer in Section 8.2 to the third optimisation
avenue.

With respect to the second optimisation, in [77],
we showed that rules involving more than one asser-
tional pattern (i.e., requiring a join operation over
the large A-Box) were in practice difficult to com-
pute at the necessary scale. Thus, we categorised
rules according to the assertional arity of their an-
tecedent; i.e., the number of assertional patterns in
the antecedent. In [73], we performed similar cate-
gorisation of OWL 2 RL/RDF rules.

In Appendix B, we provide the ruleset we
apply over our Linked Data corpus: the rules
are categorised according to the arity of asser-
tional/terminological antecedent patterns, showing
rules with no antecedent (axiomatic triple rules) in
Table B.1 (we denote this subset of rules R∅), rules
with only terminological patterns answerable en-
tirely from our T-Box in Table B.2 (RT ∅), and rules

42 We would expect an on-disk index with heavy caching to
work well given the distribution of classes and properties in

the data – i.e., we would expect a high cache hit rate.

29

with some terminological patterns and precisely one
assertional pattern in Table B.3 (RT G1

). 43

Not shown are rules with multiple assertional pat-
terns; 44 we currently only apply reasoning over
rules with less than one assertional pattern using an
optimised approach – provided at a high-level in Al-
gorithm 2 – which consists mainly of two scans as
follows:

(i) to commence, we apply rules with no an-
tecedent (Table B.1), inferring axiomatic
statements [Lines 1–2];

(ii) we then run the first scan of the data, iden-
tifying terminological knowledge found in the
data, and separating and indexing the data in
our in-memory T-Box [Lines 3–10];

(iii) using this T-Box, we apply rules which only
require T-Box knowledge (Table B.2), deriving
the closed T-Box [Lines 11–14];

(iv) the second scan sequentially joins individual
A-Box statements with the static in-memory
T-Box, including recursively inferred state-
ments (Table B.3) [Lines 15–28].

Note that Algorithm 2 assumes that the input
ruleset does not contain rules with multiple asser-
tional patterns. The applyRules method for the T-
Box can be considered equivalent to standard semi-
näıve evaluation. We omit from the algorithm some
optimisations, such as a fixed-size LRU cache which
removes duplicate A-Box inferences appearing in a
given locality – although our data is unsorted, it is
grouped by document and we thus expect locality
in the repetition of many inferences.

We call the above reasoning approach “partial in-
dexing” in that only a subset of the data need be
indexed: in the above version, rules without A-Box
joins are not supported so we need only index the T-
Box. In [78], we give a more general partial-indexing
algorithm which supports A-Box joins: we showed
the approach to be sound with respect to standard
exhaustive rule-application (e.g., semi-näıve evalu-
ation) and also complete with the condition that a

43 Briefly to explain our notation for rule categorisation: R∅
refers to rules with no antecedent; e.g.,RG refer to rules with

some assertional patterns; e.g., RT ∅ refers to rules with only

terminological patterns; finally, we may denote a constant

arity of patterns where, e.g., RT G1 refers to rules with some

terminological patterns and exactly one assertional pattern.
44 Coincidentally, none of our rules have only assertional
patterns and no terminological patterns (R∅G) – such rules in

OWL 2 RL/RDF are concerned with owl:sameAs inferencing
for which we presented a bespoke approach in the previous

section.

Algorithm 2 Algorithm for reasoning

Require: INPUT FILE : G, RULES : R
1: AXI ← axiomatic triples
2: output (AXI)
3: T ← {}
4: for t ∈ G∪AXI do
5: for r ∈ R do
6: if r.AnteT needs t then
7: T ← T ∪ {t}
8: end if
9: end for

10: end for
11: RT ∅ ← {r ∈ R | r.AnteT 6= ∅, r.AnteG = ∅}
12: T new ← applyRules (T ,RT)
13: output (T new)
14: T ← T ∪ T new

15: RG ← {r ∈ R | r.AnteG 6= ∅}
16: for t ∈ G∪AXI ∪T new do
17: Gt ← {t}
18: for new triple tn ∈ Gt do
19: for r ∈ RG do
20: if ∃ binding bG | bG(r.AnteG) = tn then
21: for ∀bT | bT (bG(r.AnteT)) ⊆ T do
22: Gt ← Gt ∪ bT (bG(r.Con))
23: end for
24: end if
25: end for
26: end for
27: output (Gt \ {t})
28: end for

rule requiring assertional knowledge does not infer
terminological triples (our T-Box is static and will
not be updated). In general, the partial-indexing ap-
proach is suitable when only a small subset of the
data need be indexed: the more data that needs to
be indexed, the more inefficient the approach be-
comes – e.g., standard semi-näıve evaluation over a
full index would perform better (we refer the inter-
ested reader to [78] for more discussion).

In [77], we demonstrated scalable means of pro-
cessing A-Box joins using static join-indices: how-
ever, these indices performed poorly due to recur-
sion of inferences – they efficiently generated many
inferences, but took a long time to reach a fixpoint.
Further, we then showed that 99.7% of inferences
occurred through pD* rules with zero or one asser-
tional patterns; 45 we thus proposed that such rules

45 Please note that this was over a dataset of 147m state-
ments, and used a similar canonicalisation approach to equal-

ity which otherwise would have produced quadratic infer-

30

cover the majority of inferencing mandated by the
lightweight Web vocabularies whose terms are com-
monly used on the Web.

Avoiding expensive intra-A-Box joins, we instead
performing reasoning at roughly the cost of two se-
quential scans of the input data, and the cost of
writing the inferred statements to disk [77].

8.1.3. Template Rule Optimisations
One important aspect in the efficiency of the par-

tial indexing approach is how the T-Box is indexed:
the T-Box will have to serve – in our scenario – bil-
lions of sequential lookups. Originally in [77], we de-
scribed a T-Box indexing approach optimised specif-
ically for the pD*-inspired ruleset at hand, including
hard-coded meta-property links between classes and
properties, and hard-coded encoding of meta-class
membership. In [78], we looked to generalise the T-
Box indexing: the main intuition behind the opti-
misation was to pre-bind the T-Box patterns in the
rules before accessing the A-Box. This follows the
precedent of template rules as discussed in the RIF
working group [113] and used in the DLEJena [93]
system, where terminological patterns in the rules
are substituted by terminological data, producing a
set of rules which by themselves encode the T-Box.

Example 7 Given the T-Box
T = {foaf:homepage rdfs:subPropertyOf

foaf:isPrimaryTopicOf . foaf:homepage

rdfs:subPropertyOf foaf:page . }

and a rule r as follows

?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y .

⇒ ?x ?p2 ?y .

Then we can produce the following templated rules:

{ ?x foaf:homepage ?y .⇒ ?x foaf:isPrimaryTopicOf ?y . ;

?x foaf:homepage ?y . ⇒ ?x foaf:page ?y . }
�

Since we restrict our ruleset to exclude rules with
multiple assertional patterns, the set of template
rules we produce all contain a single antecedent pat-
tern which should be efficiently applicable. However,
as we showed in [78], we need to amend our partial-
indexing algorithm for templated rules: the templat-
ing process may create a prohibitively large set of
rules to apply in the brute force manner of Algo-

ences. This was a surprising result given the quadratic na-

ture, for example, of transitive reasoning, which theoretically
should make full materialisation infeasible – roughly 300k

transitive inferences were made.

rithm 2 (Line 15). Thus, we applied optimisations
tailored for the templated rules.

Firstly we merged rules with compatible an-
tecedents (antecedents which can be made equiva-
lent by a variable rewriting function [78]); we give a
brief example.

Example 8 In the previous example, we would
merge the two templated rules to form the new rule:

?x foaf:homepage ?y .

⇒ ?x foaf:isPrimaryTopicOf ?y . ?x foaf:page ?y .

�
However, even with merging, we may still have

too many rules for brute force application.
Thus, we proposed a rule index which takes a

triple and returns rules which have a pattern which
could be bound by that triple. The index must per-
form 23 = 8 lookups for each possible triple pattern.
For example, given a triple:

ex:aidan foaf:homepage ex:index.html .

the index would return the previous merged rule
for the pattern (? foaf:homepage ?).

One rule application may lead to another. Thus,
we also included the notion of a graph in our rule
index; our index stores a linked list of rules where
one rule links to dependant rules. This allows us to
avoid repetitive lookups on our rule index, instead
following the rule graph to find the recursive rules
to fire.

Example 9 Take the rules

?x foaf:homepage ?y .
⇒ ?x foaf:isPrimaryTopicOf ?y . ?x foaf:page ?y .

and

?x foaf:isPrimaryTopicOf ?y .

⇒ ?y foaf:primaryTopicOf ?x .

When the first rule fires, the second rule will also
fire. Thus, we encode a link from the first rule to the
second. �

We additionally label the links from one rule to
another: given that a rule may have multiple conse-
quent patterns – esp. as the result of merging – we
label the dependency link with the index of the con-
sequent pattern(s) that given the dependency. Dur-
ing the reasoning process, we then know which rule
is dependent on which particular inferred statement.

Finally, we also investigated one more template-
rule optimisation in [78]: we distinguish strong de-
pendencies between rules where the inference of one
rule will necessarily lead to the inference of another.
This is commonly the case for rules with only one an-

31

tecedent pattern (rules which do not require A-Box
joins). Thus, we can actually “saturate” the rules
according to strong dependencies and prune links
from the graph.

Example 10 Take the same two rules as the previ-
ous example; we can saturate the first rule to create:

?x foaf:homepage ?y .

⇒ ?x foaf:isPrimaryTopicOf ?y . ?x foaf:page ?y .

?y foaf:primaryTopicOf ?x .

Note that the second rule remains in the index,
but the first rule is no longer dependent on it, and so
we prune the link from the first rule to the second. �

Although the saturisation technique reduces the
number of rule applications necessary during rea-
soning, we found that applying saturated rules pro-
duced more initial duplicates which put more load
on our LRU cache: for example, consider if the triples

ex:aidan foaf:isPrimaryTopicOf ex:index.html .

ex:index.html foaf:primaryTopicOf ex:aidan .

reside in the cache before the above rule is applied
to the statement

ex:aidan foaf:homepage ex:index.html .

Without saturated rules, the second rule would not
fire and the duplicate foaf:primaryTopicOf triple
would not be produced. We found this particularly
expensive for saturated domain rules which inferred,
for example, membership of foaf:Person and all
of its subclasses: generally, the class memberships
would already have been inferred by other means.

For reference, we give the partial indexing ap-
proach with the template rule optimisations in Al-
gorithm 3. Note that the algorithm is identical to Al-
gorithm 2 until the closed T-Box is derived; also, we
omit the saturisation process for reasons discussed,
and we again use an LRU cache for duplicates as
before (not shown in the algorithm).

8.1.4. Authoritative Reasoning
In order to curtail the possible side-effects of

open Web data publishing, we include the source
of data in inferencing. Our methods are based on
the view that a publisher instantiating a vocabu-
lary’s term (class/property) thereby accepts the in-
ferencing mandated by that vocabulary and recur-
sively referenced vocabularies for that term. Thus,
once a publisher instantiates a class or property from
a vocabulary, only that vocabulary and its refer-
ences should influence what inferences are possible
through that instantiation.

Algorithm 3 Reasoning with templated rules

Require: INPUT FILE : G, RULES : R
1: derive AXI , T , T new as in Algorithm 2
2: R∅G ← {r ∈ R | r.AnteG 6= ∅, r.AnteT = ∅}
3: RT G ← {r ∈ R | r.AnteG 6= ∅, r.AnteT 6= ∅}
4: RT G ′ = template(RT G ,T)
5: RT G ′′ = merge(RT G ′)
6: Rindex = linkedRuleIndex(RT G ′′ ∪R∅G)
7: for t ∈ G∪AXI ∪T new do
8: RGt ← {(r, t) | r ∈ Rindex.lookup(t)}
9: for new rule/triple pair (rj , tk) ∈ RGt do

10: for tm ∈ rj .apply(tk) do
11: RGt ← RGt∪{(rl, tm) | rl ∈ rj .link(tk)}
12: end for
13: end for
14: output (unique triples in RGt)
15: end for

In order to do so, we again leverage Linked Data
best-practices: in this case, particularly LDP2 and
LDP3 – use HTTP URIs and offer an entity descrip-
tion at the dereferenced document. Similarly to the
ranking procedure, we follow the intuition that the
document returned by resolving a URI is authorita-
tive for that URI, and the prerogative of that docu-
ment on that URI should have special consideration.
More specifically – and recalling the dereferencing
function deref and HTTP lookup function get from
Section 4 – we can define the authoritative function
which gives the set of terms for which a graph at a
given Web location (source) speaks authoritatively:

auth :S→ 2C

s 7→ {b ∈ B | b ∈ t ∈ get(u)}
∪ {u ∈ U | deref(u) = s}

where a Web document is authoritative for the blank
nodes it contains and the URIs which dereference
to it; e.g., the FOAF vocabulary is authoritative for
terms in its namespace. Note that no document is
authoritative for literals.

Now we wish to perform reasoning over terms
as mandated in the respective authoritative docu-
ment. For example, we want to perform inferencing
over data instantiating FOAF classes and proper-
ties as mandated by the FOAF vocabulary, and not
let third-party vocabularies (not recursively refer-
enced by FOAF) affect said inferencing. To negate
the effects of non-authoritative axioms on reasoning
over Web data, we apply restrictions to the T -split
application of rules in RT G (rules with non-empty

32

AnteT and AnteG), whereby the document serving
the T-Box data bound byAnteT must be authorita-
tive for at least one term bound by a variable which
appears in both AnteT and AnteG : that is to say,
the document serving the terminological data must
speak authoritatively for at least one term in the
assertional data being reasoned over. 46

Example 11 Take the OWL 2 RL/RDF rule cax-
sco:

?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ⇒ ?x a ?c2 .

where we use a as a shortcut for rdf:type. Here,
?c1 is the only variable that appears in both AnteT
and AnteG . Take an A-Box triple

ex:me a foaf:Person .

Here, ?c1 is bound by foaf:Person, and
deref(foaf:Person) = foaf:, the FOAF spec.
Now, any document serving a binding for

foaf:Person rdfs:subClassOf ?c2 .

must be authoritative for the term foaf:Person:
the triple must come from the FOAF spec. Note that
?c2 need not be authoritatively bound; e.g., FOAF
can extend any classes they like. �

We do not consider authority for rules with empty
AnteT or AnteG . Also, we consider reasoned T-Box
triples as non-authoritative, thus effectively exclud-
ing these triples from the T-Box: in Table B.4, we
give an informal indication as to how this affects
completeness, showing how the inferences mandated
by the inferred T-Box axioms could instead be sup-
ported by recursive application of rules inRT G – we
claim that we would miss some owl:Thing member-
ship inferences (which we in any case filter from the
output) and some inferences based on some-values-
from and all-values-from axioms. 47

We refer the reader to [77,72] for more detail on
authoritative reasoning, including analysis of the ex-
plosion of inferences encountered without the notion
of authority. Note that the previous two examples
from documents in Footnotes 39 & 40 are ignored
by the authoritative reasoning. Since authoritative-
ness is on a T-Box level, we can apply the above ad-

46 Currently, we only consider the case where the T-Box
segment of the antecedent is matched by one document. For

OWL 2 RL/RDF rules in RT G , this is not so restrictive:
these rules may contain multiple terminological patterns,

but these always correspond to an ‘atomic axiom’, which the
OWL abstract syntax restricts to be bound in one document
and use local blank-nodes [77].
47 Similar, more formal analysis is given in [98] for RDFS.

ditional restriction to our templating function when
binding the terminological patterns of the rules to
derive a set of authoritative template rules.

8.1.5. Local Evaluation
In [78], we evaluated the various template rule op-

timisations presented in Section 8.1.3 for authori-
tative reasoning over the same raw dataset crawled
for the purposes of this paper on one machine: we
found that the initial approach (no template rules)
presented in Algorithm 2 took 118.4 h; we estimated
that brute force application of the template rules
would take 19 years; with indexing of linked rules,
application of the template rules took 22.1 h; includ-
ing the merge function reduced the time to 17.7 h;
saturating the rules increased the runtime to 19.5
h. Thus, the best approach – omitting saturation
– took 15% of the time of the näıve approach pre-
sented in Algorithm 2.

8.2. Distributed Approach

We now show how the above techniques can
be applied to perform authoritative reasoning wrt.
our ruleset over our distributed framework. Again,
assuming that the data is distributed (preferably
evenly, and possibly in an arbitrary fashion) over
the slave machines, we can apply the following dis-
tributed approach:

(i) run: each slave machine scans its segment of
the knowledge-base in parallel, extracting ter-
minological statements; each machine also an-
notates the terminological statements with au-
thoritative values, and attempts to ‘reduce’
the T-Box by removing irrelevant statements
– e.g., non-authoritative axioms or irrelevant
RDF collections;

(ii) gather: the master machine firstly executes
all axiomatic rules locally; the master ma-
chine then gathers all terminological state-
ments found by the slave machines in the pre-
vious step, which then:
– indexes the terminological statements in

memory;
– runs the ‘T-Box only’ rules, outputting re-

sults locally;
– creates the authoritative templated rules,

merging, indexing and linking them;
(iii) flood: the master machine sends the authori-

tative template rule index to all machines;

33

#machines 1 2 4 8

mins 46.7 25.2 14.5 8.7

Table 7

Time taken for reasoning of 31.3 m statements for differing

numbers of machines

(iv) run: the slave machines perform application
of the authoritative template rules over their
segment of the knowledge-base (A-Box), and
output inferences locally.

Thus, our notion of a separate T-Box, and restric-
tion of our rules to those with zero or one asser-
tional patterns allows us to flood the template rule
index – which encodes the small T-Box – to all ma-
chines, and avoids the need to compute potentially
expensive A-Box joins across machines; that is to
say, given the ‘T-Box’ as global knowledge, the slave
machines can perform reasoning over the large A-
Box in an embarrassingly parallel fashion.

As before, in order to evaluate the benefit of dis-
tributing the reasoning process over multiple ma-
chines, in Table 7 we present the time taken for rea-
soning over 31.3 m distributed across 1, 2, 4 and
8 machines. The demonstrated scale is near-linear,
with the common aggregation of T-Box information
causing the non-linear factor. In total, 28.9 m infer-
ences are produced (92% increase), with 207 k T-
Box triples (0.66%) creating 118 k template rules,
which are merged to 70 k. We will see more detailed
evaluation in the following section.

8.3. Full-Scale Evaluation

Continuing the thread of the paper, we applied
the above reasoning approach over the consolidated
data (1.113b statements) generated in Section 6.
Note that we presented similar evaluation in [78],
but we adapt the evaluation slightly for the purposes
of SWSE: (i) we output quadruples from the reason-
ing process, where the context encodes a URI which
refers to the rule directly responsible for the infer-
ence; 48 (ii) we extract the T-Box information from
the raw data, but we apply reasoning over the con-
solidated data: we want to ensure that owl:sameAs
statements do not affect terminological knowledge
(e.g., again see Footnote 24) – such caution is nec-
essary, but has little effect on the performance eval-
uation presented.

The entire process took 235.3 min.

48 Currently, we do not properly support ‘inference tracking’

and merely use rule-encoding contexts as a placeholder.

Extraction of the T-Box took 66 min, with an
average idle time of 17.3 min (26.2%); one machine
took 18 minutes longer than the next slowest, but
extracted 27.7% of the total T-Box data (more than
twice the average): this was due to one document 49

which contained 360 k triples and from which that
slave machine extracted 180 k T-Box statements. In
total, the T-Box consisted of 1.06 m statements after
remote reduction and removal of non-authoritative
data (0.1% of total data – judging from 0.66% for
31 m dataset, it seems that the ratio of T-Box data
shrinks as the Web crawl size increases, with the
“long tail” containing mainly A-Box data).

Aggregation of the T-Box on the master machine
– including application of T-Box only rules, loading
the T-Box into memory, and performing authorita-
tive analysis – took 11.2 min (4.8% of total reason-
ing time). Reasoning over the T-Box on the master
machine produced 2.64 m statements. In total, 301
k templated rules were created: Table 8 gives the
breakdown of templated rules for each original rule,
where notably 70.3% of rules are produced through
cax-sco which supports rdfs:subClassOf. The to-
tal number of templated rules was subsequently re-
duced to 216 k (reduced to 71.8%) by merging. The
rule index contained 1.15 m labelled links between
dependant rules.

Parallel application of the A-Box rules – and ma-
terialisation of the inferred data – took roughly
∼157.6 min, with an average idle time of ∼3.6
min (∼2.3%). Reasoning over the A-Box produced
1.558 g raw inferred quads (140% increase in data),
which was filtered down – removing non-RDF gen-
eralised statements and tautogolical statements – to
1.138 g output inferences; through subsequent post-
processing in the indexing phase described in the
next section, we found 941 m unique and novel (not
previously asserted) inferred triples (∼82.7% of raw
inferred quad count – 84.6% increase from original
data).

Overall, 95% of total reasoning time is spent in
embarrasingly parallel execution; however, on aver-
age 9.3% of this time was spent idle by the slave ma-
chines due to the one slow machine extracting the
T-Box. In total, 11.7 min was spent on the master
machine, mostly aggregating the T-Box.

49http://www.ebusiness-unibw.org/ontologies/eclass/

5.1.4/eclass_514en.owl

34

rule templated rules generated

prp-dom 13,875

prp-rng 13,469

prp-symp 99

prp-spo1 8,600

prp-eqp1 100

prp-eqp2 85

prp-inv1 703

prp-inv2 694

cls-int2 313

cls-uni 10,252

cls-svf2 2

cls-hv1 13

cls-hv2 11

cax-sco 211,519

cax-eqc1 22,895

cax-eqc2 18,544

total 301,075

Table 8

Total templated rules generated for each original rule.

8.4. Related Work

In this section we presented the extension of
our earlier presented work on SAOR [77] towards
larger coverage of OWL 2 RL/RDF and paral-
lel distribution of inference. Similarly, other works
have been presented that tackle large-scale reason-
ing through parallelisation: Urbani et. al. [123] pre-
sented a MapReduce approach to RDFS reasoning
in a cluster of commodity hardware similar to our-
selves., identifying that RDFS rules have, at most,
one assertional pattern in the antecedent, discussing
how this enables efficient MapReduce support. Pub-
lished at the same venue, Weaver and Hendler [126]
also leverage a separation of terminological data to
enable distribution of RDFS reasoning. Although
the above works have demonstrated scale in the or-
der of hundreds of millions and a billion triples re-
spectively, their experiments were focussed on scal-
ability issues and not on counter-acting poor data
quality on the Web. Weaver et al. [126] focus on eval-
uation over synthetic LUBM data; Urbani et al. [123]
apply RDFS over ∼865 m Linked Data triples, but
produce 30 g inferences which is against our re-
quirement of reduced output – they do not consider
authoritative reasoning or source of data, although
they note in their performance-centric paper that an
algorithm similar to that in SAOR could be added.

A number of systems have tackled the distributed
computation of A-Box joins. The MARVIN [105] sys-
tem uses a “divide-conquer-swap” technique for per-
forming joins in a distributed setting, avoiding hash-

based data partitioning to avoid problems with data-
skew inherent in RDF [87]. Following on from [123],
Urbani et al. introduced the WebPie system [122],
applying incomplete but comprehensive pD* to 100
g LUBM triples, discussing rule-specific optimisa-
tions for performing pD* “A-Box join rules” over
MapReduce. Although these works are certainly a
large step in the right direction, we feel that applying
such rules over 1 g triples of arbitrary Linked Data
is still an open research question given our previous
experiences documented in [77]: for example, apply-
ing full and quadratic materialisation of transitive
inferences over the A-Box may become infeasible (if
not now, then almost certainly in the future).

With respect to template rules, DLEJena [93] uses
the Pellet DL reasoner for T-Box level reasoning,
and uses the results to template rules for the Jena
rule engine; they only demonstrate methods on syn-
thetic datasets up to a scale of∼1 m triples. We take
a somewhat different approach, discussing template
rules in the context of the partial indexing tech-
nique, giving a lightweight bottom-up approach to
optimisations.

A viable alternative approach to Web reasoning
employed by Sindice [33] – the relation to which is
discussed in depth in [77] – is to consider a small
“per-document” closure which quarantines reason-
ing to a given document and the related documents
it either implicitly or explicitly imports. Although
such an approach misses inferences made through
the merge of documents – for example transitivity
across sources – so does ours given our current lim-
itation of not computing A-Box joins.

Falcons employ a similar approach to our au-
thoritative analysis to do reasoning over class
hierarchies, but only include custom support of
rdfs:subClassOf and owl:equivalentClass, as
opposed to our general framework for authoritative
reasoning over arbitrary T -split rules [26].

8.5. Future Directions and Open Research
Questions

In order to make reasoning over arbitrary Linked
Data feasible – both in terms of scale and useful-
ness of the inferred data – we currently renounce
a lot of inferences theoretically warranted by the
OWL semantics. We would thus like to extend our
approach to cover a more complete fragment of
OWL 2 RL/RDF, while still meeting the require-
ments outlined. This would include, for example,

35

a cost-benefit analysis of rules which require A-
Box joins for reasoning over Web data. Similarly,
since we perform partial-materialisation – and in-
deed since full OWL 2 RL/RDF materialisation
over Linked Data will probably not be feasible – we
would like to investigate some backward-chaining
(runtime) approaches which complement a partial-
materialisation strategy. Naturally, such extensions
would push the boundaries for scalability and per-
formance even further than our current, cautious
approach.

Relatedly, we do not currently consider the com-
bination of ranking into the reasoning process,
where ranking is currently applied before (and in-
dependently of) reasoning. In more exploratory
works [72,16], we have extended our approach to
include some notion of ranking, incorporating the
ranks of triples and their contexts (using a varia-
tion of the algorithm in Section 7) into inference,
and investigating the applicability of ranking as a
quantification of the trustworthiness of inferences.
We use these ranks to repair detected inconsisten-
cies: contradictions present in the corpus. In partic-
ular, we found ∼301 k inconsistencies after reason-
ing, although ∼294 k of these were given by invalid
datatypes, with ∼7 k members of disjoint classes.
Along similar lines, inclusion of ranking could be
used to facilitate top-k materialisation: for exam-
ple, only materialising triples relating to popularly
instantiated classes and properties. Integration of
these methods into the SWSE pipeline is the subject
of future work.

9. Indexing

Having now reached the end of the discussion
on the data acquisition, analysis and enhancement
components, we look at creating an index neces-
sary to allow users perform top-k keyword lookups
and focus lookups (see Section 2.1) over our ame-
liorated Linked Data crawl, which has been consoli-
dated and includes the results of the reasoning pro-
cess. Note that in previous work, we demonstrated
a distributed system for allowing SPARQL query-
ing over billions of triples [62]; however, we deem
SPARQL out-of-scope for this work, focussing in-
stead on a lightweight, bespoke index optimised for
the requirements of the user interface.

To allow for speedy access to the RDF data we
employ a set of indices: we employ an inverted index
for keyword lookups based on RDF literals (text),

and a sparse index for lookups of structured data. In-
verted indices are standard for keyword searches in
information retrieval. We employ a sparse index be-
cause it represents a good trade-off between lookup
performance, scalability and simplicity [62]. Follow-
ing our previous techniques aiming at application
over static datasets, our index structure does not
support updates and is instead read-optimised [62];
in principle, we could employ any sufficiently opti-
mised implementation of an index structure that of-
fers prefix lookup capabilities on keys.

9.1. Inverted Index

The inverted index is required to formulate the
direct response to a user keyword query, including
information for result-snippets to be rendered by
the UI (again, see Figure 1). Our inverted index for
keyword search is based on the Lucene [64] 50 engine,
and is constructed in the following way during a scan
of the data:
– for each entity in the RDF graph, construct a

Lucene document with the union of all string liter-
als related by some property to the RDF subject;

– to each entity, add fields containing the
identifiers (URI(s) or blank node given by
the subject and/or owl:sameAs values), la-
bels (rdfs:label, dc:title, etc.), descriptions
(rdfs:comment, dc:description, etc.), classes
(objects of rdf:type triples), and possibly other
metadata such as image URIs if required to create
keyword result snippets;

– in addition, globally computed ranks are added
for each identifier.
For lookups, we specify a set of keyword terms

for which matching identifiers should be returned,
and in addition the desired slice of the result set
(e.g., result 1 to 10). Following standard informa-
tion retrieval techniques, Lucene combines the glob-
ally computed ranks with query-dependent TF*IDF
(query-relevance) ranks and selects the slice of re-
sults to be returned. We additionally associate en-
tity labels with a fixed “boost” score, giving label-
term matches higher relevance, here assuming that
many keyword-searches will be for entity labels
(e.g., galway, dan brickley, etc.). For this, we use
Lucene’s off-the-shelf similarity engine [64] which
can be sketched as follows.

50http://lucene.apache.org/java/

36

The additional non-textual metadata stored in
Lucene allows for result snippets to be directly cre-
ated from the Lucene results, without requiring ac-
cess to the structured index: from the contents of
the additional fields we generate an RDF graph and
return the results to higher layers for generating the
results page.

9.2. Structured Index

The structured index is implemented to give all
information relating to a given entity (e.g., focus
view; again see Figure 2). The structured index is
implemented using “sparse indices” [62], where a
blocked and sorted ISAM file contains the RDF
quads and lookups are supported by a small in-
memory index which holds the first entry of each
block: binary search is performed on the in-memory
index to locate the on-disk blocks which can poten-
tially contribute to the answer, where subsequently
those blocks are fetched, parsed and answers filtered
and returned. Currently, we only require lookups
on the subject position of quads, and thus only re-
quire one index sorted according to the natural or-
der (s, p, o, c).

There are two tuning parameters for such an in-
dex. The first is block size, which determines i) the
size of the chunks of data fetched from disk and
ii) indirectly, the size of the in-memory portion of
the index. The second parameter for tuning is com-
pression: minimising the amount of data transferred
from disk to memory should speed up lookups, pro-
vided that the time saved by smaller data transfers
outweighs the time required for uncompressing data.
We will now look at evaluation of these parameters,
as well as performance of the inverted index.

9.3. Index Evaluation

In this section, we focus specifically on local
lookup performance – i.e., the baseline performance
– for our inverted and structured indexes. We will
detail indexing performance in the next section,
and evaluate distributed query-processing in Sec-
tion 11.3.

In order to evaluate at large scale, we build a lo-
cal index over the entire consolidated and reasoned
dataset consisting of 2.044 g unique quads on one
machine. 51

51 This is created by merge-sorting the results of the dis-

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000 100000

tim
e

in
 s

ec
on

ds

number of result quads

top-10
top-100

top-1000
top-10 (avg)

top-100 (avg)
top-1000 (avg)

Fig. 11. Result size vs. lookup and snippet generation time
on log/log scale for top-k results (k = { 10, 100, 1000}) of

100 popular keyword searches over an inverted-index built

from 2.044 g quads

To evaluate the inverted index, we request
keyword-result snippets for the top 100 keyword
searches users posed to the online SWSE system:
Figure 11 plots the time elapsed versus result size
on a log/log scale. Note that in a realistic scenario,
we would be posing top-10 queries to the index, but
herein also demonstrate top-100 and top-1000 re-
sults in order to stress-test the system – we exclude
keyword queries that did not meet the quota for a
given top-k experiment, where we only include 96
queries which return 10 results, 80 queries which re-
turn 100 results, and 57 queries which return 1,000
results. Keyword-result snippets are returned in the
form of quads, with an average of ∼12 quads re-
turned per result. For the top-10 queries, the average
time taken to generate and stream the results snip-
pets is 26 ms, with the slowest response taking 201
ms. The top-100 requests take on average 1.1 s, with
top-1000 results taking on average 7.8 s. On aver-
age, Lucene returns identifiers and ranks for hits in
∼16 ms per-query in each of the three setups – the
balance of the time is spent retrieving the content
of each hit to generate the result snippet.

For the structured index, we tested lookups in var-
ious index configurations: from experiments we de-
termined 8k blocks (pre-compression) as a competi-
tive block size [56]. We now compare our index using
different compression techniques against MySQL in
version 5.0.51a. We created graphs consisting of 5 m
to 125 m RDF quads using the random graph model
proposed by Erdos-Reny [43], and randomly created
lookup keys which were evaluated against the index.

tributed indexing detailed in the next section.

37

We additionally tested a number of configurations
for compression: no compression, gzip, zlib, and a
combination of these with a simple flyweight encod-
ing (labeled rle) where repeating RDF constants
inside a block are encoded with a unique integer af-
ter the first occurrence. Figure 12 shows the results;
the figure includes results for the relational database
to up to 8 m statements – larger data would trigger
OutOfMemory exceptions when performing lookups.
Even for data sizes where MySQL returns results,
our index organisation generally outperforms the
aforementioned relational database setup.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08

tim
e

el
ap

se
d

(m
s)

number of statements

Performing lookups

no compression
gzip
zlib2

rle
gzip + rle
zlib2 + rle

relational db

Fig. 12. Lookup performance for 5 m to 125 m statements

for various configurations of the index.

We subsequently performed scale-up experiments
over the local 2.044 g quad index, where we per-
form lookups for each result returned by the top-10
keyword-lookup for the 100 most popular keyword
searches posed to SWSE – we retrieve and stream
all quads for which the hit in question is the sub-
ject. The results are illustrated in Figure 13, where
on average each lookup takes 7.6 ms. The observant
reader will notice one pathological result near the
top left which takes 3.3 s, 52 without which the av-
erage becomes 4.3 ms – roughly equivalent to a disk-
seek given that our compressed index would exist in
a given locality on the hard-disk, and perhaps factor-
ing in low-level caching (we include no application-
level caching). It’s worth noting that the largest re-
sult – dbpedia:Italy – contained 78.3 k quads from
526 sources, taking 264 ms to process.

52 Note that this result was not repeatable, seemingly a slow

disk seek.

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000

tim
e

in
 s

ec
on

ds

number of result quads

quad-index lookups
quad-index lookups (avg)

Fig. 13. Result size vs. lookup and result access time on

log/log scale for 972 lookups on our structured index built

from 2.044 g quads

9.4. Distributed Approach

Again, the core operations required are keyword-
search using an inverted-index, and lookups on
subject-keys using a structured-index. In order to
build the inverted-index documents, we require all
information about a given subject on one machine,
and so we require a data-placement strategy which
gathers common subjects on one machine for our
distributed index. We thus use a modulo-hashing
function on the subjects of quads to distribute the
raw data: not only does this gather common sub-
jects on one machine, but also allows for obvious
optimisations in our query processing, discussed in
Section 11.

Thus, with respect to building the index in a dis-
tributed manner, we identify the following opera-
tions:

(i) scatter: the master machine splits and sends
the (relatively small) results of the T-Box
(schema-level) reasoning, hitherto resident
only on one machine;

(ii) co-ordinate: the slave machines hash triples
from the consolidated data and the reasoned
data according to the subject position – the
data fragments are then sent directly to the
appropriate peer and incoming data fragments
are received from all peers;

(iii) run: the slave machines perform a merge-sort
of the gathered data and produce a sorted
quad index as described;

(iv) run: the slave machines then build the
inverted-keyword index over the sorted data.

Note that it is during the sorting and index-
build steps that the slave machines detect and re-

38

#machines 1 2 4 8

mins 64.7 35.0 18.6 9.7

Table 9

Time taken for indexing of 31.3 m input statements and 16.7

m reasoned statements for differing numbers of machines

move duplicate reasoned quads: removing reasoned
quads containing triples that have already been as-
serted, or removing all but one reasoned quad for a
given triple – in other words, we consider reasoning-
generated contexts as expendable.

Table 9 presents the results of applying the in-
dexing procedure on 1, 2, 4, and 8 machines. Again,
we observe a largely linear trend with respect to the
number of machines: indeed, here our co-ordinate
distributed function proves its worth, by avoiding
the bottleneck of gathering/scattering on the
master machine.

9.5. Full-Scale Evaluation

In the final step of our pre-runtime evaluation, we
must build the index over the 2.252 g raw consoli-
dated and reasoned statements. The entire process
took 534.7 min (8.92 h).

The master machine took 2.3 min to split and
sort the reasoned T-Box data, and <1 second to
scatter the result. The co-ordinate function – hash-
ing and splitting, sorting and scattering the consol-
idated and reasoned data on each slave machine –
took 363.1 min with an average idle time of 10.1
min (2.8%). On each machine, less than a minute
was spent tranferring data, where most time is spent
parsing, hashing, splitting and sorting the data. In
total, 2.044 g quads were indexed, with a mean of
255.5 m quads per machine, and an average abso-
lute deviation of 157 k (∼0.06% of the mean) repre-
senting almost perfectly even distribution given by
hashing on subject.

Building the quad indexes in parallel on the slave
machine – including merge-sorting the gathered
batches and writing the GZipped RLE-encoded in-
dex file and creating the sparse-index – took 70.6
min with an average idle time of 74 s (1.7%). Build-
ing the Lucene inverted-keyword index took 97 min
with an average idle time of 36.5 min (37.2%): one
machine took 36.9 min longer than the next slowest
machine (we cannot quite discern why – the gener-
ated Lucene index was the same on-disk size as the
rest of the machines – and the reason seems to be
internal to Lucene).

The structured blocked-compressed index occu-

pied 1.8GB on-disk; the Lucene index on each ma-
chine was 10.8GB.

In total, 530.7 min was spent in parallel execution
(99.3%); however, on average 9% of this time was
spent idle by slave machines. A total of 4 min was
spent on the master machine.

9.6. Related Work

A veritable plethora of RDF stores have been
proposed in the literature, most aiming at provid-
ing SPARQL functionality, and each bringing with
it its own set of priorities for performance, and its
own strengths and weaknesses. A subset of these
systems rely on underlying relation databases for
storage, including 4store [55], Bigdata R© 53 , Hexa-
store [128], Jena SDB 54 , Mulgara 55 , Sesame [19],
Virtuoso [44], etc.; the rest rely on so called “native”
RDF storage schemes, including HPRD [90], Jena
TDB 56 , RDF3X [101], SIREn [34], Voldemort 57 ,
etc.

We note that many SPARQL engines include in-
verted indices – usually Lucene-based – to offer key-
word search over RDF data. The authors of [96]
describe fulltext-search benchmarking of existing
RDF stores – in particular Jena, Sesame2, Virtu-
oso, and YARS2 – testing queries of varying de-
grees of complexity involving fulltext search. They
showed that for many types of queries, the perfor-
mance of YARS2 was often not as competitive as
other stores, and correctly verified that certain types
of queries (e.g., keyword matches for literals of a
given property) are not supported by our system.
With respect to performance, we have only ever im-
plemented näıve full-SPARQL query-optimisation
techniques in YARS2, and have instead focussed
on creating scalable read-optimised indexes, demon-
strating batch-processing of joins in a distributed
environment and focussing on efficiently supporting
simple lookups which potentially return large re-
sult sets. For example, we choose not to use OIDs
(internal integer representations of constants): al-
though OIDs are a proven avenue for optimised
query-processing involving large amounts of inter-
mediate results (e.g., cf. [101]), we wish to avoid the
expensive translation from internal OIDs to poten-

53http://www.systap.com/bigdata.htm
54http://openjena.org/SDB/
55http://www.mulgara.org/
56http://openjena.org/TDB/
57http://project-voldemort.com/

39

tially many external constants, instead preserving
the ability to stream results directly. In general, we
do not currently require support for complex struc-
tured queries, and question the utility of more com-
plex full-text functionality to lay users.

9.7. Future Directions and Open Research
Questions

The future work of the indexing section is inex-
tricably linked to that of the future direction of the
query processing and user interface components. At
the moment, our index supports simple lookups for
entities matching a given keyword, data required to
build a keyword snippet, and the quads for which
that subject appears.

Given a relatively static query model, a custom-
built structured index can be tailored to offer opti-
mised service to the user interface, as opposed to,
e.g., a generic SPARQL engine. The main directions
for future work in indexing would be to identify an
intersection of queries for which optimised indexes
can be built in a scalable manner, and queries which
offer greater potential to the UI.

Further investigation of compression techniques
and other low-level optimisations may further in-
crease the base performance of our system – how-
ever, we feel that the combination of RLE encoding
and GZIP compression currently demonstrates sat-
isfactory performance.

10. Offline Processing Summary

Having discussed distributed data acquisition, en-
hancing, analysis and indexing components, we have
now reached the end of the off-line index generation
process. In this short section, we briefly provide the
overall picture of the total task time of these com-
ponents.

In Table 10, we provide such a summary. In par-
ticular, we note that 76.6% of total offline processing
is spent crawling, 1.5% consolidating, 3.1% ranking,
5.7% reasoning and 13% indexing. Excluding crawl-
ing, 94.5% of time is spent executing tasks in par-
allel by the slaves, where in total, 52.8 min (5.5%)
is required for aggregation and co-ordination on the
master machine – this time is spent idle by the slaves
and cannot be reduced by the addition of more ma-
chines. Total time including crawling was 68.3 h,
and excluding crawling 16 h. Thus, at this scale and

with this setup, an index could easily be crawled and
built from scratch on a weekly period.

Task Time(m) S %S M %M %T0 %T1

crawl 3150 3149 100 1 ∼0 — 76.6

extract owl:sameAs 12.5 12.5 100 0 0 1.3 0.3

load owl:sameAs 8.4 0 0 8.4 100 0.9 0.2

rewrite data 42.3 42.3 100 0 0 4.4 1

consolidate 63.3 54.8 86.6 8.5 14.4 6.6 1.5

extract PLD graph 27.9 27.9 100 0 0 2.9 0.7

extract ID ranks 67.6 67.6 100 0 0 7 1.6

aggregate ID ranks 27.7 0 0 27.7 100 2.9 0.7

rank 126.1 97.5 77.3 28.6 22.7 13.1 3.1

extract T-Box 66 66 100 0 0 6.9 1.6

load/reason T-Box 11.2 0 0 11.2 100 1.2 0.3

reason A-Box 157.6 157.6 100 0 0 16.4 3.8

reason 235.3 223.6 95 11.7 5 24.5 5.7

scatter r. T-Box 2.3 0 0 2.3 100 0.2 0.1

co-ordinate data 363.1 363.1 100 0 0 37.8 8.8

index quads 70.6 70.6 100 0 0 7.4 1.7

index keywords 97 97 100 0 0 10.1 2.4

index 534.7 530.7 99.3 4 0.7 55.7 13

T0: total w/o crawl 959.7 906.6 94.5 52.8 5.5 100 23.4

T1: total w/ crawl 4110 4056 98.7 53.8 1.3 — 100

Table 10

Breakdown of time taken in individual off-line components

and tasks, with task time in minutes, time spent in parallel
execution by the slaves (S), percentage of time in parallel

execution (%S), time spent executing on master machine

(M), percentage of time in local execution (%M), percent of
time wrt. total time excluding crawling (%T0), and percent

of time wrt. total time including crawling (%T1).

11. Query Processing

With the distributed index built and prepared
on the slave machines, we now require a query-
processor to accept user queries, request and orches-
trate lookups over the slave machines, and aggre-
gate, process and stream the final results. In this
section, we assume that the master-machine hosts
the query-processor: however, we look at different
configurations in Section 12. Herein, we aim to char-
acterise the query-processing steps, and give perfor-
mance for sequential lookups over the distributed in-
dex, and for the various information-retrieval tasks
required by the user-interface. In particular, we de-
scribe the two indices needed for processing user
keyword-queries and user focus-queries respectively
(see Section 2.1).

11.1. Distributed Keyword-Query Processing

For a top-k keyword query, the co-ordinating ma-
chine requests k result identifiers and ranks from
each of the slave machines. The co-ordinating ma-
chine then computes the aggregated top-k hits and
requests the snippet result data for each of the hits

40

from the originating machines, and streams data to
the initiating agent. For the purposes of pagination,
given a query for page n the originating machine re-
quests the top n ∗ k result identifiers and associated
ranks (which, according to Section 9.3 is answerable
by Lucene in constant time for varying result sizes),
and then determines, requests and streams the rel-
evant result snippets.

11.2. Distributed Focus-Query Processing

Creating the raw data for the focus view of a given
entity is somewhat complicated by the requirements
of the UI. The focus view mainly renders the in-
formation encoded by quads for which the identi-
fier of the entity appears in the subject position;
however, to provide a more legible rendering, the
UI requires human-readable labels for each predi-
cate and object, as well as ranks for prioritising el-
ements in the rendered view (see predicate/object
labels in Figure 2). Thus, to provide the raw data re-
quired for the focus view of a given entity, the master
machine accepts the relevant identifier, performs a
hash-function on the identifier, and directly requests
data from the respective slave machine (which itself
performs a lookup on the structured index). Subse-
quently, the master machine generates a unique set
of predicates and objects appearing in the result set;
this set is then split by hash, with each subset sent in
parallel to the target slave machines. The slave ma-
chines perform lookups for the respective label and
global rank, streaming results to the co-ordinating
machine, which in turn streams the final results to
the initiating agent.

As such, collating the raw data for the focus
view is more expensive than a simple lookup on
one targeted machine – although helped by the
hash-placement strategy, potentially many lookups
may be required. We mitigate the expense using
some application-level LRU caching, where the co-
ordinating machine caches not only keyword snip-
pet results and focus view results, but also the labels
and ranks for predicates and objects: in particular,
this would save repetitive lookups on commonly en-
countered properties and classes.

11.3. Full-scale Evaluation

In order to test the performance of distributed
query evaluation, we built versions of the 2.044 g
statement index on 1, 2, 4 and 8 slave machines, with

 0.01

 0.1

 1

 10

 10 100 1000

tim
e

in
 s

ec
on

ds

number of result quads

1 machine
2 machines
4 machines
8 machines

1 machine (avg)
2 machines (avg)
4 machines (avg)
8 machines (avg)

Fig. 14. Result size vs. lookup and snippet generation time
on log/log scale for top-10 results of 100 popular keyword

searches over an inverted-index built from 2.044 g quads on

1, 2, 4 and 8 slave machines

a remote master machine co-ordinating the query
processing.

Figure 14 gives the performance of sequential
keyword-lookup and snippet generation for top-10
results for each of the 100 most popular SWSE key-
word queries. Please note that due to differences in
the TF measure for each setup, the TF*IDF -based
Lucene score can vary slightly and sometimes pro-
duce different top-10 results for differing numbers of
machines. Besides two outliers (3.3 s and 1.7 s on 1
and 2 machines respectively), all responses are sub-
second with average times of 79 ms, 66 ms, 72 ms
and 104 ms respectively on 1, 2, 4 and 8 machines.
It seems that the keyword-lookups are generally so
cheap that distribution is not required, and can even
increase average response time given extra network
latency. The average number of quads generated for
each result listing is ∼130.

In Figure 15, we give the performance of sequen-
tial focus-view lookups for 972 entities returned as
results for the previous 100 top-10 keyword queries.
Generally, we see that on 1 machine, the index be-
gins to struggle 58 – otherwise, the performance
of the different setups is roughly comparable. The
slowest lookup on each setup was also the largest:
dbpedia:Italy consisted of 154.7 k quads, requir-
ing 76.4 k additional predicate/object lookups for
labels and ranks, roughly doubling the result size –
this focus-lookup took 33 s, 9.3 s, 9.2 s and 9 s on 1,
2, 4 and 8 machines respectively. The average focus-
view lookup was serviced in 715 ms, 50 ms, 54 ms,
and 63 ms on 1, 2, 4 and 8 machines respectively,

58 In particular, we observed∼17GB of virtual memory being

consumed: the limits of the machine are being reached.

41

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+006

tim
e

in
 s

ec
on

ds

number of result quads

1 machine
2 machines
4 machines
8 machines

1 machine (avg)
2 machines (avg)
4 machines (avg)
8 machines (avg)

Fig. 15. Result size retrieval time on log/log scale for 972

focus-view lookups over an index built from 2.044 g quads

on 1, 2, 4 and 8 slave machines

with an average results size of ∼565 quads (addi-
tional labels and ranks roughly double result-size),
and an average∼188 atomic lookups required for la-
bel/rank information. We note that moving from 1
to 2 machines offers a huge performance boost, but
when further doubling machines, distribution does
not significantly affect performance under low loads
(sequential lookups) – we will evaluate higher loads
in Section 12.

11.4. Related Work

Besides query-processing components for systems
referenced in Section 9.6, other types of query-
processing have been defined in the literature which
do not rely on data warehousing approaches.

The system presented in [63] leverages Linked
Data principles to perform live lookups on Linked
Data sources, rendering and displaying resulting
data; however, such an approach suffers from low
recall and inability to independently service key-
word queries. In [59] we have described an ap-
proach which uses a lightweight hashing-based index
structure – viz. a Q-Tree – for mapping structured
queries to Linked Data sources which could pos-
sibly provide pertinent information; these sources
are then retrieved and query-processing performed.
Such approaches suffer from poorer recall than data-
warehousing approaches, but enable the provision
of up-to-date results to users, which is particularly
expedient for query processing over highly dynamic
sources. We could investigate inclusion of a live-
lookup component in SWSE for a subset of queries
which we identify to be best answered by means of
live lookup; however, further research in this area is

required to identify such queries and to investigate
the performance of such a system.

Preliminary work on the DARQ [111] system pro-
vides federated query processing over a set of au-
tonomous independent SPARQL endpoints. Such
an approach may allow for increased query recall;
however, the performance of such a system is still
an open question; also, keyword search is still not
a standard SPARQL operation and thus federat-
ing keyword queries would probably require manual
wrappers for different SPARQL endpoints.

11.5. Future Directions and Open Research
Question

With respect to current query-processing capabil-
ities, our underlying index structures have proven
scalable. However, the focus-view currently requires
on average hundreds – but possibly tens or hun-
dreds of thousands – of lookups for labels and ranks.
Given that individual result sizes are likely to con-
tinue to grow, we will need to incorporate one of
the following optimisations: (i) we can build a spe-
cialised join index which pre-computes and stores
focus-view results, requiring one atomic lookup for
the entire focus-view result at the cost of longer in-
dexing time, and (judging from our evaluation) a
doubling of structured-index size; and/or (ii) we can
generate a top-k focus-view result, paginating the
view of a single entity and only retrieving incremen-
tal segments of the view – possibly asynchronously.

Extending the query processing to handle more
complex queries is a topic of importance when con-
sidering extension and improvement of the current
spartan UI. In order to fully realise the potential
benefits of querying over structured data, we need
to be able to perform optimised query processing.
For querying data, there is a trade-off between the
scalability of the approach and the expressivity of
the query language used.

In the general case, joins are expensive operations,
and when attempting to perform arbitrary joins on
very large datasets, either the system consumes a
large amount of resources per query or becomes slow.
Some systems (such as [81]) solve the scalability is-
sue by partitioning the data sets into smaller units
and have the user select a sub-dataset before fur-
ther browsing or querying; however, such a solution
impinges on the data-integration properties of RDF
which provides the raison d’être of a system such as
SWSE. Another solution is to pre-compute joins, al-

42

lowing for direct lookup of results emulating the cur-
rent approach; however, materialising joins can lead
to quadratic growth in index sizes. Investigation of
partial join materialisation – perhaps based on the
expense of a join operation, materialised size of join,
runtime caching, etc. – may enable sufficiently opti-
mised query processing.

Another open research question here is how to op-
timise for top-k querying in queries involving joins;
joins at large-scale can potentially lead to the access
of large-volumes of intermediary data, used to com-
pute a final small results size; thus, the question is
how top-k query processing can be used to imme-
diately retrieve the best results for joins, allowing –
e.g. – path queries in the UI (joins on objects and
subject) such that large intermediate data volumes
need not be accessed, and rather than the approach
of joining several attribute restrictions (e.g. facets)
as done in the threshold algorithm [45].

12. User and Application Programming
Interface

Having discussed distributed data acquisition, en-
hancing, analysis, indexing and query-processing
components, we have now come full circle: in the fol-
lowing section we briefly give the final performance
evaluation of our user interface – as described at the
outset in Section 2.1 – over our large corpus of en-
hanced and integrated data, in particular looking
more closely at concurrency issues.

12.1. User Interface Configurations

Our user-interface uses XSLT to convert the raw
data returned by the query-processor into result
pages, offering a declarative means of specifying
user-interface rendering and ultimately providing
greater flexibility for tweaking presentation.

For the distributed setup, we identify two possible
configurations for the user-interface, each of which
has significant implications for load-balancing:

(i) Figure 16 shows the master UI configuration,
where the user-interface is hosted alongside
the query-processor on the master machine; in
our current setup, the query-processing gener-
ates little load on the machine, and thus if nec-
essary, the UI result-page generation can ab-
sorb the lions-share of the master machine’s re-
sources. (This configuration follows naturally
from the previous section.)

(ii) Figure 17 shows the slave UI configuration,
where a query processor and UI instance is
hosted on each slave machine and where we
assume that some load-balancing function di-
rects users to the individual machines; under
heavier loads, this setup avoids the potential
bottleneck of hosting the UI on one machine.

We evaluate the above two setups in the following
section.

12.2. Full-scale Evaluation

In order to evaluate the two competing UI setups,
we emulate heavy concurrent access to the UI. We
create a query-mix incorporating the top-10 requests
for the 100 most popular keyword searches, and 972
focus lookups for each result returned. 59 We create
HTTP URIs which encode a GET request for the
respective keyword/focus result page: for multiple
UIs, we randomly assign queries to the different UIs,
offering a cheap form of load-balancing. We then
create varying numbers of threads (1, 4, 16, 64, 256,
1,024) to retrieve the content returned by the URIs,
emulating different load characteristics for different
levels of concurrent access: the requests are made on
a clean machine within the same network.

The average result size for the keyword result
pages was 17kB and for the focus view responses was
76kB. Figure 18 gives the average response times for
both master and slave UI setups, whilst Figure 19
gives the respective maximum response times. We
can see that at low user-loads, the master setup
performs best, whereas at higher loads, the slave
setup performs best, with an average response time
of ∼30% the master setup for the highest load. Us-
ing least squares, we estimated the linear-slope of
average time to be 0.031 (s/threads) for the slave
machine setup, and 0.106 for the master machine
setup (with a standard-error of 0.002 and 0.005 re-
spectively). It is also worth noting that the response
times are more variant on the slave setup for low-
loads, with maximum response times much greater
than for the master setup – more mature load-

59 Note that we analysed one week of SWSE logs in late July
2010, and found a ratio of 25:1 for focus to keyword lookups –
we believe that software agents may be probing SWSE, which

would explain the high ratio, and some observed repetitive
keyword queries. As a side note, we observe certain keyword

queries – such as why did dinosaurs disappear suddenly?

– which give a humbling indication as to how far away we
are from fulfilling certain users’ expectations for semantic

search.

43

m

Query
Processor

User
Interface

...

s0 s1 ... sn

RMI

HTTP

Fig. 16. Master UI configuration, with query processor

and user-interface on one machine

s0 s1 ... snUI
QP

...

s0 s1 ... sn

RMI

UI
QP

UI
QP

UI
QP

HTTP

Fig. 17. Slave UI configuration, with individual query

processors and user-interfaces on each slave machine

balancing based on CPU usage monitoring may per-
haps help here. In general, it would seem that the
combined UI and query-processing computation is
significant wrt. index lookups, and can become a
bottleneck at higher loads.

Out of interest, we also ran the same experi-
ment for 1,024 threads, but turning off the predi-
cate/object label and rank lookups which we deemed
in previous experiments to be expensive; in this
mode, the UI resorts to displaying lexicographically
ordered predicate/object values and labels gener-
ated from URI suffixes where available. For the mas-
ter UI setup, only a 2% saving on average response
time was observed, whereas an 11% saving was ob-
served for the slave UI setup – in the former setup, it
seems that the UI is generating the bottleneck and
extra index-lookups make little difference to perfor-
mance.

In summary, for the slave UI setup, aside from
accommodating 1,024 very patient users – at which
level of load all requests were successfully responded
to, but with the slowest queries taking upto 1.5 min –
it seems that we can currently accommodate a max-
imum of ∼30 concurrent users whilst continuing to
offer average sub-second response times.

12.3. Related Work

There has been considerable work on ren-
dering and displaying RDF data; such sys-
tems include: BrowseRDF [104], Explorator [30],
gFacet [68], Haystack [83], Longwell 60 , Piggy-
bank [80], (Power)Magpie [52], Marbles 61 , RKBEx-

60http://simile.mit.edu/wiki/Longwell
61http://marbles.sourceforge.net/

plorer 62 , Tabulator [10], Zitgist 63 , as well as user
interfaces for previously mentioned engines such as
Falcons, Sig.ma, Sindice, Swoogle, WATSON, etc.

Fresnel [108] has defined an interesting approach
to overcome the difficultly of displaying RDF in a
domain-agnostic way by providing a vocabulary for
describing how RDF should be rendered, thus allow-
ing for the declarative provision of schema specific
views over data; some user-interfaces have been pro-
posed to exploit Fresnel, including LENA [86]: how-
ever, Fresnel has not seen widespread adoption on
the Web thus far.

12.4. Future Directions and Open Research
Questions

Firstly, we must review the performance of the UI
with respect to generating results pages – we had
not previously considered this issue, but under high-
loads, UI result-generation seems to be a significant
factor in deciding response times.

With respect to functionality, we currently do not
fully exploit the potential offered by richly struc-
tured data. Firstly, such data could power a large
variety of visualisations: for example, to render SIM-
ILE’s timeline view 64 or a Google map view 65 .
Countless other visualisations are possible: for a his-
tory and examples of visualisations, cf. [49]. Re-
search into rendering and visualising large graph-
structured datasets – particularly user evaluation

62http://www.rkbexplorer.com/explorer/
63http://dataviewer.zitgist.com/
64http://www.simile-widgets.org/timeline/
65http://maps.google.com/

44

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024

av
er

ag
e

qu
er

y
tim

e
in

 s
ec

on
ds

number of threads

1 ui machine, focus queries
1 ui machine, keyword queries

8 ui machines, focus queries
8 ui machines, keyword queries

Fig. 18. Average response time for keyword and focus
queries with master UI and slave UI setup for a varying

number of threads emulating concurrent access

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024

m
ax

 q
ue

ry
 ti

m
e

in
 s

ec
on

ds

number of threads

1 ui machine, focus queries
1 ui machine, keyword queries

8 ui machines, focus queries
8 ui machines, keyword queries

Fig. 19. Maximum response time for keyword and focus
queries with master UI and slave UI setup for a varying

number of threads emulating concurrent access

thereof – could lead to novel user interfaces which
better suit and exploit such information.

Secondly, offering only keyword search and en-
tity browsing removes the possibility of servicing
more expressive queries which offer users more direct
answers: however, designing a system for domain-
agnostic users to formulate such queries in an intu-
itive manner – and one which is guided by the un-
derlying data to avoid empty results where possible
– has proven non-trivial. We have made first experi-
ments with more expressive user interfaces for inter-
acting with data through the VisiNav system 66 [57],
which supports faceted browsing [129], path traver-
sal [4] and data visualisations on top of the keyword
search and focus operations supported by SWSE.
Within VisiNav, we encourage users to incremen-
tally create expressive queries while browsing, as op-
posed to having a formal query formulation step –
users are offered navigation choices which lead to
non-empty results. However, for such extra function-
ality – specifically the cost of querying associated
with arbitrary join paths – VisiNav must make scal-
ability trade-offs: VisiNav can currently handle in
the realm of tens of millions of statements.

Efforts to provide guided construction of struc-
tured queries (e.g., cf. [97]) may be useful to so-
called ‘power-users’; however, such methods again
rely on some knowledge of the schema of the perti-
nent data and query. Other efforts to match keyword
searches to structured queries (e.g., cf. [119,91,27])
could bring together the ease of use of Web search
engines and the precise answers of structured data
querying; however, again such formulations still re-

66http://visinav.deri.org/

quire some knowledge of the schema(ta) of the data,
and which types of entities link to which by what
type of link.

For the moment, we focus on providing basic func-
tionality as should be familiar to many Web users.
Previous incarnations of SWSE offered more com-
plex user-interaction models, allowing, e.g., filter-
ing of results based on type, traversing inlinks for
an entity, traversing links from a collection of en-
tities, etc. From informal feedback received, we re-
alised that features such as inlink traversal (and
the notion of directionality) were deemed confusing
by certain users – or, at least by our implementa-
tion thereof. 67 We are thus more cautious about
implementing additional features in the user inter-
face, aiming for minimalistic display and interac-
tion. One possible solution is to offer different ver-
sions of the user-interface; e.g., a default system of-
fering simple keyword-search for casual users, and an
optional system offering more complex functional-
ity for power users. In such regards, user-evaluation
(currently out of scope) would be of utmost impor-
tance in making such design-choices.

We also wish to investigate the feasibility of of-
fering programmatic interfaces through SWSE. 68

The main requirements for such APIs are perfor-

67 In any case, our reasoning engine supports the
owl:inverseOf construct which solves the problem of direc-
tionality, and we would hope that most (object) properties
define a corresponding inverse-property.
68 Please note that practical limitations with respect to the
availability and administration of physical machines has re-

stricted our ability to provide such interfaces with high re-

liability; indeed, we used to offer timeout SPARQL queries
over ∼1.5 bn statements through YARS2, but for the mean-

time, we can no longer support such a service.

45

mance and reliability: the API has to return results
fast enough to enable interactive applications, and
has to have high uptime to encourage adoption by
external services. Full SPARQL is likely too power-
ful (and hence too expensive to evaluate) to provide
stable, complete and fast responses for. One possi-
ble workaround is to provide timeout queries, which
return as many answers as can be serviced in a fixed
time period; another possible solution is to offer top-
k query processing, or a well-supported subset of
SPARQL (e.g., DESCRIBE queries and conjunctive
queries with a limited number of joins, or containing
highly-selective patterns) such that could serve as a
foundation for visualisations and other applications
leveraging the integrated Web data in SWSE.

13. High-Level Future Directions

With respect to high-level future directions for
SWSE, we foresee the following goals:
– to scale further, where we would see∼10bn triples

as the next feasible goal to aim for on the given
hardware;

– to investigate modifications and extensions to the
existing components – as discussed throughout
the paper – to better realise their effectiveness un-
der their presented requirements;

– to look into methods for evaluating the preci-
sion and recall of our consolidation and reasoning
methods;

– to create a cyclical indexing framework whereby
the system is constantly building the new index
while the old is being queried against;

– to investigate incremental update methods, re-
using knowledge (data, statistics, etc.) acquired
from previous index builds to accelerate incremen-
tal builds;

– to further enhance the user-interface and provide
more complex features in a manner unobtrusive
to our minimalistic aesthetics;

– to investigate and conduct user evaluation as a lit-
mus test for the real-world utility of our research.
With respect to scaling further, current known

limits relate to those components relying on large in-
memory indices (which comprises the global knowl-
edge required by all machines); viz.: reasoning and
consolidation. However, as discussed for the case of
reasoning, we could simply store the T-Box in an on-
disk structure with heavy caching, and as discussed
for consolidation, we can revert to batch processing
techniques which do not rely on an in-memory equal-

ity index (see, e.g., [72]). Improving user-interface
response times at larger scale and high loads would
again be an open question.

With respect to cyclical indexing, we could sepa-
rate interests by having one set of machines prepar-
ing the next index, and one set of machines offering
query processing, switching between them as appro-
priate. This would allow us to maintain update-to-
date information, with freshness dependant on the
index build interval. In a similar vein – and although
all of the methods presented are tailored for the ap-
plication over static datasets – we could investigate
methods for increment updates which avoids repet-
itive work for each such index build.

Finally, it would of course be appropriate to in-
vest more time in the end-product of our system:
improving our user interface and performing user
evaluation to verify the benefit of our methods and
the usability of our system. Our main focus is on the
underlying research required for the realisation of
the Semantic Web Search Engine, but such research
would gain practical prioritisation, inspiration and
motivation from user feedback.

14. Conclusion

In this paper, we have presented the results of re-
search carried out as part of the SWSE project over
the past six years. In particular, we have adapted
the architecture of large-scale Web search engines
to the case of structured data. We have presented
lightweight algorithms which demonstrate the data-
integration possibilities for Linked Data, and shown
how such algorithms can be made scalable using
batch processing techniques such as scans and sorts,
and how they can be deployed over a distributed ar-
chitecture. We have also discussed and shown the
importance of taking the source of information into
account when handling arbitrary RDF Web data,
showing how Linked Data principles can be lever-
aged for such purposes, particularly in our ranking
and reasoning algorithms. Throughout, we have pre-
sented related work and possible future directions:
based on the experiences collected, we have identi-
fied open research questions which we believe should
be solved in order to – directly or indirectly – get
closer to the vision of search over the Web of Data
discussed in the introduction.

Research on how to integrate and interact with
large amounts of data from a very diverse set of in-
dependent sources is fairly recent, as many charac-

46

teristics of the research questions in the field became
visible after the deployment of significant amounts
of data by a significant body of data publishers. The
traditional application development cycle for data-
intensive applications is to model the data schema
and build the application on top – data modeling
and application development are tightly coupled.
That process is separated on the Semantic Web: data
publishers just model and publish data, often with
no particular application in mind. That approach
leads to a chicken-egg problem: people do not have
an incentive to publish data because there are no ap-
plications that would make specific use of the data,
and developers do not create useful applications be-
cause of the lack of quality data. Indeed, the quality
of data, that a system such as SWSE operates over,
is perhaps as much of a factor in the system’s utility
as the design of the system itself.

Recently there has been significant success with
Linked Data where an active community publishes
datasets in a broad range of topics, and maintains
and interlinks these datasets. Again, efforts such
as DBpedia have lead to a much richer Web of
Data than the one present when we began working
on SWSE. However, data heterogeneity still poses
problems – not so much for the underlying compo-
nents of SWSE – but for the user-facing components
and the users themselves: allowing domain-oblivious
users to create flexible structured queries in a con-
venient and intuitive manner is still an open ques-
tion. Indeed, the Web of Data still cannot compete
with the vast coverage of the Web of Documents,
and perhaps never will [109].

That said, making Web data available for query-
ing and navigation has significant scientific and com-
mercial potential. Firstly, the Web becomes subject
to scientific analysis [12]: understanding the implicit
connections and structure of the Web of Data can
help to reveal new understandings of collaboration
patterns and the processes by which networks form
and evolve. Secondly, aggregating and enhancing sci-
entific data published on the Web can help scientists
to more easily perform data-intensive research, in
particular allowing for the arbitrary re-purposing of
published datasets which can subsequently be used
in ways unforeseen by the original publisher; in-
deed, the ability to navigate and search effectively
through a store of knowledge integrated from multi-
ple sources can broaden the pool of information and
ideas available to a scientific community. Thirdly,
making the Web of Data available for interactive
querying, browsing, and navigation has applications

in areas such as e-commerce and e-health, allowing
data-analysts in such fields to pose complex struc-
tured queries over a dataset aggregated from multi-
tudinous relevant sources.

Commercial success – and bringing a system such
as the Semantic Web Search Engine into the main-
stream – is perhaps a longer term goal, relying on
the increased growth in RDF data becoming avail-
able: data which is of mainstream interest, and has a
broad coverage of topics. In any case, there are still
many open research questions to tackle in the years
to come.

Acknowledgements We would like to thank
the anonymous reviewers and the editors for their
feedback which helped to improve this paper. The
work presented herein has been funded in part
by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2), and by an IRCSET
postgraduate scholarship.

References

[1] H. Alani, C. Brewster, N. Shadbolt, Ranking ontologies

with AKTiveRank, in: 5th International Semantic Web
Conference, 2006.

[2] H. Alani, S. Dasmahapatra, K. O’Hara, N. Shadbolt,

Identifying communities of practice through ontology

network analysis, IEEE Intelligent Systems 18 (2)
(2003) 18–25.

[3] K. Anyanwu, A. Maduko, A. Sheth, SemRank: ranking

complex relationship search results on the semantic

web, in: 14th International Conference on World Wide
Web, 2005.

[4] N. Athanasis, V. Christophides, D. Kotzinos,

Generating On the Fly Queries for the Semantic Web:
The ICS-FORTH Graphical RQL Interface (GRQL),
in: 3rd International Semantic Web Conference, 2004.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, Z. G. Ives, DBpedia: A Nucleus for a

Web of Open Data, in: ISWC/ASWC, 2007.

[6] A. Balmin, V. Hristidis, Y. Papakonstantinou,

Objectrank: authority-based keyword search in
databases, in: Proceedings of the 13th International

Conference on Very Large Data Bases, 2004.

[7] S. Batsakis, E. G. M. Petrakis, E. Milios, Improving
the performance of focused web crawlers, Data Knowl.
Eng. 68 (10) (2009) 1001–1013.

[8] S. Bechhofer, R. Volz, Patching Syntax in OWL
Ontologies, in: International Semantic Web Conference
(ISWC 2004), vol. 3298 of Lecture Notes in Computer
Science, Springer, 2004.

[9] T. Berners-Lee, Linked Data, Design issues for the
World Wide Web, World Wide Web Consortium, http:
//www.w3.org/DesignIssues/LinkedData.html

(2006).

47

[10] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,

R. Dhanaraj, J. Hollenbach, A. Lerer, D. Sheets,

Tabulator: Exploring and analyzing linked data
on the semantic web, in: In Proceedings of the

3rd International Semantic Web User Interaction

Workshop, 2006.

[11] T. Berners-Lee, R. Fielding, L. Masinter, Uniform

Resource Identifier (URI): Generic Syntax, RFC

3986, http://tools.ietf.org/html/rfc3986 (January
2005).

[12] T. Berners-Lee, W. Hall, J. Hendler, N. Shadbolt,

D. J. Weitzner, Creating a Science of the Web, Science
313 (11).

[13] C. Bizer, R. Cyganiak, D2R Server - Publishing
Relational Databases on the Web as SPARQL

Endpoints, in: ISWC, 2006, (poster).

[14] C. Bizer, T. Heath, T. Berners-Lee, Linked Data - The
Story So Far, Int. J. Semantic Web Inf. Syst. 5 (3)

(2009) 1–22.

[15] P. Boldi, B. Codenotti, M. Santini, S. Vigna, S. Vigna,
UbiCrawler: a scalable fully distributed web crawler,

Software: Practice and Experience 34 (2002) 2004.

[16] P. A. Bonatti, A. Hogan, A. Polleres, L. Sauro, Robust
and Scalable Linked Data Reasoning Incorporating

Provenance and Trust Annotations, Journal of Web

Semantics (In Press).

[17] P. Bouquet,

H. Stoermer, M. Mancioppi, D. Giacomuzzi, OkkaM:

Towards a Solution to the “Identity Crisis” on the
Semantic Web, in: Proceedings of SWAP 2006, the 3rd

Italian Semantic Web Workshop, vol. 201 of CEUR
Workshop Proceedings, 2006.

[18] S. Brin, L. Page, The Anatomy of a Large-Scale

Hypertextual Web Search Engine, Computer Networks
30 (1-7) (1998) 107–117.

[19] J. Broekstra, A. Kampman, F. van Harmelen, Sesame:

A Generic Architecture for Storing and Querying RDF
and RDF Schema, in: 2nd International Semantic Web

Conference, Springer, 2002.

[20] D. Cai, X. He, J. Wen, W. Ma, Block-level link analysis,
in: 27th International ACM SIGIR Conference on

Research and Development in Information Retrieval,

2004.

[21] J. Caverlee, L. Liu, QA-Pagelet: Data Preparation

Techniques for Large-Scale Data Analysis of the Deep

Web, IEEE Trans. Knowl. Data Eng. 17 (9) (2005)
1247–1262.

[22] S. Chakrabarti, M. van den Berg, B. Dom, Focused

Crawling: A New Approach to Topic-Specific Web
Resource Discovery, Computer Networks 31 (11-16)

(1999) 1623–1640.

[23] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, R. Gruber,
Bigtable: A Distributed Storage System for Structured
Data, in: OSDI, 2006.

[24] K. C.-C. Chang, B. He, Z. Zhang, Toward Large Scale

Integration: Building a MetaQuerier over Databases on
the Web, in: CIDR, 2005.

[25] Z. Chen, D. V. Kalashnikov, S. Mehrotra, Exploiting
relationships for object consolidation, in: IQIS ’05:
Proceedings of the 2nd international workshop on

Information quality in information systems, ACM
Press, New York, NY, USA, 2005.

[26] G. Cheng, W. Ge, H. Wu, Y. Qu, Searching

Semantic Web Objects Based on Class Hierarchies, in:
Proceedings of Linked Data on the Web Workshop,

2008.

[27] G. Cheng, Y. Qu, Searching Linked Objects with

Falcons: Approach, Implementation and Evaluation.,

Int. J. Semantic Web Inf. Syst. 5 (3) (2009) 49–70.

[28] T. Cheng, K. C.-C. Chang, Entity Search Engine:

Towards Agile Best-Effort Information Integration over

the Web, in: CIDR, 2007.

[29] M. d’Aquin, M. Sabou, E. Motta, S. Angeletou,

L. Gridinoc, V. Lopez, F. Zablith, What Can be Done
with the Semantic Web? An Overview Watson-based

Applications, in: SWAP, 2008.

[30] S. F. C. de Araújo, D. Schwabe, Explorator: a tool
for exploring RDF data through direct manipulation,

in: Linked Data on the Web WWW2009 Workshop

(LDOW2009), 2009.

[31] J. Dean, S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, in: OSDI, 2004.

[32] S. Decker, M. Erdmann, D. Fensel, R. Studer,

Ontobroker: Ontology Based Access to Distributed

and Semi-Structured Information, in: DS-8: IFIP
TC2/WG2.6 Eighth Working Conference on Database

Semantics, Kluwer, B.V., Deventer, The Netherlands,

The Netherlands, 1998.

[33] R. Delbru, A. Polleres, G. Tummarello, S. Decker,

Context Dependent Reasoning for

Semantic Documents in Sindice, in: Proceedings of the
4th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS 2008), Karlsruhe,
Germany, 2008.

URL http://www.polleres.net/publications/

delb-etal-2008.pdf

[34] R. Delbru, N. Toupikov, M. Catasta, G. Tummarello,

A Node Indexing Scheme for Web Entity Retrieval, in:

Proceedings of the Extended Semantic Web Conference
(ESWC 2010), 2010.

[35] R. Delbru, N. Toupikov, M. Catasta, G. Tummarello,
S. Decker, Hierarchical Link Analysis for Ranking Web

Data, in: Proceedings of the Extended Semantic Web

Conference (ESWC 2010), 2010.

[36] H. Dietze, M. Schroeder, Semplore: A Scalable

IR Approach to Search the Web of Data, BMC

Bioinformatics 10.

[37] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles,

M. Gori, Focused Crawling Using Context Graphs,
in: VLDB ’00: Proceedings of the 26th International

Conference on Very Large Data Bases, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA,
2000.

[38] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng,

P. Reddivari, V. C. Doshi, J. Sachs, Swoogle: A
Search and Metadata Engine for the Semantic Web, in:

13th ACM Conference on Information and Knowledge

Management, ACM Press, 2004.

[39] L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng, P. Kolari,

Finding and ranking knowledge on the semantic web,
in: 4th International Semantic Web Conference, 2005.

48

[40] H. Dong, F. K. Hussain, E. Chang, State of

the Art in Semantic Focused Crawlers, in: ICCSA

’09: Proceedings of the International Conference on
Computational Science and Its Applications, Springer-

Verlag, Berlin, Heidelberg, 2009.

[41] M. Ehrig, A. Maedche, Ontology-focused crawling of

Web documents, in: SAC ’03: Proceedings of the 2003
ACM symposium on Applied computing, ACM, New

York, NY, USA, 2003.

[42] A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios,

Duplicate Record Detection: A Survey, IEEE

Transactions on Knowledge and Data Engineering
19 (1) (2007) 1–16.

[43] P. Erdös, A. Rényi, On random graphs, I, Publicationes

Mathematicae (Debrecen) 6 (1959) 290–297.

[44] O. Erling, I. Mikhailov, RDF Support in the Virtuoso

DBMS, in: CSSW, 2007.

[45] R. Fagin, Combining fuzzy information from

multiple systems (extended abstract), in: PODS ’96:
Proceedings of the fifteenth ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems,

ACM, 1996.

[46] D. Fensel, F. van Harmelen, Unifying Reasoning and
Search to Web Scale, IEEE Internet Computing 11 (2)

(2007) 96, 94–95.

[47] R. Fielding, J. Gettys, J. Mogul, H. F. Nielsen,

L. Masinter, P. Leach, T. Berners-Lee, Hypertext

Transfer Protocol – HTTP/1.1, RFC 2616, ftp://ftp.
isi.edu/in-notes/rfc2616.txt (June 1999).

[48] T. Franz, A. Schultz, S. Sizov, S. Staab,

TripleRank: Ranking Semantic Web Data By Tensor

Decomposition, in: 8th International Semantic Web
Conference (ISWC2009), 2009.

[49] M. Friendly, A Brief History of Data Visualization, in:

C. Chen, W. Härdle, A. Unwin (eds.), Handbook of

Computational Statistics: Data Visualization, vol. III,
Springer-Verlag, Heidelberg, 2006.

[50] H. Glaser, I. Millard, A. Jaffri, RKBExplorer.com:
A knowledge driven infrastructure for linked data

providers, in: ESWC Demo, Lecture Notes in Computer
Science, Springer, 2008.

[51] B. C. Grau, B. Motik, Z. Wu, A. Fokoue, C. Lutz, OWL
2 Web Ontology Language: Profiles, W3C Working

Draft, http://www.w3.org/TR/owl2-profiles/ (Apr.

2008).

[52] L. Gridinoc, M. Sabou, M. d’Aquin, M. Dzbor,
E. Motta, Semantic Browsing with PowerMagpie, in:

ESWC, 2008.

[53] R. V. Guha, R. McCool, R. Fikes, Contexts for the
Semantic Web, in: 3rd International Semantic Web
Conference, Hiroshima, 2004.

[54] H. Halpin, P. J. Hayes, J. P. McCusker, D. L.
McGuinness, H. S. Thompson, When owl:sameAs Isn’t

the Same: An Analysis of Identity in Linked Data, in:

International Semantic Web Conference (1), 2010.

[55] S. Harris, N. Lamb, N. Shadbolt, 4store: The Design
and Implementation of a Clustered RDF Store, in:

5th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2009), 2009.

[56] A. Harth, Exploring Linked Data at Web Scale, Ph.D.
thesis, Digital Enterprise Research Institute, National
University of Ireland, Galway (2010).

[57] A. Harth, Visinav: A system for visual search and
navigation on web data, J. Web Sem. 8 (4) (2010) 348–

354.
[58] A. Harth, S. Decker, Optimized Index Structures for

Querying RDF from the Web, in: 3rd Latin American

Web Congress, IEEE Press, 2005.
[59] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U.

Sattler, J. Umbrich, Data summaries for on-demand
queries over linked data, in: WWW, 2010.

[60] A. Harth, S. Kinsella, Topdis: Tensor-based ranking for

data search and navigation, Tech. rep., DERI (6 2009).
[61] A. Harth, S. Kinsella, S. Decker, Using Naming

Authority to Rank Data and Ontologies for Web

Search, in: 8th International Semantic Web Conference
(ISWC 2009), 2009.

[62] A. Harth, J. Umbrich, A. Hogan, S. Decker, YARS2: A

Federated Repository for Querying Graph Structured

Data from the Web, in: 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference,

2007.
[63] O. Hartig, C. Bizer, J. C. Freytag, Executing SPARQL

Queries over the Web of Linked Data, in: International

Semantic Web Conference, 2009.
[64] E. Hatcher, O. Gospodnetic, Lucene in Action,

Manning Publications, 2004.
[65] P. Hayes, RDF Semantics, W3C Recommendation,

http://www.w3.org/TR/rdf-mt/ (Feb. 2004).
[66] B. He, M. Patel, Z. Zhang, K. C.-C. Chang, Accessing

the Deep Web, Commun. ACM 50 (5) (2007) 94–101.
[67] J. Heflin, J. Hendler, S. Luke, SHOE: A Knowledge

Representation Language for Internet Applications,

Tech. Rep. CS-TR-4078, Dept. of Computer Science,
University of Maryland (1999).

[68] P. Heim, J. Ziegler, S. Lohmann, gFacet: A Browser for

the Web of Data, in: Proceedings of the International
Workshop on Interacting with Multimedia Content in

the Social Semantic Web (IMC-SSW’08), CEUR-WS,

2008.
[69] A. Heydon, M. Najork, Mercator: A Scalable,

Extensible Web Crawler, World Wide Web 2 (1999)

219–229.
[70] J. Hirai, S. Raghavan, H. Garcia-Molina, A. Paepcke,

WebBase: a repository of Web pages”, Computer

Networks 33 (1–6) (2000) 277–293.
[71] P. Hitzler, F. van Harmelen, A Reasonable Semantic

Web, Semantic Web – Interoperability, Usability,
Applicability 1.

[72] A. Hogan, Exploiting RDFS and OWL for Integrating

Heterogeneous, Large-Scale, Linked Data Corpora,
Ph.D. thesis, Digital Enterprise Research Institute,

National University of Ireland, Galway, available from
http://aidanhogan.com/docs/thesis/ (2011).

[73] A. Hogan, S. Decker, On the Ostensibly Silent ’W’ in

OWL 2 RL, in: Third International Conference on Web
Reasoning and Rule Systems, (RR2009), 2009.

[74] A. Hogan, A. Harth, S. Decker, ReConRank: A
Scalable Ranking Method for Semantic Web Data with

Context, in: 2nd Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2006), 2006.
[75] A. Hogan, A. Harth, S. Decker, Performing Object

Consolidation on the Semantic Web Data Graph, in:

1st I3 Workshop: Identity, Identifiers, Identification
Workshop, 2007.

49

[76] A. Hogan, A. Harth, A. Passant, S. Decker, A. Polleres,

Weaving the Pedantic Web, in: Linked Data on the

Web WWW2010 Workshop (LDOW2010), 2010.

[77] A. Hogan, A. Harth, A. Polleres, Scalable Authoritative
OWL Reasoning for the Web, Int. J. Semantic Web

Inf. Syst. 5 (2).

[78] A. Hogan, J. Z. Pan, A. Polleres, S. Decker,
SAOR: Template Rule Optimisations for Distributed

Reasoning over 1 Billion Linked Data Triples, in:

International Semantic Web Conference, 2010.

[79] A. Hogan, A. Polleres, J. Umbrich, A. Zimmermann,

Some entities are more equal than others: statistical

methods to consolidate Linked Data, in: 4th
International Workshop on New Forms of Reasoning

for the Semantic Web: Scalable and Dynamic

(NeFoRS2010), 2010.

[80] D. Huynh, S. Mazzocchi, D. R. Karger, Piggy Bank:
Experience the Semantic Web inside your web browser,

J. Web Sem. 5 (1) (2007) 16–27.

[81] D. F. Huynh, D. Karger, Parallax and
Companion: Set-based Browsing for the

Data Web, available online (2008-12-15)

http://davidhuynh.net/media/papers/2009/www2009-
parallax.pdf.

[82] X.-M. Jiang, G.-R. Xue, W.-G. Song, H.-J. Zeng,

Z. Chen, W.-Y. Ma, Exploiting PageRank at Different
Block Level , in: 5th International Conference on Web

Information Systems, 2004.

[83] D. R. Karger, K. Bakshi, D. Huynh, D. Quan,
V. Sinha, Haystack: A General-Purpose Information

Management Tool for End Users Based on

Semistructured Data, in: CIDR, 2005.

[84] A. Kiryakov, D. Ognyanoff, R. Velkov, Z. Tashev,
I. Peikov, LDSR: a Reason-able View to the Web of

Linked Data, in: Semantic Web Challenge (ISWC2009),

2009.

[85] J. M. Kleinberg, Authoritative Sources in a

Hyperlinked Environment, Journal of the ACM 46 (5)

(1999) 604–632.

[86] J. Koch, T. Franz, LENA – Browsing RDF Data More
Complex Than Foaf, in: International Semantic Web

Conference (Posters & Demos), 2008.

[87] S. Kotoulas, E. Oren, F. van Harmelen, Mind the data
skew: distributed inferencing by speeddating in elastic

regions, in: WWW, 2010.

[88] H.-T. Lee, D. Leonard, X. Wang, D. Loguinov, IRLbot:
Scaling to 6 billion pages and beyond, ACM Trans.

Web 3 (3) (2009) 1–34.

[89] Y. Lei, V. Uren, E. Motta, Semsearch: A search

engine for the semantic web, in: 14th International
Conference on Knowledge Engineering and Knowledge

Management, 2006.

[90] B. Liu, B. Hu, HPRD: A High Performance RDF
Database, in: NPC, 2007.

[91] V. Lopez, V. S. Uren, E. Motta, M. Pasin, AquaLog:

An ontology-driven question answering system for
organizational semantic intranets, J. Web Sem. 5 (2)

(2007) 72–105.

[92] F. Manola, E. Miller, B. McBride, RDF Primer, W3C
Recommendation,
http://www.w3.org/TR/rdf-primer/ (Feb. 2004).

[93] G. Meditskos, N. Bassiliades, DLEJena: A practical
forward-chaining OWL 2 RL reasoner combining Jena

and Pellet, J. Web Sem. 8 (1) (2010) 89–94.
[94] S. Melnik, S. Raghavan, B. Yang, H. Garcia-Molina,

Building a Distributed Full-Text Index for the Web, in:

10th International World Wide Web Conference, Hong
Kong, 2001.

[95] M. Michalowski, S. Thakkar, C. A. Knoblock,

Exploiting secondary sources for automatic object
consolidation, in: Proceeding of 2003 KDD Workshop

on Data Cleaning, Record Linkage, and Object
Consolidation, 2003.

[96] E. Minack, W. Siberski, W. Nejdl, Benchmarking

Fulltext Search Performance of RDF Stores, in: ESWC,
2009.

[97] K. Möller, O. Ambrus, L. Josan, S. Handschuh, A
Visual Interface for Building SPARQL Queries in

Konduit, in: International Semantic Web Conference

(Posters & Demos), 2008.
[98] S. Muñoz, J. Pérez, C. Gutiérrez, Minimal Deductive

Systems for RDF, in: ESWC, 2007.
[99] M. Najork, J. L. Wiener, Breadth-First Search

Crawling Yields High-Quality Pages, in: In Proc. 10th

International World Wide Web Conference, 2001.
[100] M. Najork, H. Zaragoza, M. Taylor, HITS on the

Web: How does it Compare?, in: Proceedings of the
30th annual international ACM SIGIR conference on

Research and development in information retrieval,

ACM, 2007.
[101] T. Neumann, G. Weikum, The RDF-3X engine for

scalable management of RDF data, VLDB J. 19 (1)

(2010) 91–113.
[102] H. B. Newcombe, J. M. Kennedy, S. J. Axford,

A. P. James, Automatic Linkage of Vital Records:
Computers can be used to extract ”follow-up” statistics

of families from files of routine records, Science 130

(1959) 954–959.
[103] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,

H. Stenzhorn, G. Tummarello, Sindice.com: A
document-oriented lookup index for open linked data,

Int. J. Metadata Semant. Ontologies 3 (1) (2008) 37–

52.
[104] E. Oren, R. Delbru, S. Decker, Extending Faceted

Navigation for RDF Data, in: International Semantic

Web Conference, 2006.
[105] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten

Teije, F. van Harmelen, Marvin: Distributed reasoning
over large-scale Semantic Web data, J. Web Sem. 7 (4)

(2009) 305–316.
[106] L. Page, S. Brin, R. Motwani, T. Winograd, The

PageRank Citation Ranking: Bringing Order to the

Web, Tech. rep., Stanford Digital Library Technologies
Project (1998).

[107] G. Pant, P. Srinivasan, Learning to crawl: Comparing
classification schemes, ACM Trans. Inf. Syst. 23 (4)
(2005) 430–462.

[108] E. Pietriga, C. Bizer, D. R. Karger, R. Lee, Fresnel:
A Browser-Independent Presentation Vocabulary for
RDF, in: International Semantic Web Conference,

2006.
[109] A. Polleres, A. Hogan, A. Harth, S. Decker, Can

we ever catch up with the Web?, Semantic Web –
Interoperability, Usability, Applicability 1.

50

[110] E. Prud’hommeaux, A. S. (eds.), SPARQL Query

Language for RDF, W3C Recommendation, http://

www.w3.org/TR/rdf-sparql-query/ (Jan. 2008).
[111] B. Quilitz, U. Leser, Querying Distributed RDF Data

Sources with SPARQL, in: ESWC, 2008.
[112] S. Raghavan, H. Garcia-Molina, Crawling the Hidden

Web, in: VLDB, 2001.
[113] D. Reynolds, OWL 2 RL in RIF, W3C Working Group

Note, http://www.w3.org/TR/rif-owl-rl/ (Jun.

2010).
[114] M. Sabou, C. Baldassarre, L. Gridinoc, S. Angeletou,

E. Motta, M. d’Aquin, M. Dzbor, WATSON: A

Gateway for the Semantic Web, in: ESWC 2007 poster

session, 2007-06.
[115] M. K. Smith, C. Welty, D. L. McGuinness, OWL Web

Ontology Language Guide, W3C Recommendation,

http://www.w3.org/TR/owl-guide/ (Feb. 2004).
[116] M. Stonebraker, The Case for Shared Nothing, IEEE

Database Eng. Bull. 9 (1) (1986) 4–9.
[117] H. J. ter Horst, Completeness, decidability and

complexity of entailment for RDF Schema and a
semantic extension involving the OWL vocabulary,

Journal of Web Semantics 3 (2005) 79–115.
[118] M. Thelwall, D. Stuart, Web crawling ethics revisited:

Cost, privacy, and denial of service, Journal of
the American Society for Information Science and

Technology 57 (2006) 1771–1779.
[119] T. Tran, H. Wang, S. Rudolph, P. Cimiano, Top-k

Exploration of Query Candidates for Efficient Keyword

Search on Graph-Shaped (RDF) Data, in: ICDE ’09:

Proceedings of the 2009 IEEE International Conference
on Data Engineering, 2009.

[120] G. Tummarello, R. Cyganiak, M. Catasta,

S. Danielczyk, S. Decker, Sig.ma: Live views on the
Web of Data, in: Semantic Web Challenge, 2009.

[121] J. Umbrich, A. Harth, A. Hogan, S. Decker, Four

heuristics to guide structured content crawling,

in: Proceedings of the 2008 Eighth International
Conference on Web Engineering-Volume 00, IEEE

Computer Society, 2008.
[122] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen,

H. E. Bal, OWL Reasoning with WebPIE: Calculating

the Closure of 100 Billion Triples, in: ESWC (1), 2010.
[123] J. Urbani, S. Kotoulas, E. Oren, F. van Harmelen,

Scalable Distributed Reasoning Using MapReduce, in:
International Semantic Web Conference (ISWC 2009),

vol. 5823, Springer, Washington DC, USA, 2009.
[124] J. Volz, C. Bizer, M. Gaedke, G. Kobilarov, Discovering

and Maintaining Links on the Web of Data, in:

International Semantic Web Conference, 2009.
[125] T. D. Wang, B. Parsia, J. A. Hendler, A Survey of the

Web Ontology Landscape, in: International Semantic

Web Conference, 2006.
[126] J. Weaver, J. A. Hendler, Parallel Materialization of

the Finite RDFS Closure for Hundreds of Millions
of Triples, in: International Semantic Web Conference

(ISWC2009), 2009.
[127] W. Wei, P. M. Barnaghi, A. Bargiela, Search with

Meanings: An Overview of Semantic Search Systems,

Int. J. Communications of SIWN 3 (2008) 76–82.
[128] C. Weiss, P. Karras, A. Bernstein, Hexastore: Sextuple

Indexing for Semantic Web Data Management,
PVLDB 1 (1) (2008) 1008–1019.

[129] K.-P. Yee, K. Swearingen, K. Li, M. Hearst, Faceted
metadata for image search and browsing, in: SIGCHI

Conference on Human factors in Computing Systems,

2003.

Appendix A. Selected Dataset Statistics

Herein, we give some selected statistics about the
1.118 g Linked Data corpus crawled in Section 5. The
resulting evaluation corpus is sourced from 3.985
m documents and contains 1.118 g quads, of which
1.106 g are unique (98.9%) and 947 m are unique
triples (84.7% of raw quads).

To characterise our corpus, we first look at a
breakdown of data providers. We extracted the
PLDs from the source documents and summated oc-
currences: Table A.1 shows the top 25 PLDs with
respect to the number of triples they provide in our
corpus, as well as their document count and average
number of triples per document. We see that a large
portion of the data is sourced from social network-
ing sites – such as hi5.com and livejournal.com

– that host FOAF exports for millions of users. No-
tably, the hi5.com domain provides 595 m (53.2%)
of all quadruples in the data: although the num-
ber of documents crawled from this domain was
comparable with other high yield domains, the
high ratio of triples per document meant that in
terms of quadruples, hi5.com provides the major-
ity of data. Other sources in the top-5 include the
opiumfield.com domain which offers LastFM ex-
ports, and linkedlifedata.com and bio2rdf.org

which publishes data from the life-science domain.
Continuing, we encountered 199.4 m unique sub-

jects (entities), of which 165.3 m (82.9%) are ‘iden-
tified’ by a blank-node and 34.1 m (17.1%) are iden-
tified by a URI. Figure A.1 shows the distribution
of the number of edges attached to each entity (ap-
pearances in the subject position of a quad), where
the largest entity has 252 k edges, and the plurality
is three edges with 154 m entities. 69

With respect to objects, we found that 668 m
are URIs (60.4%), 273.5 m are literals (24.7%), and
164.5 m (14.9%) are blank-nodes.

Next, we look at usage of properties and classes
in the data: for properties, we analysed the fre-
quency of occurrence of terms in the predicate po-
sition, and for classes, we analysed the occurrences
of terms in the object position of rdf:type quads.

69Plurality: having more than all alternatives, without nec-

essarily constituting a majority.

51

We found 23,155 unique predicates: Figure A.2 gives
the distribution of predicate occurrences (property
usage), where the plurality is 4,659 predicates ap-
pearing only once; Table A.2 gives the listing of the
top 25 predicates, where unsurprisingly, rdf:type
heads the list, and also where foaf properties fea-
ture prominently. We found 104,596 unique values
for rdf:type: Figure A.3 gives the distribution of
rdf:type-value occurrences (class usage), where the
plurality is again 29,856 classes appearing only once;
Table A.3 gives the listing of the top 10 classes,
where again foaf – and in particular foaf:Person
– dominates the list.

In order to get an insight into the most instan-
tiated vocabularies, we extracted the ‘namespace’
from predicates and URI-values for rdf:type – we
simply strip the URI upto the last hash or slash.
Table A.4 gives the top-25 occurring namespaces
for a cumulative count, where foaf, rdfs, and rdf

dominate; in contrast, Table A.5 gives the top 25
namespaces for unique URIs appearing as predicate
or value of rdf:type, where in particular DBpedia,
Yago and Freebase related namespaces offer a di-
verse set of instantiated terms; note that (i) the on-
tology mentioned in Footnote 49 does not appear as
its terms are not instantiated, (ii) the terms need not
be defined in that namespace (or may be misspelt
versions of defined terms) [76], and (iii) we found
460 quads with predicates of the form rdf: n.

PLD quads documents quads/document

hi5.com 595,086,038 255,742 2,327

livejournal.com 77,711,072 56,043 1,387

opiumfield.com 66,092,693 272,189 243

linkedlifedata.com 54,903,837 253,392 217

bio2rdf.org 50,659,976 227,307 223

rdfize.com 38,107,882 161,931 235

appspot.com 28,734,556 49,871 576

identi.ca 22,873,875 65,235 351

freebase.com 18,567,723 181,612 102

rdfabout.com 16,539,018 135,288 122

ontologycentral.com 15,981,580 1,080 14,798

opera.com 14,045,764 82,843 170

dbpedia.org 13,126,425 144,850 91

qdos.com 11,234,120 14,360 782

l3s.de 8,341,294 163,240 51

dbtropes.org 7,366,775 34,013 217

uniprot.org 7,298,798 11,677 625

dbtune.org 6,208,238 181,016 34

vox.com 5,327,924 44,388 120

bbc.co.uk 4,287,872 262,021 16

geonames.org 4,001,272 213,061 19

ontologyportal.org 3,483,480 2 1,741,740

ordnancesurvey.co.uk 2,880,492 43,676 66

loc.gov 2,537,456 166,652 15

fu-berlin.de 2,454,839 135,539 18

Table A.1

Top twenty-five PLDs and (i) the number of quads they

provide, (ii) the number of documents they provide, (iii) the
average quads per document.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1 10 100 1000 10000 100000 1e+006

nu
m

be
r

of
 e

nt
iti

es

number of edges

Fig. A.1. Entity size distribution

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009

nu
m

be
r

of
 p

ro
pe

rt
ie

s

number of predicate appearances

Fig. A.2. Property usage distribution

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009

nu
m

be
r

of
 c

la
ss

es

number of appearances as object of rdf:type

Fig. A.3. Class usage distribution

52

predicate count

http://www.w3.org/1999/02/22-rdf-syntax-ns#type 206,799,100

http://www.w3.org/2000/01/rdf-schema#seeAlso 199,957,728

http://xmlns.com/foaf/0.1/knows 168,512,114

http://xmlns.com/foaf/0.1/nick 163,318,560

http://bio2rdf.org/bio2rdf_resource:linkedToFrom 31,100,922

http://linkedlifedata.com/resource/entrezgene/pubmed 18,776,328

http://www.w3.org/2000/01/rdf-schema#label 14,736,014

http://www.w3.org/2002/07/owl#sameAs 11,928,308

http://xmlns.com/foaf/0.1/name 10,192,187

http://xmlns.com/foaf/0.1/weblog 10,061,003

http://xmlns.com/foaf/0.1/homepage 9522912

http://linkedlifedata.com/resource/pubmed/chemical 8,910,937

http://xmlns.com/foaf/0.1/member_name 8,780,863

http://xmlns.com/foaf/0.1/tagLine 8,780,817

http://xmlns.com/foaf/0.1/depiction 8,475,063

http://xmlns.com/foaf/0.1/image 8,383,510

http://xmlns.com/foaf/0.1/maker 7,457,837

http://linkedlifedata.com/resource/pubmed/journal 6,917,754

http://xmlns.com/foaf/0.1/topic 6,163,769

http://linkedlifedata.com/resource/pubmed/keyword 5,560,144

http://purl.org/dc/elements/1.1/title 5,346,271

http://xmlns.com/foaf/0.1/page 4,923,026

http://bio2rdf.org/ns/bio2rdf:linkedToFrom 4,510,169

http://www.w3.org/2004/02/skos/core#subject 4,158,905

http://www.w3.org/2004/02/skos/core#prefLabel 4,140,048

Table A.2
Top twenty-five predicates encountered (properties).

class count

http://xmlns.com/foaf/0.1/Person 163,699,161

http://xmlns.com/foaf/0.1/Agent 8,165,989

http://www.w3.org/2004/02/skos/core#Concept 4,402,201

http://purl.org/ontology/mo/MusicArtist 4,050,837

http://xmlns.com/foaf/0.1/PersonalProfileDocument 2,029,533

http://xmlns.com/foaf/0.1/OnlineAccount 1,985,390

http://xmlns.com/foaf/0.1/Image 1,951,773

http://rdf.opiumfield.com/lastfm/spec#Neighbour 1,920,992

http://www.geonames.org/ontology#Feature 983,800

http://xmlns.com/foaf/0.1/Document 745,393

http://www.w3.org/2002/07/owl#Thing 679,520

http://ontologycentral.com/...of_contents#cphi_m 421,193

http://purl.org/goodrelations/v1#ProductOrServiceModel 407,327

http://purl.org/ontology/mo/Performance 392,416

http://rdf.freebase.com/ns/film.performance 300,608

http://rdf.freebase.com/ns/tv.tv_guest_role 290,246

http://rdf.freebase.com/ns/common.webpage 288,537

http://purl.org/dc/dcmitype/Text 262,517

http://ontologycentral.com/...of_contents#irt_h_euryld_d 243,074

http://www.w3.org/2002/07/owl#Class 217,334

http://www.ontologyportal.org/WordNet.owl#WordSense 206,941

http://www.rdfabout.com/.../usbill/LegislativeAction 193,202

http://rdf.freebase.com/ns/common.topic 190,434

http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement 169,376

http://www.kanzaki.com/ns/music#Venue 166,374

Table A.3
Top twenty-five values for rdf:type encountered (classes).

namespace count

http://xmlns.com/foaf/0.1/ 615,110,022

http://www.w3.org/2000/01/rdf-schema# 219,205,911

http://www.w3.org/1999/02/22-rdf-syntax-ns# 213,652,227

http://bio2rdf.org/ 43,182,736

http://linkedlifedata.com/resource/pubmed/ 27,944,794

http://linkedlifedata.com/resource/entrezgene/ 22,228,436

http://www.w3.org/2004/02/skos/core# 19,870,999

http://rdf.freebase.com/ns/ 17,500,405

http://www.w3.org/2002/07/owl# 13,140,895

http://rdf.opiumfield.com/lastfm/spec# 11,594,699

http://purl.org/ontology/mo/ 11,322,417

http://purl.org/dc/elements/1.1/ 9,238,140

http://ontologycentral.com/2009/01/eurostat/ns# 9,175,574

http://purl.org/dc/terms/ 6,400,202

http://bio2rdf.org/ns/ 5,839,771

http://rdfs.org/sioc/ns# 5,411,725

http://www.rdfabout.com/rdf/schema/vote/ 4,057,450

http://www.geonames.org/ontology# 3,985,276

http://skipforward.net/skipforward/.../skipinions/ 3,466,560

http://dbpedia.org/ontology/ 3,299,442

http://purl.uniprot.org/core/ 2,964,084

http://ontologycentral.com/.../table_of_contents# 2,630,198

http://linkedlifedata.com/resource/lifeskim/ 2,603,123

http://pervasive.semanticweb.org/ont/2004/06/time# 2,519,543

http://dbpedia.org/property/ 2,371,396

Table A.4
Top twenty-five namespaces for cumulative count of URIs

found in predicate position (property), or as the value of

rdf:type (class).

namespace count

http://www.mpii.de/yago/resource/ 41,483

http://dbpedia.org/class/yago/ 33,499

http://dbtropes.org/resource/Main/ 16,401

http://rdf.freebase.com/ns/ 14,884

http://dbpedia.org/property/ 7,176

http://www.ontologydesignpatterns.org.it/.../own16.owl# 1,149

http://semanticweb.org/id/ 1,024

http://sw.opencyc.org/2008/06/10/concept/ 937

http://ontologycentral.com/.../table_of_contents# 927

http://dbpedia.org/ontology/ 843

http://www.ontologyportal.org/SUMO.owl# 581

http://www.w3.org/1999/02/22-rdf-syntax-ns# 489

http://bio2rdf.org/ 366

http://xmlns.com/wordnet/1.6/ 303

http://data.linkedmdb.org/resource/movie/ 251

http://purl.uniprot.org/core/ 207

http://www.aifb.kit.edu/id/ 196

http://www4.wiwiss.fu-berlin.de/factbook/ns# 191

http://xmlns.com/foaf/0.1/ 150

http://rdf.geospecies.org/ont/geospecies# 143

http://bio2rdf.org/ns/ 133

http://skipforward.net/skipforward/resource/ludopinions/ 132

http://www.openlinksw.com/schemas/oplweb# 130

http://ontologycentral.com/2009/01/eurostat/ns# 127

http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/ 119

Table A.5

Top twenty-five namespaces for unique URIs found in predi-
cate position (property), or as the value of rdf:type (class).

53

Appendix B. Rule Tables

Herein, we list the rule tables referred to in Sec-
tion 8, including rules with no antecedent (R∅ –
Table B.1), rules with only terminological patterns
(RT ∅ – Table B.2), and rules with terminological

pattern(s) and one assertional pattern (RT G1

– Ta-
ble B.3). Also, in Table B.4, we give an indication as

to how recursive application of rules inRT G1

can be
complete, even if the inferences from rules in RT ∅

are omitted from the T-Box.

R∅ : no antecedent
OWL2RL Consequent Notes

prp-ap p a :AnnotationProperty .
For each built-in
annotation property

cls-thing :Thing a :Class . -
cls-nothing :Nothing a :Class . -
dt-type1 dt a rdfs:Datatype . For each built-in datatype

dt-type2 l a dt .
For all l in the value
space of datatype dt

dt-eq l1 :sameAs ?l2 .
For all l1 and l2 with
the same data value

dt-diff l1 :differentFrom ?l2 .
For all l1 and l2 with
different data values

Table B.1
Rules with no antecedent

RT ∅ : only terminological patterns in antecedent

OWL2RL
Antecedent

Consequent
terminological

cls-00 c :oneOf (x1...xn) . x1...xn a c .

scm-cls c a :Class .

c rdfs:subClassOf c ;
rdfs:subClassOf :Thing ;
:equivalentClass c .

:Nothing rdfs:subClassOf c .

scm-sco
c1 rdfs:subClassOf c2 .

c1 rdfs:subClassOf c3 .
c2 rdfs:subClassOf c3 .

scm-eqc1 c1 :equivalentClass c2 .
c1 rdfs:subClassOf c2 .
c2 rdfs:subClassOf c1 .

scm-eqc2
c1 rdfs:subClassOf c2 .

c1 :equivalentClass c2 .
c2 rdfs:subClassOf c1 .

scm-op p a :ObjectProperty .
p rdfs:subPropertyOf p .
p :equivalentProperty p .

scm-dp p a :DatatypeProperty .
p rdfs:subPropertyOf p .
p :equivalentProperty p .

scm-spo
p1 rdfs:subPropertyOf p2 .

p1 rdfs:subPropertyOf p3 .
p2 rdfs:subPropertyOf p3 .

scm-eqp1 p1 :equivalentProperty p2 .
p1 rdfs:subPropertyOf p2 .
p2 rdfs:subPropertyOf p1 .

scm-eqp2
p1 rdfs:subPropertyOf p2 .

p1 :equivalentProperty p2 .
p2 rdfs:subPropertyOf p1 .

scm-dom1
p rdfs:domain c1 .

p rdfs:domain c2 .
c1 rdfs:subClassOf c2 .

scm-dom2
p2 rdfs:domain c .

p1 rdfs:domain c .
p1 rdfs:subPropertyOf p2 .

scm-rng1
p rdfs:range c1 .

p rdfs:range c2 .
c1 rdfs:subClassOf c2 .

scm-rng2
p2 rdfs:range c .

p1 rdfs:range c .
p1 rdfs:subPropertyOf p2 .

scm-hv

c1 :hasValue i ;

c1 rdfs:subClassOf c2 .
:onProperty p1 .

c2 :hasValue i ;
:onProperty p2 .

p1 rdfs:subPropertyOf p2 .

scm-svf1

c1 :someValuesFrom y1 ;

c1 rdfs:subClassOf c2 .
:onProperty p .

c2 :someValuesFrom y2 ;
:onProperty p .

y1 rdfs:subClassOf y2 .

scm-svf2

c1 :someValuesFrom y ;

c1 rdfs:subClassOf c2 .
:onProperty p1 .

c2 :someValuesFrom y ;
:onProperty p2 .

p1 rdfs:subPropertyOf p2 .

scm-avf1

c1 :allValuesFrom y1 ;

c1 rdfs:subClassOf c2 .
:onProperty p .

c2 :allValuesFrom y2 ;
:onProperty p .

y1 rdfs:subClassOf y2 .

scm-avf2

c1 :allValuesFrom y ;

c1 rdfs:subClassOf c2 .
:onProperty p1 .

c2 :allValuesFrom y ;
:onProperty p2 .

p1 rdfs:subPropertyOf p2 .
scm-int c :intersectionOf (c1...cn) . c rdfs:subClassOf c1...cn .
scm-uni c :unionOf (c1...cn) . c1...cn rdfs:subClassOf c .

Table B.2
Rules containing only terminological antecedent patterns

54

RT G1
: at least one terminological and

exactly one assertional pattern in antecedent

OWL2RL
Antecedent

Consequent
terminological assertional

prp-dom p rdfs:domain c . x p y . x a c .
prp-rng p rdfs:range c . x p y . y a c .
prp-symp p a :SymmetricProperty . x p y . y p x .
prp-spo1 p1 rdfs:subPropertyOf p2 . x p1 y . x p2 y .
prp-eqp1 p1 :equivalentProperty p2 . x p1 y . x p2 y .
prp-eqp2 p1 :equivalentProperty p2 . x p2 y . x p1 y .
prp-inv1 p1 :inverseOf p2 . x p1 y . y p2 x .
prp-inv2 p1 :inverseOf p2 . x p2 y . y p1 x .
cls-int2 c :intersectionOf (c1 ... cn) . x a c . x a c1...cn .
cls-uni c :unionOf (c1...ci...cn) . x a ci x a c .

cls-svf2
x :someValuesFrom :Thing ;

u p v . u a x .
:onProperty p .

cls-hv1
x :hasValue y ;

u a x . u p y .
:onProperty p .

cls-hv2
x :hasValue y ;

u p y . u a x .
:onProperty p .

cax-sco c1 rdfs:subClassOf c2 . x a c1 . x a c2 .
cax-eqc1 c1 :equivalentClass c2 . x a c1 . x a c2 .
cax-eqc2 c1 :equivalentClass c2 . x a c2 . x a c1 .

Table B.3
Rules with at least one terminological and exactly one
assertional pattern in the antecedent

RT ∅ coverage in RT G1

RT ∅ covered by RT G1
rules

scm-cls incomplete for owl:Thing membership inferences a

scm-sco cax-sco
scm-eqc1 cax-eqc1, cax-eqc2
scm-eqc2 cax-sco
scm-op no unique inferences
scm-dp no unique inferences
scm-spo prp-spo1
scm-eqp1 prp-eqp1, prp-eqp2
scm-eqp2 prp-spo1
scm-dom1 prp-dom, cax-sco
scm-dom2 prp-dom, prp-spo1
scm-rng1 prp-rng, cax-sco
scm-rng2 prp-rng, prp-spo1
scm-hv prp-rng, prp-spo1
scm-svf1 incomplete: cls-svf1, cax-sco
scm-svf2 incomplete: cls-svf1, prp-spo1
scm-avf1 incomplete: cls-avf , cax-sco
scm-avf2 incomplete: cls-avf , prp-spo1
scm-int cls-int2
scm-uni cls-uni

Table B.4
Coverage of rules in RT ∅ by rules in RT G1 : underlined
rules are not supported, and thus we would encounter
incompleteness by not including the inferences of the re-
spective RT ∅ rule in the T-Box (would not affect a full
OWL 2 RL/RDF reasoner which includes the underlined
rules).

a In our scenario, are not concerned – we consider such
triples as tautological and they cannot lead to further
inferences in our authoritative reasoning with the given
rules.

55

