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ABSTRACT
In this paper, we propose and evaluate a scheme to produce
canonical labels for blank nodes in RDF graphs. These la-
bels can be used as the basis for a Skolemisation scheme that
gets rid of the blank nodes in an RDF graph by mapping
them to globally canonical IRIs. Assuming no hash colli-
sions, the scheme guarantees that two Skolemised graphs will
be equal if and only if the two input graphs are isomorphic.
Although the proposed scheme is exponential in the worst
case, we claim that such cases are unlikely to be encountered
in practice. To support these claims, we present the results
of applying our Skolemisation scheme over a diverse collec-
tion of 43.5 million real-world RDF graphs (BTC–2014); we
also provide results for some nasty synthetic cases.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
G.2.2 [Discrete Mathematics]: Graph Theory—Graph la-
beling
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1. INTRODUCTION
Blank nodes have been a thorny issue in the Semantic Web

standards for well over a decade [10]. In the original 1999
specification of RDF [14], blank nodes (then simply called
“anonymous nodes”) made the assignment of URIs to nodes
in an RDF graph optional. This enabled, e.g., convenient
shortcuts for containers and reification in the RDF/XML
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syntax of the time, allowing parsers to generate anonymous
nodes where necessary when reconstructing the RDF graph.

Blank nodes were later formalised as local existential vari-
ables in the 2004 RDF Semantics specification [7]. Unlike
IRIs or literals, they do not point to something specific in
the world described. Rather they denote the existence of
something. Thus one can, for example, perform a one-to-
one relabelling of the blank nodes in an RDF graph without
affecting its meaning: two RDF graphs that are the same
modulo a one-to-one rewriting of blank nodes are called iso-
morphic. Existential blank nodes also give rise to other se-
mantic conditions involving simple entailment (checking if
one RDF graph permits a subset of the interpretations of an-
other RDF graph), simple equivalence (checking if two RDF
graphs permit the same interpretations), leanness (checking
if an RDF graph contains redundancy), and so forth [8, 6].

Blank nodes thus add theoretical complexity to RDF. No
polynomial-time algorithms are known for deciding whether
or not two RDF graphs are isomorphic. Likewise, checking
simple entailment, simple equivalence and leanness of RDF
graphs have all been proven to be intractable specifically due
to the presence of existential blank nodes [6].

Blank nodes also introduce practical problems when deal-
ing with RDF [10]. Although theoretical worst-case scenar-
ios are unlikely to be encountered in real-world data [10], al-
gorithms and tools handling RDF must still either account
for all such cases or apply a pragmatic but non-standard
fudge with respect to blank nodes. Fundamental operations,
like checking what changed between two versions of an RDF
graph [21], are often greatly complicated by blank nodes.
In SPARQL, blank nodes cannot be directly referenced by
a query, making them difficult to get data about [10]. In
Linked Data, blank nodes cannot be externally linked and
their use is thus discouraged [9]. And so forth [10].

Although blank nodes add complexity for consumers, their
convenience for publishers means that they are widespread
in real-world data. Our recent survey [10] found that in the
BTC–2012 corpus – a crawl of 8.4 million RDF documents
from the Web – 44.9% of the documents mentioned at least
one blank node, 25.9% of the unique RDF terms were blank
nodes, and 66.2% of pay-level-domains used blank nodes.
Hence even if blank nodes were to be deprecated, the ques-
tion of what to do with legacy data would remain open.

Ten years on from the previous release, an updated set of
RDF 1.1 W3C Recommendations were recently published.
The issue of blank nodes was a core topic within the working
group. Since blank nodes have been in widespread use for
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over a decade, major changes would have lead to too drastic
a cost in terms of current adoption [10]. Instead, for scenar-
ios where blank nodes are considered undesirable, RDF 1.1
now endorses an abstract scheme whereby blank nodes can
be replaced with “fresh” IRIs, called Skolem IRIs [5, § 3.5].

The name “Skolem” refers to the process of Skolemisa-
tion whereby existential variables appearing in a first-order
formula can be replaced with a function whose function sym-
bol is “fresh” and whose arguments include the terms upon
which the existential variable (loosely speaking) depends. If
the variable being replaced does not depend on another term
– as is the case in RDF – it can be replaced by a constant
(a zero-arity function). Although Skolemisation can change
the possible interpretations of the formula, it does not affect
the satisfiability of the formulae in question.1

Likewise, RDF 1.1 systems creating Skolem IRIs “should
mint a new, globally unique IRI for each blank node so re-
placed” [5].2 Using this process Skolemising an RDF graph
does not affect its satisfiability. However, guaranteeing equi-
satisfiability – that the Skolemised RDF graph is satisfiable
if and only if the input graph is satisfiable – is vacuous since
all RDF graphs are satisfiable until semantic conditions for
datatypes or built-in vocabularies like RDFS or OWL are
considered [8]. Skolemisation is rather a practical heuristic
rubber-stamped by the recommendation for use in scenarios
where blank nodes would otherwise be problematic.

However, the Skolemised versions of two isomorphic RDF
graphs (or two copies of the same graph) are no longer iso-
morphic, nor do they entail each other. This means that
it could not be known if two Skolemised graphs originated
from isomorphic RDF graphs or even the same RDF graph.3

In this paper, we propose a method for producing a canon-
ical labelling of blank nodes in an RDF graph that preserves
isomorphism. We foresee two main use-cases for this scheme:

1. checking the isomorphism of RDF graphs or identifying
groups of isomorphic RDF graphs from a large collec-
tion without requiring pair-wise isomorphism checks;

2. Skolemising RDF graphs such that the output graphs
are equal if and only if the input graphs are isomorphic.

This paper continues with some preliminaries on RDF iso-
morphism. We then introduce a cheap but naive algorithm
for computing a canonical labelling. Thereafter, we present
illustrative cases where the naive algorithm fails and intro-
duce a complete but exponential solution inspired by an ex-
isting canonical labelling algorithm that we adapt for RDF.
We then address some issues relating to the generation of
Skolem IRIs. Later evaluating our approach, we show that
although the proposed scheme is efficient over a large col-
lection of real-world RDF graphs, it can – as expected for
an exponential algorithm – struggle for some modestly-sized
synthetic cases. We wrap-up the contribution with discus-
sion of related work and a brief conclusion.

1Which is used in FOL, e.g., to simplify theorem proving.
2In fact, minting globally unique IRIs is an unfeasible guar-
antee to make since any Web location may mention any
IRI, but one can at least mint IRIs that are almost certainly
unique, at least at the time of creation.
3One option would be to convert Skolem IRIs back to blank
nodes, but this is problematic since there is nothing to re-
strict using Skolem-like IRIs in the input graph.

2. BACKGROUND
We first provide some formal preliminaries for RDF graphs,

with a particular focus on blank nodes and the problem of
checking if two RDF graphs are isomorphic.

Definition 1. Let I be the set of IRIs, B the set of blank
nodes, and L the set of literals. The sets I, B, and L are
infinite and pair-wise disjoint; collectively we call them RDF
terms. An RDF triple t := (s, p, o) is a member of the set
(I∪B)×I×(I∪B∪L); s is called the subject, p the predicate
and o the object of t. An RDF graph G is a finite set of RDF
triples. We denote by terms(G) the set of all RDF terms in
some triple of G. An RDF graph G is ground if terms(G)
contains no blank nodes.

In order to understand appropriate solutions to get rid of
blank nodes from RDF graphs, we need to (perhaps unfortu-
nately) first understand them in some detail. We first define
two operations on the blank nodes in an RDF graph.

Definition 2. Let µ denote a mapping from RDF terms to
RDF terms that is the identity on IRIs and literals. We call
µ a blank node mapping. Slightly abusing notation, given
a triple t := (s, p, o), we let µ(t) := (µ(s), µ(p), µ(o)), and
given an RDF graph G, we let µ(G) := {µ(t) | t ∈ G}. If µ
is restricted to map from blank nodes to blank nodes in a
one-to-one manner, we call it a blank node bijection.

Definition 3. Two RDF graphs G and H are isomorphic,
denoted G ∼= H, if and only if there exists a blank node
bijection µ such that µ(G) = H, in which case we call µ an
isomorphism between G and H.

Two isomorphic RDF graphs can be intuitively considered
as containing the same “structure” [5]. If G and H are both
ground, then G ∼= H if and only if G = H. Next, an RDF
merge, denoted G + H, uses isomorphism to avoid blank
node clashes when combining RDF graphs.

Definition 4. An RDF merge of two RDF graphs, denoted
G+H, is defined as G′∪H ′ where G′ and H ′ are isomorphic
copies of G and H resp. that share no blank nodes.

The RDF 1.1 Semantics recommendation [8] formalises
the meaning of RDF graphs in terms of their interpretations
(the possible worlds that they describe). The notion of sim-
ple interpretations, which consider existential blank nodes
but no built-in vocabulary, gives rise to semantic concepts
such as simple entailment, simple equivalence and leanness.

It is known from works by, e.g., Gutierrez et al. [6], that
the problem of checking simple entailment/equivalence of
RDF graphs is NP-complete, and that the problem of
checking if G is lean is coNP-complete.

Regarding isomorphism, it is folklore – hinted at by, e.g.,
Carroll [4] – that deciding RDF isomorphism is of the same
complexity as the standard graph isomorphism problem4

and hence is GI-complete.5 However, to the best of our
knowledge, the result has not been formally stated or proved.
Though the GI-hardness of RDF isomorphism is quite triv-
ial to prove (since one can easily encode the structure of a

4Herein we call “simple graphs”“standard graphs” to avoid
a naming clash with the simple semantics of RDF.
5Graph-Isomorphism–Complete: problems in this class
are in NP but are not known to be NP-complete nor to
have polynomial-time algorithms.



standard graph in RDF by representing each undirected edge

a− b as two RDF triples a
p↔ b for some arbitrary p), show-

ing that it is within GI appears non-immediate. Hence we
now formalise this result.

Theorem 1. Deciding if G ∼= H is GI-complete.

Proof. The proof relies on a polynomial-time many-one
reduction both to and from the GI-complete problem of
deciding graph isomorphism for standard graphs.

The reduction from standard graph isomorphism to RDF
graph isomorphism can be done straightforwardly by en-
coding the standard graph as an RDF graph as previously
discussed. Hence RDF graph isomorphism is GI-hard.

The reduction from RDF graph isomorphism to standard
graph isomorphism is more tricky. We need a polynomial-
time method to encode two RDF graphs G and H as stan-
dard graphs enc(G) and enc(H) such that G ∼= H (under
RDF isomorphism) if and only if enc(G) ∼= enc(H) (under
standard isomorphism). We now provide an example of one
such encoding mechanism that satisfies the proof.

First, let SO denote the set of literals and IRIs that appear
in the subject and/or object position of some triple in G and
let P denote the set of IRIs appearing as a predicate in G.
We assume that the sets SO and P correspond for both G
and H, otherwise isomorphism can be trivially rejected.

We first give an example input and output. The encoding
scheme we propose would encode the RDF graph on the left
as the standard graph on the right (we keep the intuitive
“shape” of both graphs intact for reference).

_:a _:b
:p

:c

:q

:p

:p

We start with an empty standard graph G into which we
will encode the RDF graph G. The encoding adds cliques
and path graphs to G to represent nodes and edges in the
original RDF graph. Each clique and path graph has a fixed
external node chosen to connect it to other parts of G; for
path graphs, the external node is a terminal node.

First add a fresh 3-clique to G for every blank node in G.
Define a total ordering ≤ over SO (e.g., lexical) such that

for all x ∈ SO, we can compute sorank(x) := card{y | y ∈
SO and y ≤ x}. In the example above, taking a lexical
ordering, sorank(:c) = 1 and sorank(:p) = 2. Add a fresh
(sorank(x) + 3)-clique to G for each term x ∈ SO.

Next we must encode the RDF edges, capturing labels and
directionality. Again define a total ordering over P and let
prank(p) denote the rank of p in P such that prank(p) :=
card{q | q ∈ P and q ≤ p} (e.g., with a lexical ordering,
prank(:p) = 1, prank(:q) = 2). For each (s, p, o) ∈ G, add
two fresh path graphs of length prank(p) + 1 and |P |+ 1 to
G and connect their external nodes. Connect the external
nodes of the clique of s and the short path, and connect the
external nodes for the clique of o and the long path.

Once all triples are processed, the encoding is completed
in time polynomial to the size of G.6 Letting G and H denote
the graphs encoded from G and H – where we again assume
that SO and P are fixed for G and H – we now argue why
G ∼= H (under RDF isomorphism) if and only if G ∼= H
(under standard isomorphism).
G ∼= H implies G ∼= H since if G ∼= H, then G and H differ

only in blank node labels, which the encoding ignores.
To show that G ∼= H implies G ∼= H, we show that each

RDF graph has an encoding that’s unique up to homomor-
phism. In particular, G can be decoded back to a G′ such
that G ∼= G′. The decoding relies on two main observations:

1. No (≥ 3)-cliques can be unintentionally created in the
encoding other than as part of a bigger clique for an-
other vocabulary term. Nor can such a clique grow.
Maximal cliques can thus be detected in G and mapped
back to fresh blank nodes or to terms in SO.

2. No nodes with a degree of 1 can be introduced other
than as the terminals of the paths used to encode RDF
edges. Such nodes can thus be detected and walked
back (to the node with degree 3) to decode the predi-
cate in P and the direction.

This unambiguous decoding shows that the encoding (w.r.t.
P and SO) is one-to-one modulo isomorphism. Hence two
non-isomorphic RDF graphs cannot be encoded to isomor-
phic standard graphs under fixed vocabulary.7

This encoding thus completes the proof of Theorem 1.

Finding a polynomial-time algorithm for RDF isomor-
phism is unlikely: it would imply GI = P, where all known
algorithms for graph isomorphism are exponential. How-
ever, isomorphism can be efficiently computed for many
graphs; e.g., Babai showed that isomorphism for the vast
majority of randomly generated graphs can be performed
efficiently using a näıve algorithm [1]. Hence, despite expo-
nential worst cases, many practical algorithm exist.

One of the most famous graph isomorphism algorithms –
due to McKay [17] – is called Nauty. This algorithm derives
a canonical labelling Can such that for two standard graphs
G and H, Can(G) = Can(H) if and only if G ∼= H. In fact,
this is quite close to our own use-case, where we wish to find
a canonical mapping from blank nodes to IRIs.

Definition 5. We call a blank node mapping µ a blank
node grounding if it maps blank nodes exclusively to IRIs.

One of our main goals herein is to find a blank node
grounding µ such that µ(G) = µ(H) if and only if G ∼= H.
When computing µ(G), only information from G is used;
nothing is known from H. Our problem is similar to that of
canonically labelling standard graphs, where our proposals
are inspired by Nauty. However, the presence of directed
edges and ground labels (IRIs and literals) on both vertexes
and edges in RDF suggests the need for custom methods.
6Expressing the exact size of G w.r.t. G is trivial but long.
It suffices to observe that the number of nodes added to G
has a (loose) upper-bound of (so+3)2 +3b+g(2p+3) where
so := |SO|, b := |terms(G) ∩B|, g := |G| and p := |P |. The
number of edges added to G is bounded by the square of this
number, and is thus bounded polynomially by |G|.
7Note: the decoding is not part of the reduction. In par-
ticular, listing all maximal cliques may not be possible in
polynomial time. However, our goal is to merely demon-
strate the existence of an unambiguous decoding.



3. NAIVE ALGORITHM
To generate a canonical labelling of a standard graph,

Nauty depends on invariants that must be preserved by
isomorphism. An example is node degree: an isomorphism
can only map two nodes with the same degree. Such invari-
ants thus help to narrow the search. In RDF, ground terms
offer a rich invariant. Our first step is thus to colour the
blank nodes in an RDF graph with the ground information
surrounding them such that blank nodes of different colours
cannot be mapped to one another by an isomorphism.

In Algorithm 1, we propose a hashing scheme for colouring
the blank nodes. A colour map is initialised in lines 2–5; IRIs
and literals are assigned static hash-based colours, whereas
blank nodes hashes are computed iteratively later. For now,
we assume one-to-one perfect hashing (practical hashing is-
sues will be discussed later). Lines 9–18 iteratively compute
the blank node colours, where hashTuple(·) is order depen-
dant and hashBag(·) is commutative and associative. The
‘+’ and ‘-’ symbols distinguish edge direction. The com-
puted colours form a partition of blank nodes. The loop
terminates when the partition does not change in an itera-
tion (though the colour values may have changed).

Algorithm 1 Colouring blank nodes

1: function colour(G) . G an RDF graph
2: initialise clr0[] . a map from terms to colours
3: for x ∈ terms(G) do . all terms in G
4: if x ∈ B then
5: clr0[x]← 0 . initial colour
6: else
7: clr0[x]← hashTerm(x) . static colour
8: i← 0
9: repeat

10: i++
11: initialise clri[] with clri−1[] . copy map
12: for (b, p, o) ∈ G : b ∈ B do . o ∈ IBL
13: c← hashTuple(clri−1[o], clri−1[p], ‘+’)
14: clri[b]← hashBag(c, clri[b])
15: for (s, p, b) ∈ G : b ∈ B do . s ∈ IB
16: c← hashTuple(clri−1[s], clri−1[p], ‘-’)
17: clri[b]← hashBag(c, clri[b])
18: until ∀x, y : clri[x] = clri[y]⇔ clri−1[x] = clri−1[y]
19: return clri[] as Clr . final map of terms to colours

Example 1. We now exemplify how Algorithm 1 works.
Blank nodes are “coloured” with hashes, but here we illustrate
the process using Greek letters (upper-case for static hashes,
lower-case for dynamic hashes). The iteration is given by i.

:p

_:a:q

_:b:q

_:c
:p

_:d
:p

:r

i = 0

Γ

β∆

β∆

γ
Γ

δ
Γ

Θ

i = 1

Γ

ε∆

ζ∆

η
Γ

θ
Γ

Θ

i = 2

Γ

ι∆

κ∆

λ
Γ

ν
Γ

Θ

i = 3

In the initial state (i = 0), assume that an initial hash α
is assigned to all blank nodes and static hashes to all IRIs

and literals. In the iterations that follow, blank nodes are
coloured according to their neighbourhood; e.g., for _:d at
i = 1, the hash is computed as:

clr1[_:d]← hashBag
(
clr0[_:d],

hashTuple(clr0[_:b], clr0[:p], ‘+’),

hashTuple(clr0[_:c], clr0[:r], ‘-’)
)

All blank nodes are distinguished by i = 2. At i = 3, we
see that for each pair of blank nodes (x, y), clr2[x] = clr2[y]
if and only if clr3[x] = clr3[y]; the process thus terminates.

In fact, in the case of Example 1, the last iteration is un-
necessary since once the unit partition is reached (all blank
nodes are distinguished), we can end the process knowing
no new blank nodes can be distinguished thereafter. Since
this case is quite common, we apply this early termination
heuristic in the implementation of the colouring method.

Algorithmic characteristics.
We now show that in the general case, the algorithm ter-

minates in a bounded number of iterations, and that the
computed colours preserve isomorphism.

Lemma 1. Assuming a perfect hashing scheme, in Algo-
rithm 1, if clri[x] 6= clri[y], then clrj [x] 6= clrj [y] for j ≥ i.

Proof. (Sketch) Can be proven by induction observing
that if i < j, then clri[x] is encoded in the hash of clrj [x].

Theorem 2. Let B := B ∩ terms(G) denote the set of
blank nodes mentioned in an RDF graph G. Algorithm 1
terminates in Θ(|B|) iterations for G in the worst case.

Proof. Colours form a partition of B. Algorithm 1 ter-
minates if the partition doesn’t change. Per Lemma 1, par-
titions can only split. Hence only |B| − 1 splits can occur
before the unit partition is reached. The tight asymptotic
bound is given, for example, by the b 1

2
· |B|c + 1 iterations

needed for a regular path graph.

Letting T denote terms(G), and assuming for simplicity
that clr has constant insert/lookup and linear copy perfor-
mance, then Algorithm 1 runs in Θ(|B| · (|T | + |G|)) in a
worst-case analysis. In terms of space, the input graph and
two colour maps of size T are stored. Ground triples in G
can be pre-filtered to reduce space and time.

Theorem 3. Let ClrG denote the map from RDF terms
to colours produced by Algorithm 1 for G. Let G ∼= H be two
isomorphic RDF graphs. Let b be a blank node of G and c
be a blank node of H. If there exists a blank node bijection µ
such that µ(G) = H and µ(b) = c, then ClrG(b) = ClrH(c).

Proof. (Sketch) The main observations are that (i) Algo-
rithm 1 is agnostic to lexical blank node labels, (ii) the com-
mutativity and associativity of hashBag(·) ensures order-
independent hashing over sets of triples, and (iii) the number
of iterations is deterministic modulo isomorphism.

A nuance of the algorithm is that when there are discon-
nected sub-graphs of blank nodes in the input RDF graph,
the colouring of some of those sub-graphs may continue
longer than necessary. Specifically, let’s say we use ClrG
as the basis of a blank node grounding µG, where output
colours would be used to mint fresh IRIs. Given two RDF
graphs G and H, then µG(G) may not equal µG+H(G); al-
ternatively, µG(G) may not be a subset of µG+H(G+H).



Example 2. In the following, G will require one fewer it-
eration than H or G+H to terminate. Hence the colourings
of graph G would no longer correspond with the colourings
of the corresponding sub-graph of G+H.

:p

_:a:q

_:b:q

:s
:p

_:c
:p

:r

G

:p

_:d:q

_:e:q

_:f
:p

_:g
:p

:r

H

Since this may be undesirable in certain applications, we
propose an optional step prior to Algorithm 1 that breaks
up the input RDF graph according to its blank nodes.

Definition 6. For an RDF graph G, let G := (V, E) denote
a standard undirected graph where V = G and E is a set of
unordered pairs of triples from G such that {t, u} is in E if
and only if {t, u} ⊆ G and terms({t})∩ terms({u})∩B 6= ∅.
Let t ∼G v denote that t and v are reachable from each
other in G, and let G/∼G denote the partition of G based
on reachability in G. We define a blank node split of G as
split(G) := {G′ ∈ G/∼G | G′ is not ground}.

The blank node split of G contains a set of non-overlapping
subgraphs of G, where each subgraph G′ contains all and
only the triples for a given group of “connected blank-nodes”
in G; e.g., in Example 2, split(G + H) = {G,H}. Now, in-
stead of passing a raw RDF graph G to Algorithm 1, to
ensure that µG(G) is a subset of µG+H(G+H), we can pass
the individual split sub-graphs to Algorithm 1. This pro-
cess is outlined in Algorithm 2. On line 2, we compress the
details of computing split(G): a standard Union–Find al-
gorithm with O(n · logn) runtime suffices. The results of
each split are computed and joined; a regular join operation
suffices since two splits cannot disagree on the colour of a
given term: colours for IRIs and literals are static and no
blank node can appear in two splits. Versus Algorithm 1,
Algorithm 2 may produce different colours for blank nodes
due to running fewer iterations over split graphs (per Ex-
ample 2) and may miss colours for ground terms (we are
only interested in blank node colours). The added cost of
the split computation is offset by the potential to parallelise
and reduce iterations when colouring individual sub-graphs.

Algorithm 2 Colouring split graphs

1: function colour’(G) . G a non-ground RDF graph
2: {G1, . . . , Gn} ← split(G) . use, e.g., Union–Find
3: Clr← colour(G1) . calls Algorithm 1
4: for 1 < i ≤ n do
5: Clr← Clr ./ colour(G2) . ./ indicates a join
6: return Clr . final colours

4. COMPLETE ALGORITHM
For many real-world RDF graphs, the algorithm described

in the previous section would probably suffice to compute
distinct colours/labels for all blank nodes. However, the
naive algorithm is tractable and we would expect a com-
plete algorithm to be exponential (since it could solve a GI-
complete problem per Theorem 1). Indeed, there are vari-
ous cases in which the naive approach fails; e.g., non-trivial
automorphisms cause problems for the naive approach.

Definition 7. An automorphism of an RDF graph G is an
isomorphism from G to itself; i.e., µ is an automorphism of
G if µ(G) = G. If µ is not the identity mapping on blank
nodes in G then µ is a non-trivial automorphism. We denote
the set of all automorphisms of G by Aut(G) .

Example 3. We give the automorphisms for two RDF
graphs. Trivial automorphisms are in grey. Applying any of
the automorphisms shown for the graph in question would
lead to the same graph (and not just an isomorphic copy).

_:a _:b

:p

:pG Aut(G)

µ(·) _:a _:b

=
_:a _:b

_:b _:a
_:c _:d

:p

_:e

:p:p

H Aut(H)

µ(·) _:c _:d _:e

=
_:c _:d _:e

_:d _:e _:c

_:e _:c _:d

If we input G into our naive colouring algorithm, the pro-
cess would terminate after two iterations and no blank nodes
will be distinguished by colour. The same holds for H. This
is due to the presence of automorphisms that make G and H
vertex transitive (in an RDF sense): for any two vertexes u
and v, there exists an automorphism µ such that µ(u) = v.

In fact, the blank nodes of G and H would both have the
same global colour. To see this, imagine that a blank node
is coloured blue in i = 1 if it is grey in i = 0 and has both
an inlink and an outlink with label :p to a grey blank node
in i = 0; likewise, a blank node is coloured green in i = 2 if
it is blue in i = 1 and has both an inlink and an outlink with
label :p to a blue blank node in i = 1. All blank nodes in G
and H – or any directed cycle with that predicate – would be
green in the result. If we were to use the naive colouring to
ground the triples in G+H, the result would be single triple:
(g, :p, g) for g the IRI generated from green.

Thus the naive approach can be problematic in certain
(not-so-exotic) cases. To overcome these problems, we first
define a sound canonical version of an RDF graph.

Canonicalising RDF graphs.
Assume a total ordering of all RDF terms (e.g., lexical), of

all RDF triples (e.g., lexicographic) and of all RDF graphs
(e.g., G < H if and only if G ⊂ H or there exists a triple
t ∈ G \H such that no triple t′ ∈ H \G exists where t′ < t).
Assume that κ is a blank node bijection that labels all k
blank nodes in a graph G from :b1 to :bk.8 We denote by
K the k! possible κ-mappings for G. Since we have a total
ordering of graphs, there is a unique graph min{κ(G) | κ ∈
K}, which we denote by bGc. We now show that bGc is a
canonical graph with respect to isomorphism.

Lemma 2. G ∼= H if and only if bGc = bHc.

Proof. (if) Observe that G ∼= bGc and H ∼= bHc since
κ-mappings are blank node bijections. Given the premise
bGc = bHc, then G ∼= bGc = bHc ∼= H, which gives G ∼= H.

(only if) Suppose the result does not hold: suppose (with-
out loss of generality) that bGc > bHc may hold if G ∼= H.
Since G ∼= H, there exists a blank node bijection µ such
that µ(G) = H. Let κ be a mapping such that κ(H) = bHc.
Now κ ◦ µ(G) = bHc. Since κ ◦ µ is a valid κ-mapping for
G and bGc > κ ◦ µ(G), we arrive at a contradiction.

8Any such scheme would do. We use an instance for brevity.



Example 4. Take graph H from Example 7. We have 3!
possible κ-mappings as follows.

κ(·) _:c _:d _:e
H

{(_:c, :p, :d), (_:d, :p, :e), (_:e, :p, :c)}

=

_:b1 _:b2 _:b3 {(_:b1, :p, _:b2), (_:b2, :p, _:b3), (_:b3, :p, _:b1)}
_:b1 _:b3 _:b2 {(_:b1, :p, _:b3), (_:b3, :p, _:b2), (_:b2, :p, _:b1)}
_:b2 _:b1 _:b3 {(_:b2, :p, _:b1), (_:b1, :p, _:b3), (_:b3, :p, _:b2)}
_:b2 _:b3 _:b1 {(_:b2, :p, _:b3), (_:b3, :p, _:b1), (_:b1, :p, _:b2)}
_:b3 _:b1 _:b2 {(_:b3, :p, _:b1), (_:b1, :p, _:b2), (_:b2, :p, _:b3)}
_:b3 _:b2 _:b1 {(_:b3, :p, _:b2), (_:b2, :p, _:b1), (_:b1, :p, _:b3)}

The six mappings produce two distinct graphs. Assuming
a typical lexical ordering, the first, fourth and fifth mappings
produce bHc. One could (bijectively) relabel _:c, _:d, _:e

in the original graph without affecting the result: the result
would be the same for any bH ′c such that H ∼= H ′.

This suggests a correct and complete brute force algorithm
for canonicalising RDF graphs: search all κ-mapping of G
for one that gives bGc. However, optimisations to improve
upon trying all k! possible mappings are not obvious.

Instead we use similar notions of ordering to refine the re-
sults of the naive algorithm, distinguishing blank nodes that
would otherwise have the same colour, similar in principle
to standard graph isomorphism methods like Nauty [17].

Ordering colour partitions.
We assume a set of totally ordered colours C (in our case

hashes). Let Clr be a map from blank nodes to colours
computed, e.g., by the naive methods described previously.
If Clr maps all blank nodes in G to a unique colour, we
are done. However, as discussed, this may not always be
the case. Initial colourings may assign the same colour to
different blank nodes, forming a partition of blank nodes.

Definition 8. Let v denote an equivalence relation be-
tween two blank nodes b1, b2 ∈ B such that b1 v b2 if and
only if Clr(b1) = Clr(b2). We define a coloured partition P
of a set of blank nodes B with respect to Clr as the quotient
set of B with respect to v, i.e., P := B/ v. We call B′ ∈ P
a part of P . We call B′ trivial if |B′| = 1; otherwise we call
it non-trivial. We call P fine if it contains only trivial parts
and coarse if it contains only one part.

Our goal is to thus use a deterministic process – avoiding
arbitrary choices and use of blank node labels – to compute a
colouring for the RDF graphG that results in a fine partition
of blank nodes. The general idea is to manually distinguish
individual blank nodes in non-trivial partitions. Since there
is no deterministic way to choose one such blank node, we
must try all equal choices. However, we can use an ordering
of the partition to narrow the choices insofar as possible.

Definition 9. Given P = {B1, . . . Bn}, a partition of B
w.r.t. the colouring Clr, we call a sequence of sets of blank
nodes P := (B1, . . . Bn) an ordered partition of B w.r.t. Clr.

Thus given P and an associated colouring Clr, P encodes
an ordering of the parts of P . To deterministically compute
an initial P from an input P and Clr, we use a total ordering
≤ of parts such that B′ < B′′ if |B′| < |B′′|, or in the case
that |B′| = |B′′|, then B′ < B′′ if and only if Clr(b′) <
Clr(b′′) for b′ ∈ B′ and b′′ ∈ B′′ (recall that all elements of
B′ have the same colour; likewise for B′′).

We can then refine P by recursively distinguishing blank
nodes in its lowest non-trivial part, knowing the same part
will likewise be selected for all isomorphic graphs.

Definition 10. Let P := (B1, . . . , Bn), P ′ := (B′1, . . . , B
′
m)

be two ordered partitions. We say that P ′ is finer than P,
or equivalently that P is coarser than P ′, if and only if:

• for every part B′i ∈ P there exists a Bj ∈ P such that
B′i ⊆ Bj ; and
• if B′i, B

′
j ∈ P ′ such that i ≤ j and such that B′i ⊆ Bk

and B′j ⊆ Bl for Bk, Bl ∈ P, then k < l.

In other words, P ′ is finer than P if P ′ splits some of the
parts of P and leaves those splits “in place”. We call any
function that takes as input an ordered partition and pro-
vides as output a finer partition a refinement.

Example 5. Take these four ordered partitions:

• P := ({b1, b2}, {b3, b4})
• P1 := ({b1}, {b3}, {b2, b4})
• P2 := ({b1}, {b3}, {b2}, {b4})
• P3 := ({b1, b2}, {b4}, {b3}).

The last part of P1 is not a subset of any part of P; hence
it is neither finer nor coarser than P. Likewise, since P2

“swaps” the order of b2 and b3, it is neither finer nor coarser
than P (it is finer than P1). Only P3 is finer than P.

Exploring partition refinements.
Algorithm 3 thus takes as input an initial ordered parti-

tion P with respect to a naive colouring Clr and determin-
istically explores possible refinements. For now we assume
that the algorithm accepts an RDF graph with one con-
nected component of blank nodes and no ground triples (i.e.,
a single blank node split). As discussed, the algorithm first
computes an initial ordered partition in the entry function
canonicalise. Next in distinguish, the algorithm recur-
sively tries distinguishing, in turn, each blank node from
the lowest non-trivial part of the current ordered partition.
The colour of the distinguished blank node is marked and
the result is fed as input along with G into the naive graph
colouring method, which is run until fixpoint: this propa-
gates the changes caused by distinguishing the blank node
through the graph. The fixpoint colouring returned is passed
to the refine function to compute a refinement of the pre-
vious ordered partition, dividing parts according to the new
colouring while maintaining the prior precedence of parts. If
the resulting refinement distinguishes all blank nodes, a la-
belling function uses the colours as a basis to label the blank
nodes in G. Throughout the recursive process of distinguish-
ing blank nodes, the lowest labelled graph seen thus far – G
– is tracked. When all possibilities have been explored, G
serves as a canonical version of G: the lowest graph found
during the deterministic exploration of refinements.

The algorithm thus explores a directed labelled search-
tree T = (V,E, L), where the set of vertices V are ordered
partitions, edges E connect ordered partitions to their di-
rect refinements, and L labels edges with an ordered list
of blank nodes manually distinguished for that refinement.
More specifically, let P ∈ V be a node in the tree and lin(P)
denote the label of its inlink (or an empty list for the root



Algorithm 3 Finding a canonical version of G

1: function canonicalise(G) . G an RDF graph
2: Clr← colour(G)
3: B ← terms(G) ∩B
4: compute partition P of B w.r.t. Clr
5: P ← order P by ≤
6: G← distinguish(G,Clr,P, ∅, B)
7: return G . canonical graph

8: function distinguish(G,Clr,P, G,B) . G: min. graph
9: Bi ← lowest non-trivial part of P

10: for b ∈ Bi do
11: Clr(b)← hashTuple(Clr(b), ‘@’) . ‘@’ a marker
12: Clr′ ← colour(G,Clr) . initialise clr0 with Clr
13: P[b] ← refine(P,Clr′, b, B)
14: if |P[b]| = |B| then . all nodes distinguished
15: GC ← label(G,Clr) . gen. bnodes from Clr
16: if G = ∅ or GC < G then G← GC

17: else G← distinguish(G,Clr′,P[b], G,B)

18: return G . canonical graph

19: function refine(P,Clr,b,B)
20: denote P = (B1, . . . , Bi, . . . , Bn) s.t. b ∈ Bi

21: P[b] ← (B1, . . . , Bi−1, {b}) . init. refined partition
22: compute partition P ′ of B w.r.t. Clr
23: P ′ ← order P ′ by ≤
24: for B+ ∈ (Bi \ {b}, Bi+1, . . . , Bn) do
25: P+ := () . empty list
26: for B′ ∈ P ′ do
27: if B+ ∩B′ 6= ∅ then
28: P+ ← P+ ‖ (B+ ∩B′) . ‖: concatenate
29: P[b] ← P[b] ‖P+

30: return P[b] . refined partition

node). Let B be the first non-trivial part of P (if P is fine,
it has no children). Then, for every b ∈ B, an edge extends
from P with label lin(P) ‖ [b] (where ‖ denotes concatena-
tion) to the refinement of P computed by distinguishing b
and rerunning the colouring to a fixpoint. Algorithm 3 ex-
plores this refinement tree in a depth-first manner looking
for a leaf that corresponds to the lowest labelled graph.

Example 6. We adapt the canonical example of the canon-
ical labelling of a 2D-grid-like graph – used for example by
McKay and Piperno [18] – to an RDF version as follows:

_:a _:b
:p

_:c
:p

_:d

:p

_:e

:q

:q
_:f

:p

:q

_:g

:p

_:h
:p

:q

_:i
:p

:p
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The graph on the right depicts the fixpoint of the naive
colouring. The ordered partition resulting from this would
be P = ({_:e}, {_:a, _:c, _:g, _:i}, {_:b, _:d, _:f, _:h}) as-
suming α < β. So now we distinguish blank nodes in the first
non-trivial part. The following graph to the left shows the re-
sult of distinguishing _:a and colouring to fixpoint: P[_:a] =
({_:e}, {_:a}, {_:i}, {_:c, _:g}, {_:b, _:d}, {_:f, _:h}).
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P[_:a] is still not a fine partition. Hence we proceed by
distinguishing one of the blank nodes in the first non-trivial
part {_:c, _:g}. If we distinguish, e.g., _:c, then P[_:a,_:c]

would be a fine ordered partition, as shown on the right. We
can then imagine a deterministic labelling for the blank nodes
of the graph based on the colours computed (e.g., _:kappa,
etc.) where only the minimum such graph is kept.9

This example illustrates traversing one path down the re-
finement tree to a leaf: [_:a, _:c]. Next the algorithm would
try [_:a, _:g], then [_:c, _:a], [_:c, _:i], and so on until all
eight leaves of the tree are checked. Figure 1 depicts the
refinement tree with the ordered partition resulting at ev-
ery step where the first non-trivial part of each partition is
shaded (other greyed-out parts of the tree will be discussed
later). For every leaf, the corresponding labelled graph is
computed and the minimum such graph is kept.

In this particular example, every leaf of the tree will result
in the same labelled graph: consider, e.g., the path [_:c, _:a].
The result would be the same as for [_:a, _:c] (but mirrored
on the vertical axis): all edges, like (ρ,Γ, σ), will appear in
every such graph produced by a leaf (in this example).

Pruning by automorphisms.
As observed in the previous example, traversing the entire

tree may involve unnecessary repetitions of orientations due
to automorphisms. In the given grid graph, there are two
large orbits – sets of nodes mappable by an automorphism
– namely {_:a, _:c, _:g, _:i} and {_:b, _:d, _:f, _:h}. As
such, exploring each leaf is redundant. The Nauty algo-
rithm – and similar canonical labelling methods such as
Traces [20] or Bliss [12] – keep track of automorphisms
found while exploring the search tree. If two leaves produce
the same labelled graph, then the mapping between the gen-
erating ordered partitions represents an automorphism.

Example 7. Taking Example 6, consider the two parti-
tions P[a,c] = ({e}, {a}, {i}, {c}, {g}, {b}, {d}, {f}, {h}) and

P[a,g] = ({e}, {a}, {i}, {g}, {c}, {d}, {b}, {h}, {f}).10 Since
both partitions generate the same labelled graph, we can as-
sert the following bidirectional automorphism: {e} ↔ {e},
{a} ↔ {a}, {i} ↔ {i}, {c} ↔ {g}, {b} ↔ {d}, {f} ↔ {h}.

Automorphisms can thus be used to prune the refinement
tree [18] where we employ one such strategy. Let P be a node
in the tree with children P ′ and P ′′ derived by distinguishing
b′ and b′′ respectively. Assume that P ′ has been visited
and we are considering visiting P ′′ next. If we can find an

9We could equivalently (modulo isomorphism) consider a
labelling based on the index of the part containing the blank
node in the ordered partition.

10Dropping underscores for formatting reasons.



e a,c,g,i b,d,f,h

e c g a,i b,f d,h

[c]

e g c a,i d,h b,f

[g]
e a i c,g b,d f,h

[a]

e i a c,g f,h b,d

[i]

e c g i a f b h d

[c, i]

e c g a i b f d h

[c, a]
e a i g c d b h f

[a, g]
e a i c g b d f h

[a, c]

e g c a i d h b f

[g, a]

e g c i a h d f b

[g, i]
e i a c g f h b d

[i, c]
e i a g c h f d b

[i, g]

Figure 1: Refinement tree for Example 6

automorphism µ that is the pointwise stabiliser for all the
blank nodes in lin(P) (i.e., µ(b) = b for all b ∈ lin(P)) and
that maps µ(b′)→ µ(b′′), then we need not visit P ′′ [18].

Example 8. In Figure 1, the greyed-out sub-tree need not
be explored if automorphisms are tracked and used to prune
branches (for now, we include [c, i]). After discovering that
the [a, c], [a, g], [c, a] and [c, i] leaves form the same graph,
automorphisms can be formed, per Example 7, by mapping
the leaf nodes (in the same column) from the following table:

[a, c] e a i c g b d f h xy[a, g] e a i g c d b h f

[c, a] e c g a i b f d h

[c, i] e c g i a f b h d

Assume we are now considering visiting [g] from the root.
No nodes need be stabilised at the root, so we need not restrict
the automorphisms considered. Take the automorphism de-
rived from, e.g., [c, a] → [a, g], which gives e → e, c → a,
g→ i, a→ g, and so on. We can use this automorphism to
map to [g] from its sibling [a], which has already been visited.
We can now compute the sub-tree below [g] by applying the
same automorphism to the sub-tree of [a] where we would
ultimately end up with the same leaf graphs. Hence we know
we can prune [g]. We need not visit [i] along the same lines.

In fact, going back a little, as hinted at by Figure 1, in the-
ory we need not have visited [c, i] either. When considering
visiting [c, i], we must look for automorphisms that root c,
but no such automorphism is computable from the first three
leaves. However, if we look at a higher level, after visiting
the [c, a] leaf, we have found an automorphism that makes
visiting the higher branch at [c] redundant. Thus we need
not continue with the [c] branch any further.

A major challenge associated with the pruning phase is
that naively materialising and indexing the entire automor-
phism group as it is discovered can consume lots of space.
Our current implementation thus computes automorphisms
on-the-fly as needed, lazily generating and caching orbits
with pointwise stabilisers relevant for a given level of the
tree. For this reason, in the previous example we would not
prune [c, i]: instead of checking pruning possibilities at ev-
ery level for all steps, we only check on the current level
of the depth-first search. Thus we would run [c, i] with-
out checking at the [c] level. When the depth-first-search
returns to the higher level, we would prune at [g] and [i].

In general, a variety of pruning and search strategies have
been explored in the graph isomorphism literature that are

not considered in this current work (see, e.g., [18] for more
details, explaining how different strategies may work better
for different types of graphs). However, such strategies only
become crucial when considering larger instances of difficult
cases which, as we will put forward later, are unlikely to be
of concern when dealing with real-world RDF data.

Algorithmic characteristics.
We briefly remark on two properties of the algorithm.

Theorem 4. Algorithm 3 terminates.

Proof. The search tree, though exponential, is finite.
The search follows standard depth-first recursion.

Theorem 5. The graph produced by Algorithm 3 is a canon-
ical version of G with respect to isomorphism.

Proof. (Sketch) Follows from the fact that the output
is isomorphic with G and, coupled with Lemma 2, that the
process provides a deterministic ordering of the isomorphs
of G without considering blank node labels.

With respect to RDF graphs containing a blank node split
with multiple graphs, we can perform the split per Algo-
rithm 2 and then run Algorithm 3 over each split. We can
then compare the resulting canonical graphs. If two or more
graphs contain the same blank node label, we can distinguish
all blank nodes in said graphs by hashing with an arbitrary
fresh symbol to separate them, taking the union with the
ground triples for output. (Another option would be to run
Algorithm 3 directly over the full RDF graph, but this would
lead to products in the orbits and thus a larger search tree.)

5. SKOLEMISATION: GENERATING IRIS
Thus far we’ve discussed the general principles of canon-

ically labelling an RDF graph to preserve isomorphism. In
this context, it is only important that the labels produced
from the colouring are locally unique. However, if we were
to use such a scheme to Skolemise the blank nodes and pro-
duce IRIs, these IRIs would have to be globally unique. This
raises two important aspects that we now discuss.

Hashing.
Table 1 presents the estimated risk of collisions for hypo-

thetical hashing schemes of various lengths (represented in
bits, hexadecimal strings and Base64, rounding up the num-
ber of characters where necessary). In particular, we present
the approximate number of inputs needed to reach the given



Table 1: Approximate number of elements needed
to reach the given probability of hash collision for
the given length hash (assuming perfect uniformity)

Bits Hex B64
Probability

2−1 2−4 2−16 2−64

32 8 6 77, 163 22, 820 362 < 2
64 16 11 5.1× 1009 1.5× 1009 2.4× 1007 < 2

128 32 22 2.2× 1019 6.4× 1018 1.0× 1017 6.1× 1009

160 40 27 1.1× 1024 4.2× 1023 6.7× 1021 4.0× 1014

256 64 43 4.0× 1038 1.1× 1038 1.9× 1036 1.1× 1029

512 128 86 1.4× 1077 4.0× 1076 6.4× 1074 3.8× 1067

probability of collision, where 2−1 indicates a 1
2

probability,

2−4 a 1
16

probability, etc. We assume hashing schemes with
perfect uniformity, i.e., we assume that the schemes produce
an even spread of hashes across different inputs.

We see a trade-off: longer hashes require longer string la-
bels but increase tolerance to collisions. When considering
the Web, we could be talking about billions or trillions of
inputs to the scheme. As such, we can rule out hashes of 32
or 64 bits, where even relatively modest inputs cause a 50%
or greater chance of a collision. However, if we use a very
long labelling scheme, the resulting labels would be cumber-
some and slow down transmission times, clog up storage, etc.
For reference, we previously found that the average length
of IRIs found in a large RDF crawl was about 52 charac-
ters [11]. Even in Base64, a 512- or 256-bit hash would pro-
duce a relatively cumbersome IRI. Hence we propose that
the sweet-spot is around 128-bit (MD5 or Murmur3 128)
or 160-bits (SHA1): in this range, the likelihood of collisions
– even assuming very large inputs in the trillions – are neg-
ligible when compared with the risk of, say, a comet wiping
out life as we know it in the meantime.

Global colours.
When generating Skolem IRIs, we would like to guarantee

that these IRIs are globally unique with respect to the graph
they originate from. This requires an additional step.

Example 9. Consider the following two RDF graphs:

<a> <b> <c>

_:d

:p

_:e

:q

:r
_:f

:r

:p

<a> <z>

_:g

:p

_:h

:q

:r

Both graphs would have distinguished colours after one it-
eration of Algorithm 1 but nodes _:d and _:g would have
the same colour: _:d would not yet have “encoded” the in-
formation from <b> and _:f. The Skolem IRIs produced for
_:d and _:g would (problematically) thus be the same.

As such, we need an additional step to ensure that Skolem
IRIs are unique with respect to a given graph, modulo iso-
morphism. Our solution is to compute a hash of the entire
canonicalised graph – which assuming perfect hashing, is
unique to that graph modulo isomorphism – and combine
that hash with the hash of each blank node. The hash of
each blank node then includes a hash signature unique (mod-
ulo hash collisions) to the structure of the entire graph.

Table 2: BTC–14 runtimes for three hash functions

Hash Bits Runtime (h) Adjusted (h)

MD5 128 16.4 12.4
Murmur3 128 128 13.6 9.6
SHA1 160 16.5 12.5

6. EVALUATION
We implemented our methods as a Java package we call

BLabel.11 We now present evaluation in two main parts.
First we look at real-world graphs: given that our complete
algorithm is indeed exponential (as expected from the out-
set), we want to see if bad cases occur in reality; we also
wish to compare the performance of different possible hash-
ing schemes in the 128/160-bit range as previously justified.
Second we stress-test our algorithm for some nasty cases
known from the graph isomorphism literature to illustrate
the types of graphs for which our algorithm can struggle.

Real-world RDF graphs.
We ran our complete algorithm for the BTC–14 dataset:

a collection of 43.6 million RDF graphs crawled from Web
documents spanning 47,560 pay-level-domains [13].12 The
dataset contains around 4 billion quadruples, taking up about
1.1 TB uncompressed in N-Quads format [3]. Experiments
were run in a single-threaded manner on an Intelr E5-2407
Quad-Core 2.2GHz machine with 30 GB of heap space.

We first sorted the data according to context to group the
triples of documents together (this took 20.8 hours). We
then scanned the sorted file, loading each RDF graph indi-
vidually into memory and computing a canonical labelling
before moving onto the next graph. We kept a hash for ev-
ery graph to identify isomorphic duplicates. We also ran
a control that just parsed the data and loaded the graphs
without canonicalisation; this took almost precisely 4 hours.

We then ran canonicalisation tests with three suitable
hashing schemes: results are provided in Table 2. We present
the arity of the hash scheme, the total runtime and the run-
time adjusted to subtract the control overhead. We see that
the total time taken to canonicalise all of the graphs, mi-
nus the control, was between 9.6–12.5 hours, where Mur-
mur3 128 was the fastest. Given that there were 9.9 million
graphs containing blank nodes, this averages to 3.5–4.5 ms
per graph. The slowest graph took 31–40 seconds, mainly
due to its size: 7.3 million triples with 254 thousand blank
nodes.13 Of the 9.9 million graphs with blank nodes, 9.4 mil-
lion (95%) were left after removing isomorphic duplicates.

These results show that our canonicalisation scheme is
indeed practical for a large collection of real-world graphs.

Synthetic cases.
We also tried some difficult synthetic cases from the Bliss

benchmark [12] for standard graph isomorphism.14 We took
five well-known classes of standard graphs at various sizes
and represented them as RDF graphs (using a single pred-
icate with edges in both directions). We also took a set of

11See http://aidanhogan.com/skolem/ for code/data.
12Although many such domains only provide“vacuous”RDFa
metadata extracted from HTML pages.

13
http://www.berkeleybop.org/ontologies/ncbitaxon.owl

14
http://www.tcs.hut.fi/Software/bliss/benchmarks/index.shtml

http://aidanhogan.com/skolem/
http://www.berkeleybop.org/ontologies/ncbitaxon.owl
http://www.tcs.hut.fi/Software/bliss/benchmarks/index.shtml


Table 3: Results for synthetic graphs

Class k Triples BNodes Time (ms)

Grid 2D
15 840 225 955

100 39,600 10,000 58,482

Grid 3D
7 1,764 343 938

19 38,988 6,589 37,402

Clique
16 240 16 719
55 2,970 55 578,830
56 3,080 56 —

Lattice
6 360 36 532

18 11,016 324 371,073
19 12,996 361 —

Triangle
9 504 36 656

29 21,924 406 507,036
30 24,360 435 —

Miyazaki
2 120 40 140
8 480 160 195,770

10 600 200 —

Miyazaki graphs known to be a particularly tough case for
graph isomorphism [19]. A timeout of ten minutes was set.
The experiments were run on a laptop with 1GB of heap-
space and an Intelr i3 Dual-Core 2.4GHz processor. We use
Murmur3 128: the fastest hashing method per Table 2.

Table 3 summarises the results. For each class, we present
the largest graph run under one second, the largest graph
under the ten minute timeout, and for classes with graphs
that did not succeed, the smallest graph that hit the timeout
(“—” indicates a timeout). We see that our algorithm strug-
gles for even modest sizes of certain synthetic graphs, with
Miyazaki graphs being the hardest tested. However, we ar-
gue that such structures would be rare in real-world graphs:
we speculate these cases would require an “adversary” delib-
erately creating them to be problematic in reality. Likewise
we take encouragement from the fact that, e.g., cliques of
size 16 can be processed in under a second.

7. RELATED WORK
In 2003, Carroll [4] proposed methods to canonicalise RDF

graphs with blank nodes in such a manner that they could
be signed. Carroll had quite similar aims to this work, al-
beit with a different use-case in mind: Carroll’s aim was to
generate a digital signature of the entire graph rather than
to label individual blank nodes. The method he proposes for
signing the graph is based on writing it to N-Triples, tem-
porarily mapping all blank nodes to a global blank node,
sorting the triples lexically, and then relabelling the blank
nodes sequentially as the sorted file is scanned, preserving a
bijection between the original input and output blank nodes.
In cases where blank nodes are not distinguished by this
method, Carroll proposes to inject new triples on such blank
nodes that uniquely “mark” them but in such a way that the
semantics ignores these triples. This is a weakness of the ap-
proach: it modifies the signed graph in an ad hoc way.

Jena [16] offers a method for checking isomorphism be-
tween two RDF graphs. However, the method is designed
for pairwise isomorphism-checks rather than for producing
a (globally-unique) canonical labelling.

Tzitzikas at al. [21] compute minimal deltas between RDF
graphs based on an edit distance metric. They propose two
algorithms: one views the computation as a combinatorial
optimisation problem to which the Hungarian method can
be applied; the other is based on computing a signature
for blank nodes based on the constant terms in their direct
neighbourhood. Although the goals of Tzitzikas at al. and
our goals differ somewhat, the signature method that they
propose for blank nodes is similar to a non-recursive version
of our naive colouring algorithm.

We recently conducted a survey of blank nodes [15, 10],
covering their theory and practice, their semantics and com-
plexity, how they are used in the standards and in published
data, etc. Some of the main conclusions were that blank
nodes are common in RDF data published on the Web (as
previously discussed), and that although RDF graphs can
sometimes contain connected blank nodes with treewidths
as high as 6, most graphs do not contain cycles of blank
nodes, which makes various tasks involving them easier. We
also found that in a merge of the BTC–12 corpus, 6% of the
blank nodes were redundant under simple entailment [10];
for this, we used a signature method similar to the naive
algorithm proposed earlier, but only for a fixed depth: we
used the method to initially cluster potentially isomorphic
graphs rather than to generate a full canonical labelling.

Popular RDF syntaxes like Turtle or RDF/XML are tree-
based and require explicit blank node labels for blank nodes
to form cycles. The observation that many RDF graphs
have acyclical blank nodes and that the complexity of (im-
plementing) various operations over such graphs drops sig-
nificantly has led to calls for defining a profile of RDF that
disallows cyclical blank nodes [15, 2]. Booth calls this profile
“Well Behaved RDF” [2]. Recent discussion on the pub-
lic mailing lists have centred around “deterministic nam-
ing” of blank nodes (which is what we tackle here) for such
“well-behaved graphs”. Although removing consideration of
blank node cycles would simplify matters, in this paper we
show that in terms of deterministically labelling blank nodes,
many real-world graphs, even with cycles, can be labelled
cheaply. Our results support the conjecture that exponential
cases are unlikely to be found in “real-world” RDF graphs.

8. CONCLUSION
In this paper, we presented methods to compute a canon-

ical labelling of RDF graphs. First we proved that RDF
isomorphism is GI-complete: hence we would expect such
an algorithm to be exponential. We then presented an effi-
cient naive colouring method that we would expect to cover
many common cases, and showed why it could fail to dis-
tinguish blank nodes. Inspired by graph isomorphism algo-
rithms like Nauty, we then presented a sound algorithm for
producing a canonical labelling, which can be used to check
isomorphism between RDF graphs or to cluster isomorphic
RDF graphs within a collection. We also addressed issues
regarding use of the algorithm to compute global Skolem
IRIs that deterministically replace blank nodes. Though
our algorithm is exponential, we found that we could pro-
cess 9.9 million real-world RDF graphs (with blank nodes) in
approximately 9.6 hours: on average, about 3.5 ms a graph.
We showed that some synthetic cases can cause performance
problems but argued that such cases seem unlikely to occur
“naturally”. We thus see our proposal as being both well-
founded in theory and (hopefully) useful in practice.
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