
Robust and Scalable Linked Data Reasoning Incorporating
Provenance and Trust Annotations

Piero A. Bonatti a, Aidan Hogan b, Axel Polleres b, Luigi Sauro a

aUniversità di Napoli “Federico II”, Napoli, Italy
bDigital Enterprise Research Institute, National University of Ireland, Galway

Abstract

In this paper, we leverage annotated logic programs for tracking indicators of provenance and trust during reasoning, specifically
focussing on the use-case of applying a scalable subset of OWL 2 RL/RDF rules over static corpora of arbitrary Linked Data (Web
data). Our annotations encode three facets of information: (i) blacklist: a (possibly manually generated) boolean annotation which
indicates that the referent data are known to be harmful and should be ignored during reasoning; (ii) ranking: a numeric value
derived by a PageRank-inspired technique—adapted for Linked Data—which determines the centrality of certain data artefacts
(such as RDF documents and statements); (iii) authority: a boolean value which uses Linked Data principles to conservatively
determine whether or not some terminological information can be trusted. We formalise a logical framework which annotates
inferences with the strength of derivation along these dimensions of trust and provenance; we formally demonstrate some
desirable properties of the deployment of annotated logic programming in our setting, which guarantees (i) a unique minimal
model (least fixpoint); (ii) monotonicity; (iii) finitariness; and (iv) finally decidability. In so doing, we also give some formal
results which reveal strategies for scalable and efficient implementation of various reasoning tasks one might consider. Thereafter,
we discuss scalable and distributed implementation strategies for applying our ranking and reasoning methods over a cluster of
commodity hardware; throughout, we provide evaluation of our methods over 1 billion Linked Data quadruples crawled from
approximately 4 million individual Web documents, empirically demonstrating the scalability of our approach, and how our
annotation values help ensure a more robust form of reasoning. We finally sketch, discuss and evaluate a use-case for a simple
repair of inconsistencies detectable within OWL 2 RL/RDF constraint rules using ranking annotations to detect and defeat the
“marginal view”, and in so doing, infer an empirical “consistency threshold” for the Web of Data in our setting.

Key words: annotated programs; linked data; web reasoning; scalable reasoning; distributed reasoning; authoritative reasoning; owl 2 rl;
provenance; pagerank; inconsistency; repair

1. Introduction

The Semantic Web is no longer purely academic:
in particular, the Linking Open Data project has fos-
tered a rich lode of openly available structured data on
the Web, commonly dubbed the “Web of Data” [53].

Email addresses: bonatti@na.infn.it (Piero A. Bonatti),
aidan.hogan@deri.org (Aidan Hogan),
axel.polleres@deri.org (Axel Polleres),
sauro@na.infn.it (Luigi Sauro).

Based on the Resource Description Framework (RDF),
Linked Data emphasises four simple principles: (i)
use URIs as names for things (and not just doc-
uments); (ii) make those URIs dereferenceable via
HTTP; (iii) return useful and relevant RDF content
upon lookup of those URIs; (iv) include links to other
datasets. Since its inception four years ago, the Linked
Data community has overseen exports from corpo-
rate bodies (e.g., the BBC, New York Times, Free-
base, Linked Clinical Trials [linkedct.org], Thomp-
son Reuters [opencalais.com] etc.), governmental bod-

Preprint submitted to Elsevier 02/06/2011

ies (e.g., UK Government [data.gov.uk], US Gov-
ernment [data.gov], US National Science Founda-
tion, etc.), community driven efforts (e.g., Wikipedia-
based exports [dbpedia.org], GeoNames, etc.), social-
networking sites (e.g., MySpace [dbtune.org], flickr,
Twitter [semantictweet.com], etc.) and scientific com-
munities (e.g., DBLP, PubMed, UniProt), amongst oth-
ers. 1

Interspersed with these voluminous exports of asser-
tional (or instance) data are lightweight schemata/on-
tologies defined in RDFS/OWL—which we will collec-
tively call vocabularies—comprising the terminologi-
cal data which describe classes and properties and pro-
vide a formalisation of the domain of discourse. The
assertional data describe things by assigning datatype
(string) values for named attributes (datatype proper-
ties), named relations to other things (object properties),
and named classifications (classes). The terminological
data describe these classes and properties, with RDFS
and OWL providing the formal mechanisms to render
the semantics of these terms—in particular, their inter-
relation and prescribed intended usage. Importantly,
best-practices encourage: (i) re-use of class and prop-
erty terms by independent and remote data publishers;
(ii) inter-vocabulary extension of classes and properties;
(iii) dereferenceability of classes and properties, return-
ing a formal RDFS/OWL description thereupon.

Applications are slowly emerging which leverage this
rich vein of structured Web data; however, thus far (with
of course a few exceptions) applications have been slow
to leverage the underlying terminological data for rea-
soning. Loosely speaking, reasoning utilises the formal
underlying semantics of the terms in the data to enable
the derivation of new knowledge. With respect to Linked
Data, sometimes there is only sparse re-use of (termino-
logical and/or assertional) terms between sources, and
so reasoning can be used to better integrate the data in
a merged corpus as follows: (i) infer and support the
semantics of ground equality (owl:sameAs relations be-
tween individuals) to unite knowledge fractured by in-
sufficient URI re-use across the Web; (ii) leverage ter-
minological knowledge to infer new assertional knowl-
edge, possibly across vocabularies and even assertional
documents; (iii) detect inconsistencies whereby one or
more parties may provide conflicting data—herein, we
focus on the latter two reasoning tasks.

1 See http://richard.cyganiak.de/2007/10/lod/ for
a comprehensive graph of such datasets and their inter-linkage;
however—and as the Linked Open Numbers project (see [64, Figure
1]) has aptly evinced, and indeed as we will see ourselves in
later evaluation—not all of this current Web of Data is entirely
“compelling”.

However, reasoning over (even subsets) of the Web
of Data poses two major challenges, with serious impli-
cations for reasoning: (i) scalability, where one can ex-
pect Linked Data corpora containing in the order of bil-
lions or tens of billions of statements (for the moment);
(ii) tolerance to noise and inconsistency, whereby data
published on the Web are afflicted with naı̈ve errors and
disagreement, arbitrary redefinitions of classes/proper-
ties, etc. Traditional reasoning approaches are not well
positioned to tackle such challenges, where the main
body of literature in the area is focussed on considera-
tions such as expressiveness, soundness, completeness
and polynomial-time tractability 2 , and makes some ba-
sic assumptions about the underlying data quality; for
example, tableaux-based algorithms struggle with large
bodies of assertional knowledge, and are tied by the
principle of ex falso quodlibet—from contradiction fol-
lows anything—and thus struggle when reasoning over
possibly inconsistent data. 3

In previous works, we presented our Scalable Au-
thoritative OWL Reasoner (SAOR) which applies a sub-
set of OWL 2 RL/RDF rules over arbitrary Linked
Data crawls: in particular, we abandon completeness
in favour of conducting “sensible” inferencing which
we argue to be suitable for the Linked Data use-
case [36,38]. 4 We have previously demonstrated dis-
tributed reasoning over ∼1b Linked Data triples [38],
and have also presented some preliminary formalisa-
tions of what we call “authoritative reasoning”, which
considers the source of terminological data during rea-
soning [36]. The SAOR system is actively used for ma-
terialising inferences in the Semantic Web Search En-
gine (SWSE) [37] which offers search and browsing
over Linked Data. 5

In this paper, we look to reformalise how the SAOR
engine incorporates the notions of provenance and trust
which form an integral part of its tolerance to noise,
where we see the use of annotated logic programs [42]
as a natural fit. We thus derive a formal logical frame-
work for annotated reasoning in our setting, which en-
codes three indicators of provenance and trust and which
thus allows us to apply robust materialisation over large,
static, Linked Data corpora.

2 In our scenario with assertional data from the Web in the order
of billions of statements, even quadratic complexity is prohibitively
expensive.
3 There is ongoing research devoted to paraconsistent logics which
tackle this issue—e.g., see a recent proposal for OWL 2 [51]—but
the efficiency of such approaches is still an open question.
4 For a high-level discussion on the general infeasibility of com-
pleteness for scenarios such as ours, see [31].
5 http://swse.deri.org/

2

Further, in previous work we noted that many incon-
sistencies arise on the Web as the result of incompatible
naming of resources, or naı̈ve publishing errors [35]:
herein, we look at a secondary use-case for our an-
notations which leverages OWL 2 RL/RDF constraint
rules to detect inconsistencies, where subsequently we
perform a simple “repair” of the Web knowledge-base
using our annotations—particularly ranks—to identify
and defeat the “marginal view” present in the inconsis-
tency.

More specifically, we:
– introduce some necessary preliminaries (Section 2);
– discuss our proposed annotation values to repre-

sent provenance and trust—blacklisting, authority,
and ranking—giving concrete instantiations for each
(Section 3);

– describe a formal framework for annotated programs
which incorporate the above three dimensions of
provenance and trust, including formal discussion of
constraint rules (Section 4);

– describe our experimental setup and our 1 billion
triple Linked Data corpus (Section 5);

– describe our distributed (i) implementation and eval-
uation of links-based ranking (Section 6), (ii) anno-
tated reasoning for a subset of OWL 2 RL/RDF rules
(Section 7), and (iii) our inconsistency detection and
repair use-case (Section 8);

– discuss issues relating to scalability and expressive-
ness (Section 9), render related work in the field (Sec-
tion 10), and conclude (Section 11).

2. Preliminaries

In this section, we provide some necessary prelim-
inaries relating to (i) RDF (Section 2.1); (ii) Linked
Data principles and data sources (Section 2.2); (iii) rules
and atoms (Section 2.3); (iv) generalised annotated pro-
grams (Section 2.4) (v) terminological data given by
RDFS/OWL (Section 2.5); and (vi) OWL 2 RL/RDF
rules (Section 2.6). We attempt to preserve notation and
terminology as prevalent in the literature.

2.1. RDF

We briefly give some necessary notation relating to
RDF constants and RDF triples; cf. [30].

RDF Constant Given the set of URI references U, the
set of blank nodes B, 6 and the set of literals L, the set
of RDF constants is denoted by C := U ∪B ∪ L. We
also define the set of variables V which range over C.

Herein, we use CURIEs [5] to denote URIs. Follow-
ing Turtle syntax [2], use a as a convenient shortcut for
rdf:type. We denote variables with a ‘?’ prefix.

RDF Triple A triple t := (s, p, o) ∈ (U∪B)×U×C
is called an RDF triple, where s is called subject, p pred-
icate, and o object. A triple t := (s, p, o) ∈ G,G :=
C × C × C is called a generalised triple [25], which
allows any RDF constant in any triple position: hence-
forth, we assume generalised triples unless explicitly
stated otherwise. We call a finite set of triples G ⊂ G
a graph.

2.2. Linked Data principles, Data Sources and
Quadruples

In order to cope with the unique challenges of han-
dling diverse and unverified Web data, many of our com-
ponents and algorithms require inclusion of a notion of
provenance: consideration of the source of RDF data
found on the Web. Tightly related to such notions are
the best practices of Linked Data [3], which give clear
guidelines for publishing RDF on the Web. We briefly
discuss Linked Data principles and notions relating to
provenance. 7

Linked Data Principles The four best practices of
Linked Data are as follows [3]:
– (LDP1) use URIs to name things;
– (LDP2) use HTTP URIs so that those names can be

looked up;
– (LDP3) provide useful structured information when

a look-up on a URI is made – loosely, called deref-
erencing;

– (LDP4) include links using external URIs.

Data Source We define the http-download function
get : U → 2G as the mapping from a URI to an RDF
graph (set of facts) it may provide by means of a given
HTTP lookup [21] which directly returns status code
200 OK and data in a suitable RDF format; this function

6 We interpret blank-nodes as skolem constants, as opposed to
existential variables. Also, we rewrite blank-node labels to ensure
uniqueness per document, as prescribed in [30].
7 Note that in a practical sense, all HTTP-level functions
{get, redir, redirs, deref} are set at the time of the crawl, and are
bounded by the knowledge of our crawl.

3

also performs a rewriting of blank-node labels (based
on the input URI) to ensure uniqueness when merging
RDF graphs [30]. We define the set of data sources
S ⊂ U as the set of URIs S := {s ∈ U | get(s) 6= ∅}.

RDF Triple in Context/RDF Quadruple An ordered
pair (t, c) with a triple t = (s, p, o), c ∈ S and t ∈ get(c)
is called a triple in context c. We may also refer to (s,
p, o, c) as an RDF quadruple or quad q with context c.

HTTP Redirects/Dereferencing A URI may provide
a HTTP redirect to another URI using a 30x response
code [21]; we denote this function as redir : U → U
which may map a URI to itself in the case of failure
(e.g., where no redirect exists)—note that we do not
need to distinguish between the different 30x redirection
schemes, and that this function would implicitly involve,
e.g., stripping the fragment identifier of a URI [4]. We
denote the fixpoint of redir as redirs, denoting traversal
of a number of redirects (a limit may be set on this
traversal to avoid cycles and artificially long redirect
paths). We define dereferencing as the function deref :=
get◦redirs which maps a URI to an RDF graph retrieved
with status code 200 OK after following redirects, or
which maps a URI to the empty set in the case of failure.

2.3. Atoms and Rules

In this section, we briefly introduce some notation
as familiar from the field of Logic Programming [48],
which acts as a generalisation of the aforementioned
RDF notation.

Atom Atoms are of the form p(e1, . . . , en) where
e1, . . . , en are terms (like Datalog, function symbols are
disallowed) and where p is a predicate of arity n—we
denote the set of all such atoms by Atoms. This is a
generalisation of RDF triples, for which we employ a
ternary predicate T where our atoms are of the form
T (s, p, o)—for brevity, we commonly omit the ternary
predicate and simply write (s, p, o). An RDF atom of
this form is synonymous with a generalised triple pat-
tern where variables of the set V are allowed in any po-
sition). A ground atom—or simply a fact—is one which
does not contain variables (e.g., a generalised triple); we
denote the set of all facts by Facts—a generalisation
of G. A (Herbrand) interpretation I is a finite subset of
Facts—a generalisation of a graph.

Letting A and B be two atoms, we say that A sub-
sumes B—denoted A.B—if there exists a substitution
θ of variables such that Aθ = B (applying θ to the

variables of A yields B); we may also say that B is an
instance of A; if B is ground, we say that it is a ground
instance. Similarly, if we have a substitution θ such that
Aθ = Bθ, we say that θ is a unifier of A and B; we de-
note by mgu(A,B) the most general unifier of A and
B which provides the “minimal” variable substitution
(up to variable renaming) required to unify A and B.

Rule A rule R is given as follows:

H ← B1, . . . , Bn(n ≥ 0)

where H,B1, . . . , Bn are atoms, H is called the
head (conclusion/consequent) andB1, . . . , Bn the body
(premise/antecedent). We use Head(R) to denote the
head H of R and Body(R) to denote the body
B1, . . . , Bn of R. Our rules are range restricted – or
safe [60]: like Datalog, the variables appearing in the
head of each rule must also appear in the body.

The set of all rules that can be defined over atoms
using an (arbitrary but fixed) infinite supply of variables
will be denoted by Rules. A rule with an empty body
is considered a fact; a rule with a non-empty body is
called a proper-rule. We call a finite set of such rules a
program P .

Like before, a ground rule is one without variables.
We denote with Ground(R) the set of ground instan-
tiations of a rule R and with Ground(P) the ground
instantiations of all rules occurring in a program P .

Immediate Consequence Operator We give the (clas-
sical) immediate consequence operator CP of a program
P under interpretation I as:

CP : 2Facts → 2Facts

I 7→ {Head(R)θ | R ∈ P and
∃I ′ ⊆ I s.t. θ = mgu(Body(R), I ′)}

Intuitively, the immediate consequence operator maps
from a set of facts I to the set of facts it directly entails
with respect to the program P—note that CP (I) will
retain the facts in P since facts are rules with empty
bodies and thus unify with any interpretation, and note
that for our purposes CP is monotonic—the addition of
facts and rules to a program can only lead to a superset
of consequences.

Since our rules are a syntactic subset of Datalog, CP
has a least fixpoint—denoted lfp(CP)—whereby fur-
ther application of CP will not yield any changes, and
which can be calculated in a bottom-up fashion, start-
ing from the empty interpretation ∆ and applying iter-
atively CP [66] (here, convention assumes that P con-
tains the set of input facts as well as proper rules). De-
fine the iterations of CP as follows: CP ↑ 0 := ∆; for

4

all ordinals α, CP ↑ (α+ 1) := CP (CP ↑ α); since our
rules are Datalog, there exists an α such that lfp(CP) =
CP ↑ α for α < ω, where ω denotes the least infinite
ordinal—i.e., the immediate consequence operator will
reach a fixpoint in countable steps [61], thereby giv-
ing all ground consequences of the program. We call
lfp(CP) the least model, which is given the more suc-
cinct notation lm(P).

2.4. Generalised annotated programs

In generalised annotated programs [42] the set of
truth values is generalised to an arbitrary upper semilat-
tice T , that may represent—say—fuzzy values, incon-
sistencies, validity intervals (i.e. time), or a confidence
value, to name but a few.

(Generalised) Annotated rules Annotated rules are
expressions like

H:ρ← B1:µ1, . . . , Bn:µn

where each µi can be either an element of T or a variable
ranging over T ; ρ can be a function f(µ1, . . . , µn) over
T . Programs, Ground(R) and Ground(P) are defined
analogously to non-annotated programs.
Example: Consider the following simple example of
a (generalised) annotated rule where T corresponds to
a set of confidence values in the interval [0, 1] of real
numbers:

Father(?x):(0.5× µ)← Parent(?x):µ . (1)

This rule intuitively states that something is a Father
with (at least) half of the confidence for which it is a
Parent. 8 3

Restricted interpretations So-called restricted inter-
pretations map each ground atom to a member of T .
A restricted interpretation I satisfies A:µ (in symbols,
I |= A:µ) iff I(A) ≥T µ, where ≥T is T ’s ordering.
Now I satisfies a rule like the above iff either I satis-
fies the head or I does not satisfy some of the annotated
atoms in the body.
Example: Take the annotated rule from Equation 1,
and let’s say that we have a restricted interpretation I
which satisfies Parent(sam):0.6. Now, for I to satisfy
the given rule, it must also satisfy Father(sam):0.3
such that I(Father(sam)) ≥ 0.3. 3

8 This example can be trivially converted to RDF by instead con-
sidering the ternary atoms (?x, a, ex:Parent) and (?x, a,
ex:Father).

Restricted immediate consequences In the gener-
alised annotation framework, the restricted immediate
consequence operator of an annotated program P is de-
fined as follows, where σ ranges over substitutions:

RP (I)(A) := lub
{
ρ | (A:ρ← B1:µ1, . . . , Bn:µn)σ

∈ Ground(P) and I |= (Bi:µi)σ

for (1 ≤ i ≤ n)
}
.

Example: Take a program P which com-
prises of the annotated rule shown in Equa-
tion 1 and the annotated fact Parent(sam):0.6.
Then, RP (I)(Father(sam)) = 0.3. Instead, let’s
say that P also contains Father(sam):0.5. Then
RP (I)(Father(sam)) = lub{0.5, 0.3} = 0.5. 3

Importantly, various properties of RP have been for-
mally demonstrated for generalised annotated programs
in [42], where we will reuse these results later for our
own (more specialised) annotation framework in Sec-
tion 4; for example, RP has been shown to be mono-
tonic, but not always continuous [42].

2.5. Terminological data: RDFS/OWL

As previously described, RDFS/OWL allow for pro-
viding terminological data which constitute definitions
of classes and properties used in the data. A detailed
discussion of RDFS/OWL is out of scope, but the dis-
tinction of terminological and assertional data—which
we now describe—is important for our purposes. First,
we require some preliminaries. 9

Meta-class We consider a meta-class as a
class specifically of classes or properties; i.e., the
members of a meta-class are themselves either
classes or properties. Herein, we restrict our no-
tion of meta-classes to the set defined in RDF(S)
and OWL specifications, where examples include
rdf:Property, rdfs:Class, owl:Class, owl:Restric-
tion, owl:DatatypeProperty, owl:FunctionalProp-

erty, etc. Note that rdfs:Resource, rdfs:Literal,
e.g., are not meta-classes, since their members need not
be classes or properties.

9 As we are dealing with Web data, we refer to the OWL 2 Full
language and the OWL 2 RDF-based semantics [18] unless explic-
itly stated otherwise. Note that a clean and intuitive definition of
terminological data is somewhat difficult for RDFS and particularly
OWL Full. We instead rely on a ‘shibboleth’ approach which identi-
fies markers for what we consider to be RDFS/OWL terminological
data.

5

Meta-property A meta-property is one which has a
meta-class as its domain. Again, we restrict our no-
tion of meta-properties to the set defined in RDF(S) and
OWL specifications, where examples include rdfs:-

domain, rdfs:subClassOf, owl:hasKey, owl:inverse-
Of, owl:oneOf, owl:onProperty, owl:unionOf, etc.
Note that rdf:type, owl:sameAs, rdfs:label, e.g., do
not have a meta-class as domain, and are not considered
meta-properties.

Terminological data We define the set of terminolog-
ical triples as the union of the following sets of triples:

(i) triples with rdf:type as predicate and a meta-
class as object;

(ii) triples with a meta-property as predicate;
(iii) triples forming a valid RDF list whose head is

the object of a meta-property (e.g., a list used for
owl:unionOf, owl:intersectionOf, etc.);

(iv) triples which contribute to an all-disjoint-classes
or all-disjoint-properties axiom. 10

Note that the last category of terminological data is only
required for special consistency-checking rules called
constraints: i.e., rules which check for logical contra-
dictions in the data. For brevity, we leave this last cat-
egory of terminological data implicit in the rest of the
paper, where owl:AllDisjointClasses and owl:All-

DisjointProperties can be thought of as “honorary
meta-classes” included in category 1, owl:members can
be thought of as an “honorary meta-property” included
in category 2, and the respective RDF lists included in
category 3.

Finally, we do not consider triples involving “user-
defined” meta-classes or meta-properties as contributing
to the terminology, where in the following example, the
first triple is considered terminological, but the second
triple is not. 11

(ex:inSubFamily, rdfs:subPropertyOf,
rdfs:subClassOf)

(ex:Bos, ex:inSubFamily, ex:Bovinae)

T-split rule A T-split rule R is given as follows:

H ← A1, . . . , An, T1, . . . , Tm (n,m ≥ 0) (2)

10That is, triples with rdf:type as predicate and owl:AllDis-
jointClasses or owl:AllDisjointProperties as object,
triples whose predicate is owl:members and whose subject unifies
with the previous category of triples, and triples forming a valid
RDF list whose head unifies with the object of such an owl:-
members triple.
11In particular, we require a data-independent method for distin-
guishing terminological data from purely assertional data, such that
we only allow those meta-classes/-properties which are known a-
priori.

where the Ti, 0 ≤ i ≤ m atoms in the body (T-atoms)
are all those that can only have terminological ground
instances, whereas the Ai, 1 ≤ i ≤ n atoms (A-atoms),
can have arbitrary ground instances. We use TBody(R)
and ABody(R) to respectively denote the set of T-atoms
and the set of A-atoms in the body of R. Herein, we
presume that the T-atoms and A-atoms of our rules can
be distinguished and referenced as defined above.
Example: Let REX denote the following rule
(?x, a, ?c2) ← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

When writing T-split rules, we denote TBody(REX) by
underlining: the underlined T-atom can only be bound
by a triple with the meta-property rdfs:subClassOf

as RDF predicate, and thus can only be bound by a
terminological triple. The second atom in the body can
be bound by assertional or terminological triples, and
so is considered an A-atom. 3

T-ground rule A T-ground rule is a set of rule in-
stances for the T-split rule R given by grounding
TBody(R). We denote the set of such rules for a pro-
gram P and a set of facts I as GroundT (P, I), defined
as:

GroundT (P, I) :=
{
Head(R)θ ← ABody(R)θ |R ∈ P

and ∃I ′ ⊆ I s.t. θ = mgu(TBody(R), I ′)
}
.

The result is a set of rules whose T-atoms are grounded
by the terminological data in I .
Example: Consider the T-split rule REX from
the previous example. Now let IEX := { (foaf:-
Person, rdfs:subClassOf, foaf:Agent), (foaf:-
Agent, rdfs:subClassOf, dc:Agent) }. Here,
GroundT ({REX}, IEX) = { (?x, a, foaf:Agent) ←
(?x, a, ?foaf:Person); (?x, a, dc:Agent) ← (?x, a,
?foaf:Agent) }. 3

T-split program and least fixpoint Herein, we give an
overview of the computation of the T-split least fixpoint
for a program P , which is broken up into two parts:
(i) the terminological least fixpoint, and (ii) the asser-
tional least fixpoint. Let PF := {R ∈ P | Body(R) =
∅} be the set of facts in P , 12 let PT∅ := {R ∈
P | TBody(R) 6= ∅,ABody(R) = ∅}, let P ∅A :=
{R ∈ P | TBody(R) = ∅,ABody(R) 6= ∅}, and let
PTA := {R ∈ P | TBody(R) 6= ∅,ABody(R) 6=
∅}. Clearly, P = PF ∪ PT∅ ∪ P ∅A ∪ PTA. Now,

12Of course, PF can refer to axiomatic facts and/or the initial facts
given by an input knowledge-base.

6

let TP := PF ∪ PT denote the initial (terminologi-
cal) program containing ground facts and T-atom only
rules, and let lm(TP) denote the least model for the
terminological program. Now, let AP := lm(TP) ∪
P ∅A∪GroundT (PTA, lm(TP)) denote the second (as-
sertional) program containing all available facts and
rules with empty or grounded T-atoms. Now, we can
give the least model of the T-split program P as lm(AP)
for AP derived from P as above—we more generally
denote this by lmT (P).

In [38], we showed that the T-split least fixpoint is
complete wrt. the standard variant (given that our rules
are monotonic) and that the T-split least fixpoint is com-
plete with respect to the standard fixpoint if rules re-
quiring assertional knowledge do not infer unique ter-
minological knowledge required by the T-split program
(i.e., the assertional program AP does not generate new
terminological facts not available to the initial program
TP).

2.6. OWL 2 RL/RDF rules

OWL 2 RL/RDF [25] rules are a partial axiomati-
sation of the OWL 2 RDF-Based Semantics which is
applicable for arbitrary RDF graphs, and thus is com-
patible with RDF Semantics [30]. The atoms of these
rules comprise primarily of ternary predicates encod-
ing generalised RDF triples; some rules have a special
head denoted false which indicate that an instance of
the body is inconsistent. All such rules can be consid-
ered T-split where we use the aforementioned criteria
for characterising terminological data and subsequently
T-atoms.

As we will further discuss in Section 7, full materi-
alisation wrt. the entire set of OWL 2 RL/RDF is in-
feasible in our use-case; in particular, given a large A-
Box of arbitrary content, we wish to select a subset of
the OWL 2 RL/RDF profile which is linear with re-
spect to that A-Box; thus, we select a subset O2R− of
OWL 2 RL/RDF rules where |ABody(R)| ≤ 1 for all
R ∈ O2R− [36]—we provide the full ruleset in Ap-
pendix A. Besides ensuring that the growth of asser-
tional inferences is linear wrt. the A-Box—and as we
will see in later sections—our linear profile allows for
near-trivial distribution of reasoning, as well as various
other optimisation techniques (see [38,32]).

With respect to OWL 2 RL/RDF, in [32] we showed
that the T-split least fixpoint is complete assuming (i)
no non-standard usage, whereby rdf:type, rdf:first,
rdf:rest and the RDFS/OWL meta-properties do not
appear other than as a predicate in the data, and RDF-

S/OWL meta-classes do not appear in a position other
than as the value for rdf:type; and (ii) that owl:sameAs
does not affect constants in the terminology. 13

3. Annotation values

Naı̈vely conducting materialisation wrt. non-arbitrary
rules over arbitrary, non-verified data merged from mil-
lions of sources crawled from the Web broaches many
obvious dangers. In this section, we discuss the anno-
tation values we have chosen to represent the various
dimensions of provenance and trust we use for reason-
ing over Linked Data, which have been informed by
our past experiences in reasoning over arbitrary Linked
Data.

3.1. Blacklisting

Despite our efforts to create algorithms which auto-
matically detect and mitigate noise in the input data,
it may often be desirable to blacklist input data based
on some criteria: for example, data from a certain do-
main may be considered likely to be spam, or certain
triple patterns may constitute common publishing er-
rors which hinder the reasoning process. We currently
do not require the blacklisting function, and thus con-
sider all triples to be not blacklisted. However, such an
annotation has obvious uses for bypassing noise which
cannot otherwise be automatically detected.

One particular use-case we have in mind for includ-
ing the blacklisting annotation relates to the publica-
tion of void values for inverse-functional properties:
the Friend Of A Friend (FOAF) 14 vocabulary offers
classes and properties for describing information about
people, organisations, documents, and so forth: it is cur-
rently one of the most widely instantiated vocabular-
ies in Linked Data [37, Appendix A]. FOAF includes
a number of inverse-functional-properties which allow
for identifying (esp.) people in the absence of agree-
ment upon URIs, e.g.: foaf:homepage, foaf:mbox,
foaf:mbox sha1sum. However, FOAF exporters on the
Web commonly do not respect the inverse-functional se-
mantics of these properties; one particularly pathogenic
case we encountered was exporters producing empty

13Note that the OWL 2 RL/RDF eq-rep-* rules can cause incom-
pleteness by condition (ii), but herein, we do not support these
rules. Further, note that in other profiles (such as RDFS and pD*)
axiomatic triples may be considered non-standard—however, none
of the OWL 2 RL/RDF axiomatic triples (see Table A.1) are non-
standard.
14http://xmlns.com/foaf/0.1/

7

strings or values such as ‘mailto:’ for foaf:mbox

when users omitted specifying their email. Similarly,
we encountered many corresponding erroneous values
for the foaf:mbox sha1sum property—representing a
SHA1 encoded email value—referring to the SHA1
hashes of ‘mailto:’ and the empty string [34]. These
values—-caused by naı̈ve publishing errors—lead to
quadratic spurious inferences equating all users who
omitted an email to each other. Although for reasons
of efficiency we currently do not support the rele-
vant OWL 2 RL/RDF rules which support the seman-
tics of inverse-functional properties, the blacklisting an-
notation could be used to negate the effects of such
pathogenic values—essentially, it serves as a pragmatic
last resort.

3.2. Authoritative analysis

In our initial works on SAOR [36]—a pragmatic rea-
soner for Linked Data—we encountered a puzzling del-
uge of inferences which we did not initially expect. We
found that remote documents sometimes cross-define
terms resident in popular vocabularies, changing the
inferences authoritatively mandated for those terms.
For example, we found one document 15 which defines
owl:Thing to be a member of 55 union classes—thus,
materialisation wrt. OWL 2 RL/RDF rule cls-uni [25,
Table 6] over any member of owl:Thing would infer 55
additional memberships for these obsolete and obscure
union classes. We found another document 16 which de-
fines nine properties as the domain of rdf:type—again,
anything defined to be a member of any class would
be inferred to be a member of these nine properties.
Even aside from “cross-defining” core terms, popular
vocabularies such as FOAF were also affected [36]—
such practice lead to the materialisation of an impracti-
cal bulk of arguably irrelevant data (which would sub-
sequently burden the consumer application).

To counter-act remote contributions about the seman-
tics of terms, we introduced a more conservative form
of reasoning called authoritative reasoning [36] which
critically examines the source of terminological knowl-
edge. We now re-introduce the concept of authoritative
reasoning from [36], herein providing more detailed for-
malisms and updated discussion.

Our authoritative reasoning methods are based on the
intuition that a publisher instantiating a vocabulary’s
term (class/property) thereby accepts the inferencing

15http://lsdis.cs.uga.edu/˜oldham/ontology/
wsag/wsag.owl
16http://www.eiao.net/rdf/1.0

mandated by that vocabulary and recursively referenced
vocabularies for that term. Thus, once a publisher in-
stantiates a class or property from a vocabulary, only
that vocabulary and its references should influence what
inferences are possible through that instantiation.

Firstly, we must define the relationship between a
class/property term and a vocabulary, and give the no-
tion of term-level authority. We view a term as an RDF
constant, and a vocabulary as a Web document. From
Section 2.2, we recall the get mapping from a URI
(a Web location) to an RDF graph it may provide by
means of a given HTTP lookup and the redirs mapping
for following the HTTP redirects of a URI. Also, let
bnodes(G) denote the set of blank nodes appearing in
the RDF graph G. Now, we denote a mapping from a
source URI to the set of terms it speaks authoritatively
for as follows: 17

auth : S→ 2C

s 7→ {c ∈ U | redirs(c) = s} ∪ bnodes(get(s))

where a Web source is authoritative for URIs which
dereference to it and the blank nodes it contains; e.g.,
the FOAF vocabulary is authoritative for terms in its
namespace since it follows best-practices and makes
its class/property URIs dereference to an RDF/XML
document defining the terms. Note that no document is
authoritative for literals.

To negate the effects of non-authoritative terminolog-
ical axioms on reasoning over Web data (as exemplified
above), we add an extra condition to the T-grounding
of a rule: in particular, we only require amendment to
rules where both TBody(R) 6= ∅ and ABody(R) 6= ∅.

Authoritative T-ground rule Let varsTA(R) ⊂ V de-
note the set of variables appearing in both TBody(R)
and ABody(R). Now, we define the set of authorita-
tive rule instances for a program P , RDF graph G, and
source s as: 18

̂GroundT(P, G, s) := {Head(R)θ ← ABody(R)θ |
R ∈ P

and ∃G′ ⊆ G s.t. θ = mgu(TBody(R), G′)

and if TBody(R) 6= ∅ ∧ ABody(R) 6= ∅
then ∃v ∈ varsTA(R) s.t. θ(v)∈auth(s)

}
17Even pre-dating Linked Data, dereferenceable vocabulary
terms were encouraged; cf. http://www.w3.org/TR/2006/
WD-swbp-vocab-pub-20060314/
18Here we favour RDF graph notation as authority applies only
in the context of Linked Data (but could be trivially generalised
through the auth function).

8

where authoritative rule instances are synonymous with
authoritatively T-ground rules and where the notion of
authoritative rule instances for a program follows nat-
urally. The additional condition for authoritativeness
states that if a rule contains both T-atoms and A-atoms
in the body (ABody(R) 6= ∅ ∧ TBody(R) 6= ∅), then
the unifier must substitute at least one variable appear-
ing in both ABody(R) and TBody(R) (a variable from
the set varsTA(R)) for an authoritative term from source
s (a constant from the set auth(s)) for the resulting T-
ground rule to be authoritative. This implies that the
source s must speak authoritatively for at least one term
that will appear in the body of each proper T-ground
rule which its terminology generates, and so cannot cre-
ate new assertional rules which could apply over arbi-
trary assertional data not mentioning any of its terms.
We illustrate this with an example.
Example: Take the T-split rule REX as before where
varsTA(REX) = {?c1} representing the set of variables
in both TBody(REX) and ABody(REX). Let IEX be
the graph from source s, where now for each substitution
θ, there must exist v ∈ varsTA(REX) such that s speaks
authoritatively for θ(v). In this case,
– s must speak authoritatively for the URI foaf:Per-

son—for which ?c1 is substituted—for the T-ground
rule (?x, a, foaf:Agent)← (?x, a, ?foaf:Person) to
be authoritative,

– analogously, s must speak authoritatively for the URI
foaf:Agent—again for which ?c1 is substituted—for
the T-ground rule (?x, a, dc:Agent)← (?x, a, foaf:-
Agent) to be authoritative.

In other words, the source s serving the T-facts in IEX
must be the FOAF vocabulary for the above rules to
authoritative. 3

For reference, we highlight variables in varsTA(R)
with boldface in Table A.4.

(It is worth noting that for rules where ABody(R) and
TBody(R) are both non-empty, authoritative instantia-
tion of the rule will only consider unifiers for TBody(R)
which come from one source: however, in practice for
OWL 2 RL/RDF this is not so restrictive: although
TBody(R) may contain multiple atoms, in such rules
TBody(R) usually refers to an atomic axiom which re-
quires multiple triples to represent—indeed, the OWL
2 Structural Specification 19 enforces usage of blank-
nodes and cardinalities on such constructs to ensure
that the constituent triples of the multi-triple axiom ap-
pear in one source. To take an example, for the T-atoms

19http://www.w3.org/TR/2009/
REC-owl2-syntax-20091027/

(?x, owl:hasValue, ?y), (?x, owl:onProperty, ?p), we
would expect ?x to be ground by a blank-node skolem
and thus expect the instance to come from one graph.)

3.3. Links-based ranking

There is a long history of links-based analysis
over Web data—and in particular over hypertext
documents—where links are seen as a positive vote
for the relevance or importance of a given document.
Seminal works exploiting the link structure of the Web
for ranking documents include HITS [44] and PageR-
ank [8]. Various approaches (e.g., [1,16,33,23,15,29])
look at incorporating links-based analysis techniques
for ranking RDF data, with various end-goals in mind,
most commonly, prioritisation of informational artefacts
in user result-views; however, such analyses have been
applied to other use-cases, including work by Guéret et
al. [28] which uses betweenness centrality measures to
identify potentially weak points in the Web of Data in
terms of maintaining connectedness integrity.

Herein, we employ links-based analysis with the un-
derlying premise that higher ranked sources contribute
more “trustworthy” data: in our case, we would expect
a correlation between the (Eigenvector) centrality of a
source in the graph, and the quality of data that it pro-
vides. Inspired in particular by the work of Harth et
al. [29] on applying PageRank to RDF, we implement
a two-step process: (i) we create the graph of links be-
tween sources, and apply a standard PageRank calcu-
lation over said graph to derive source ranks; (ii) we
propagate source ranks to the triples they contain using
a simple summation aggregation. We now discuss these
two steps in more detail.

3.3.1. Creating and ranking the source graph
Creating the graph of interlinking Linked Data

sources is non-trivial, in that the notion of a hyperlink
does not directly exist. Thus, we must extract a graph
sympathetic to Linked Data principles and current pub-
lishing patterns.

Recalling the Linked Data principles enumerated in
Section 2.2, according to LDP4, links should be spec-
ified simply by using external URI names in the data.
These URI names should dereference to an RDF de-
scription of themselves according to LDP2 and LDP3 re-
spectively. Let D := (V,E) represent a simple directed
graph where V ⊂ S is a set of sources (vertices), and
E ⊂ S× S is a set of pairs of vertices (edges). Letting
si, sj ∈ V be two vertices, then (si, sj) ∈ E iff si 6= sj
and there exists some u ∈ U such that redirs(u) = sj

9

and u appears in some triple t ∈ get(si): i.e., an edge
extends from si to sj iff the RDF graph returned by si
mentions a URI which redirects to sj .

Now, let E(s) denote the set of direct successors of
s (outlinks), let E∅ denote the set of vertices with no
outlinks (dangling nodes), and let E−(s) denote the set
of direct predecessors of s (inlinks). The PageRank of
a vertex si in the directed graph D := (V,E) is then
given as follows [8]:

r(si) :=
1− d
|V |

+ d
∑
s∅∈E∅

r(s∅)

|V |
+ d

∑
sj∈E−(si)

r(sj)

|E(sj)|

where d is a damping constant (usually set to 0.85)
which helps ensure convergence in the following it-
erative calculation, and where the middle component
splits the ranks of dangling nodes evenly across all other
nodes. Note also that the first and second components
are independent of i, and constitute the minimum pos-
sible rank of all nodes (ensures that ranks do not need
to be normalised during iterative calculation).

Now let w := 1−d
|V | represent the weight of a universal

(weak link) given by all non-dangling nodes to all other
nodes—dangling nodes split their vote evenly and thus
don’t require a weak link; we can use a weighted adja-
cency matrix M as follows to encode the graph D :=
(V,E):

mi,j :=

d

|E(sj)|
+ w, if (sj , si) ∈ E

1

|V |
, if sj ∈ E∅

w, otherwise

where this stochastic matrix can be thought of as a
Markov chain (dubbed the random-surfer model). The
ranks of all sources can be expressed algebraically as
the principal eigenvector of M , which in turn can be es-
timated using the power iteration method up until some
termination criteria (fixed number of iterations, conver-
gence measures, etc.) is reached. We refer the interested
reader to [8] for more detail.

3.3.2. Calculating triple ranks
Based on the rank values for the data sources, we

now calculate the ranks for individual triples. We use a
simple model for ranking triples, based on the intuition
that triples appearing in highly ranked sources should
benefit from that rank, and that each additional source

stating a triple should increase the rank of the triple. 20

Thus, for calculating the rank of a triple t, we use the
summation of the ranks of the sources it appears in as
follows:

r(t) :=
∑

st∈{s∈S|t∈get(s)}

r(st)

4. The logical framework

In this section, we look at incorporating the above
three dimensions of trust and provenance—which we
will herein refer to as annotation properties—into an
annotated logic programming framework which tracks
this information during reasoning, and determines the
annotations of inferences based on the annotations of
the rule and the relevant instances, where the resultant
values of the annotation properties can be viewed as de-
noting the strength of a derivation. We propose and for-
malise a general annotation framework, introduce some
high-level tasks it enables, and discuss issues relating
to scalability in our scenario.

We begin in Section 4.1 by formalising annotation
functions which abstract the mechanisms used for an-
notating facts and rules. In Section 4.2, we propose an
annotated program framework and associated semantics
based on the previous work of Kifer et al. [42] (intro-
duced previously in Section 2.4). In Section 4.3, we in-
troduce some high-level reasoning tasks that this frame-
work enables; in Section 4.4 we look at how each task
scales in the general case, and in Section 4.5 we focus
on the scalability of the task required for our use-case
over our selected annotation properties. In Section 4.6,
we briefly discuss some alternative semantics that one
might consider for our framework. We wrap up in Sec-
tion 4.7 by introducing annotated constraint rules which
allow for detecting and labelling inconsistencies in our
use-case.

4.1. Abstracting annotation functions

The first step towards a formal semantics of annotated
logic programs consists in generalising the annotations
(such as blacklisting, authoritativeness, and ranking) re-
called in the previous sections. The annotation domains

20Note that one could imagine a spamming scheme where a large
number of spurious low-ranked documents repeatedly make the same
assertions to create a set of highly-ranked triples. In future, we may
revise this algorithm to take into account some limiting function
derived from PLD-level analysis.

10

are abstracted by an arbitrary finite set of ordered do-
mains D1, . . . , Dz:
Definition 1 An annotation domain is a Cartesian
product D := ×zi=1Di where each Di is totally or-
dered by a relation ≤i . Each Di has a ≤i-maximal
element >i. Define a partial order ≤ on D as the di-
rect product of the orderings ≤i, that is 〈d1, . . . , dz〉 ≤
〈d′1, . . . , d′z〉 if for all 1 ≤ i ≤ z, di ≤i d′i. When
〈d1, . . . , dz〉 < 〈d′1, . . . , d′z〉 we say that 〈d′1, . . . , d′z〉
dominates 〈d1, . . . , dz〉.

We denote with lub(D′) and glb(D′) respectively the
least upper bound and the greatest lower bound of a
subset D′ ⊆ D.
In the examples introduced so far, based on blacklist-
ing, authoritativeness, and ranking, z = 3 and D1 =
{b,nb} (b=blacklisted, nb=non-blacklisted), D2 =
{na,a} (a=authoritative, na=non-authoritative), D3 =
R. Moreover, b ≤1 nb, na ≤2 a, and x ≤3 y iff x ≤
y.

Now there are several kinds of annotations for the
facts and rules mentioned so far:

(i) Some—like blacklisting—depend on structural
properties of facts (e.g., e-mail addresses set to
empty strings). Such annotations can be modelled
as functions f : Facts→ Di, for some i.

(ii) Some depend only on the source context, like
page ranking; all of the facts in get(s) inherit the
ranking assigned to the source s. Such annotations
can be modelled as functions f : S → Di, for
some i. 21

(iii) Some—like authoritativeness—apply to profile
rules, that are sound (meta)axiomatisations of
OWL 2/RDF-based semantics. In this case, the
quality and reliability of the rules as such is
not questioned. In fact, the ranking applies (in-
directly) to the T-atoms unified with the body
and their semantic consequences (i.e., to specific
rule applications). Accordingly, different rule in-
stances are given different rankings based on the
provenance of the facts unified with the rule body
and the corresponding values of the variables.
Roughly speaking, such annotations can be mod-
elled as f : Rules × S → Di where Rules
typically corresponds to theO2R− ruleset as dis-
cussed in Section 2.6.

The first two kinds of annotation functions can be gen-
eralised by abstract annotation functions

αi : Facts× S→ Di .

21Strictly speaking, ranking also depends also on the interlinkage
occurring between sources; these details are left implicit in our
framework.

We assume that αi(F, s) is defined for all F ∈ get(s).
Furthermore we assume without loss of generality that
for some index z′ (0 ≤ z′ ≤ z), D1, . . . , Dz′ are asso-
ciated to annotation functions of this type.

Annotations of type 3 can be formalised as

αi : Rules× (S→ 2Facts)→ Di .

We assume that such αi are defined over O2R− × get.
Moreover, we assume (without loss of generality) that
Dz′+1, . . . , Dz are associated to annotation functions
of this type.

Now given the annotation functions α1, . . . , αz , the
corresponding annotated program is:

AnnP(O2R−, get) :=
⋃
s∈S

{
F :〈d1, . . . , dz〉 | F ∈ get(s),

di := αi(F, s) (1 ≤ i ≤ z′)
di := >i (z′ < i ≤ z)

}
∪ {

R:〈d1, . . . , dz〉 | R ∈ GroundT (O2R−, get),
di := >i (1 ≤ i ≤ z′)
di := αi(R, get) (z′ < i ≤ z)

}
.

The formal semantics of AnnP(O2R−, get) will be
specified in the next section.

4.2. Annotated program semantics

According to the nature of AnnP(O2R−, get), we
define our annotated programs as follows:
Definition 2 (Programs) A program P is a finite set
of annotated rules

H ← B1, . . . , Bm : d (m ≥ 0)

where H,B1, . . . , Bm are logical atoms and d ∈ D.
When m = 0, a rule is called a fact and denoted by
H:d (omitting the arrow).
In the above definition, we abstract away the details
of rule distribution across multiple sources; provenance
is only reflected in rule annotations. In this section,
we need no a-priori restriction on the set of predicates
(although we may use the RDF ternary predicate in
examples).

Note that our notion of an annotated program is a spe-
cialisation of the generalised annotated programs intro-
duced in Section 2.4, where our notion of an annotated
rule (or fact) comprises of a classical rule (or fact) and
a ground annotation value.

Now we can define the models of our programs. Fol-
lowing the examples introduced in the previous sections,

11

the semantics of an atom A is a set of annotations, cov-
ering the possible ways of deriving A. Roughly speak-
ing, the annotations ofA include the minimum rankings
of the facts and rule used to derive A.
Definition 3 (Interpretations) Let BP be the Her-
brand base of a program P . An interpretation is a map-
ping I : BP → 2D that associates each fact F ∈ BP
with a set of possible annotations.

Given a ground rule R := F ← B1, . . . , Bm : d an
interpretation I satisfies R if for all di ∈ I(Bi) (1 ≤
i ≤ m), glb({d1, . . . ,dm,d}) ∈ I(F).

More generally, I satisfies a (possibly non-ground)
rule R (in symbols, I |= R) iff I satisfies all of the
ground rules in Ground(R). Accordingly, I is a model of
a program P (I |= P) iff for allR ∈ P , I |= R. Finally,
we say that the fact F :d is a logical consequence of P
iff for all interpretation I , I |= P implies I |= F :d.
Example: Consider the following program, where an-
notations come from our use-case domain:

A : 〈b,a, 0.4〉
B : 〈nb,a, 0.7〉
C : 〈nb,a, 0.6〉

A← B,C : 〈nb,na, 1〉

The atom A can be derived directly by the fact
A:〈b,a, 0.4〉 or using the rule A ← B,C:〈nb,na, 1〉
and the facts B:〈nb,a, 0.7〉 and C:〈nb,a, 0.6〉. In
each derivation, the annotation assigned to A gathers—
component by component—the minimal values used
during the derivation. In particular, during the second
derivation, no blacklisted information is used, a non-
authoritative rule is applied, and the rank value never
falls below 0.6. It is easy to see that, according to Defi-
nition 3, bothA:〈b,a, 0.4〉 andA:〈nb,na, 0.6〉 are log-
ical consequences of P . 3

The semantics in Definition 3 enjoys the same good
properties as standard logic programming semantics.
In particular, every given program P has one minimal
model which contains exactly the logical consequences
of P , and can be characterised as the least fixed point
of an immediate consequence operator TP . To see this,
we need a suitable ordering over interpretations:

I � I ′ iff for all F ∈ BP , I(F) ⊆ I ′(F) .

The partial order � induces a complete lattice in the
set of all interpretations. Given a set of interpretations
I the least upper bound tI and the greatest lower
bound uI satisfy tI(F) =

⋃
I∈I I(F) and uI(F) =⋂

I∈I I(F), for all F ∈ BP . The bottom interpretation
∆ maps each F ∈ BP to ∅.

The immediate consequence operator is a mapping
over interpretations such that for all facts F ∈ BP :

TP (I)(F) :=
⋃

F←B1,...,Bm:d∈Ground(P)

{
glb({d1, . . . ,dm,d}) | ∀

1≤i≤m
di ∈ I(Bi)

}
Theorem 1 For all programs P and interpretations I ,

(i) I is a model of P iff TP (I) � I;
(ii) TP is monotone, i.e., I � I ′ implies TP (I) �

TP (I ′).
Proof: (Sketch) Our framework can be regarded as a
special case of the general theory of annotated programs
developed in [42]. In that framework, our rules can be
reformulated as

H:f(X1, . . . , Xm,d)← B1:X1, . . . , Bm:Xm

where each Xi is a variable ranging over 2D and

f(X1, . . . , Xm,d) := (3)

{glb({d1, . . . ,dm,d}) | di ∈ Xi (1 ≤ i ≤ m)} .

The upper semilattice of truth values T [42, Sec. 2]
can be set to the complete lattice 〈2D,⊆,∪,∩〉. Then
our semantics corresponds to the restricted semantics
defined in [42] and our operator TP corresponds to the
operator RP which has been proven to satisfy the two
statements. 2

Corollary 2 For all programs P ,
(i) P has one minimal model that equals the least

fixed point of TP , lfp(TP);
(ii) for all F ∈ BP , d ∈ lfp(TP)(F) iff P |= F :d.

Another standard consequence of Theorem 1 is that
lfp(TP) can be calculated in a bottom-up fashion, start-
ing from the empty interpretation ∆ and applying it-
eratively TP . Define the iterations of TP in the usual
way: TP ↑ 0 := ∆; for all ordinals α, TP ↑ (α+ 1) :=
TP (TP ↑ α); if α is a limit ordinal, let TP ↑ α :=
tβ<αTP ↑ β. Now, it follows from Theorem 1 that
there exists an α such that lfp(TP) = TP ↑ α. To en-
sure that the logical consequences of P can be effec-
tively computed, it should also be proven that α ≤ ω,
which is usually proven by showing that TP is con-
tinuous. In [42, Ex. 3], it is shown that these prop-
erties do not hold for general annotated programs—
even if the program is Datalog (i.e., terms can only
be constants)—because it is possible to infer infinite
sequences F :d1, F :d2, . . . , F :di, . . . such that the se-
quence of labels d1,d2, . . . converges to a limit d∞,
but F :d∞ 6∈ RP ↑ ω. We demonstrate this now by
adapting Example 3 from [42].

12

Example: Consider a simple generalised annotated
program P , with truth values T in the interval [0, 1] of
real numbers, and three rules as follows:

A:0←
A: 1+α

2 ← A:α

B:1← A:1

By the restricted semantics of generalised annotated
programs, A:1 ∈ RP ↑ ω. However, since the third rule
is discontinuous, B:1 /∈ RP ↑ ω and so we see that
RP ↑ ω 6= lfp(RP); note that B:1 ∈ RP ↑ (ω + 1). 3

Then, in order to prove that our TP is continuous, we
have to rely on the specific properties of the function
f(.) defined in (3).
Lemma 3 Let D be a z-dimensional annotation do-
main, P a program and F a fact. The number of pos-
sible annotations d such that P |= F :d is bounded by
|P |z , where |P | is the cardinality of P .
Proof: Let DP

i , for 1 ≤ i ≤ z, be the set of all
values occurring as the i-th component in some an-
notation in P and DP := ×zi=1D

P
i . Clearly, for all

i = 1, . . . , z, |DP
i | ≤ |P |, therefore the cardinality of

DP is at most |P |z . We are only left to show that the
annotations occurring in TP ↑ α are all members of
DP . Note that if {d1, . . . ,dm,d} ⊆ DP , then also
glb{d1, . . . ,dm,d} ∈ DP . Then, by a straightforward
induction on α, it follows that for all α, if F :d ∈ TP ↑
α, then d ∈ DP . 2

In other words, since the glb function cannot intro-
duce new elements from the component sets of the an-
notation domain, the application of TP can only create
labels from the set of tuples which are combinations of
existing domain elements in P ; thus the set of all labels
is bounded by |P |z .

Next, in order to demonstrate that TP is continuous
we must introduce the notion of a chain of interpre-
tations: a sequence {Iβ}β≤α such that for all β < γ,
Iβ � Iγ .
Theorem 4 For all programs P , TP is continuous: that
is, for all chains I := {Iβ}β≤α, TP (tI) = t{TP (I) |
I ∈ I}.
Proof: The ⊇ inclusion is trivial. For the ⊆ inclusion,
assume that d ∈ TP (tI)(F). By definition, there exists
a rule F ← B1, . . . , Bm : d′ in Ground(P) and some
d1, . . . ,dm such that d = glb(d′,d1, . . . ,dm) and for
all 1 ≤ j ≤ m, dj ∈ tI(F). Therefore, for all 1 ≤
j ≤ m there exists a βj ≤ α such that dj ∈ Iβj

. Let
β be the maximum value of d1, . . . ,dm; since I is a
chain, dj ∈ Iβ(F), for all 1 ≤ j ≤ m. Therefore, d is
in TP (Iβ)(F) and hence in t{TP (I) | I ∈ I}(F). 2

Corollary 5 The interpretation TP ↑ ω is the least
fixed point of TP , lfp(TP), and hence it is the minimal
model of P .
The logical consequences of our programs satisfy an-
other important property.
Lemma 6 A factF : d is a ground logical consequence
of P iff for some (finite) i < ω, d ∈ TP ↑ i(F).
Proof: Due to corollaries 2 and 5, P |= F :d iff d ∈
TP ↑ ω(F). By definition, TP ↑ ω(F) =

⋃
i<ω TP ↑

i(F), therefore P |= F :d iff for some finite i < ω,
d ∈ TP ↑ i(F). 2

In the jargon of classical logic, this means that our
framework is finitary. As an immediate consequence of
this lemma, the logical consequences of P are semide-
cidable. Note that for generalised annotated programs,
even if RP is continuous, it may not be finitary.
Example: Consider the previous example (as borrowed
from [42, Ex. 3]), but drop the last (discontinuous) rule:

A:0←
A: 1+α

2 ← A:α

This program is continuous with respect to the re-
stricted semantics of general annotated programs, there-
fore RP ↑ ω = lfp(RP). However, although A:1 ∈
RP ↑ ω, it is not finitary because for all i < ω, A:1 6∈
RP ↑ i. 3

Moreover, if P is Datalog, then the least fixed point of
TP is reached after a finite number of iterations:
Lemma 7 If P is Datalog, then there exists i < ω such
that lfp(TP) = TP ↑ i.
Proof: Due to corollary 2 and Lemma 3, for each F ∈
BP , the set lfp(TP)(F) is finite. Moreover, when P is
Datalog, the Herbrand base BP is finite as well. Thus,
the thesis immediately follows from the monotonicity
of TP . 2

It follows that the least model of P—denoted lm(P)—
can be finitely represented, and that the logical conse-
quences of P are decidable.

4.3. Annotated reasoning tasks

Once the semantics of annotated programs has been
defined, it is possible to consider several types of high-
level reasoning tasks which, roughly speaking, refine
the set of ground logical consequences according to
optimality and threshold conditions.
Plain: Returns all of the ground logical consequences

of P . Formally:

plain(P) := {F :d | F ∈ BP and P |= F :d} .

13

Optimal: Only the non-dominated elements of
plain(P) are returned. Intuitively, an answer—say,
F :〈nb,nb, 0.5〉—can be ignored if a stronger evi-
dence can be derived; for example F :〈nb,a, 0.6〉.
Formally, for all sets S of annotated rules and facts,
let:

max(S) := {R:d ∈ S | for all R:d′ ∈ S, d 6< d′}

and define opt(P) := max(plain(P)).
Above Threshold (Optimal): Refines opt(P) by se-

lecting the consequences that are above a given
threshold. Formally, given a threshold vector t ∈ D,
for all sets S of annotated rules and facts let

S≥t := {R:d ∈ S | t ≤ d}

and define optt(P) := opt(P)≥t.
Above Threshold (Classical): Returns the ground

atoms that have some annotation above a given
threshold t. Annotations are not included in the
answer. Formally, define:

abovet(P) := {F ∈ BP | ∃d ≥ t s.t. P |= F :d} .

All tasks except plain, make it possible to optimise the
input program by dropping some rules that do not con-
tribute to the answers. For example, opt(P) does not
depend on the dominated elements of P , which can thus
be discarded:
Theorem 8 opt(P) = opt(max(P)).
Proof: Clearly, max(P) ⊆ P and both max
and plain are monotonic wrt. set inclusion. There-
fore, plain(max(P)) is contained in plain(P) and
max(plain(max(P))) is contained in max(plain(P)),
i.e., opt(max(P)) ⊆ opt(P).

For the opposite inclusion, we first prove by induction
on natural numbers that for all i ≥ 0 and F ∈ BP , if
d ∈ TP ↑ i(F), then there exists an annotation d′ ≥ d
such that d′ ∈ Tmax(P) ↑ i(F).

The assertion is vacuously true for i = 0. Assume
that d ∈ TP ↑ (i + 1)(F), with i ≥ 0, we have that
for some rule F ← B1, . . . , Bm : d in Ground(P) and
some d1, . . . ,dm:

d = glb({d1, . . . ,dm,d})

and for all 1 ≤ j ≤ m, dj ∈ TP ↑ i(Bj). By definition
of max(P), there exists a F ← B1, . . . , Bm : d̂ in
Ground(max(P)) with d̂ ≥ d. Moreover, by induction
hypothesis, for all 1 ≤ j ≤ m, there exists a d′j ≥
dj such that d′j ∈ Tmax(P) ↑ i(Bj). Thus if we set
d′ := glb({d′1, . . . ,d′m, d̂}), we have d′ ≥ d and d′ ∈
Tmax(P) ↑ (i+ 1)(F).

Now assume that F :d ∈ opt(P). In particular F :d is
a logical consequence of P : therefore, by Lemma 6 and

the previous statement, we have that there exists an an-
notation F :d′ ∈ plain(max(P)) with d ≤ d′. However,
since opt(max(P)) ⊆ opt(P), plain(max(P)) cannot
contain facts that improve F :d, therefore d′ = d and
F :d ∈ opt(max(P)). 2

Similarly, if a minimal threshold is specified, then the
program can be filtered by dropping all of the rules that
are not above threshold:
Theorem 9 optt(P) = opt(P≥t).
Proof: Since by definition we know that
optt(P) = max(plain(P))≥t and max(plain(P))≥t =
max(plain(P)≥t), it suffices to show that plain(P)≥t =
plain(P≥t). By Lemma 6, F :d ∈ plain(P)≥t implies
that for some i, d ∈ TP ↑ i(F) and d ≥ t. Analo-
gously to Theorem 8, it can be proven by induction on
natural numbers that for all i ≥ 0 and F ∈ BP , if d ∈
TP ↑ i(F) and d ≥ t, then d ∈ TP≥t

↑ i(F). There-
fore, d ∈ TP≥t

↑ i(F) and hence F :d ∈ plain(P≥t).
Again it is easy to prove by induction that if F :d ∈

plain(P≥t), then d ≥ t. Thus, since plain is mono-
tone wrt. set inclusion and P≥t ⊆ P , plain(P≥t) ⊆
plain(P). But plain(P≥t) contains only annotations that
dominate t, hence plain(P≥t) ⊆ plain(P)≥t. 2

4.4. Scalability issues: general case

We see that some of the reasoning tasks outlined
above are amenable to straightforward optimisations
which allow for pruning dominated facts and rules.
However, in our application domain programs contain
typically v109 facts coming from millions of RDF
sources [36,38]. With programs of this size, it is neces-
sary to carefully take into account the number of facts a
task has to manipulate. In general a polynomial bound
with respect to the cardinality of P is not a sufficient ev-
idence of feasibility; even a quadratic exponent may be
too high. Accordingly—and as discussed in Section 2—
the OWL 2 RL/RDF ruleset has been restricted to the
O2R− fragment where the number of logical conse-
quences of a program grows linearly with the number
of assertional facts [32]. In order to achieve the same
bound for our reasoning tasks over the same fragment of
OWL 2, for each F ∈ BP , the number of derived con-
sequences F :d should be constant wrt. the cardinality
of P (equivalently, the number of different annotations
associated to each proper rule or fact should be con-
stant wrt. |P |). In this section, we now give a detailed
assessment of the four reasoning tasks with respect to
this requirement.

From Lemma 3, we know that the cardinality of

14

plain(P) is bounded by |P |z; we now use an example
to demonstrate that this bound is tight.
Example: Consider a z-dimensional D where each
component i may assume an integer value from 1 to n.
Let P be the following propositional program consist-
ing of all rules of the following form:

A1 : 〈m1, n, . . . , n〉 (1 ≤ m1 ≤ n)

Ai ← Ai−1 : 〈n, . . . ,mi, . . . , n〉 (1 ≤ mi ≤ n)

. . . (2 ≤ i ≤ z)

where, intuitively,mi assigns all possible values to each
component i. Now, there are n facts which have every
possible value for the first annotation component and the
value n for all other components. Thereafter, for each
of the remaining z − 1 annotation components, there
are n annotated rules which have every possible value
for the given annotation component, and the value n
for all other components. Altogether, the cardinality of
P is nz. The set of annotations that can be derived for
Az is exactly D, therefore its cardinality is nz which
grows as Θ(|P |z). When z ≥ 2, the number of labels
associated to Az alone exceeds the desired linear bound
on materialisations.

To illustrate this, let’s instantiate P for n = 2 and
z = 3:

A1 : 〈1, 2, 2〉 , A1 : 〈2, 2, 2〉 ,
A2 ← A1 : 〈2, 1, 2〉 , A2 ← A1 : 〈2, 2, 2〉 ,
A3 ← A2 : 〈2, 2, 1〉 , A3 ← A2 : 〈2, 2, 2〉 .

Here, |P | = 2 ∗ 3 = 6. By plain(P), we will get:

A1 : 〈1, 2, 2〉 , A1 : 〈2, 2, 2〉 ,
A2 : 〈1, 1, 2〉 , A2 : 〈1, 2, 2〉 , A2 : 〈2, 1, 2〉 , A2 : 〈2, 2, 2〉 ,
A3 : 〈1, 1, 1〉 , A3 : 〈1, 1, 2〉 , A3 : 〈1, 2, 1〉 , A3 : 〈1, 2, 2〉 ,
A3 : 〈2, 1, 1〉 , A3 : 〈2, 1, 2〉 , A3 : 〈2, 2, 1〉 , A3 : 〈2, 2, 2〉 .

Where A3 is associated with 23 = 8 annotations. 3

Such examples naturally preclude the reasoning task
plain(.) for our scenario, making opt(.) a potentially
appealing alternative. Unfortunately, even if Theorem 8
enables some optimisation, in general opt(P) is itself
not linear wrt. |P |. This can be seen with a simple
example which uses RDF rules and two rational-valued
annotation properties:
Example: Consider a program containing all facts and
rules of the form:

(ex:Foo, ex:spam, ex:Bar) : 〈k, 1
k 〉

. . .
(?x, rdf: k, ?y)← (?y, ex:spam, ?x) : 〈n, n〉

. . .

such that n is a (constant) positive integer and 1 ≤ k ≤

n. By increasing n, P grows as Θ(2n), whereas (as per
the previous example) |plain(P)| grows as Θ(n2), with
n facts of the form (ex:Foo, ex:spam k, ex:Bar) being
associated with n annotations of the form 〈k, 1

k 〉—thus,
|plain(P)| grows quadratically with |P |. Now, for all
such consequences relative to the same fact F :〈h, 1

h 〉
and F :〈j, 1

j 〉, if h < j, then 1
j < 1

h and vice versa.
This implies that all of the derived consequences are
optimal—that is, plain(P) = opt(P). Consequently,
|opt(P)| grows quadratically with |P |, too.

To illustrate this, let’s instantiate P for n = 3:

(ex:Foo, ex:spam, ex:Bar) : 〈1, 1〉 ,
(ex:Foo, ex:spam, ex:Bar) : 〈2, 1

2 〉 ,
(ex:Foo, ex:spam, ex:Bar) : 〈3, 1

3 〉 ,
(?x, rdf: 1, ?y)← (?y, ex:spam, ?x) : 〈3, 3〉 ,
(?x, rdf: 2, ?y)← (?y, ex:spam, ?x) : 〈3, 3〉 ,
(?x, rdf: 3, ?y)← (?y, ex:spam, ?x) : 〈3, 3〉 .

Here, |P | = 23 = 6. Now, opt(P)—or, equivalently,
plain(P)—will give 32 = 9 annotated facts of the form:

(ex:Bar, rdf: k, ex:Foo) : 〈1, 1〉 ,

(ex:Bar, rdf: k, ex:Foo) : 〈2, 1
2 〉 ,

(
1 ≤ k ≤ 3

)
(ex:Bar, rdf: k, ex:Foo) : 〈3, 1

3 〉 .

Here, all 9 facts are considered optimal (again, we do
not assume a lexicographical order). 3

In the above example, the annotations associated to each
atom grow linearly with |P |. We can generalise this
result and prove that the annotations of a given atom
may grow as |P | z2 by slightly modifying the example
for plain materialisation.
Example: Assume that the dimension z is even, and
that a component may assume any value from the set of
rationals in the interval [0, n]; now, consider the program
P containing all such facts and rules:

A1 :〈r1, 1
r1
, n . . . , n〉 (1 ≤ r1 ≤ n)

Ai←Ai−1 :〈n, . . . , n, r2i−1,
1

r2i−1
, n, . . . , n〉 (1≤r2i−1 ≤ n)

. . . (2 ≤ i ≤ z
2

)

where r2i−1 assigns the (2i− 1)th (odd) component all
possible values between 1 and n inclusive, and 1

r2i−1
as-

signs the 2ith (even) component all possible values be-
tween 1 and 1

n inclusive. Note that the cardinality of P
is nz

2 , containing n facts and n(z−2)
2 proper rules. Now,

given two consequences A:d1, A:d2 ∈ plain(P) shar-
ing the same atom A, there exist two distinct integers
j, k ≤ n, j 6= k and a pair of contiguous components
i, i + 1 ≤ z such that d1 = 〈. . . , j, 1

j , . . .〉 and d2 =

〈. . . , k, 1
k , . . .〉. Therefore, all of the facts in plain(P)

are optimal, and the number of annotations for A z
2

is

15

n
z
2 .
To illustrate this, let’s instantiate P for n = 2 and

z = 6:
A1 : 〈1, 1, 2, 2, 2, 2〉 , A1 : 〈2, 1

2
, 2, 2, 2, 2〉 ,

A2 ← A1 : 〈2, 2, 1, 1, 2, 2〉 , A2 ← A1 : 〈2, 2, 2, 1
2
, 2, 2〉 ,

A3 ← A2 : 〈2, 2, 2, 2, 1, 1〉 , A3 ← A2 : 〈2, 2, 2, 2, 2, 1
2
〉 .

Here, |P | = 2×6
2 = 6. By opt(P)—or, equivalently, by

plain(P)—we will get:
A1 : 〈1, 1, 2, 2, 2, 2〉 , A1 : 〈2, 1

2
, 2, 2, 2, 2〉 ,

A2 : 〈1, 1, 1, 1, 2, 2〉 , A2 : 〈1, 1, 2, 1
2
, 2, 2〉 ,

A2 : 〈2, 1
2
, 1, 1, 2, 2〉 , A2 : 〈2, 1

2
, 2, 1

2
, 2, 2〉 ,

A3 : 〈1, 1, 1, 1, 1, 1〉 , A3 : 〈1, 1, 1, 1, 2, 1
2
〉 ,

A3 : 〈1, 1, 2, 1
2
, 1, 1〉 , A3 : 〈1, 1, 2, 1

2
, 2, 1

2
〉 ,

A3 : 〈2, 1
2
, 1, 1, 1, 1〉 , A3 : 〈2, 1

2
, 1, 1, 2, 1

2
〉 ,

A3 : 〈2, 1
2
, 2, 1

2
, 1, 1〉 , A3 : 〈2, 1

2
, 2, 1

2
, 2, 1

2
〉 .

Here,A3 is associated with 2
6
2 = 8 optimal annotations.

It is not hard to adapt this example to odd z and
prove that for all z ∈ N, the number of annotations
associated to an atom is in Θ(|P |b z2 c). Therefore, if
the number of distinct atoms occurring in the answer
can grow linearly (as in the aforementioned fragment
O2R−), then |opt(P)| is in Θ(|P |b z2 c+1) and hence not
linear for z > 1. 3

If we further restrict our computations to the con-
sequences above a given threshold (i.e., optt(.)), then
some improvements may be possible (cf. Theorem 9).
However it is clear that the worst case complexity of
optt(.) and opt(.) is the same (it suffices to set t to the
least element of D). Thus, neither optt(.) nor opt(.) are
suitable for our use-case scenario in the general case.

The last reasoning task, abovet(P), returns atoms
without annotations, and hence it is less informative
than the other tasks. However, it does not suffer from
the performance drawbacks of the other tasks: abovet(.)
does not increase the complexity of annotation-free rea-
soning because it only needs to drop the rules whose
annotation is not above t and reason classically with the
remaining rules, as formalised by the following propo-
sition:
Theorem 10 Let lm(P t) denote the least Herbrand
model of the (classical) programP t. Then abovet(P) =
lm(P≥t) .
Proof: Let C be the classical immediate consequence
operator as per Section 2.3 and define CP≥t

↑ α by
analogy with TP≥t

↑ α. It is straightforward to see
by induction on natural numbers that for all i ≥ 0,
TP≥t

↑ i(F) 6= ∅ iff F ∈ CP≥t
↑ i. This means that

F ∈ lm(P≥t) iff TP≥t
↑ ω(F) 6= ∅, or equivalently,

iff for some d, F :d ∈ plain(P≥t). Moreover, as al-

ready shown in the proof of Theorem 9, plain(P≥t) =
plain(P)≥t, therefore F :d ∈ plain(P)≥t (for some d)
iff F ∈ abovet(P). 2

4.5. Scalability issues: opt and optt for our use-case

The analysis carried out so far apparently suggests
that abovet is the only practically feasible inference
among the four tasks. However, the output facts are
not associated with annotations in this scheme, which
may be required for many use-cases scenarios (includ-
ing our use-case for repairing inconsistencies investi-
gated later).

Although we have shown that opt and optt are poly-
nomial in the general case, our chosen Linked Data
annotation domain—comprising of blacklisting, triple-
rank and authoritativeness—enjoys certain properties
that can be exploited to efficiently implement both opt
and optt. Such properties bound the number of maxi-
mal labels with an expression that is constant with re-
spect to P and depends only on the annotation domains:
the most important property is that all Dis but one are
finite (blacklisting and authoritativeness are boolean;
only triple-ranks range over an infinite set of values).
Thus, the number of maximal elements of any finite set
of annotations is bounded by a linear function of D.
Example: Here we see an example of a fact with four
non-dominated annotations from our use-case domain.

(ex:Foo, ex:precedes, ex:Bar) : 〈b,na, 0.4〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈b,a, 0.3〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈nb,na, 0.3〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈nb,a, 0.2〉 .

Any additional annotation for this fact would either
dominate or be dominated by a current annotation—in
either case, the set of maximal annotations would main-
tain a cardinality of four. 3

We now formalise and demonstrate this intuitive result.
For simplicity, we assume without further loss of gen-
erality that the finite domains are D1, . . . , Dz−1; we
make no assumption on Dz . 22

First, with a little abuse of notation, given D′ ⊆ D,
max(D′) is the set the of maximal values of D′, i.e.,
{d ∈ D′ | ∀d′ ∈ D′, d 6< d′}.
Theorem 11 If D1, . . . , Dz−1 are finite, then for all
finite D′ ⊆ D, |max(D′)| ≤ Πz−1

1 |Di| .

22Note that for convenience, this indexing of the (in)finite domains
replaces the former indexing presented in Section 4.2 relating to how
annotations are labelled—the two should be considered independent.

16

Proof: Clearly, there exist at most Πz−1
1 |Di| combi-

nations of the first z − 1 components. Therefore, if
|max(D′)| was greater than Πz−1

1 |Di|, there would be
two annotations d1 and d2 in max(D′) that differ only
in the last component. But in this case either d1 > d2

or d1 < d2, and hence they cannot be both in max(D′)
(a contradiction). 2

As a consequence, in our reference scenario (where z =
3 and |D1| = |D2| = 2) each atom can be associated
with at most 4 different annotations. Therefore, if the
rules of P belong to a linear fragment of OWL 2, then
opt(P) grows linearly with the size of P .

However, a linear bound on the output of reasoning
tasks does not imply the same bound on the intermedi-
ate steps (e.g., the alternative framework introduced in
the next subsection needs to compute also non-maximal
labels for a correct answer). Fortunately, a bottom-up
computation that considers only maximal annotations
is possible in this framework. Let Tmax

P (I) be such that
for all F ∈ BP :

Tmax
P (I)(F) := max(TP (I)(F))

and define its powers Tmax
P ↑ α by analogy with TP ↑

α.
Lemma 12 For all ordinals α, Tmax

P ↑ α = max(TP ↑
α).
Proof: First we prove the following claim:

max(TP (max(I))) = max(TP (I)) .

The inclusion ⊆ is trivial. For the other inclusion, as-
sume that for some F ∈ BP , d ∈ max(TP (I)(F)), this
means that d ∈ TP (I)(F) and for all d′ ∈ TP (I)(F),
d 6< d′. As d ∈ TP (I)(F), there exists a rule F ←
B1, . . . , Bm : d and some annotations d1, . . . ,dm such
that (i) d = glb({d1,dm,d}) and (ii) for all 1 ≤ j ≤
m, dj ∈ I(Bj).

By definition, for all 1 ≤ j ≤ m, there exists a
dmax
j ∈ max(I) such that dj ≤ dmax

j . Clearly, given

dmax = glb({dmax
1 , . . . ,dmax

m ,d}) ,

d ≤ dmax and dmax ∈ TP (max(I)). How-
ever, since d is maximal wrt. TP (I)(F) and
TP (max(I))(F) ⊆ TP (I)(F), then d ≤ dmax and
d ∈ max(TP (max(I))). This proves the claim.

Now the lemma follows by an easy induction based
on the claim. 2

It follows from Lemma 12 that Tmax
P reaches a fixpoint,

although Tmax
P is not monotonic (because annotations

may be only temporarily optimal and be replaced at
later steps). When P is Datalog this fixpoint is reached
in a finite number of steps:

Theorem 13 If P is Datalog, then there exists i < ω
such that

(i) Tmax
P ↑ i is a fixpoint of Tmax

P ;
(ii) Tmax

P ↑ j is not a fixpoint of Tmax
P , for all 0 ≤

j < i;
(iii) F :d ∈ opt(P) iff d ∈ Tmax

P ↑ i(F).
Proof: If P is Datalog, by Lemma 7, for some k < ω,
TP ↑ k = lfp(TP), we will show that Tmax

P ↑ k is a
fixpoint as well. By definition

Tmax
P (Tmax

P ↑ k) = max(TP (Tmax
P ↑ k)) ,

by Lemma 12, Tmax
P ↑ k = max(TP ↑ k), so we have

Tmax
P (Tmax

P ↑ k) = max(TP (max(TP ↑ k))) .

However, as already shown in the proof of Lemma 12,
for any I , max(TP (max(I))) = max(TP (I)). There-
fore,

Tmax
P (Tmax

P ↑ k) = max(TP (TP ↑ k)) .

Finally, since TP ↑ k is a fixpoint and reusing Lemma
12

Tmax
P (Tmax

P ↑ k) = max(TP ↑ k) = Tmax
P ↑ k .

Thus, Tmax
P ↑ k is a fixpoint and hence, by finite re-

gression, there exists an 0 ≤ i ≤ k such that Tmax
P ↑ i

is a fixpoint and for all 0 ≤ j < i, Tmax
P ↑ j is not a

fixpoint.
Clearly, Tmax

P ↑ k = Tmax
P ↑ i. Since Tmax

P ↑ k =
max(TP ↑ k) (Lemma 12), we finally have

Tmax
P ↑ i = max(lfp(TP)) .

Therefore, d ∈ Tmax
P ↑ i iff F :d ∈ max(plain(P)) =

opt(P). 2

Theorem 11 ensures that at every step j, Tmax
P ↑ j

associates each derived atom to a number of annotations
that is constant with respect to |P |. By Theorem 9, the
bottom-up construction based on Tmax

P can be used also
to compute optt(P) = opt(P≥t). Informally speaking,
this means that if D1, . . . , Dz−1 are finite, then both
opt(.) and optt(.) are feasible.

Another useful property of our reference scenarios
is that the focus is on non-blacklisted and authoritative
consequences—that is, the threshold t in optt(.) has
z− 1 components set to their maximum possible value.
In this case, it turns out that each atom can be associated
to one optimal annotation.
Example: Given our threshold t := 〈nb,a, 0〉 and the
following triples:

17

(ex:Foo, ex:precedes, ex:Bar) : 〈b,na, 0.4〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈b,a, 0.3〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈nb,na, 0.3〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈nb,a, 0.2〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈nb,a, 0.6〉 ,

we see that only the latter two triples are above the
threshold, and only the last is optimal. Similarly, any ad-
ditional annotation for this triple will either (i) be below
the threshold, (ii) be optimal, or (iii) be dominated. In
any case, a maximum of one annotation is maintained,
which is non-blacklisted, authoritative, and contains the
optimal rank value. 3

We now briefly formalise this result. For the sake of
simplicity, we assume without loss of generality that the
threshold elements set to the maximum value are the
first z − 1.
Theorem 14 Let t := 〈t1, . . . , tz〉. If ti = >i for 1 ≤
i < z, then for all D′ ⊆ D, |max(D′≥t)| ≤ 1.
Proof: If not empty, all of the annotations in D′≥t are
of type 〈>1, . . . ,>z−1, dz〉, thus max selects the one
with the maximal value of dz . 2

As a consequence, each atom occurring in optt(P) is
associated to one annotation, and the same holds for the
intermediate steps Tmax

P≥t
↑ j of the iterative construction

of optt(P):
Theorem 15 Assume that P is Datalog and the as-
sumption of Theorem 14 holds. Let i be the least index
such that Tmax

P≥t
↑ i is a fixpoint of Tmax

P≥t
. Then

(i) if {F :d1, F :d2} ⊆ optt(P), then d1 = d2;
(ii) if {d1,d2} ⊆ Tmax

P≥t
↑ j(F) (0 ≤ j ≤ i), then

d1 = d2.
Proof: We prove both the assertions by showing that
for all j ≥ 0 if {d1,d2} ⊆ Tmax

P≥t
↑ j(F) (0 ≤ j ≤ i),

then d1 = d2.
For j = 0, the assertion is vacuously true. For j >

0, Tmax
P≥t
↑ j(F) = max(TP≥t

(Tmax
P≥t
↑ (j − 1))(F)),

therefore both d1 and d2 are maximal (d1 6< d2 and
d1 6> d2). But d1 and d2 differ only for the last com-
ponent z, and since≤z is a total order, then d1 = d2. 2

The experiments reported in the rest of the paper belong
to this case: formally, the threshold t is 〈nb,a, 0〉 =
〈>1,>2,⊥3〉. Accordingly, the implementation main-
tains a single annotation for each derived atom, where
rules and facts below the threshold can be pruned as
part of a straightforward pre-processing step.

4.6. Alternative approaches

As a side note, the discussion above shows that scal-
ability problems may arise in the general case from the
existence of a polynomial number of maximal annota-
tions for the same atom. Then it may be tempting to
force a total order on annotations and keep for each
atom only its (unique) best annotation, in the attempt
to obtain a complexity similar to above-threshold rea-
soning. In our reference scenario, for example, it might
make sense to order annotation triples lexicographically,
thereby giving maximal importance to blacklisting (i.e.
information correctness), medium importance to author-
itativeness, and minimal importance to page ranking, so
that—for example—〈nb,na, 0.9〉 ≤ 〈nb,a, 0.8〉. Then
interpretations could be restricted by forcing I(F) to be
always a singleton, containing the unique maximal an-
notation for F according to the lexicographic ordering.

Unfortunately, this idea does not work well together
with the standard notion of rule satisfaction introduced
before. In general, in order to infer the correct maximal
annotation associated to an atom A it may be necessary
to keep some non-maximal annotation, too (therefore
the analogue of Lemma 12 does not hold in this setting).
We illustrate the problem with a simple example.
Example: Consider for example the program:

H ← B : 〈nb,na, 1.0〉
B : 〈nb,na, 0.9〉
B : 〈nb,a, 0.8〉 .

The best proof of H makes use of the first two
rules/facts of the program, and gives H the anno-
tation 〈nb,na, 0.9〉, as none of these rules/facts are
blacklisted or authoritative, and the least page rank is
0.9. However, if we could associate each atom to its
best annotation only, then B would be associated to
〈nb,a, 0.8〉, and the corresponding label for H would
only be forced to be 〈nb,na, 0.8〉 by the definition of
rule satisfaction; therefore this semantics (in conjunc-
tion with lexicographic orderings) does not faithfully
reflect the properties of the best proof of H . 3

One may consider a further alternative semantics
whereby each dimension of the annotation domain is
tracked independently of each other. However, with
these semantics, if, for example, we find an inference
which is associated with the ranks 0.2 and 0.8, and
the blacklisted values nb and b, we cannot distin-
guish whether the high rank was given by the deriva-
tion involving blacklisted knowledge, or non-blacklisted
knowledge—in the general case, this would also pre-

18

scribe a more liberal semantics for our thresholding. 23

Currently we do not know whether any other alter-
native, reasonable semantics can solve these problems,
and we leave this issue as an open question—in any
case, we note that this discussion does not affect our in-
tended use-case of deriving optt(P) for our threshold
since, as per Theorem 15, we need only consider the
total ordering given by the single dimension of triple
ranks.

4.7. Constraints

In this paper, our referential use-case for annotated
reasoning is a non-trivial repair of inconsistencies in
Linked Data based on the strength of derivation for indi-
vidual facts (as encoded by the annotations with which
they are associated). Given that we apply rule-based rea-
soning, inconsistencies are axiomatised by constraints,
which are expressed as rules without heads:

← A1, . . . , An, T1, . . . , Tm (n,m ≥ 0) (4)

where T1, . . . , Tm are T-atoms and A1, . . . , An
are A-atoms. As before, let Body(R) :=
{A1, . . . , An, T1, . . . , Tm} and let TBody(R) :=
{T1, . . . , Tm}.
Example: Take the OWL 2 RL/RDF (meta-)constraint
cax-dw:
← (?c1, owl:disjointWith, ?c2), (?x, a, ?c1), (?x, a, ?c2)

where TBody(cax-dw) is again underlined (T1). Any
grounding of this rule denotes an inconsistency. 3

Classical semantics prescribes that a Herbrand model
I satisfies a constraint C iff I satisfies no instance of
Body(C). Consequently, if P is a logic program with
constraints, either the least model of P ’s rules satisfies
all constraints in P or P is inconsistent (in this case, no
reasoning can be carried out with P).

Annotations create an opportunity for a more flexible
and reasonable use of constraints. Threshold-based rea-
soning tasks can be used to ignore the consequences of
constraint violations based on low-quality or otherwise
unreliable proofs. In the following, let P := P r ∪ P c,
where P r is a set of rules and P c a set of constraints.
Definition 4 Let t ∈ D. P is t-consistent iff
abovet(P

r) satisfies all of the constraints of P c .

23Given that we do not consider a lexicographical order, we could
support these semantics by flattening the set of annotation triples
associated with each rule/fact into a triple of sets of values, where
to support the various reasoning tasks outlined (other than plain),
we would have to make straightforward amendments to our max,
opt, optt and abovet functions.

For example, if t := 〈nb,a, 0〉 and P is t-consistent,
then for all constraints C ∈ P c all of the proofs
of Body(C) use either blacklisted facts or non-
authoritative rules. In other words, all inconsistencies
are the consequence of ill-formed knowledge and/or on-
tology hijacking. For example—and as we will see in
more detail in our empirical analysis (Section 8)—we
find that our Web corpus is consistent for the threshold
〈nb,a, 0.001616〉.

This form of consistency can be equivalently charac-
terised in terms of the other threshold-dependent rea-
soning task (optt). For all sets of annotated rules and
facts S, let [S] := {R | R : d ∈ S}. Then we have:
Proposition 16 P is t-consistent iff [optt(P

r)] satis-
fies all of the constraints in P c.

More generally, the following definitions can be
adopted for measuring the strength of constraint viola-
tions:
Definition 5 (Answers) Let G := {A1, . . . , An} be a
set of atoms and let P := P r ∪ P c. An answer for
G (from P) is a pair 〈θ,d〉 where θ is a grounding
substitution and

(i) there exist d1, . . . ,dn ∈ D such that P r |=
Aiθ:di ,

(ii) d = glb{d1, . . . ,dn} .
The set of all answers of G from P is denoted by
AnsP (G).
Definition 6 (Annotated constraints, violation degree)
Annotated constraints are expressions C:d where C
is a constraint and d ∈ D. 24 The violation degree
of C:d wrt. program P is max{glb(d,d′) | 〈θ,d′〉 ∈
AnsP (Body(C))}.
Intuitively, violation degrees provide a way of assessing
the severity of inconsistencies by associating each con-
straint with the rankings of their strongest violations.
Example: As per the previous example, take the OWL
2 RL/RDF (meta-)constraint cax-dw : 〈>1,>2,>3〉,
and consider the following set of annotated facts:

(foaf:Organization, owl:disjointWith,
foaf:Person): 〈nb,a, 0.6〉 ,

(ex:W3C, a, foaf:Organization): 〈nb,a, 0.4〉 ,
(ex:W3C, a, foaf:Person): 〈nb,na, 0.3〉 ,

(ex:TimBL, a, foaf:Organization): 〈b,na, 0.5〉 ,
(ex:TimBL, a, foaf:Person): 〈nb,a, 0.7〉 ,

There are four answers to the constraint, given by the
above facts; viz.:

24Constraint annotations are produced by abstract annotation func-
tions of type 3 (αi : Rules × (S → 2Facts) → Di), that apply to
constraints with no modification to their signature (assuming that
the set Rules comprises of constraints as well).

19

(
{?x/ex:W., ?c1/foaf:P., ?c2/foaf:O.} , 〈nb,na, 0.3〉

)
,(

{?x/ex:W., ?c1/foaf:O., ?c2/foaf:P.} , 〈nb,na, 0.3〉
)
,(

{?x/ex:T., ?c1/foaf:P., ?c2/foaf:O.} , 〈b,na, 0.5〉
)
,(

{?x/ex:T., ?c1/foaf:O., ?c2/foaf:P.} , 〈b,na, 0.5〉
)
,

here abbreviating the respective CURIEs. Note that the
first two and last two answers are given by the same
sets of facts. Again, the annotations of the answers are
derived from the glb function over the respective facts.

The violation degree of cax-dw is then
{〈nb,na, 0.3〉, 〈b,na, 0.5〉} since neither annotation
dominates the other. 3

The computation of violation degrees can be reduced
to opt by means of a simple program transformation.
Suppose that P c := {C1:d1, . . . , Cm:dm}. Introduce a
fresh propositional symbol fi for each Ci and let

P ′ := P r ∪ {fi ← Body(Ci) : di | i = 1, . . . ,m}.
Proposition 17 An annotation d belongs to the viola-
tion degree of Ci:di iff fi:d ∈ opt(P ′).

Of course, violation degrees and thresholds can be
combined by picking up only those annotations that are
above threshold. This can be done by selecting all d
such that fi : d ∈ optt(P

′)—as such, in our use-case
we will again only be looking for violations above our
threshold t := 〈>1,>2,⊥3〉.

Another possible use of annotations in relation to
constraints is knowledge base repair. If Ci:di is vio-
lated, then the members of Body(Ci) with the weakest
proof are good candidates for deletion. These ideas will
be further elaborated in Section 8, where we sketch a
scalable method for knowledge base repair.

5. Implementation and experimental setup

Having looked in detail at the formal aspects of the
annotated program framework—in particular aspects re-
lating to the scalability of the different reasoning tasks—
we now move towards detailing our scalable implemen-
tation and empirical results. In the following sections,
we look at the design, implementation and evaluation
of (i) ranking (Section 6); (ii) annotated reasoning (Sec-
tion 7); (iii) inconsistency detection and repair using
constraint rules (Section 8). Before we continue, in this
section we describe the distributed framework (see [37])
which forms the substrate of our experiments, and then
describe our experimental Linked Data corpus.

5.1. Distribution architecture

Our methods are implemented on a shared-nothing
distributed architecture [58] over a cluster of commod-

ity hardware. In particular, we leverage the nature of
our algorithms to attempt to perform the most expensive
tasks in an embarrassingly parallel fashion, whereby
there is little or no co-ordination required between ma-
chines.

The distributed framework consists of one master ma-
chine which orchestrates the given tasks, and several
slave machines which perform parts of the task in par-
allel.

The master machine can instigate the following dis-
tributed operations:
– scatter: partition on-disk data into logical chunks

given some local split function, and send the chunks
to individual slave machines for subsequent process-
ing;

– run: request the parallel execution of a task by the
slave machines—such a task either involves process-
ing of some local data (usually involving embarrass-
ingly parallel execution), or execution of the coordi-
nate method by the slave swarm;

– gather: gathers chunks of output data from the slave
swarm and performs some local merge function over
the data—this is usually performed to create a single
output file for a task, or more usually to gather global
knowledge required by all slave machines for a future
task;

– flood: broadcast global knowledge required by all
slave machines for a future task.
The master machine is intended to disseminate input

data to the slave swarm, to provide the control logic
required by the distributed task (commencing tasks, co-
ordinating timing, ending tasks), to gather and locally
perform tasks on global knowledge which the slave ma-
chines would otherwise have to replicate in parallel, and
to transmit globally required knowledge.

The slave machines, as well as performing tasks in
parallel, can perform the following distributed operation
(on the behest of the master machine):
– coordinate: local data on each slave machine are

partitioned according to some split function, with the
chunks sent to individual machines in parallel; each
slave machine also gathers the incoming chunks in
parallel using some merge function.
The above operation allows slave machines to parti-

tion and disseminate intermediary data directly to other
slave machines; the coordinate operation could be re-
placed by a pair of gather/scatter operations performed
by the master machine, but we wish to avoid the chan-
nelling of all such intermediary data through one ma-
chine.

Note that herein, we assume that the input corpus is
evenly distributed and split across the slave machines,

20

and that the slave machines have roughly even specifi-
cations: i.e., we do not consider any special form of load
balancing, but instead aim to have uniform machines
processing comparable data-chunks.

5.2. Experimental setup

We instantiate the distributed architecture described
in Section 5.1 using the standard Java Remote Method
Invocation libraries as a convenient means of develop-
ment given our Java code-base.

All of our evaluation is based on nine machines
connected by Gigabit ethernet, 25 each with uniform
specifications; viz.: 2.2GHz Opteron x86-64, 4GB
main memory, 160GB SATA hard-disks, running Java
1.6.0 12 on Debian 5.0.4. Again please note that much
of the performance evaluation presented herein assumes
that the slave machines have roughly equal specifica-
tions in order to ensure that tasks finish in roughly the
same time, assuming even data distribution.

5.3. Experimental corpus

Later in this paper, we discuss the performance and
fecundity of applying our methods over a corpus of
1.118b quadruples (triples with an additional context
element encoding source) derived from an RDF/XML
crawl of 3.985m Web documents in mid-May 2010.
Of the 1.118b quads, 1.106b are unique, and 947m are
unique triples. The data contain 23k unique predicates
and 105k unique class terms (terms in the object position
of an rdf:type triple). Please see [37, Appendix A] for
further statistics relating to this corpus.

Quadruples are stored as GZip compressed flat files
of N-Quads. 26 Also, all machines have a local copy of
a sorted list of redirects encountered during the crawl:
i.e., ordered pairs of the form 〈f, t〉 where redir(f) =
t. The input data are unsorted, not uniqued, and pre-
distributed over eight slave machines according to a
hash function of context; this is the direct result of our
distributed crawl, details of which are available in [37].

To evaluate our methods for varying corpus sizes, we
also create subsets of the corpus, containing one half,
one quarter and one eighth of the quadruples: to do so,
we extract the appropriate subset from the head of the
full corpus—note that our raw data are naturally ordered
according to when they were crawled, so smaller subsets

25We observe, e.g., a max FTP transfer rate of 38MB/sec between
machines.
26http://sw.deri.org/2008/07/n-quads/

corpus 1sm (total) 2sm 4sm 8sm

c 1,117,567,842 558,783,921 280,159,613 139,859,503
c
2

558,783,923 279,391,962 140,079,807 69,929,752
c
4

279,391,964 139,695,982 70,039,904 34,964,876
c
8

139,695,985 69,847,992 34,923,996 17,461,998
Table 1
Average quadruples per machine for the four different sizes of
corpora and four different distribution setups

taken from the head emulate a smaller crawl. Also, in
order to evaluate our methods for a varying number of
slave machines, we additionally merge each of the four
sizes of corpora onto one, two and four machines by
hashing on context. Thus, we have the one eighth, one
quarter, one half and all of the corpus respectively split
over one, two, four and eight machines; the average
counts of quadruples per machine for each configuration
are listed in Table 1. Note that henceforth, we use c,
c
2 , c

4 and c
8 to denote the full, half, quarter and eighth

corpus respectively, and use 1sm, 2sm, 4sm and 8sm
to denote one, two, four and eight slave machines (and
one master machine) respectively.

Looking at how evenly the corpora are split
across the machines, the average absolute deviation of
quadruples—as a percentage of the mean—was 0.9%,
0.55% and 0.14% for eight, four and two slaves respec-
tively, representing near-even data distribution given by
hashing on context (these figures are independent of the
size of the corpus).

Note that for our implementation, we use compressed
files of N-Triple/N-Quad type syntax for serialising
arbitrary-length line-delimited tuples of RDF terms.

6. Links-based analysis: implementation and
evaluation

In this section, we describe and evaluate our dis-
tributed methods for applying a PageRank-inspired
analysis of the data to derive rank annotations for facts
in the corpus. We begin by discussing the high-level ap-
proach (Section 6.1), then by discussing the distributed
implementation (Section 6.2), and finally we present
evaluation for our corpus (Section 6.3).

6.1. High-level ranking approach

Again, our links-based analysis is inspired by
the approach presented in [29], in which the au-
thors present and compare two levels of granular-
ity for deriving source-level ranks: (i) document-
level granularity analysing inter-linkage between Web
documents; and (ii) pay-level-domain (PLD) granu-

21

larity analysing inter-linkage between domains (e.g.,
dbpedia.org, data.gov.uk). Document-level analysis
is more expensive—in particular, it generates a larger
graph for analysis—but allows for more fine-grained
ranking of elements resident in different documents.
PLD-level analysis is cheaper—it generates a smaller
graph—but ranks are more coarse-grained, and many
elements can share identical ranks grouped by the PLDs
they appear in.

In previous work [37], we employed in-memory tech-
niques for applying a PageRank analysis of the PLD-
granularity source graph: we demonstrated this to be
efficiently computable in our distributed setup due to
the small size of the graph extracted (in particular, the
PageRank calculation took <1min in memory apply-
ing 10 iterations), and argued that PLD-level granular-
ity was sufficient for that particular use-case (ranking
entity ‘importance’, which combined with TF-IDF key-
word search relevance forms the basis of prioritising
entity-search results). However, in this paper we opt
to apply the more expensive document-level analysis
which provides more granular results useful for repair-
ing inconsistent data in Section 8. Since we will deal
with larger graphs, we opt for on-disk batch-processing
techniques—mainly sorts, scans, and sort-merge joins
of on-disk files—which are not hard-bound by in-
memory capacity, but which are significantly slower
than in-memory analysis.

6.2. Distributed ranking implementation

Individual tasks are computed using parallel sorts,
scans and merge-joins over the slave machines in our
cluster. For reference, we provide the detailed descrip-
tion of the ranking sub-algorithms in Appendix B, where
our high-level distributed approach can be summarised
as follows:

(i) run/gather/flood: each slave machine sorts its
segment of the data by context, with a list
of sorted contexts generated on each machine;
the master machine gathers the list of contexts,
merge-sorting a global list of contexts which is
subsequently flooded to the slave machines;

(ii) run: the slave machines extract the source-level
graph in parallel from their segment of the data
(Algorithm 2), rewrite the vertices in the sub-
graph using redirects (Algorithm 3), prune links
in the sub-graph such that it only contains vertices
in the global list of contexts (Algorithm 4), and
finally sorts the sub-graph according to inlinks
and outlinks;

(iii) gather/flood: the master machine gathers the sub-
graphs (for both inlink and outlink order) from
the slave machines and merge-sorts to create the
global source-level graph; the master machine
then performs the power iteration algorithm to de-
rive PageRank scores for individual contexts us-
ing on-disk sorts and scans (Algorithms 5 & 6);
ranks are subsequently flooded to each machine;

(iv) run/coordinate: each slave machine propa-
gates ranks of contexts to individual quadruples
(merge-join over ranks and data sorted by con-
text); the ranked data are subsequently sorted by
subject; each slave machine splits its segment
of sorted ranked data by a hash-function (mod-
ulo slave-machine count) on the subject position,
with split fragments sent to a target slave ma-
chine; each slave machine concurrently receives
and stores split fragments from its peers;

(v) run: each slave machine merge-sorts the subject-
hashed fragments it received from its peers, sum-
mating the ranks for triples which appear in mul-
tiple contexts while streaming the data.

The results of this process are: (a) data sorted and
hashed by context on the slave machines; (b) ranks for
contexts on all machines; (c) data sorted and hashed by
subject on the slave machines, with aggregated ranks for
triples. For (c), the result is simply a flat file of sorted
quintuples of the form 〈s, p, o, c, r〉, where c denotes
context and r rank, and where ri = rj if 〈si, pi, oi〉 =
〈sj , pj , oj〉.

Note that, with respect to (b), we could select a data-
partitioning strategy which hashes on any arbitrary (but
consistent) element (or combination of elements) of
each triple. We hash on the subject position since data-
skew becomes a problem for other positions [47]; in our
input data we observe that:

(i) hashing on predicates would lead to poor load-
balancing, where, e.g., we observe that rdf:type
appears as the predicate for 206.8m input quadru-
ples (18.5% of the corpus);

(ii) hashing on objects would also lead to poor load-
balancing, where, e.g., foaf:Person appears as
the object for 163.7m input quadruples (14.6% of
the corpus).

Conversely, in Figure 1, we present the distribution of
subjects with respect to the number of quadruples they
appear in: although there is an apparent power-law, we
note that the most frequently occurring subject term

22

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1 10 100 1000 10000 100000 1e+006

nu
m

be
r

of
 e

nt
iti

es

number of edges

Fig. 1. Distribution of quadruples per subject

appeared in 252k quadruples (0.02% of the corpus). 27

Subsequent to partitioning the full corpus by hashing
on subject across the eight slave machines, we found
an average absolute deviation of 166.3k triples from the
mean (0.012% of the mean), representing near-optimal
load balancing.

We note that in [47]—which argues against “single-
element hashing” for partitioning RDF data—although
the authors observe a high-frequency for common terms
in a large corpus also acquired from the Web (14%
of all triples had the literal object "0"), they do not
give a positional analysis, and in our experience, none
of the highlighted problematic terms commonly ap-
pear in the subject position. If the number of machines
was to increase greatly, or the morphology of the input
data meant that hashing on subject would lead to load-
balancing problems, one could consider hashing on the
entire triple, which would almost surely offer excellent
load-balancing. Otherwise, we believe that hashing on
subject is preferable given that (i) the low-level opera-
tion is cheaper, with less string-characters to hash; and
(ii) less global duplicates will be produced by the dis-
tributed reasoning process (Section 7) during which ma-
chines operate independently. 28

27There are some irregular “peaks” apparent the distribution, where
we encounter unusually large numbers of subjects just above “mile-
stone” counts of quadruples due to fixed limits in exporters: for
example, the hi5.com exporter only allows users to have 2,000
values for foaf:knows—e.g., see: http://api.hi5.com/
rest/profile/foaf/100614697.
28For example, using the LRU duplicate removal strategy mentioned
in Section 7, we would expect little or no duplicates to be given
by rule prp-dom when applied over a corpus hashed and sorted by
subject.

6.3. Ranking evaluation

Applying distributed ranking over the full 1.118b
statement corpus using eight slave machines and one
master machine took just under 36hrs, with the bulk of
time consumed as follows: (i) parallel sorting of data by
context took 2.2hrs; (ii) parallel extraction and prepa-
ration of the source-level graph took 1.9hrs; (iii) rank-
ing the source-level graph on the master machine took
26.1hrs (applying ten power iterations); (iv) propagat-
ing source ranks to triples and hashing/coordinating and
sorting the data by subject took 3hrs; (v) merge-sorting
the data segments and aggregating the ranks for triples
took 1.2hrs.

We present the high-level results of applying the rank-
ing for varying machines and corpus sizes (as per Ta-
ble 1) in Figure 2. 29 For the purposes of comparison,
when running experiments on one slave machine, we
also include the coordinate step—splitting and merging
the data—which would not be necessary if running the
task locally. For reference, in Table 2 we present the
factors by which the runtimes changed when doubling
the size of the corpus and when doubling the number
of slave machines. We note that:
– ranking with respect to c

4 takes, on average, 2.71×
longer than ranking over c

8 —otherwise, doubling the
corpus size roughly equates to a doubling of runtime;

– when doubling the number of slave machines, run-
times do not halve: in particular, moving from four
slaves to eight slaves reduces runtime by an average
of 17%, and only 7% for the full corpus.

doubling data doubling slaves

sm c/ c
2

c
2

/ c
4

c
4

/ c
8

c 2sm/1sm 4sm/2sm 8sm/4sm
1sm 1.95 1.97 2.43 c 0.64 0.71 0.93
2sm 1.97 2.03 2.49 c

2
0.64 0.72 0.81

4sm 1.94 2.02 2.82 c
4

0.62 0.73 0.83
8sm 2.22 1.99 3.11 c

8
0.60 0.64 0.75

mean 2.02 2.00 2.71 mean 0.62 0.70 0.83
Table 2
On the left, we present the factors by which the ranking total runtimes
changed when doubling the data. On the right, we present the factors
by which the runtimes changed when doubling the number of slave
machines.

With respect to the first observation, we note that the
PageRank calculations on the master machine took 3.8×
longer for c

4 than c
8 : although the data and the number

of sources roughly double from c
8 to c

4 , the number of

29Note that all such figures in this paper are presented log/log with
base 2, such that each major tick on the x-axis represents a doubling
of slave machines, and each major tick on the y axis represents a
doubling of time.

23

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8

ho
ur

s

slave machines

all data
1/2 data
1/4 data
1/8 data

Fig. 2. Total time taken for ranking on 1/2/4/8 slave machines for
varying corpus sizes

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8

ho
ur

s

slave machines

(i) sort by context (slaves)
(ii) create source-level graph (slaves)

(iii) pagerank (master)
(iv) rank, sort, hash and coordinate triples (slaves)

(v) merge-sort / summate ranks (slaves)
total (slaves)
total (master)

total

Fig. 3. Breakdown of relative ranking task times for 1/2/4/8 slave
machines and full corpus

links between sources in the corpus quadrupled—we
observed 11.3m links for c

8 , 40.3m links for c
4 , 80.7m

links for c
2 , and 183m links for c.

With respect to the second observation, we note that
the local PageRank computation on the master machine
causes an increasingly severe bottleneck as the number
of slave machines increases: again, taking the full cor-
pus, we note that this task takes 26.1hrs, irrespective
of the number of slave machines available. In Figure 3,
we depict the relative runtimes for each of the ranking
tasks over the full corpus and varying number of ma-
chines. In particular, we see that the PageRank compu-
tation stays relatively static whilst the runtimes of the
other tasks decrease steadily: at four slave machines,
the total time spent in parallel execution is already less
than the total time spent locally performing the PageR-
ank. Otherwise—and with the exception of extracting
the graph from c

4 and c
8 for reasons outlined above—we

see that the total runtimes for the other (parallel) tasks
roughly halve as the number of slave machines doubles.

With respect to redressing this local bottleneck, sig-
nificant improvements could already be made by dis-
tributing the underlying sorts and scans required by the
PageRank analysis. Further, we note that parallelising
PageRank has been the subject of significant research,
where we could look to leverage works as presented,
e.g., in [24,45]. We leave this issue open, subject to in-
vestigation in another scope.

Focussing on the results for the full corpus,
the source-level graph consisted of 3.985m vertices
(sources) and 183m unique non-reflexive links. In Ta-
ble 3, we provide the top 10 ranked documents. The
top result refers to the RDF namespace, followed by
the RDFS namespace, the DC namespace and the OWL
namespace (the latter three are referenced by the RDF

namespace, and amongst themselves). Subsequently, the
fifth result contains some links to multi-lingual trans-
lations of labels for RDFS terms, and is linked to by
the RDFS document; the sixth result refers to an older
version of DC (extended by result 3); the seventh result
is the SKOS vocabulary; the eighth result provides data
and terms relating to the GRDDL W3C standard; the
ninth result refers to the FOAF vocabulary; the tenth is
a French translation of RDFS terms. Within the top ten,
all of the documents are primarily concerned with ter-
minological data (e.g., are ontologies or vocabularies,
or describe classes or properties): the most wide-spread
re-use of terms across the Web of Data is on a ter-
minological level, representing a higher in-degree and
subsequent rank for terminological documents. The av-
erage rank annotation for the triples in the corpus was
1.39× 10−5.

7. Reasoning with annotations—implementation
and evaluation

In order to provide a scalable and distributed imple-
mentation for annotated reasoning, we extend the SAOR
system described in [38] to support annotations. Herein,
we summarise the distributed reasoning steps, where we
refer the interested reader to [38] for more information
about the (non-annotated) algorithms. We begin by dis-
cussing the high-level approach (Section 7.1), then dis-
cuss the distributed approach (Section 7.2), the exten-
sion to support annotations (Section 7.3), and present
evaluation (Section 7.4).

24

Document Rank

1 http://www.w3.org/1999/02/22-rdf-syntax-ns 0.112
2 http://www.w3.org/2000/01/rdf-schema 0.104
3 http://dublincore.org/2008/01/14/dcelements.rdf 0.089
4 http://www.w3.org/2002/07/owl 0.067
5 http://www.w3.org/2000/01/rdf-schema-more 0.045
6 http://dublincore.org/2008/01/14/dcterms.rdf 0.032
7 http://www.w3.org/2009/08/skos-reference/skos.rdf 0.028
8 http://www.w3.org/2003/g/data-view 0.014
9 http://xmlns.com/foaf/spec/ 0.014

10 http://www.w3.org/2000/01/combined-ns-translation.rdf.fr 0.010
Table 3
Top 10 ranked documents

7.1. High-level reasoning approach

Given our explicit requirement for scale, in [38] we
presented a generalisation of existing scalable rule-
based reasoning systems which rely on a separation of
T-Box from A-Box [36,65,63,62]: we call this general-
isation the partial-indexing approach, which may only
require indexing small subsets of the corpus, depending
on the program/ruleset. The core idea follows the dis-
cussion of the T-split least fixpoint in Section 2.5 where
our reasoning is broken into two distinct phases: (i) T-
Box level reasoning over terminological data and rules
where the result is a set of T-Box inferences and a set
of T-ground rules; (ii) A-Box reasoning with respect to
the set of proper T-ground rules.

With respect to RDF(S)/OWL(2) reasoning, we as-
sume that we can distinguish terminological data (as
presented in Section 2.5) and that the program consists
of T-split rules, with known terminological patterns.
Based on the assumption that the terminological seg-
ment of a corpus is relatively small, and that it is static
with respect to reasoning over non-terminological data,
we can perform some pre-compilation with respect to
the terminological data and the given program before
accessing the main corpus of assertional data. 30

The high-level (local) procedure is as follows:
(i) identify and separate out the terminological data

(T-Box) from the main corpus;
(ii) recursively apply axiomatic rules (Table A.1) and

rules which do not require assertional knowledge
(Table A.2) over the T-Box—the results are in-
cluded in the A-Box and if terminological, may
be recursively included in the T-Box, where the
T-Box will thereafter remain static;

30If the former assumption does not hold, then our approach is
likely to be less efficient than standard (e.g., semi-naı̈ve) approaches.
If the latter assumption does not hold (e.g., due to extension of
RDF(S)/OWL terms), then our approach will be incomplete [38].

(iii) for rules containing both T-atoms and A-atoms,
ground the T-atoms wrt. the T-Box facts, applying
the (respective) most general unifier over the re-
mainder of the rule—the result is the assertional
program where all T-atoms are ground;

(iv) recursively apply the T-ground program over the
assertional data.

The application of rules in Step (ii) and the grounding
of T-atoms in Step (iii) are performed by standard semi-
naı̈ve evaluation over the indexed T-Box. However, in
Step (iv), instead of bulk-indexing the A-Box, we apply
the rules by means of a scan. This process is summarised
in Algorithm 1.

First note that duplicate inference steps may be ap-
plied for rules with only one atom in the body (Lines
11–14): one of the main optimisations of our approach
is that it minimises the amount of data that we need to
index, where we only wish to store triples which may
be necessary for later inference, and where triples only
grounding single atom rule bodies need not be indexed.
To provide partial duplicate removal, we instead use a
Least-Recently-Used (LRU) cache over a sliding win-
dow of recently encountered triples (Lines 7 & 8)—
outside of this window, we may not know whether a
triple has been encountered before or not, and may re-
peat inferencing steps. In [38], we found that 84% of
non-filtered inferences were unique using a fixed LRU-
cache with a capacity of 50k over data grouped by con-
text. 31

Thus, in this partial-indexing approach, we need only
index triples which are matched by a rule with a multi-
atom body (Lines 15–25). For indexed triples, aside
from the LRU cache, we can additionally check to see
if that triple has been indexed before (Line 19) and
we can apply a semi-naı̈ve check to ensure that we

31Note that without the cache, cycles are detected by maintaining a
set of inferences for a given input triple (cf. Algorithm 1; Line 30)—
the cache is to avoid duplication, not to ensure termination.

25

Algorithm 1 Reason over the A-Box
Require: ABOX: A /* {t0 . . . tm} */
Require: ASSERTIONAL PROGRAM: AP /*

{R0 . . . Rn},TBody(Ri) = ∅ */
1: Index := {} /* triple index */
2: LRU := {} /* fixed-size, least recently used cache */
3: for all t ∈ A do
4: G0 := {}, G1 := {t}, i := 1

5: while Gi 6= Gi−1 do
6: for all tδ ∈ Gi \Gi−1 do
7: if tδ /∈ LRU then /* if tδ ∈ LRU, tδ most recent */
8: add tδ to LRU /* remove eldest if necessary */
9: output(tδ)

10: for all R ∈ AP do
11: if |Body(R)| = 1 then
12: if ∃θ s.t. {tδ} = Body(R)θ then
13: Gi+1 := Gi+1 ∪ Head(R)θ
14: end if
15: else
16: if ∃θ s.t. tδ ∈ Body(R)θ then
17: card := |Index|
18: Index := Index ∪ {tδ}
19: if card 6= |Index| then
20: for all θ s.t. Body(Rθ) ⊆ Index∧

tδ ∈ Body(Rθ) do
21: Gi+1 := Gi+1 ∪ Head(Rθ)
22: end for
23: end if
24: end if
25: end if
26: end for
27: end if
28: end for
29: i++
30: Gi+1 := copy(Gi) /* avoids cycles */
31: end while
32: end for
33: return output /* on-disk inferences */

only materialise inferences which involve the current
triple (Line 20). We note that as the assertional index
is required to store more data, the two-scan approach
becomes more inefficient than the “full-indexing” ap-
proach; in particular, a rule with a body atom contain-
ing all variable terms will require indexing of all data,
negating the benefits of the approach; e.g., if the rule
OWL 2 RL/RDF rule eq-rep-s:

(?s′, ?p, ?o) ← (?s, owl:sameAs, ?s′), (?s, ?p, ?o)
is included in the assertional program, the entire corpus
of assertional data must be indexed (in this case accord-
ing to subject) because of the latter “open” atom. We
emphasise that our partial-indexing performs well if the
assertional index remains small and performs best if ev-
ery proper rule in the assertional program has only one
A-atom in the body—in the latter case, no assertional
indexing is required.

If the original program does not contain rules with

multiple A-atoms in the body—such as is the case for
our subset O2R− of OWL 2 RL/RDF rules—no index-
ing of the A-Box is required (Lines 11–15) other than
for the LRU cache. 32

Note that, depending on the nature of the T-Box and
the original program, Step (ii) may result in a very large
assertional program containing many T-ground rules
where Algorithm 1 can be seen as a brute-force method
for applying all rules to all statements. In [38], we de-
rived 301k raw T-ground rules from the Web, and es-
timated that brute force application of all rules to all
∼1b triples would take >19 years. We thus proposed
a number of optimisations for the partial-indexing ap-
proach; we refer the interested reader to [38] for details,
but the main optimisation was to use a linked-rule in-
dex. Rules are indexed according to their atom patterns
such that, given a triple, the index can retrieve all rules
containing an atom for which that triple is a ground
instantiation—i.e., the index maps triples to relevant
rules. Also, the rules are linked according to their de-
pendencies, whereby the grounding of a head in one rule
may lead to the application of another—in such cases,
explicit links are materialised to reduce the amount of
rule-index lookups required.

7.2. Distributed reasoning

Assuming that our rules only contain zero/one A-
atoms, and that the T-Box is relatively small, distribution
of the procedure is straight-forward [38]. We summarise
the approach as follows:

(i) run/gather: identify and separate out the T-Box
from the main corpus in parallel on the slave ma-
chines, and subsequently merge the T-Box on the
master machine;

(ii) run: apply axiomatic and “T-Box only” rules on
the master machine, ground the T-atoms in rules
with non-empty T-body/A-body, and build the
linked rule index;

(iii) flood/run: send the linked rule index to all slave
machines, and reason over the main corpus in
parallel on each machine.

The results of this operation are: (a) data inferred
through T-Box only reasoning resident on the master
machine; (b) data inferred through A-Box level reason-
ing resident on the slave machines.

32In previous works we have discussed and implemented techniques
for scalable processing of rules with multiple A-atoms; however,
these techniques were specific to a given ruleset [36]—as are related
techniques presented in the literature [62]—and again break the
linear bound on materialisation wrt. the A-Box.

26

7.3. Extending with annotations

We now discuss extension of the classical reason-
ing engine (described above) to support the anno-
tated reasoning task optt(P) for our annotation do-
main which we have shown to be theoretically scal-
able in Section 4. As mentioned at the end of Sec-
tion 4.3, for our experiments we assume a threshold:
t := 〈nb,a, 0〉 = 〈>1,>2,⊥3〉. Thus, our reasoning
task becomes optt(P). By Theorem 8, we can filter
dominated facts/rules; by Theorem 9, we can imme-
diately filter any facts/rules which are blacklisted/non-
authoritative. Thus, in practice, once blacklisted and
non-authoritative facts/rules have been removed from
the program, we need only maintain ranking annota-
tions.

Again, currently, we do not use the blacklisting an-
notation. In any case, assuming a threshold for non-
blacklisted annotations, blacklisted rules/facts in the
program could simply be filtered in a pre-processing
step.

For the purposes of the authoritativeness annotation,
the authority of individual terms in ground T-atoms are
computed during the T-Box extraction phase by the
slave machines using redirects information from the
crawl. This intermediary term-level authority is then
used by the master machine to annotate T-ground rules
with the final authoritative annotation. Recall that all
initial ground facts and proper rules O2R− are anno-
tated as authoritative, and that only T-ground rules with
non-empty ABody can be annotated as na, and subse-
quently that ground atoms can only be annotated with
na if produced by such a non-authoritative rule; thus,
wrt. our threshold t, we can filter any T-ground rules an-
notated na when first created on the master machine—
thereafter, only a annotations can be encountered.

Thus, we are left to consider rank annotations. In fact,
following the discussion of Section 4.3 and the afore-
mentioned thresholding, the extension is fairly straight-
forward. All axiomatic triples (mandated by OWL 2
RL/RDF), and all initial (meta-)rules are annotated with
> (the value 1). All other ground facts in the corpus
are pre-assigned a rank annotation by the links-based
ranking procedure.

The first step involves extracting and reasoning over
the rank-annotated T-Box. Terminological data are ex-
tracted in parallel on the slave machines from the ranked
corpus. These data are gathered onto the master ma-
chine. Ranked axiomatic and terminological facts are
used for annotated T-Box level reasoning: internally,
we store annotations using a map (alongside the triple

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 2.5e+008

 3e+008

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 in

pu
t/o

ut
pu

t s
ta

te
m

en
ts

 p
ro

ce
ss

ed

time elapsed in minutes

input
output (raw)

Fig. 4. Input/output throughput during distributed A-Box reasoning
overlaid for each slave machine

store itself), and the semi-naı̈ve evaluation only con-
siders unique or non-dominated annotated facts in the
delta. Inferred annotations are computed using the glb
function as described in Definition 3.

Next, rules with non-empty ABody are T-ground. If
TBody is not empty, the T-ground rule annotation is
again given by the glb aggregation of the T-ground in-
stance annotations; otherwise, the annotation remains
>. These annotated rules are flooded by the master ma-
chine to all slave machines, who then begin the A-Box
reasoning procedure.

Since our T-ground rules now only contain a single
A-atom, during A-Box reasoning, the glb function takes
the annotation of the instance of the A-atom and the
annotation of the T-ground rule to produce the inferred
annotation. For the purposes of duplicate removal, our
LRU cache again considers facts with dominated anno-
tations as duplicate.

Finally, since our A-Box reasoning procedure is not
semi-naı̈ve and can only perform partial duplicate de-
tection, we may have duplicates or dominated facts in
the output. To ensure optimal output—and thus achieve
optt(P)—we must finally:

(iv) coordinate inferred data on the slave machines
by sorting and hashing on subject; also include
the T-Box reasoning results resident on the master
machine;

(v) run an on-disk merge-sort of ranked input and
inferred segments on all slave machines, filtering
dominated data and streaming the final output.

7.4. Reasoning evaluation

In total, applying the distributed reasoning proce-
dure with eight slave machines and one master machine

27

over the full 1.118b quadruple corpus—including ag-
gregation of the final results—took 14.6hrs. The bulk
of time was consumed as follows: (i) extracting the T-
Box in parallel and gathering the data onto the master
machine took 53mins; (ii) locally reasoning over the T-
Box and grounding the T-atoms of the rules with non-
empty ABody took 16mins; (iii) parallel reasoning over
the A-Box took 6hrs; (iv) sorting and coordinating the
inferred data by subject over the slave machines took
4.6hrs; (v) merge-sorting the inferred and input data and
aggregating the rank annotations for all triples to pro-
duce the final optimal output (above the given thresh-
old) took 2.7hrs. Just over half the total time is spent in
the final aggregation of the optimal reasoning output.
In Figure 4, we overlay the input/output performance of
each slave machine during the A-Box reasoning scan—
notably, the profile of each machine is very similar.

In Figure 5, we present the high-level results of ap-
plying distributed reasoning for varying corpus sizes
and number of slave machines (as per Table 1). For ref-
erence, in Table 4 we present the factors by which the
runtimes changed when doubling the size of the corpus
and when doubling the number of slave machines. We
note that:
– although doubling the amount of data from c

8 to c
4

causes the runtimes to (on average) roughly double,
moving from c

4 to c
2 and c

2 to c cause runtimes to
increase by (on average) 2.2×;

– when doubling the number of slave machines from
1sm to 2sm, runtimes only decrease by (on average)
a factor of 0.6×; for 4sm to 2sm and 2sm to 1sm, the
factor falls to 0.55× and stays steady.

doubling data doubling slaves

sm c/ c
2

c
2

/ c
4

c
4

/ c
8

c 2sm/1sm 4sm/2sm 8sm/4sm
1sm 2.14 2.23 2.11 c 0.63 0.54 0.53
2sm 2.28 2.25 2.06 c

2
0.59 0.55 0.54

4sm 2.25 2.24 2.03 c
4

0.59 0.55 0.56
8sm 2.21 2.16 1.94 c

8
0.61 0.56 0.59

mean 2.22 2.22 2.03 mean 0.60 0.55 0.55
Table 4
On the left, we present the factors by which the annotated reasoning
total runtimes changed when doubling the data. On the right, we
present the factors by which the runtimes changed when doubling
the number of slave machines.

With respect to the first observation, we note that as
the size of the corpus increases, so too does the amount
of terminological data, leading to an increasingly large
assertional program. We found 2.04m, 1.93m, 1.71m
and 1.533m T-Box statements in the c, c

2 , c
4 and c

8 cor-
pora respectively, creating 291k, 274k, 230k and 199k
assertional rules respectively. Here, we note that the rate
of growth of the terminological data slows down as the

corpus sizes gets larger (i.e., the crawl gets further),
perhaps since vocabularies on the Web of Data are well
interlinked (cf. Table 3) and will be discovered earlier
in the crawl. Further—and perhaps relatedly—we note
that the total amount of inferences and the final aggre-
gated output of the annotated reasoning process grows
at a rate of between 2.14× and 2.22× when the corpus
is doubled in size: we observed 1,889m, 857m, 385m
and 180m aggregated (optimal) output facts for the c,
c
2 , c

4 and c
8 corpora respectively.

With respect to the second observation, in Figure 6,
we give the breakdown of the runtimes for the individ-
ual tasks when applied over the full corpus using one,
two, four and eight slave machines. We note that the per-
centage of total runtime spent on the master machine is
between 0.5% for 1sm and 3.4% for 8sm (∼19.2mins);
we observe that for our full corpus, the number of ma-
chines can be doubled approximately a further five times
(∼256 machines) before the processing on the master
machine takes >50% of the runtime. Although the time
taken for extracting the T-Box roughly halves every time
the number of slaves doubles, we note that the runtimes
for inferencing, sorting, hashing and merging do not: in
particular, when moving from 1sm to 2sm, we note that
A-Box reasoning takes 37% less time; hashing, sort-
ing and scattering the inferences takes 26% less time;
and merge-sorting and removing dominated facts takes
43% less time. We attribute this to the additional du-
plicates created when inferencing over more machines:
reasoning over the A-Box of the full corpus generates
1.349b 1.901b, 2.179b and 2.323b raw inferences for
1sm, 2sm, 4sm and 8sm, respectively. Note that we use
a fixed-size LRU cache of 50k for removing duplicate/-
dominated facts, and since our data are sorted by sub-
ject, we would not only expect duplicate inferences for
each common subject group, but also for data grouped
together under the same namespace, where having all of
the data on fewer machines increases the potential for
avoiding duplicates. Thus, when increasing the number
of machines, there are more data to post-process (al-
though the results of that post-processing are the same),
but we would expect this effect to converge as the num-
ber of machines continues to increase (as perhaps ev-
idenced by Figure 6 where runtimes almost halve for
doubling from 2sm to 4sm and from 4sm to 8sm).

For the full corpus, a total of 1.1m (∼0.1%) input T-
Box triples were extracted, where T-Box level reasoning
produced an additional 2.579m statements. The average
rank annotation of the input T-facts was 9.94 × 10−4,
whereas the average rank annotation of the reasoned T-
facts was 3.67× 10−5. Next, 291k T-ground rules were
produced for subsequent application over the A-Box,

28

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8

ho
ur

s

slave machines

all data
1/2 data
1/4 data
1/8 data

Fig. 5. Total time taken for reasoning on 1/2/4/8 slave machines
for varying corpus sizes

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8

ho
ur

s

slave machines

(i) extract T-Box (slaves)
(ii) T-Box reasoning (master)
(iii) A-Box reasoning (slaves)

(iv) hash/sort/coordinate (slaves)
(v) merge-sort/filter dominated (slaves)

total (slaves)
total (master)

total

Fig. 6. Breakdown of relative reasoning task times for 1/2/4/8 slave
machines and full corpus

within which, 1.655m dependency links were materi-
alised.

Next, in order to demonstrate the effects of authori-
tative reasoning wrt. our rules and corpus, we applied
reasoning over the top ten asserted classes and proper-
ties. 33 For each class c, we performed reasoning—wrt.
the T-ground program and the authoritatively T-ground
program—over a single assertion of the form (x, rdf:-
type, c) where x is an arbitrary unique name; for each
property p, we performed the same over a single as-
sertion of the form (x1, p, x2). Subsequently, we only
count inferences mentioning an individual name x*—
e.g., we would not count (foaf:Person, owl:sameAs,
foaf:Person). Table 6 gives the results (cf. older re-
sults in [36]). Notably, the non-authoritative inference
sizes are on average 55.46× larger than the authorita-
tive equivalent. Much of this is attributable to noise in
and around core RDF(S)/OWL terms; 34 thus, in the
table we also provide results for the core top-level con-
cepts (rdfs:Resource and owl:Thing) and rdf:type,
and provide equivalent counts for inferences not relat-
ing to these concepts—still, for these popular terms,
non-authoritative inferencing creates 12.74× more in-
ferences than the authoritative equivalent.

We now compare authoritative and non-authoritative
inferencing in more depth for the most popular class in
our input data: foaf:Person. Excluding the top-level

33We performed a count of the occurrences of each term as a value
for rdf:type (class membership) or predicate position (property
membership) in the quadruples of our input corpus.
34We note that much of the noise is attributate to the
opencalais.com domain; cf. http://d.opencalais.
com/1/type/em/r/PersonAttributes.rdf and http:
//groups.google.com/group/pedantic-web/browse_
thread/thread/5e5bd42a9226a419

concepts rdfs:Resource and owl:Thing, and the in-
ferences possible therefrom, each rdf:type triple with
foaf:Person as value leads to five authoritative infer-
ences and twenty-six additional non-authoritative in-
ferences (all class memberships). Of the latter twenty-
six, fourteen are anonymous classes. Table 5 enumer-
ates the five authoritatively-inferred class memberships
and the remaining twelve non-authoritatively inferred
named class memberships; also given are the occur-
rences of the class as a value for rdf:type in the raw
data. Although we cannot claim that all of the additional
classes inferred non-authoritatively are noise—although
classes such as b2r2008:Controlled vocabularies ap-
pear to be—we can see that they are infrequently used
and arguably obscure. Although some of the inferences
we omit may of course be serendipitous—e.g., perhaps
po:Person—again we currently cannot distinguish such
cases from noise or blatant spam.

Overall, performing A-Box reasoning over the full
corpus using all eight slave machines produced 2.323b
raw (authoritative) inferences, which were immedi-
ately filtered down to 1.879b inferences (80.9%)
by removing non-RDF and tautological triples (re-
flexive owl:sameAs, rdf:type owl:Thing, rdf:type

rdfs:Resource statements which hold for every ground
term in the graph which are not useful in our use-case
SWSE). Of the 1.879b inferences, 1.866b (99.34%) in-
herited their annotation from an assertional fact (as op-
posed to a T-ground rule), seemingly since terminolog-
ical facts are generally more highly ranked by our ap-
proach than assertional facts. Notably, the LRU cache
detected and filtered a total of 12.036b duplicate/dom-
inated statements.

After hashing on subject, for each slave machine, the
average absolute deviation from the mean was 203.9k

29

Class (Raw) Count

Authoritative
foaf:Agent 8,165,989
wgs84:SpatialThing 64,411
contact:Person 1,704
dct:Agent 35
contact:SocialEntity 1

Non-Authoritative (additional)
po:Person 852
wn:Person 1
aifb:Kategorie-3AAIFB 0
b2r2008:Controlled vocabularies 0
foaf:Friend of a friend 0
frbr:Person 0
frbr:ResponsibleEntity 0
pres:Person 0
po:Category 0
sc:Agent Generic 0
sc:Person 0
wn:Agent-3 0

Table 5
Breakdown of non-authoritative and authoritative inferences for
foaf:Person, with number of appearances as a value for
rdf:type in the raw data

triples (0.08% of the mean) representing near-optimal
data distribution. In the final aggregation of rank anno-
tations, from a total of 2.987b raw statements, 1.889b
(63.2%) unique and optimal triples were extracted; of
the filtered, 1.008b (33.7%) were duplicates with the
same annotation, 35 89m were (properly) dominated
reasoned triples (2.9%), and 1.5m (0.05%) were (prop-
erly) dominated asserted triples. The final average rank
annotation for the aggregated triples was 5.29× 10−7.

8. Use-case: Repairing inconsistencies—approach,
implementation and evaluation

In this section, we discuss our approach and imple-
mentation for handling inconsistencies in the annotated
corpus (including asserted and reasoned data). We begin
by formally sketching the repair process applied (Sec-
tion 8.1). Thereafter, we describe our distributed imple-
mentation for detecting and extracting sets of annotated
facts which together constitute an inconsistency (Sec-
tion 8.2) and present the results of applying this process
over our Linked Data evaulation corpus (Section 8.3).
We then present our distributed implementation of the
inconsistency repair process (Section 8.4) and the re-
sults for our corpus (Section 8.5).

35Note that this would include the 171 million duplicate asserted
triples from the input.

8.1. Repairing inconsistencies: formal approach

Given a (potentially large) set of annotated constraint
violations, herein we sketch an approach for repairing
the corpus from which they were derived, such that the
result of the repair is a consistent corpus as defined
in Section 4.7. 36 In particular, we re-use notions from
the seminal work of Reiter [55] on diagnosing faulty
systems.

For the moment—and unlike loosely related
works on debugging unsatisfiable concepts in OWL
terminologies—we only consider repair of assertional
data: all of our constraints involve some assertional data,
and for the moment, we consider terminological data
as correct. Although this entails the possibility of re-
moving atoms above the degree of a particular viola-
tion to repair that violation, in Section 7.4 we showed
that for our corpus, 99.34% of inferred annotations are
derived from an assertional fact. 37 Thus, as an approx-
imation, we can reduce our repair to being wrt. the T-
ground program P := P c ∪ P r, where P c is the set
of (proper) T-ground constraint rules, and P r is the set
of proper T-ground positive rules derived in Section 7.
Again, given that each of our constraints requires as-
sertional knowledge—i.e., that the T-ground program P
only contains proper constraint rules—P is necessarily
consistent.

Moving forward, we introduce some necessary defi-
nitions adapted from [55] for our scenario. Firstly, we
give:

The Principle of Parsimony: A diagnosis is a con-
jecture that some minimal set of components are
faulty [55].

This captures our aim to find a non-trivial (minimal) set
of assertional facts which diagnose the inconsistency of
our model. Next, we define a conflict set which denotes
a set of inconsistent facts, and give a minimal conflict
set which denotes the least set of facts which preserves
an inconsistency wrt. a given program P :
Definition 7 (Conflict set) A conflict set is a Herbrand
interpretation C := {F1, . . . , Fn} such that P ∪ C is
inconsistent.
Definition 8 (Minimal conflict set) A minimal con-
flict set is a Herbrand interpretationC := {F1, . . . , Fn}

36Note that a more detailed treatment of repairing inconsistencies
on the Web is currently out of scope, and would deserve a more
dedicated analysis in future work. Herein, our aim is to sketch one
particular approach feasible in our scenario.
37Note also that since our T-Box is also part of our A-Box, we may
defeat facts which are terminological, but only based on inferences
possible through their assertional interpretation.

30

Term n a n * a a− n * a− na n * na na− n * na−

Core classes (∼top-level concepts)
rdfs:Resource 12,107 0 0 0 0 108 1,307,556 0 0
owl:Thing 679,520 1 679,520 0 0 109 74,067,680 0 0

Core property
rdf:type 206,799,100 1 206,799,100 0 0 109 22,541,101,900 0 0

Top ten asserted classes
foaf:Person 163,699,161 6 982,194,966 5 818,495,805 140 22,917,882,540 31 5,074,673,991
foaf:Agent 8,165,989 2 16,331,978 1 8,165,989 123 1,004,416,647 14 114,323,846
skos:Concept 4,402,201 5 22,011,005 3 13,206,603 115 506,253,115 6 26,413,206
mo:MusicArtist 4,050,837 1 4,050,837 0 0 132 534,710,484 23 93,169,251
foaf:PersonalProfileDocument 2,029,533 2 4,059,066 1 2,029,533 114 231,366,762 5 10,147,665
foaf:OnlineAccount 1,985,390 2 3,970,780 1 1,985,390 110 218,392,900 1 1,985,390
foaf:Image 1,951,773 1 1,951,773 0 0 110 214,695,030 1 1,951,773
opiumfield:Neighbour 1,920,992 1 1,920,992 0 0 109 209,388,128 0 0
geonames:Feature 983,800 2 1,967,600 1 938,800 111 109,201,800 2 1,967,600
foaf:Document 745,393 1 745,393 0 0 113 84,229,409 4 2,981,572

Top ten asserted properties (after rdf:type)
rdfs:seeAlso 199,957,728 0 0 0 0 218 43,590,784,704 0 0
foaf:knows 168,512,114 14 2,359,169,596 12 2,022,145,368 285 48,025,952,490 67 11,290,311,638
foaf:nick 163,318,560 0 0 0 0 0 0 0 0
bio2rdf:linkedToFrom 31,100,922 0 0 0 0 0 0 0 0
lld:pubmed 18,776,328 0 0 0 0 0 0 0 0
rdfs:label 14,736,014 0 0 0 0 221 3,256,659,094 3 44,208,042
owl:sameAs 11,928,308 5 59,641,540 1 11,928,308 221 2,636,156,068 3 35,784,924
foaf:name 10,192,187 5 50,960,935 2 20,384,374 256 2,609,199,872 38 387,303,106
foaf:weblog 10,061,003 8 80,488,024 5 50,305,015 310 3,118,910,930 92 925,612,276
foaf:homepage 9,522,912 8 76,183,296 5 47,614,560 425 4,047,237,600 207 1,971,242,784
total 1,035,531,872 65 3,873,126,401 37 2,997,244,745 3,439 155,931,914,709 497 19,982,077,064

Table 6
Summary of authoritative inferences vs. non-authoritative inferences for core properties, classes, and top-ten most frequently asserted classes
and properties: given are the number of asserted memberships of the term n, the number of unique inferences (which mention an “individual
name”) possible for an arbitrary membership assertion of that term wrt. the authoritative T-ground program (a), the product of the number of
assertions for the term and authoritative inferences possible for a single assertion (n * a), respectively, the same statistics excluding inferences
involving top-level concepts (a− / n * a−), statistics for non-authoritative inferencing (na / n * na) and also non-authoritative inferences
minus inferences through a top-level concept (na− / n * na−)

such that P ∪C is inconsistent, and for every C ′ ⊂ C,
P ∪ C ′ is consistent.

Next, we define the notions of a hitting set and a
minimal hitting set as follows:
Definition 9 (Hitting set) Let I := {I1, . . . , In}
be a set of Herbrand interpretations, and H :=
{F1, . . . , Fn} be a single Herbrand interpretation.
Then, H is a hitting set for I iff for every Ij ∈ I,
H ∩ Ij 6= ∅.
Definition 10 (Minimal hitting set) A minimal hit-
ting set for I is a hitting set H for I such that for every
H ′ ⊂ H , H ′ is not a hitting set for I.

Given a set of minimal conflict sets C, the set of
corresponding minimal hitting sets H represents a set
of diagnoses thereof [55]; selecting one such minimal
hitting set and removing all of its members from each
set in C would resolve the inconsistency for each conflict
set C ∈ C [55].

This leaves three open questions: (i) how to compute

the minimal conflict sets for our reasoned corpus; (ii)
how to compute and select an appropriate hitting set as
the diagnosis of our inconsistent corpus; (iii) how to
repair our corpus wrt. the selected diagnosis.

8.1.1. Computing the (extended) minimal conflict sets
In order to compute the set of minimal conflict sets,

we leverage the fact that the program P r does not con-
tain rules with multiple A-atoms in the body. We leave
extension of the repair process for programs with mul-
tiple A-atoms in the body for another scope.

First, we must consider the fact that our corpus Γ
already represents the least model of Γ∪P r and define
an extended minimal conflict set as follows:
Definition 11 (Extended minimal conflict set) Let Γ
be a Herbrand model such that Γ := lm(Γ∪P r), and let
C := {F1, . . . , Fn}, C ⊆ Γ denote a minimal conflict
set for Γ. Let

31

E(F) := {F ′ ∈ Γ | F ∈ lm(P r ∪ {F ′})}

be the set of all facts in Γ from which some F can be
derived wrt. the linear program P r (note F ∈ E(F)).
We define the extended minimal conflict set (EMCS) for
C wrt. Γ and P r as E := {E(F)|F ∈ C}.

Thus, given a minimal conflict set, the extended min-
imal conflict set encodes choices of sets of facts that
must be removed from the corpus Γ to repair the viola-
tion, such that the original seed fact cannot subsequently
be re-derived by running the program P r over the re-
duced corpus. The concept of a (minimal) hitting set for
a collection of EMCSs follows naturally and similarly
represents a diagnosis for the corpus Γ.

8.1.2. Preferential strategies for annotated diagnoses
Before we continue, we discuss two competing mod-

els for deciding an appropriate diagnosis for subsequent
reparation of the annotated corpus. Consider a set of
violations that could be solved by means of removing
one ‘strong’ fact—e.g., a single fact associated with
a highly-ranked document—or removing many weak
facts—e.g., a set of facts derived from a number of low-
ranked documents: should one remove the strong fact
or the set of weak facts? Given that the answer is non-
trivial, we identify two particular means of deciding a
suitable diagnosis: i.e., the characteristics of an appro-
priate minimal hitting set wrt. to our annotations. Given
any such strategy, selecting the most appropriate diag-
nosis then becomes an optimisation problem.

Strategy 1: we prefer a diagnosis which minimises
the number of facts to be removed in the repair. This can
be applied independently of the annotation framework.
However, this diagnosis strategy will often lead to trivial
decisions between elements of a minimal conflicting set
with the same cardinality; also, we deem this strategy to
be vulnerable to spamming such that a malicious low-
ranked document may publish a number of facts which
conflict and defeat a fact in a high-ranked document.
Besides spamming, in our repair process, it may also
trivially favour, e.g., memberships of classes which are
part of a deep class hierarchy (the memberships of the
super-classes would also need to be removed).

Strategy 2: we prefer a diagnosis which minimises
the strongest annotation to be removed in the repair.
This has the benefit of exploiting the information in
the annotations, and being computable with the glb/lub
functions defined in our annotation framework; how-
ever, for general annotations in the domain D only a
partial-ordering is defined, and so there may not be
an unambiguous strongest/weakest annotation—in our
case, with our pre-defined threshold removing black-

listed and non-authoritative inferences from the corpus,
we need only consider rank annotations for which a
total-ordering is present. Also, this diagnosis strategy
may often lead to trivial decisions between elements of
a minimal conflicting set with identical annotations—
most likely facts from the same document which we
have seen to be a common occurrence in our constraint
violations (54.1% of the total raw cax-dw violations
we empirically observe).

Strategy 3: we prefer a diagnosis which minimises
the total sum of the rank annotation involved in the
diagnosis. This, of course, is domain-specific and also
falls outside of the general annotation framework, but
will likely lead to less trivial decisions between equally
‘strong’ diagnoses. In the naı̈ve case, this strategy is also
vulnerable to spamming techniques, where one ‘weak’
document can make a large set of weak assertions which
culminate to defeat a ‘strong’ fact in a more trustworthy
source.

In practice, we favour Strategy 2 as exploiting the ad-
ditional information of the annotations and being less
vulnerable to spamming; when Strategy 2 is inconclu-
sive, we resort to Strategy 3 as a more granular method
of preference, and thereafter if necessary to Strategy 1.
If all preference orderings are inconclusive, we then se-
lect an arbitrary syntactic ordering.

Going forward, we formalise a total ordering≤I over
a pair of (annotated) Herbrand interpretations which
denotes some ordering of preference of diagnoses based
on the ‘strength’ of a set of facts—a stronger set of
facts denotes a higher order. The particular instantiation
of this ordering depends on the repair strategy chosen,
which may in turn depend on the specific domain of
annotation.

Towards giving our notion of ≤I , let I1 and I2 be
two Herbrand interpretations with annotations from the
domain D, and let ≤D denote the partial-ordering de-
fined for D. Starting with Strategy 2—slightly abus-
ing notation—if lub{I1} <D lub{I1}, then I1 <r I2;
if lub{I1} >D lub{I2}, then I1 >I I2; otherwise (if
lub{I1} =D lub{I2} or ≤D is undefined for I1,I2),
we resort to Strategy 3 to order I1 and I2: we apply
a domain-specific “summation” of annotations (ranks)
denoted ΣD and define the order of I1, I2 such that if
ΣD{I1} <D ΣD{I2}, then I1 <I I2, and so forth. If
still equals (or uncomparable), we use the cardinality of
the sets, and thereafter consider an arbitrary syntactic
order. Thus, sets are given in ascending order of their
single strongest fact, followed by the order of their rank
summation, followed by their cardinality (Strategy 1),
followed by an arbitrary syntactic ordering. Given <I ,
the functions maxI and minI follow naturally.

32

8.1.3. Computing and selecting an appropriate
diagnosis

Given that in our Linked Data scenario, we may
encounter many non-trivial (extended) conflict sets—
i.e., conflict sets with cardinality greater than one—we
would wisely wish to avoid materialising an exponential
number of all possible hitting sets. Similarly, we wish
to avoid expensive optimisation techniques [59] for de-
riving the minimal diagnosis w.r.t ≤I . Instead, we use
a heuristic to materialise one hitting set which gives us
an appropriate, but possibly sub-optimal diagnosis. Our
diagnosis is again a flat set of facts, which we denote
by ∆.

First, to our diagnosis we immediately add the union
of all members of singleton (trivial) EMCSs, where
these are necessarily part of any diagnosis. This would
include, for example, all facts which must be removed
from the corpus to ensure that no violation of dt-not-
type can remain or be re-derived in the corpus.

For the non-trivial EMCSs, we first define an ordering
of conflict sets based on the annotations of its members,
and then cumulatively derive a diagnosis by means of a
descending iteration of the ordered sets For the ordered
iteration of the EMCS collection, we must define a to-
tal ordering ≤E over E which directly corresponds to
minI(E1) ≤I minI(E2)—a comparison of the weak-
est set in both.

We can then apply the following diagnosis strategy:
iterate over E in descending order wrt. ≤E , such that
for each E:

if @I ∈ E such that I ⊆ ∆ then ∆ := ∆ ∪minI(E)

where after completing the iteration, the resulting ∆
represents our diagnosis. Note of course that ∆ may
not be optimal according to our strategy, but we leave
further optimisation techniques to future work.

8.1.4. Repairing the corpus
Removing the diagnosis ∆ from the corpus Γ will

lead to consistency in P ∪ (Γ \∆). However, we also
wish to remove the facts that are inferable through ∆
with respect toP , which we denote as ∆+. We also want
to identify facts in ∆+ which have alternative deriva-
tions from the non-diagnosed input data (Γraw \ ∆),
and include them in the repaired output, possibly with
a weaker annotation: we denote this set of re-derived
facts as ∆−. Again, we sketch a scan-based approach
which is contingent on P only containing proper rules
with one atom in the body, as is the case for any asser-
tional program derived from O2R−.

First, we determine the set of statements inferable
from the diagnosis, given as:

∆+ := lm(P ∪∆) \∆ .

Secondly, we scan the raw input corpus Γraw as fol-
lows. First, let ∆− := {}. Let

Γ�∆raw := {F :d ∈ Γraw | @d′(F :d′ ∈ ∆)}

denote the set of annotated facts in the raw input corpus
not appearing in the diagnosis. Then, scanning the raw
input (ranked) data, for each Fi ∈ Γ�∆raw, let

δ−i :={F ′:d′ ∈ lm(P ∪ {Fi:di}) |
∃dx(F ′:dx ∈ ∆+),@dy ≥ d′(F ′:dy ∈ ∆−)}

denote the intersection of facts derivable from both Fi
and ∆+ which are not dominated by a previous red-
erivation; we apply ∆−i := max(∆−i−1∪δ

−
i), maintain-

ing the dominant set of rederivations. After scanning all
raw input facts, the final result is ∆−:

∆− = max{F :d ∈ lm(P ∪Γ�∆raw) | ∃d′(F :d′ ∈ ∆+)}

the dominant rederivations of facts in ∆+ from the non-
diagnosed facts of the input corpus.

Finally, we scan the entire corpus Γ and buffer any
facts not in ∆ ∪ ∆+ \ ∆− to the final output, and if
necessary, weaken the annotations of facts to align with
∆−.

We note that if there are terminological facts in ∆,
the T-Box inferences possible through these facts may
remain in the final corpus, even though the corpus is
consistent. However, such cases are rare in practice. For
a T-Box statement to be defeated in our repair, it would
have to cause an inconsistency in a “punned” A-Box
sense: that is to say, a core RDFS or OWL meta-class or
property would have to be involved in an axiom—e.g.,
a disjointness constraint—which could lead to inconsis-
tency. However, such constraints are not authoritatively
specified for core RDFS or OWL terms, and so can-
not be encountered in our approach. One possible case
which can occur is a T-Box statement containing an ill-
typed literal, but we did not encounter such a case for
our corpus and selected ruleset. If required, removal of
all such T-Box inferences would instead require rerun-
ning the entire reasoning process over Γraw \ ∆—the
repaired raw corpus. 38

8.2. Inconsistency detection: implementation

We now begin discussing our implementation and
evaluation of this repair process, beginning in this sec-

38We note that other heuristics would be feasible, such as “pre-
validating” the T-Box for the possibility of inconsistency, but leave
such techniques as an open question.

33

tion with the distributed implementation of inconsis-
tency detection for our scenario.

In Table A.6, we provide the list of OWL 2 RL/RDF
constraint rules which we use to detect inconsistencies.
The observant reader will note that these rules require
A-Box joins (have multiple A-atoms) which we have
thus far avoided in our approach. However, up to a point,
we can leverage a similar algorithm to that presented in
Section 7.1 for reasoning.

First, we note that the rules are by their nature not re-
cursive (have empty heads). Second, we postulate that
many of the ungrounded atoms will have a high se-
lectivity (have a low number of ground instances in
the knowledge-base)—in particular, for the moment we
partially assume that only one atom in each constraint
rule has a low selectivity. When this assumption holds,
the rules are amenable to computation using the partial-
indexing approach: any atoms with high selectivity are
ground in-memory to create a set of (partially) grounded
rules, which are subsequently flooded across all ma-
chines. Since the initial rules are not recursive, the set
of (partially) grounded rules remains static. Assuming
that at most one pattern has low selectivity, we can effi-
ciently apply our single-atom rules in a distributed scan
as per the previous section.

However, the second assumption may not always
hold: a constraint rule may contain more than one low-
selectivity atom. In this case, we manually apply a dis-
tributed on-disk merge-join operation to ground the re-
maining atoms of such rules.

Note that during the T-Box extraction in the pre-
vious section, we additionally extract the T-atoms for
the constraint rules, and apply authoritative analysis
analogously—we briefly give an example.
Example: Again take cax-dw as follows:
← (?c1, owl:disjointWith, ?c1), (?x, a, ?c1), (?x, a, ?c2)

Here, varsTA(cax-dw) = {?c1,?c2}. Further assume
that we have the triple (foaf:Person, owl:disjoint-
With, geoont:TimeZone) given by a source s. For the
respective T-ground rule:
← (?x, a, foaf:Person), (?x, a, geoont:TimeZone)

to be authoritative, s must correspond to either
deref(foaf:Person) or deref(geoont:TimeZone)—it
must be authoritative for at least one T-substitution of
{?c1,?c2}. 39 3

Then, the process of extracting constraint violations
is as follows:

39It corresponds to the latter: http://geoontology.
altervista.org/schema.owl#Timezone.

(i) local: apply an authoritative T-grounding of the
constraint rules in Table A.6 from the T-Box res-
ident on the master machine;

(ii) flood/run: flood the non-ground A-atoms in the
T-ground constraints to all slave machines, which
extract the selectivity (number of ground in-
stances) of each pattern for their segment of the
corpus, and locally buffer the instances to a sep-
arate corpus;

(iii) gather: gather and aggregate the selectivity in-
formation from the slave machines, and for each
T-ground constraint, identify A-atoms with a se-
lectivity below a given threshold (in-memory ca-
pacity);

(iv) reason: for rules with zero or one low-selectivity
A-atoms, run the distributed reasoning process
described in Section 7.2, where the highly-
selective A-atoms can be considered “T-atoms”;

(v) run(/coordinate): for any constraints with more
than one low-selectivity A-atoms, apply a man-
ual on-disk merge-join operation to complete the
process.

The end result of this process is sets of anno-
tated atoms constituting constraint violations distributed
across the slave machines.

8.3. Inconsistency detection: evaluation

Distributed extraction of the inconsistencies from the
aggregated annotated data took, in total, 2.9hrs. Of
this: (i) 2.6mins were spent building the authoritative
T-ground constraint rules from the local T-Box on the
master machine; (ii) 26.4mins were spent extracting—
in parallel on the slave machines—the cardinalities of
the A-atoms of the T-ground constraint bodies from the
aggregated corpus; (iii) 23.3mins were spent extracting
ground instances of the high-selectivity A-atoms from
the slave machines; (iv) 2hrs were spent applying the
partially-ground constraint rules in parallel on the slave
machines.

In Figure 7, we present the high-level results of ap-
plying inconsistency detection for varying corpus sizes
and number of slave machines (as per Table 1). For ref-
erence, in Table 7 we present the factors by which the
runtimes changed when doubling the size of the corpus
and when doubling the number of slave machines. We
note that:
– doubling the amount of input data increases the run-

time (on average) by a factor of between 2.06 and
2.26 respectively;

– when doubling the number of slave machines from

34

 0.03375

 0.0675

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8

ho
ur

s

slave machines

all data
1/2 data
1/4 data
1/8 data

Fig. 7. Total time taken for inconsistency detection on 1/2/4/8 slave
machines for varying corpus sizes

 0.03375

 0.0675

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8

ho
ur

s

slave machines

(i) load T-Box (master)
(ii) get selectivities (slaves)

(iii) get low-sel. data (slaves)
(iv) find inconsistencies (slaves)

total (slaves)
total (master)

total

Fig. 8. Breakdown of distributed inconsistency-detection task times
for 1/2/4/8 slave machines and full corpus

1sm to 2sm, runtimes approximately halve each time.

doubling data doubling slaves

sm c/ c
2

c
2

/ c
4

c
4

/ c
8

c 2sm/1sm 4sm/2sm 8sm/4sm
1sm 2.28 2.24 2.09 c 0.50 0.51 0.51
2sm 2.23 2.26 2.07 c

2
0.51 0.52 0.52

4sm 2.21 2.22 2.08 c
4

0.51 0.53 0.53
8sm 2.14 2.18 2.01 c

8
0.51 0.52 0.55

mean 2.22 2.23 2.06 mean 0.51 0.52 0.53
Table 7
On the left, we present the factors by which the inconsistency
detection total runtimes changed when doubling the data. On the
right, we present the factors by which the runtimes changed when
doubling the number of slave machines.

With respect to the first observation, this is to be
expected given that the outputs of the reasoning pro-
cess in Section 7.4—which serve as the inputs for this
evaluation—are between 2.14× and 2.22× larger for
2× the raw data.

With respect to the second observation, we note that
in particular, for the smallest corpus, and doubling the
number of machines from four to eight, the runtime
does not quite halve: in this case, the master machine
takes up 17% of the total runtime with local processing.
However, this becomes increasingly less observable for
larger corpora where the percentage of terminological
data decreases (cf. Secton 7.4): when processing the
full corpus, note that the amount of time spent on the
master machine was between 0.2% for 1sm and 1.7%
for 8sm (∼2.5mins). Further, in Figure 8 we present
the breakdown of the individual inconsistency detection
tasks for the full corpus using one, two, four and eight
slave machines; we observe that for our full corpus, the
number of machines can be doubled approximately a
further six times (512 machines) before the processing
on the master machine takes >50% of the runtime.

Focussing again on the results for the full corpus, a
total of 301k constraint violations were found; in Ta-
ble 8, we give a breakdown showing the number of T-
ground rules generated, the number of total ground in-
stances (constraint violations found), and the total num-
ber of unique violations found (a constraint may fire
more than once over the same data, where for example
in rule cax-dw, ?c1 and ?c2 can be ground interchange-
ably). Notably, the table is very sparse: we highlight
the constraints requiring new OWL 2 constructs in ital-
ics, where we posit that OWL 2 has not had enough
time to gain traction on the Web. In fact, all of the T-
ground prp-irp and prp-asyp rules come from one doc-
ument 40 , and all cax-adc T-ground rules come from
one directory of documents 41 . The only two constraint
rules with violations in our Linked Data corpus were
dt-not-type (97.6%) and cax-dw (2.4%).

Overall, the average violation rank degree was 1.19×
10−7 (vs. an average rank-per-fact of 5.29 × 10−7 in
the aggregated corpus). The single strongest violation
degree is shown in Listing 1 and was given by dt-not-
type where the term "True"ˆ̂ xsd:integer is invalid.
In fact, the document serving this triple is ranked 23rd
overall out of our 3.985m sources—indeed, it seems that
even highly ranked documents are prone to publishing
errors and inconsistencies. Similar inconsistencies were
also found with similar strengths in other documents
within that FreeBase domain. 42 Thus, only a minute

40http://models.okkam.org/ENS-core-vocabulary#
country_of_residence
41http://ontologydesignpatterns.org/cp/owl/
fsdas/
42Between our crawl and time of writing, these errors have been
fixed.

35

Listing 1. Strongest constraint violation

ABox Source − http://rdf.freebase.com/rdf/type/key/namespace
Annotation − <nb,a,0.001616>
(fb:type.key.namespace, fb:type.property.unique, ”True”ˆˆxsd:integer)

Listing 2. Strongest disjoint-class violation

TBox Source − foaf: (amongst others)
Annotations − <nb,a,0.024901>
(foaf:primaryTopic, rdfs:domain, foaf:Document)
(foaf:Document, owl:disjointWith, foaf:Agent)

TBox Source − geospecies:
Annotation − <nb,a,0.000052>
(geospecies:hasWikipediaArticle, rdfs:domain, foaf:Person)

ABox Source − kingdoms:Aa?format=rdf
Annotations − <nb,a,0.000038>
(kingdoms:Aa, foaf:PrimaryTopic, kingdoms:Aa)
(kingdoms:Aa , geospecies:hasWikipediaArticle, enwiki:Animal)

Violation
Annotations − <nb,a,0.000038>
(kingdoms:Aa, rdf:type, foaf:Document) # Inferred
(kingdoms:Aa, rdf:type, foaf:Person) # Inferred

Listing 3. Disjoint-class violation involving strongest fact

TBox Source − foaf: (amongst others)
Annotations − <nb,a,0.024901>
(foaf:knows, rdfs:domain, foaf:Person)
(foaf:Organization, owl:disjointWith, foaf:Person)

Comment − dav:this refers to the company OpenLink Software
ABox Source − 5,549 documents including dav:
Annotation − <nb,a,0.000391>
(dav:this, rdf:type, foaf:Organization)

ABox Source − dav: (alone)
Annotation − <nb,a,0.000020>
(dav:this, foaf:knows, vperson:kidehen@openlinksw.com#this)

Violation
Annotation − <nb,a,0.000391>
(dav:this, rdf:type, foaf:Organization)

Annotation − <nb,a,0.000020>
(dav:this, rdf:type, foaf:Person) # Inferred

fraction (∼0.0006%) of our corpus is above the consis-
tency threshold.

With respect to cax-dw, we give the top 10 pairs
of disjoint classes in Table 9. The single strongest vi-
olation degree for cax-dw is given in Listing 2 where
we see that the inconsistency is given by one docu-
ment, and may be attributable to use of properties with-
out verifying their defined domain; arguably, the en-
tity kingdoms:Aa is unintentionally a member of both
the FOAF disjoint classes, where the entity is explicitly
a member of geospecies:KingdomConcept. Taking a
slightly different example, the cax-dw violation involv-
ing the strongest A-atom annotation is given in Listing 3
where we see a conflict between a statement asserted
in thousands of documents, and a statement inferable
from a single document.

Rule T-ground Violations
eq-diff1 – 0
eq-diff2 – 0
eq-diff3 – 0
eq-irp – 0
prp-irp 10 0
prp-asyp 9 0
prp-pdw 0 0
prp-adp 0 0
prp-npa1 – 0
prp-npa2 – 0
cls-nothing – 0
cls-com 14 0
cls-maxc1 0 0
cls-maxqc1 0 0
cls-maxqc2 0 0
cax-dw 1,772 7,114
cax-adc 232 0
dt-not-type – 294,422

Table 8
Number of T-ground rules, violations, and unique violations found
for each OWL 2 RL/RDF constraint rule—rules involving new OWL
2 constructs are italicised

Class 1 Class 2 Violations
foaf:Agent foaf:Document 3,842
foaf:Document foaf:Person 2,918
sioc:Container sioc:Item 128
foaf:Person foaf:Project 100
ecs:Group ecs:Individual 38
skos:Concept skos:Collection 36
foaf:Document foaf:Project 26
foaf:Organization foaf:Person 7
sioc:Community sioc:Item 3
ecs:Fax ecs:Telephone 3

Table 9
Top 10 disjoint-class pairs

Of the cax-dw constraint violations, 3,848 (54.1%)
involved A-atoms with the same annotation (such as in
the former cax-dw example—likely stemming from the
same A-Box document). All of the constraint violations
were given by A-atoms (i.e., an A-atom represented the
weakest element of each violation).

8.4. Inconsistency repair: implementation

Given the set of inconsistencies extracted from the
corpus in the previous section, and the methodology of
repair sketched in Section 8.1, we now briefly describe
the distributed implementation of the repair process.

To derive the complete collection of EMCSs from
our corpus, we apply the following process. Firstly, for
each constraint violation extracted in the previous steps,
we create and load an initial (minimal) conflict set into
memory. From this, we create an extended version rep-

36

resenting each member of the original conflict set (seed
fact) by a singleton in the extended set. (Internally, we
use a map structure to map from facts to the extended
set(s) that contain it, or or course, null if no such con-
flict set exists.) We then reapply P r over the corpus
in parallel, such that—here using notation which cor-
responds to Algorithm 1—for each input triple t being
reasoned over, for each member tδ of the subsequently
inferred set Gn, if tδ is a member of an EMCS, we add
t to that EMCS.

Consequently, we populate the collection of EMCS,
where removing all of the facts in one member of each
EMCS constitutes a repair (a diagnosis). With respect
to distributed computation of the EMCSs, we can run
the procedure in parallel on the slave machines, and
subsequently merge the results on the master machine
to derive the global collection of EMCSs. We can then
apply the diagnosis procedure and compute ∆, ∆+ and
∆− needed for the repair of the closed corpus.

We now give the overall distributed steps; note that
Steps (i), (iii) & (v) involve aggregating and diagnosing
inconsistencies and are performed locally on the master
machine, whereas Steps (ii), (iv) & (vi) involve analysis
of the input and inferred data on the slave machines and
are run in parallel:

(i) gather: the set of conflict sets (constraint viola-
tions) detected in the previous stages of the pro-
cess (Sections 8.2 & 8.3) are gathered onto the
master machine;

(ii) flood/run: the slave machines receive the con-
flict sets from the master machine and reapply
the (positive) T-ground program over the closed
corpus; any triple involved in the inference of a
member of a conflict set is added to an extended
conflict set;

(iii) gather: the respective extended conflict sets are
merged on the master machine, and the sets are
ordered by ≤E and iterated over—the initial di-
agnosis ∆ is thus generated; the master machine
applies reasoning over ∆ to derive ∆+ and floods
this set to the slave machines;

(iv) flood/run: the slave machines re-run the reason-
ing over the input corpus to try to find alternate
(non-diagnosed) derivations for facts in ∆−;

(v) gather: the set of alternate derivations are gath-
ered and aggregated on the master machine,
which prepares the final ∆− set (maintaining only
dominant rederivations in the merge);

(vi) flood/run: the slave machines accept the final di-
agnosis and scan the closed corpus, buffering a
repaired (consistent) corpus.

8.5. Inconsistency repair: evaluation

The total time taken for applying the distributed diag-
nosis and repair of the full corpus using eight slave ma-
chines was 2.82hrs; the bulk of the time was taken for
(i) extracting the extended conflict sets from the closed
corpus on the slave machines which took 24.5mins; (ii)
deriving the alternate derivations ∆− over the input
corpus which took 18.8mins; (iii) repairing the corpus
which took 1.94hrs. 43

In Figure 9, we present the high-level results of ap-
plying the diagnosis and repair for varying sizes of in-
put corpora and number of slave machines (as per Ta-
ble 1). For reference, in Table 7 we present the factors
by which the runtimes changed when doubling the size
of the corpus and when doubling the number of slave
machines. We note that:
– doubling the amount of input data increases the run-

time (on average) by a factor of between 1.96 and
2.16 respectively;

– when doubling the number of slave machines from
1sm to 2sm, runtimes approximately halve each time.

doubling data doubling slaves

sm c/ c
2

c
2

/ c
4

c
4

/ c
8

c 2sm/1sm 4sm/2sm 8sm/4sm
1sm 2.26 2.06 2.07 1sm 0.50 0.52 0.51
2sm 2.16 2.14 1.98 2sm 0.52 0.51 0.54
4sm 2.18 2.02 1.96 4sm 0.50 0.55 0.55
8sm 2.06 1.98 1.83 8sm 0.53 0.55 0.59
mean 2.16 2.05 1.96 mean 0.51 0.53 0.54

Table 10
On the left, we present the factors by which the inconsistency
detection total runtimes changed when doubling the data. On the
right, we present the factors by which the runtimes changed when
doubling the number of slave machines.

With respect to the first observation—and as per Sec-
tion 8.3—this is again to be expected given that when
the raw corpus increases by 2×, the union of the in-
ferred and raw input data increases by between 2.14×
and 2.22×. Thus, the tasks which extend the conflict
sets and repair the final corpus must deal with more
than double the input data.

With respect to the second observation, as per Sec-
tion 8.3 we again note that in particular, for the smallest
corpus and doubling the number of machines from four
to eight, the runtime does not quite halve: this time,
the master machine takes up 25.2% of the total runtime
with local processing. However, (and again, as per Sec-
tion 8.3) this becomes increasingly less observable for

43Note that for the first two steps, we use an optimisation technique
to skip reasoning over triples whose Herbrand universe (set of RDF
constants) does not intersect with that of ∆/∆+ resp.

37

 0.03375

 0.0675

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8

ho
ur

s

slave machines

all data
1/2 data
1/4 data
1/8 data

Fig. 9. Total time taken for diagnosis/repair on 1/2/4/8 slave ma-
chines for varying corpus sizes

 0.03375

 0.0675

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 1 2 4 8

ho
ur

s

slave machines

(i) load T-Box/gather inconsistencies (master)
(ii) extend conflict sets (slaves)

(iii) diagnose (master)
(iv) find alternate derivations (slaves)

(v) gather alt. der./final diagnosis (master)
(vi) repair corpus (slaves)

total (slaves)
total (master)

total

Fig. 10. Breakdown of distributed diagnosis/repair task times for
1/2/4/8 slave machines and full corpus

larger corpora where the percentage of terminological
data decreases: when processing the full corpus, note
that the amount of time spent on the master machine was
between 0.7% for 1sm and 4.2% for 8sm (∼9.6mins).
Further, in Figure 8 we present the breakdown of the in-
dividual repair tasks for the full corpus using one, two,
four and eight slave machines; we observe that for our
full corpus, the number of machines can be doubled ap-
proximately a further four times (128 machines) before
the processing on the master machine takes >50% of
the runtime.

With respect to the results of repairing the full cor-
pus, the initial diagnosis over the extended conflict set
contained 316,884 entries, and included 16,733 triples
added in the extension of the conflict set (triples which
inferred a member of the original conflict set). 413,744
facts were inferable for this initial diagnosis, but alter-
nate derivations were found for all but 101,018 (24.4%)
of these; additionally, 123 weaker derivations were
found for triples in the initial diagnosis. Thus, the entire
repair involved removing 417,912 facts and weakening
123 annotations, touching upon 0.02% of the closed
corpus.

9. Discussion

In this section, we wrap up the contributions of this
paper by (i) giving a summary of the performance of
all distributed tasks (Section 9.1); (ii) detail potential
problems with respect to scaling further (Section 9.2);
(iii) discuss extending our approach to support a larger
subset of OWL 2 RL/RDF rules (Section 9.3).

9.1. Summary of performance/scalability

Herein, we briefly give an overall summary of all
distributed tasks presented in Sections 6–8.

Along these lines, in Figure 9, we summarise the to-
tal runtimes for all high-level tasks for varying corpus
size and number of machines; as before, we give the
breakdown of factors by which the runtimes changed in
Table 11. Again, we note that for doubling the size of
the corpus, the runtimes more than double; for doubling
the number of slave machines, the runtimes don’t quite
halve. In Figure 12, we present the relative runtimes for
each of the high-level tasks; we note that the most ex-
pensive tasks are the ranking and annotated reasoning,
followed by the inconsistency detection and repair pro-
cesses. Quite tellingly, the total execution time spent on
the master machine is dominated by the time taken for
the PageRank computation (also shown in Figure 12 for
reference). Similarly, for eight slave machines, the total
time spent computing the PageRank of the source-level
graph locally on the master machine roughly equates to
the total time spent in distributed execution for all other
tasks: as the number of machines increases, this would
become a more severe bottleneck relative to the runtimes
of the distributed tasks—again, distributing PageRank
is a mature topic in itself, and subject to investigation
in another scope. Besides the ranking, we see that the
other high-level tasks behave relatively well when dou-
bling the number of slave machines.

9.2. Scaling Further

Aside from the aforementioned ranking bottleneck,
other local aggregation tasks—e.g., processing of termi-

38

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8

ho
ur

s

slave machines

all data
1/2 data
1/4 data
1/8 data

Fig. 11. Total time taken for all tasks on 1/2/4/8 slave machines
for varying corpus sizes

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8

ho
ur

s

slave machines

ranking sources and triples
annotated reasoning

extract inconsistencies
diagnosis and repair

[local ranking (master)]
total (slaves)
total (master)

total

Fig. 12. Breakdown of distributed ranking, reasoning, inconsistency
detection, and repair task-times for 1/2/4/8 slave machines and full
corpus

doubling data doubling slaves

sm c/ c
2

c
2

/ c
4

c
4

/ c
8

c 2sm/1sm 4sm/2sm 8sm/4sm
1sm 2.08 2.10 2.24 1sm 0.61 0.61 0.73
2sm 2.12 2.14 2.24 2sm 0.60 0.62 0.69
4sm 2.08 2.10 2.40 4sm 0.59 0.64 0.70
8sm 2.20 2.04 2.56 8sm 0.59 0.59 0.66
mean 2.12 2.09 2.36 mean 0.59 0.62 0.69

Table 11
On the left, we present the factors by which the overall runtimes
changed when doubling the data. On the right, we present the factors
by which the runtimes changed when doubling the number of slave
machines.

nological knowledge—may become a more significant
factor for a greatly increased number of machines, es-
pecially when the size of the corpus remains low. Simi-
larly, the amount of duplicates and/or dominated infer-
ences produced during reasoning increase along with
the number of machines: however, as discussed in Sec-
tion 7.4, the total amount of duplicates should converge
and become less of an issue for higher numbers of ma-
chines.

With respect to reasoning in general, our scalabil-
ity is predicated on the segment of terminological data
being relatively small and efficient to process and ac-
cess; note that for our corpus, we found that ∼0.1% of
our corpus was what we considered to be terminolog-
ical. Since all machines currently must have access to
all of the terminology—in one form or another, be it
the raw triples or partially evaluated rules—increasing
the number of machines in our setup does not increase
the amount of terminology the system can handle ef-
ficiently. Similarly, the terminology is very frequently
accessed, and thus the system must be able to service
lookups against it in a very efficient manner; currently,
we store the terminology/partially-evaluated rules in

memory, and with this approach, the scalability of our
system is a function of how much terminology can be
fit on the machine with the smallest main-memory in
the cluster. However, in situations where there is insuf-
ficient main memory to compute the task in this man-
ner, we believe that given the apparent power-law dis-
tribution for class and property memberships (see [37,
Figs. A.2 & A.3]), a cached on-disk index would work
sufficiently well, enjoying a high-cache hit rate and thus
a low average lookup time.

Also, although we know that the size of the mate-
rialised data is linear with respect to the assertional
data (cf. [32]), another limiting factor for scalability is
how much materialisation the terminology mandates—
or, put another way, how deep the taxonomic hierarchies
are under popularly instantiated classes and properties.
For the moment, with some careful pruning, the vol-
ume of materialised data roughly mirrors the volume of
input data; however, if, for example, the FOAF vocab-
ulary today added ten subclasses of foaf:Person, the
volume of authoritatively materialised data would dra-
matically increase.

Some of our algorithms require hashing on specific
triple elements to align the data required for joins on
specific machines; depending on the distribution of the
input identifiers, hash-based partitioning of data across
machines may lead to load balancing issues. In order to
avoid such issues, we do not hash on the predicate posi-
tion or object position of triples: otherwise, for example,
the slave machine that receives triples with the predi-
cate rdf:type or object foaf:Person would likely have
significantly more data to process than its peers (cf. [37,
Figs A.1 & A.2]). Instead, we only hash on subject or
context, arguing throughout the paper that hashing on

39

these elements does not cause notable data skew for out
current corpus—even still, this may become an issue if,
for example, the number of machines is significantly in-
creased, in which case, one may consider alternate data
distribution strategies, such as hashing over the entire
triple, etc.

Finally, many of our methods also rely on external
merge-sorts, which have the linearithmic complexity
O(nlog(n)); moving towards true Web(-of-Data)-scale,
the log(n) factor can become conspicuous with respect
to performance. Although log(n) grows rather slowly,
from a more immediate perspective, performance can
also depreciate as the number of on-disk sorted batches
required for external merge-sorts increases, which in
turn increases the movement of the mechanical disk arm
from batch to batch—at some point, a multi-pass merge-
sort may become more effective, although we have yet
to investigate low-level optimisations of this type. Sim-
ilarly, many operations on a micro-level—for example,
operations on individual resources (subject groups) or
batches of triples satisfying a join—are of higher com-
plexity; typically, these batches are processed in mem-
ory, which may not be possible given a different mor-
phology of data to that of our current corpus.

In any case, we believe that we have provided a sound
basis for scalable, distributed implementation of our
methods, given a non-trivial demonstration of scale and
feasibility for an input corpus in the order of a billion
triples of arbitrary Linked Data, and provided extensive
discussion on possible obstacles that may be encoun-
tered when considering further levels of scale.

9.3. Extending OWL 2 RL/RDF support

Our current subset of OWL 2 RL/RDF rules is chosen
since it (i) allows for reasoning via a triple-by-triple
scan, (ii) guarantees linear materialisation with respect
to the bulk of purely assertional data, and (iii) allows
for distributed assertional reasoning without any need
for coordination between machines (until aggregation
of the output).

First, we note that the logical framework presented in
Section 4 can also be used—without modification—for
rulesets containing multiple A-atoms in the body (A-
Box join rules). However, the distributed implementa-
tion for reasoning presented in Section 7, and the meth-
ods and implementation for repairing the corpus pre-
sented in Section 8, are based on the premise that the
original program only contains rules with zero or one
A-atoms in the body.

With respect to annotated reasoning, we note that

our local assertional reasoning algorithm (as per Algo-
rithm 1) can support A-Box join rules; this is discussed
in Section 7.1. However, in the worst case when sup-
porting such rules (and as given by the eq-rep-* OWL 2
RL/RDF rules), we may have to index the entire corpus
of assertional and inferred data, which would greatly
increase the expense of the current reasoning process.

Further, the growth in materialised data may become
quadratic when considering OWL 2 RL/RDF A-Box
join rules—such as prp-trp which supports transitivity.
In fact, the worst case for materialisation with respect
to OWL 2 RL/RDF rules is cubic, which can be demon-
strated with a simple example involving two triples:

(owl:sameAs, owl:sameAs, rdf:type)
(owl:sameAs, rdfs:domain, ex:BadHub)

Adding these two triples to any arbitrary RDF graph will
lead to the inference of all possible (generalised) triples
by the OWL 2 RL/RDF rules: i.e., the inference of C×
C ×C (a.k.a. the Herbrand base), where C ⊂ C is the
set of RDF constants mentioned in the OWL 2 RL/RDF
ruleset and the graph (a.k.a. the Herbrand universe). 44

Note however that not all multiple A-atom rules can
produce quadratic (or cubic) inferencing with respect
to assertional data: some rules (such as cls-int1, cls-
svf1) are what we call A-guarded, whereby (loosely) the
head of the rule contains only one variable not ground
by partial evaluation with respect to the terminology,
and thus the number of materialised triples that can be
generated for such a rule is linear with respect to the
assertional data.

Despite this, such A-guarded rules would not fit
neatly into our partial-indexing approach, and may re-
quire indexing of a significant portion of the assertional
data (and possibly all such data). Also, A-Box join
rules would not fit into our current distributed imple-
mentation, where assertional data must then be coordi-
nated between machines to ensure correct computation
of joins (e.g., as presented in [62]).

Assuming a setting whereby A-Box join rules could
be supported for classical (non-annotated) materiali-
sation, annotated reasoning would additionally require
each rule and fact to be associated with a set of anno-
tation tuples. As per the formal results of Section 4.3,
for deriving only optimal annotations with respect to
the presented annotation domain, each rule or fact need
only be associated with a maximum of four annota-
tion tuples; assuming our threshold, each rule or fact

44The rules required are the prp-dom rule for supporting
rdfs:domain and the eq-* rules for supporting the semantics of
owl:sameAs.

40

need only be associated with a single (optimal) rank
annotation—both of these annotation settings should
have a relatively small performance/scalability impact
for a reasoner supporting the classical inferences of a
larger subset of OWL 2 RL/RDF.

Finally, we note that our repair process currently does
not support A-Box join rules. Assuming that the original
program does not contain such rules allows for the sim-
plified scan-based procedure sketched in Section 8.1;
although we believe that certain aspects of our approach
may be re-used for supporting a fuller profile of OWL
2 RL/RDF, we leave the nature of this extension as an
open question.

10. Related work

In this section, we introduce related works in the var-
ious fields touched upon in this paper. We begin in Sec-
tion 10.1 by discussing related works in the field of an-
notated programs and annotated reasoning; we discuss
scalable and distributed RDF(S) and OWL reasoning in
Section 10.2, followed by Web-reasoning literature in
Section 10.3, and finally inconsistency repair in 10.4.

10.1. Annotated programs

With respect to databases, [26] proposed semiring
structures for propagating annotations through queries
and views in a generic way, particularly for prove-
nance annotations, but also applying this approach for
instance to probabilistic annotations, or annotations
modeling tuple cardinality (i.e., bag semantics). For
such forms of annotations, [26] gives an algorithm that
can decide query answers for annotated Datalog 45 —
materialisation in their general case, though, can be in-
finite. In contrast, our work focuses exactly on efficient
and scalable materialisation, however (i) in a very spe-
cialised setting of Datalog rules, (ii) for a less flexible
annotation structure, such that we can guarantee finite-
ness and scalability.

Cheney et al. [10] present a broad survey of prove-
nance techniques deployed in database approaches,
where they categorise provenance into (i) why-
provenance—annotations that model the raw tuples
from which answers/inferences were obtained, (ii) how
provenance—annotations that model the combinations
of raw tuples by which answers/inferences were ob-
tained, and (iii) where provenance—annotations that

45Here, only the ground data rather than the proper rules are anno-
tated.

model the combinations of source tuples from which an-
swers/inferences were obtained. In this categorisation,
the above mentioned provenance semirings of Green
et al. [26] fall into the so-called how-provenance ap-
proaches. We note, however, that our annotations are
orthogonal to all of these provenance notations of [10]:
although our annotations for authoritativeness and rank-
ing are informed by data provenance, our annotations do
not directly model or track “raw provenance”, although
we consider a scalable extension of our approach in this
manner an interesting direction for future research. 46

Perhaps of more immediate interest to us, in [41] the
authors of [26] extend their work with various annota-
tions related to provenance, such as confidence, rank,
relationships between triples (where, remarkably, they
also discuss—somewhat orthogonal to our respective
notion—authoritativeness). All of these are again mod-
elled using semirings, and an implementation is pro-
vided by means of translation to SQL.

In [7] the Datalog language has been extended with
weights that can represent metainformation relevant to
Trust Management systems, such as costs, preferences
and trust levels associated to policies or credentials.
Weights are taken from a c-semiring where the two op-
erations × and + are used, respectively, to compose
the weights associated to statements, and select the best
derivation chain. Some example of c-semirings are pro-
vided where weights assume the meaning of costs, prob-
abilities and fuzzy values. In all of these examples the
operator× is idempotent, so that the c-semiring induces
a complete lattice where + is the lub and × is the glb.
In these cases, by using our reasoning task opt(P), the
proposed framework can be naturally translated into our
annotated programs. The complexity of Weighted Data-
log is just sketched—only decidability is proven. Scala-
bility issues are not tackled and no experimental results
are provided.

More specifically with respect to RDF, in [22] the
provenance of inferred RDF data is tackled by augment-
ing triples with a fourth component named colour repre-
senting the collection of the different data sources used
to derive a triple. A binary operation + over colours
forms a semigroup; the provenance of derived triples
is the sum of the provenance of the supporting triples.
Clearly, also this framework can be simulated by our
annotated programs by adopting a flat lattice where all
of the elements (representing different provenances) are
mutually incomparable. Then, for each derived atom,

46Further, in our case we consider provenance as representing a
container of information—a Web document—rather than a “method
of derivation”.

41

plain(P) collects all of the provenances employed ac-
cording to [22]. Although the complexity analysis yields
an almost linear upper bound, no experimental results
are provided.

Dividino et al. [17] introduce RDF+: a language
which allows for expressing “meta-knowledge” about
the core set of facts expressed as RDF. Meta knowl-
edge can, for example, encode provenance information
such as the URL of an originating document, a times-
tamp, a certainty score, etc.; different properties of meta
knowledge are expressible in the framework as appro-
priate for different applications. The approach is based
on named graphs and internal statement identifiers; meta
statements are given as RDF triples where a statement
identifier appears as the subject. Semantics are given for
RDF+ through standard interpretations and interpreta-
tions for each individual property of meta knowledge;
mappings between RDF and RDF+ are defined. Unlike
us, Dividino et al. focus on extending SPARQL query
processing to incorporate such meta knowledge: they do
not consider, e.g., OWL semantics for reasoning over
such meta knowledge. Later results by Schenk et al. [56]
look at reasoning and debugging meta-knowledge using
the Pellet (OWL DL) reasoner, but only demonstrate
evaluation over ontologies in the order of thousands of
axioms.

Lopes et al. [49] define a general annotation frame-
work for RDFS, together with AnQL: a query lan-
guage inspired by SPARQL which includes querying
over annotations. Annotations are formalised in terms
of residuated bounded lattices, which can be specialised
to represent different types of meta-information (tem-
poral constraints, fuzzy values, provenance etc.). A
general deductive system—based on abstract algebraic
structures—has been provided and proven to be in
PTIME as far as the operations defined in the struc-
ture can be computed in polynomial time. The Anno-
tated RDFS framework enables the representation of a
large spectrum of different meta-information. Some of
them—in particular those where an unbounded number
of different values can be assigned to an inferred triple—
do not fit our framework. On the other hand, the frame-
work of [49] is strictly anchored to RDFS, while our an-
notated programs are founded on OWL 2 RL/RDF and
hence are transversable with respect to the underlying
ontology language. Moreover, our results place more
emphasis on scalability. Along similar lines, work pre-
sented in [9] also focuses on the definition of a general
algebra for annotated RDFS, rather than on computa-
tional aspects which we are concerned about here.

10.2. Scalable/distributed reasoning

From the perspective of scalable RDF(S)/OWL rea-
soning, one of the earliest engines to demonstrate rea-
soning over datasets in the order of a billion triples was
the commercial system BigOWLIM [6], which is based
on a scalable and custom-built database management
system over which a rule-based materialisation layer
is implemented, supporting fragments such as RDFS
and pD*, and more recently OWL 2 RL/RDF. Most
recent results claim to be able to load 12b statements
of the LUBM synthetic benchmark, and 20.5b state-
ments statements inferrable by pD* rules on a machine
with 2x Xeon 5430 (2.5GHz, quad-core), and 64GB
(FB-DDR2) of RAM. 47 We note that this system has
been employed for relatively high-profile applications,
including use as the content management system for a
live BBC World Cup site. 48 BigOWLIM features dis-
tribution, but only as a replication strategy for fault-
tolerance and supporting higher query load.

The Virtuoso SPARQL engine [19] features sup-
port for inference rules; details of implementation are
sketchy, but the rdfs:subClassOf, rdfs:subProperty-
Of, owl:equivalentClass, owl:equivalentProperty

and owl:sameAs primitives are partially supported by
a form of internal backward-chaining, and other user-
defined rules—encoded in SPARQL syntax—can also
be passed to the engine. 49

A number of other systems employ a similar strat-
egy to ours for distributed RDFS/OWL reasoning: i.e.,
separating out terminological data, flooding these data
to all machines, and applying parallel reasoning over
remote segments of the assertional data.

One of the earliest such distributed reasoning ap-
proaches is DORS [20], which uses DHT-based parti-
tioning to split the input corpus over a number of nodes.
Data segments are stored in remote databases, where
a tableaux-based reasoner is used to perform reason-
ing over the T-Box, and where a rule-based reasoner is
used to perform materialisation. Since they apply the
DLP ruleset [27]—which contains rules with multiple
A-atoms—the nodes in their distributed system must
coordinate to perform the required assertional joins,
which again is performed using DHT-based partition-
ing. However, they hash assertional data based on the

47http://www.ontotext.com/owlim/benchmarking/
lubm.html
48http://www.readwriteweb.com/archives/bbc_
world_cup_website_semantic_technology.php
49http://docs.openlinksw.com/virtuoso/
rdfsparqlrule.html

42

predicate and the value of rdf:type which would cause
significant data-skew for Linked Data corpora (cf. [37,
Figs. A.2 & A.3]). Their evaluation is with respect to
∼2m triples of synthetically generated data on up to 32
nodes.

Weaver & Hendler [65] discuss a similar approach for
distributed materialisation with respect to RDFS—they
also describe a separation of terminological (what they
call ontological) data from assertional data. Thereafter,
they identify that all RDFS rules have only one asser-
tional atom and, like us, use this as the basis for a scal-
able distribution strategy: they flood the terminological
data and split the assertional data over their machines.
Inferencing is done over an in-memory RDF store. They
evaluate their approach over a LUBM-generated syn-
thetic corpus of 345.5m triples using a maximum of
128 machines (each with two dual-core 2.6 GHz AMD
Opteron processors and 16 GB memory); with this
setup, reasoning in memory takes just under 5 minutes,
producing 650m triples.

Urbani et al. [63] use MapReduce [13] for distributed
RDFS materialisation over 850m Linked Data triples.
They also consider a separation of terminological (what
they call schema) data from assertional data as a core op-
timisation of their approach, and—likewise with [65]—
identify that RDFS rules only contain one assertional
atom. As a pre-processing step, they sort their data by
subject to reduce duplication of inferences. Based on
inspection of the rules, they also identify an ordering
(stratification) of RDFS rules which (again assuming
standard usage of the RDFS meta-vocabulary) allows
for completeness of results without full recursion—
unlike us, they do reasoning on a per-rule basis as op-
posed to our per-triple basis. Unlike us, they also use a
8-byte dictionary encoding of terms. Using 32 machines
(each with 4 cores and 4 GB of memory) they infer 30b
triples from 865m triples in less than one hour; how-
ever, they do not materialise or decode the output—a
potentially expensive process. Note that they do not in-
clude any notion of authority (although they mention
that in future, they may include such analysis): they at-
tempted to apply pD* on 35m Web triples and stopped
after creating 3.8b inferences in 12hrs, lending strength
to our arguments for authoritative reasoning.

In more recent work [62], (approximately) the same
authors revisit the topic of materialisation with respect
to pD*. They again use a separation of terminolog-
ical data from assertional data as the basis for scal-
able distributed reasoning, but since pD* contains rules
with multiple A-atoms, they define bespoke MapReduce
procedures to handle each such rule, some of which
are similar in principle to those presented in [36] (and

later on) such as canonicalisation of terms related by
owl:sameAs. They demonstrate their methods over three
datasets; (i) 1.51b triples of UniProt data, generating
2.03b inferences in 6.1hrs using 32 machines; (ii) 0.9b
triples of LDSR data (discussed later), generating 0.94b
inferences in 3.52hrs using 32 machines; (iii) 102.5b
triples of synthetic LUBM data, generating 47.6b in-
ferences in 45.7hrs using 64 machines. The latter ex-
periment is two orders of magnitude above our current
experiments, and features rules which require A-Box
joins; however, the authors do not look at open Web
data, stating that “reasoning over arbitrary triples re-
trieved from the Web would result in useless and un-
realistic derivations” [62]. They do, however, mention
the possibility of including our authoritative reasoning
algorithm in their approach, in order to prevent such
adverse affects.

In very recent work [46], Kolovski et al. have pre-
sented an (Oracle) RDBMS-based OWL 2 RL/RDF ma-
terialisation approach. They again use some similar op-
timisations to the scalable reasoning literature, includ-
ing parallelisation, canonicalisation of owl:sameAs in-
ferences, and also partial evaluation of rules based on
highly selective patterns—from discussion in the pa-
per, these selective patterns seem to correlate with the
terminological patterns of the rule. They also discuss
many low-level engineering optimisations and Oracle
tweaks to boost performance. Unlike the approaches
mentioned thus far, Kolovski et al. tackle the issue of
updates, proposing variants of semi-naı̈ve evaluation to
avoid rederivations. The authors evaluate their work for
a number of different datasets and hardware configura-
tions; the largest scale experiment they present consists
of applying OWL 2 RL/RDF materialisation over 13
billion triples of LUBM using 8 nodes (Intel Xeon 2.53
GHz CPU, 72GB memory each) in just under 2 hours.

10.3. Web reasoning

As previously mentioned, in [63], the authors discuss
reasoning over 850m Linked Data triples—however,
they only do so over RDFS and do not consider any
issues relating to provenance.

In [43], the authors apply reasoning over 0.9b Linked
Data triples using the aforementioned BigOWLIM rea-
soner; however, this dataset is manually selected as a
merge of a number of smaller, known datasets as op-
posed to an arbitrary corpus—they do not consider any
general notions of provenance or Web tolerance. (As
aforementioned, the WebPie system [62] has also been
applied over the LDSR dataset.)

43

In a similar approach to our authoritative analysis,
Cheng et al. [12] introduced restrictions for accepting
sub-class and equivalent-class axioms from third-party
sources; they follow similar arguments to that made in
this paper. However, their notion of what we call au-
thoritativeness is based on hostnames and does not con-
sider redirects; we argue that both simplifications are not
compatible with the common use of PURL services 50 :
(i) all documents using the same service (and having
the same namespace hostname) would be ‘authorita-
tive’ for each other, (ii) the document cannot be served
directly by the namespace location, but only through
a redirect. Indeed, further work presented in [11] bet-
ter refined the notion of an authoritative description
to one based on redirects—and one which aligns very
much with our notion of authority. They use their no-
tion of authority to do reasoning over class hierarchies,
but only include custom support of rdfs:subClassOf

and owl:equivalentClass, as opposed to our general
framework for authoritative reasoning over arbitrary T-
split rules.

A viable alternative approach to authority—and
which also looks more generally at provenance for
Web reasoning—is that of “quarantined reasoning”, de-
scribed in [14]. The core intuition is to consider ap-
plying reasoning on a per-document basis, taking each
Web document and its recursive (implicit and explicit)
imports and applying reasoning over the union of these
documents. The reasoned corpus is then generated as
the merge of these per-document closures. In contrast
to our approach where we construct one authoritative
terminological model for all Web data, their approach
uses a bespoke trusted model for each document; thus,
they would infer statements within the local context
which we would consider to be non-authoritative, but
our model is more flexible for performing inference over
the merge of documents. 51 As such, they also con-
sider a separation of terminological and assertional data;
in this case ontology documents and data documents.
Their evaluation was performed in parallel using three
machines (quad-core 2.33GHz CPU with 8GB memory
each); they reported loading, on average, 40 documents
per second.

50http://purl.org/
51Although it should be noted that without considering rules with
assertional joins, our ability to make inferences across documents
is somewhat restricted.

10.4. Inconsistency repair

Most legacy works in this area (e.g., see DION
and MUPSTER [57] and a repair tool for unsatisfiable
concepts in Swoop [40]) focus on debugging singu-
lar OWL ontologies within a Description Logics for-
malism, in particular focussing on fixing terminologies
(T-Boxes) which include unsatisfiable concepts—not of
themselves an inconsistency, but usually indicative of a
modelling error (termed incoherence) in the ontology.
Such approaches usually rely on the extraction and anal-
ysis of MUPs (Minimal Unsatisfiability Preserving Sub-
terminologies) and MIPs (Minimal Incoherence Pre-
serving Sub-terminologies), usually to give feedback to
the ontology editor during the modelling process. How-
ever, these approaches again focus on debugging termi-
nologies, and have been shown in theory and in prac-
tice to be expensive to compute—please see [59] for a
survey (and indeed critique) of such approaches.

There are a variety of other approaches for handling
inconsistencies in OWL ontologies, including works on
paraconsistent reasoning using multi-valued, probabal-
istic, or possibilistic appraoches, by, e.g., Ma et al. [52],
Zhang et al. [67], Huang et al. [39], Qi et al. [54], etc. 52

However, all such approaches are again based on De-
scription Logics formalisms, and only demonstrate eval-
uation over one (or few) ontologies containing in the
order of thousands, tens of thousands, up to hundreds
of thousands of axioms.

11. Conclusion

In this paper, we have given a comprehensive dis-
cussion on methods for incorporating notions of prove-
nance during Linked Data reasoning. In particular, we
identified three dimensions of trust-/provenance-related
annotations for data: viz. (i) blacklisting, where a par-
ticular source or type of information is distrusted and
should not be considered during reasoning or be in-
cluded in the final corpus; (ii) authoritativeness which
analyses the source of terminological facts to deter-
mine whether assertional inferences they mandate can
be trusted; (iii) ranking which leverages the well-known
PageRank algorithm for links-based analysis of the
source-level graph, where ranking values are subse-
quently propagated to facts in the corpus.

We continued by discussing a formal framework
based on annotated logic programs for tracking these

52For a survey of the use of multi-valued, probabilistic and possi-
bilistic approaches for uncertainty in Descrption Logics, see [50].

44

dimensions of trust and provenance during the reason-
ing procedure. We gave various formal properties of the
program—some specific to our domain of annotation,
some not—which demonstrated desirable properties re-
lating to termination, growth of the program, and effi-
cient implementation. Later, we provided a use-case for
our annotations involving detection and repair of incon-
sistencies.

We introduced our distribution framework for imple-
menting and running our algorithms over a cluster of
commodity hardware, subsequently detailing non-trivial
implementations for deriving rank annotations, for ap-
plying reasoning wrt. the defined logic program, for de-
tecting inconsistencies in the corpus, and for leveraging
the annotations in repairing inconsistencies. All of our
methods were individually justified by evaluation over a
1.118b quadruple Linked Data corpus, with a consistent
unbroken thread of evaluation throughout. In so doing,
we have looked at non-trivial application and analysis
of Linked Data principles, links-based analysis, anno-
tated logic programs, OWL 2 RL/RDF rules (including
the oft overlooked constraint rules), and inconsistency
repair techniques, incorporating them into a coherent
system for scalable and tolerant Web reasoning.

As the Web of Data expands and diversifies, the need
for reasoning will grow more and more apparent, as will
the implied need for methods of handling and incorpo-
rating notions of trust and provenance which scale to
large corpora, and which are tolerant to spamming and
other malicious activity. We hope that this paper repre-
sents a significant step forward with respect to research
into scalable Web-tolerant reasoning techniques which
incorporate provenance and trust.

Acknowledgements We would like to thank Antoine
Zimmermann for providing feedback on earlier drafts of
this paper. We would also like to thank the anonymous
reviewers and the editors for their time and comments.
The work presented in this paper has been funded in
part by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2), and by an IRCSET post-
graduate scholarship.

References

[1] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou.
Objectrank: authority-based keyword search in databases. In
Proceedings of the 13th International Conference on Very Large
Data Bases, pages 564–575, 2004.

[2] David Beckett and Tim Berners-Lee. Turtle – Terse RDF Triple
Language. W3C Team Submission, January 2008. http:
//www.w3.org/TeamSubmission/turtle/.

[3] Tim Berners-Lee. Linked Data. Design issues for the World
Wide Web, World Wide Web Consortium, 2006. http://
www.w3.org/DesignIssues/LinkedData.html.

[4] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform
Resource Identifier (URI): Generic Syntax. RFC 3986, January
2005. http://tools.ietf.org/html/rfc3986.

[5] Mark Birbeck and Shane McCarron. CURIE Syntax 1.0 – A
syntax for expressing Compact URIs. W3C Recommendation,
January 2009. http://www.w3.org/TR/curie/.

[6] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan
Peikov, Zdravko Tashev, and Ruslan Velkov. OWLIM: A
family of scalable semantic repositories. Semantic Web
Journal, 2011. In press; available at http://www.
semantic-web-journal.net/sites/default/
files/swj97_0.pdf.

[7] Stefano Bistarelli, Fabio Martinelli, and Francesco Santini.
Weighted Datalog and Levels of Trust. In Proceedings
of the The Third International Conference on Availability,
Reliability and Security, ARES 2008, March 4-7, 2008,
Technical University of Catalonia, Barcelona , Spain, pages
1128–1134, 2008.

[8] Sergey Brin and Lawrence Page. The Anatomy of a Large-
Scale Hypertextual Web Search Engine. Computer Networks,
30(1-7):107–117, 1998.

[9] Peter Buneman and Egor Kostylev. Annotation algebras for
rdfs. In The Second International Workshop on the role of
Semantic Web in Provenance Management (SWPM-10). CEUR
Workshop Proceedings, 2010.

[10] James Cheney, Laura Chiticariu, and Wang-Chiew Tan.
Provenance in Databases: Why, How, and Where. Foundations
and Trends in Databases, 1:379–474, April 2009.

[11] Gong Cheng, Weiyi Ge, Honghan Wu, and Yuzhong Qu.
Searching Semantic Web Objects Based on Class Hierarchies.
In Proceedings of Linked Data on the Web Workshop, 2008.

[12] Gong Cheng and Yuzhong Qu. Term Dependence on the
Semantic Web. In International Semantic Web Conference,
pages 665–680, oct 2008.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, pages 137–150,
2004.

[14] Renaud Delbru, Axel Polleres, Giovanni Tummarello, and
Stefan Decker. Context Dependent Reasoning for Semantic
Documents in Sindice. In Proc. of 4th SSWS Workshop, October
2008.

[15] Renaud Delbru, Nickolai Toupikov, Michele Catasta, Giovanni
Tummarello, and Stefan Decker. Hierarchical Link Analysis
for Ranking Web Data. In ESWC (2), pages 225–239, 2010.

[16] Li Ding, Rong Pan, Timothy W. Finin, Anupam Joshi, Yun
Peng, and Pranam Kolari. Finding and Ranking Knowledge on
the Semantic Web. In International Semantic Web Conference,
pages 156–170, 2005.

[17] Renata Queiroz Dividino, Sergej Sizov, Steffen Staab, and
Bernhard Schueler. Querying for provenance, trust, uncertainty
and other meta knowledge in RDF. J. Web Sem., 7(3):204–219,
2009.

[18] Michael Schneider (ed.). OWL 2 Web Ontology Language:
RDF-Based Semantics. W3C Working Draft, October 2009.
http://www.w3.org/TR/2009/
REC-owl2-rdf-based-semantics-20091027/.

[19] Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso
DBMS. In Networked Knowledge – Networked Media, volume
221 of Studies in Computational Intelligence, pages 7–24.
Springer, 2009.

45

[20] Qiming Fang, Ying Zhao, Guangwen Yang, and Weimin Zheng.
Scalable Distributed Ontology Reasoning Using DHT-Based
Partitioning. In ASWC, pages 91–105, 2008.

[21] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik
Frystyk, Larry Masinter, Paul J. Leach, and Tim Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June
1999. http://www.ietf.org/rfc/rfc2616.txt.

[22] Giorgos Flouris, Irini Fundulaki, Panagiotis Pediaditis, Yannis
Theoharis, and Vassilis Christophides. Coloring RDF Triples
to Capture Provenance. In The Semantic Web - ISWC 2009, 8th
International Semantic Web Conference, ISWC 2009, Chantilly,
VA, USA, October 25-29, 2009. Proceedings, pages 196–212,
2009.

[23] Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen
Staab. Triplerank: Ranking semantic web data by tensor
decomposition. In International Semantic Web Conference,
pages 213–228, 2009.

[24] David Gleich, Leonid Zhukov,
and Pavel Berkhin. Fast Parallel PageRank: A Linear System
Approach. Technical Report YRL-2004-038, Yahoo! Research
Labs, 2004. http://www.stanford.edu/˜dgleich/
publications/prlinear-dgleich.pdf.

[25] Bernardo Cuenca Grau, Boris Motik, Zhe Wu, Achille Fokoue,
and Carsten Lutz (eds.). OWL 2 Web Ontology Language:
Profiles. W3C Working Draft, April 2008. http://www.
w3.org/TR/owl2-profiles/.

[26] Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance semirings. In Proceedings of the Twenty-Sixth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’07), pages 31–40, Beijing, China,
June 2007. ACM Press.

[27] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description
Logic Programs: Combining Logic Programs with Description
Logic. In 13th International Conference on World Wide Web,
2004.

[28] Christophe Guéret, Paul T. Groth, Frank van Harmelen, and
Stefan Schlobach. Finding the Achilles Heel of the Web of
Data: Using Network Analysis for Link-Recommendation. In
International Semantic Web Conference (1), pages 289–304,
2010.

[29] Andreas Harth, Sheila Kinsella, and Stefan Decker. Using
Naming Authority to Rank Data and Ontologies for Web Search.
In International Semantic Web Conference, pages 277–292,
2009.

[30] Patrick Hayes. RDF semantics. W3C Recommendation,
February 2004. http://www.w3.org/TR/rdf-mt/.

[31] Pascal Hitzler and Frank van Harmelen. A Reasonable Semantic
Web. Semantic Web Journal, 1(1), 2010. (to appear – available
from http://www.semantic-web-journal.net/).

[32] Aidan Hogan. Exploiting RDFS and OWL for Integrating
Heterogeneous, Large-Scale, Linked Data Corpora. PhD
thesis, Digital Enterprise Research Institute, National University
of Ireland, Galway, 2011. Available from http://
aidanhogan.com/docs/thesis/.

[33] Aidan Hogan, Andreas Harth, and Stefan Decker. ReConRank:
A Scalable Ranking Method for Semantic Web Data with
Context. In 2nd Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2006), 2006.

[34] Aidan Hogan, Andreas Harth, and Stefan Decker. Performing
Object Consolidation on the Semantic Web Data Graph. In
1st I3 Workshop: Identity, Identifiers, Identification Workshop,
2007.

[35] Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan
Decker, and Axel Polleres. Weaving the Pedantic Web. In
3rd International Workshop on Linked Data on the Web
(LDOW2010), Raleigh, USA, April 2010.

[36] Aidan Hogan, Andreas Harth, and Axel Polleres. Scalable
Authoritative OWL Reasoning for the Web. Int. J. Semantic
Web Inf. Syst., 5(2):49–90, 2009.

[37] Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella,
Axel Polleres, and Stefan Decker. Searching and Browsing
Linked Data with SWSE: the Semantic Web Search Engine.
Technical Report DERI-TR-2010-07-23, Digital Enterprise
Research Institute (DERI), 2010. http://www.deri.ie/
fileadmin/documents/DERI-TR-2010-07-23.pdf.

[38] Aidan Hogan, Jeff Z. Pan, Axel Polleres, and Stefan Decker.
SAOR: Template Rule Optimisations for Distributed Reasoning
over 1 Billion Linked Data Triples. In International Semantic
Web Conference, 2010.

[39] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije.
Reasoning with Inconsistent Ontologies. In IJCAI, pages 454–
459, 2005.

[40] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and
Bernardo Cuenca Grau. Repairing unsatisfiable concepts in owl
ontologies. In ESWC, pages 170–184, 2006.

[41] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen.
Querying data provenance. In Proceedings of the
2010 International Conference on Management of Data
(SIGMOD’10), pages 951–962, New York, NY, USA, 2010.
ACM.

[42] Michael Kifer and V. S. Subrahmanian. Theory of Generalized
Annotated Logic Programming and its Applications. J. Log.
Program., 12(3&4), 1992.

[43] Atanas Kiryakov, Damyan Ognyanoff, Ruslan Velkov, Zdravko
Tashev, and Ivan Peikov. LDSR: a Reason-able View to the
Web of Linked Data. In Semantic Web Challenge (ISWC2009),
2009.

[44] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked
Environment. Journal of the ACM, 46(5):604–632, 1999.

[45] Christian Kohlschütter, Paul-Alexandru Chirita, and Wolfgang
Nejdl. Efficient Parallel Computation of PageRank. In ECIR,
pages 241–252, 2006.

[46] Vladimir Kolovski, Zhe Wu, and George Eadon. Optimizing
Enterprise-scale OWL 2 RL Reasoning in a Relational Database
System. In International Semantic Web Conference, 2010.

[47] Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Mind the
Data Skew: Distributed Inferencing by Speeddating in Elastic
Regions. In WWW, pages 531–540, 2010.

[48] John W. Lloyd. Foundations of Logic Programming (2nd
edition). Springer-Verlag, 1987.

[49] Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine
Zimmermann. AnQL: SPARQLing Up Annotated RDFS. In
The Semantic Web - ISWC 20010, 9th International Semantic
Web Conference, ISWC 2010, Shangai, Cina, November 7-11,
to appear. Proceedings, 2010.

[50] Thomas Lukasiewicz and Umberto Straccia. Managing
uncertainty and vagueness in description logics for the Semantic
Web. J. Web Sem., 6(4):291–308, 2008.

[51] Yue Ma and Pascal Hitzler. Paraconsistent reasoning for owl
2. In Third International Conference on Web Reasoning and
Rule Systems (RR2009), pages 197–211, 2009.

[52] Yue Ma, Pascal Hitzler, and Zuoquan Lin. Algorithms for
Paraconsistent Reasoning with OWL. In ESWC, pages 399–
413, 2007.

46

[53] Axel Polleres and David Huynh, editors. Journal of Web
Semantics, Special Issue: The Web of Data, volume 7(3).
Elsevier, 2009.

[54] Guilin Qi, Qiu Ji, Jeff Z. Pan, and Jianfeng Du. Extending
description logics with uncertainty reasoning in possibilistic
logic. Int. J. Intell. Syst., 26(4):353–381, 2011.

[55] Raymond Reiter. A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[56] Simon Schenk, Renata Queiroz Dividino, and Steffen Staab.
Reasoning With Provenance, Trust and all that other Meta
Knowledge in OWL. In SWPM, 2009.

[57] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank
van Harmelen. Debugging Incoherent Terminologies. J. Autom.
Reasoning, 39(3):317–349, 2007.

[58] Michael Stonebraker. The Case for Shared Nothing. IEEE
Database Eng. Bull., 9(1):4–9, 1986.

[59] Heiner Stuckenschmidt. Debugging owl ontologies - a reality
check. In EON, 2008.

[60] J. D. Ullman. Principles of Database and Knowledge Base
Systems. Computer Science Press, New York, NY, USA, 1989.

[61] Jeffrey D. Ullman. Principles of Database and Knowledge
Base Systems. Computer Science Press, 1989.

[62] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van
Harmelen, and Henri E. Bal. OWL Reasoning with WebPIE:
Calculating the Closure of 100 Billion Triples. In ESWC (1),
pages 213–227, 2010.

[63] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van
Harmelen. Scalable Distributed Reasoning Using MapReduce.
In International Semantic Web Conference, pages 634–649,
2009.

[64] Denny Vrandečı́c, Markus Krötzsch, Sebastian Rudolph, and
Uta Lösch. Leveraging non-lexical knowledge for the linked
open data web. Review of April Fool’s day Transactions (RAFT),
5:18–27, 2010.

[65] Jesse Weaver and James A. Hendler. Parallel Materialization of
the Finite RDFS Closure for Hundreds of Millions of Triples.
In International Semantic Web Conference (ISWC2009), pages
682–697, 2009.

[66] Eyal Yardeni and Ehud Y. Shapiro. A Type System for Logic
Programs. J. Log. Program., 10(1/2/3&4):125–153, 1991.

[67] Xiaowang Zhang, Guohui Xiao, and Zuoquan Lin. A Tableau
Algorithm for Handling Inconsistency in OWL. In ESWC,
pages 399–413, 2009.

47

Appendix A. Rule Tables

Herein, we list the subset of OWL 2 RL/RDF rules we
apply in our scenario categorised by the assertional and
terminological arity of the rule bodies, including rules
with no antecedent (Table A.1), rules with only T-atoms
in the body (Table A.2), rules with only a single A-atom
in the body (Table A.3), and rules with some T-atoms
and a single A-atom in the body (Table A.4). Also, in
Table A.5, we give an indication as to how recursive
application of rules in Table A.4 can be complete, even
if the inferences from rules in Table A.2 are omitted.
Finally, in Table A.6, we give the OWL 2 RL/RDF rules
used for consistency checking.

Body(R) = ∅
OWL2RL Consequent Notes

prp-ap ?p a owl:AnnotationProperty .
For each built-in
annotation property

cls-thing owl:Thing a owl:Class . -
cls-nothing owl:Nothing a owl:Class . -
dt-type1 ?dt a rdfs:Datatype . For each built-in datatype

dt-type2 ?l a ?dt .
For all ?l in the value
space of datatype ?dt

dt-eq ?l1 owl:sameAs ?l2 .
For all ?l1 and ?l2 with
the same data value

dt-diff ?l1 owl:differentFrom ?l2 .
For all ?l1 and ?l2 with
different data values

Table A.1
Rules with empty body (axiomatic triples); we strike out the
datatype rules which we currently do not support

TBody(R) 6= ∅, ABody(R) = ∅

OWL2RL Antecedent Consequent
terminological

cls-00 ?c owl:oneOf (?x1 ...?xn) . ?x1 ...?xn a ?c .

scm-cls ?c a owl:Class .

?c rdfs:subClassOf ?c ;
rdfs:subClassOf owl:Thing ;
owl:equivalentClass ?c .

owl:Nothing rdfs:subClassOf ?c .

scm-sco ?c1 rdfs:subClassOf ?c2 .
?c1 rdfs:subClassOf ?c3 .

?c2 rdfs:subClassOf ?c3 .

scm-eqc1 ?c1 owl:equivalentClass ?c2 .
?c1 rdfs:subClassOf ?c2 .
?c2 rdfs:subClassOf ?c1 .

scm-eqc2 ?c1 rdfs:subClassOf ?c2 .
?c1 owl:equivalentClass ?c2 .

?c2 rdfs:subClassOf ?c1 .

scm-op ?p a owl:ObjectProperty .
?p rdfs:subPropertyOf ?p .
?p owl:equivalentProperty ?p .

scm-dp ?p a owl:DatatypeProperty .
?p rdfs:subPropertyOf ?p .
?p owl:equivalentProperty ?p .

scm-spo ?p1 rdfs:subPropertyOf ?p2 .
?p1 rdfs:subPropertyOf ?p3 .

?p2 rdfs:subPropertyOf ?p3 .

scm-eqp1 ?p1 owl:equivalentProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .
?p2 rdfs:subPropertyOf ?p1 .

scm-eqp2 ?p1 rdfs:subPropertyOf ?p2 .
?p1 owl:equivalentProperty ?p2 .

?p2 rdfs:subPropertyOf ?p1 .

scm-dom1 ?p rdfs:domain ?c1 .
?p rdfs:domain ?c2 .

?c1 rdfs:subClassOf ?c2 .

scm-dom2 ?p2 rdfs:domain ?c .
?p1 rdfs:domain ?c .

?p1 rdfs:subPropertyOf ?p2 .

scm-rng1 ?p rdfs:range ?c1 .
?p rdfs:range ?c2 .

?c1 rdfs:subClassOf ?c2 .

scm-rng2 ?p2 rdfs:range ?c .
?p1 rdfs:range ?c .

?p1 rdfs:subPropertyOf ?p2 .

scm-hv

?c1 owl:hasValue ?i ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p1 .

?c2 owl:hasValue ?i ;
owl:onProperty ?p2 .

?p1 rdfs:subPropertyOf ?p2 .

scm-svf1

?c1 owl:someValuesFrom ?y1 ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p .

?c2 owl:someValuesFrom ?y2 ;
owl:onProperty ?p .

?y1 rdfs:subClassOf ?y2 .

scm-svf2

?c1 owl:someValuesFrom ?y ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p1 .

?c2 owl:someValuesFrom ?y ;
owl:onProperty ?p2 .

?p1 rdfs:subPropertyOf ?p2 .

scm-avf1

?c1 owl:allValuesFrom ?y1 ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p .

?c2 owl:allValuesFrom ?y2 ;
owl:onProperty ?p .

?y1 rdfs:subClassOf ?y2 .

scm-avf2

?c1 owl:allValuesFrom ?y ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p1 .

?c2 owl:allValuesFrom ?y ;
owl:onProperty ?p2 .

?p1 rdfs:subPropertyOf ?p2 .
scm-int ?c owl:intersectionOf (?c1 ...?cn) . ?c rdfs:subClassOf ?c1 ...?cn .
scm-uni ?c owl:unionOf (?c1 ...?cn) . ?c1 ...?cn rdfs:subClassOf ?c .

Table A.2
Rules containing only T-atoms in the body

ABody(R) 6= ∅,TBody(R) = ∅

OWL2RL Antecedent Consequent
assertional

eq-ref ?s ?p ?o .
?s owl::sameAs ?s .
?p owl::sameAs ?p .
?o owl::sameAs ?o .

eq-sym ?x owl::sameAs ?y . ?y owl::sameAs ?x .

Table A.3
Rules containing no T-atoms, but one A-atom in the body; we
strike out the rule supporting the reflexivity of equality which
we choose not to support since it adds a large bulk of trivial
inferences to the set of materialised facts

48

TBody(R) 6= ∅ and |ABody(R)| = 1

OWL2RL Antecedent Consequent
terminological assertional

prp-dom ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .
prp-rng ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .
prp-symp ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp1 ?p1 owl:equivalentProperty ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp2 ?p1 owl:equivalentProperty ?p2 . ?x ?p2 ?y . ?x ?p1 ?y .
prp-inv1 ?p1 owl:inverseOf ?p2 . ?x ?p1 ?y . ?y ?p2 ?x .
prp-inv2 ?p1 owl:inverseOf ?p2 . ?x ?p2 ?y . ?y ?p1 ?x .
cls-int2 ?c owl:intersectionOf (?c1 ...?cn) . ?x a ?c . ?x a ?c1 ...?cn .
cls-uni ?c owl:unionOf (?c1 ...?ci ...?cn) . ?x a ?ci ?x a ?c .

cls-svf2 ?x owl:someValuesFrom owl:Thing ;
?u ?p ?v . ?u a ?x .

owl:onProperty ?p .

cls-hv1 ?x owl:hasValue ?y ;
?u a ?x . ?u ?p ?y .

owl:onProperty ?p .

cls-hv2 ?x owl:hasValue ?y ;
?u ?p ?y . ?u a ?x .

owl:onProperty ?p .
cax-sco ?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc1 ?c1 owl:equivalentClass ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc2 ?c1 owl:equivalentClass ?c2 . ?x a ?c2 . ?x a ?c1 .

Table A.4
Rules containing some T-atoms and precisely one A-atom in the
body with authoritative variable positions in bold

OWL2RL partially covered by recursive rule(s)
scm-cls incomplete for owl:Thing membership inferences
scm-sco cax-sco
scm-eqc1 cax-eqc1, cax-eqc2
scm-eqc2 cax-sco
scm-op no unique assertional inferences
scm-dp no unique assertional inferences
scm-spo prp-spo1
scm-eqp1 prp-eqp1, prp-eqp2
scm-eqp2 prp-spo1
scm-dom1 prp-dom, cax-sco
scm-dom2 prp-dom, prp-spo1
scm-rng1 prp-rng, cax-sco
scm-rng2 prp-rng, prp-spo1
scm-hv prp-rng, prp-spo1
scm-svf1 incomplete: cls-svf1, cax-sco
scm-svf2 incomplete: cls-svf1, prp-spo1
scm-avf1 incomplete: cls-avf, cax-sco
scm-avf2 incomplete: cls-avf, prp-spo1
scm-int cls-int2
scm-uni cls-uni

Table A.5
Informal indication of the coverage in case of the omission of
rules in Table A.2 wrt. inferencing over assertional knowledge by
recursive application of rules in Table A.4: underlined rules are
not supported, and thus we would encounter incompleteness wrt.
assertional inference (would not affect a full OWL 2 RL/RDF
reasoner which includes the underlined rules).

Head(R) = ⊥

OWL2RL Antecedent
terminological assertional

eq-diff1 -
?x owl:sameAs ?y .
?x owl:differentFrom ?y .

eq-diff2 -
?x a owl:AllDifferent ;
owl:members (?z1 ...?zn) .
?zi owl:sameAs ?zj . (i6=j)

eq-diff3 -
?x a owl:AllDifferent ;
owl:distinctMembers (?z1 ...?zn) .
?zi owl:sameAs ?zj . (i6=j)

eq-irpa - ?x owl:differentFrom ?x .
prp-irp ?p a owl:IrreflexiveProperty . ?x ?p ?x .
prp-asyp ?p a owl:AsymmetricProperty ?x ?p ?y . ?y ?p ?x .
prp-pdw ?p1 owl:propertyDisjointWith ?p2 . ?x ?p1 ?y ; ?p2 ?y .

prp-adp ?x a owl:AllDisjointProperties .
?u ?pi ?y ; ?pj ?y . (i 6=j)

?x owl:members (...?pi ...?pj ...) .

prp-npa1 -

?x owl:sourceIndividual ?i1 .
?x owl:assertionProperty ?p .
?x owl:targetIndividual ?i2 .
?i1 ?p ?i2 .

prp-npa2 -

?x owl:sourceIndividual ?i .
?x owl:assertionProperty ?p .
?x owl:targetValue ?lt .
?i ?p ?lt .

cls-nothing2 - ?x a owl:Nothing .
cls-com ?c1 owl:complementOf ?c2 . ?x a ?c1 , ?c2 .

cls-maxc1 ?x owl:maxCardinality 0 .
?u a ?x ; ?p ?y .

?x owl:onProperty ?p .

cls-maxqc1
?x owl:maxQualifiedCardinality 0 .

?u a ?x ; ?p ?y . ?y a ?c .?x owl:onProperty ?p .
?x owl:onClass ?c .

cls-maxqc2
?x owl:maxQualifiedCardinality 0 .

?u a ?x ; ?p ?y .?x owl:onProperty ?p .
?x owl:onClass owl:Thing .

cax-dw ?c1 owl:disjointWith ?c2 . ?x a ?c1 , ?c2 .

cax-adc ?x a owl:AllDisjointClasses .
?z a ?ci , ?cj . (i 6=j)

?x owl:members (...?ci ...?cj ...) .
dt-not-type* - ?s ?p ?lt . b

Table A.6
Constraint rules with authoritative variables in bold
a This is a non-standard rule we support since we do not ma-
terialise the reflexive owl:sameAs statements required by eq-
diff1.
b Where ?lt is an ill-typed literal: this is a non-standard version
of dt-not-type which captures approximately the same inconsis-
tencies, but without requiring rule dt-type2.

49

Appendix B. Ranking algorithms

Herein, we provide the detailed algorithms used for
extracting, preparing and ranking the source level graph.
In particular, we provide the algorithms for parallel ex-
traction and preparation of the sub-graphs on the slave
machines: (i) extracting the source-level graph (Algo-
rithm 2); (ii) rewriting the graph with respect to redirect
information (Algorithm 3); (iii) pruning the graph with
respect to the list of valid contexts (Algorithm 4). Sub-
sequently, the subgraphs are merge-sorted onto the mas-
ter machine, which calculates the PageRank scores for
the vertices (sources) in the graph as follows: (i) count
the vertices and derive a list of dangling-nodes (Algo-
rithm 5); (ii) perform the power iteration algorithm to
calculate the ranks (Algorithm 6).

The algorithms are heavily based on on-disk opera-
tions: in the algorithms, we use typewriter font
to denote on-disk operations and files. In particular, the
algorithms are all based around sorting/scanning and
merge-joins: a merge-join requires two or more lists of
tuples to be sorted by a common join element, where
the tuples can be iterated over in sorted order with the
iterators kept “aligned” on the join element; we mark
use of merge-joins in the algorithms using “m-join” in
the comments.

Algorithm 2 Extract raw sub-graph
Require: QUADS: Q /* 〈s, p, o, c〉0...n sorted by c */

1: links := {}, L := {}
2: for all 〈s, p, o, c〉i ∈ Q do
3: if ci 6= ci−1 then
4: write(links,L)

5: links := {}
6: end if
7: for all u ∈ U | u ∈ {si, pi, oi} ∧ u 6= ci do
8: links := links ∪ {〈ci, u〉}
9: end for

10: end for
11: write(links,L)

12: return L /* unsorted on-disk outlinks */

Algorithm 3 Rewrite graph wrt. redirects
Require: RAW LINKS: L /* 〈u, v〉0...m unsorted */
Require: REDIRECTS: R /* 〈f, t〉0...n sorted by unique f */
Require: MAX. ITERATIONS: I /* typ. I := 5 */

1: R− := sortUnique−(L) /* sort by v */
2: i := 0; G−

δ
:= G−

3: while G−
δ
6= ∅ ∧ i < I do

4: k := 0; G−i := {}; G−tmp := {}
5: for all 〈u, v〉j ∈ G−δ do
6: if j = 0 ∨ vj 6= vj−1 then
7: rewrite := ⊥
8: if ∃〈f, t〉k ∈ R | fk = vj then /* m-join */
9: rewrite := tk

10: end if
11: end if
12: if rewrite = ⊥ then
13: write(〈u, v〉j ,G−i)
14: else if rewrite 6= uj then
15: write(〈uj , rewrite〉,G−tmp)

16: end if
17: end for
18: i++; G−

δ
:= G−tmp;

19: end while
20: G−r := mergeSortUnique({G−0 , . . . ,G

−
i−1})

21: return G−r /* on-disk, rewritten, sorted inlinks */

Algorithm 4 Prune graph by contexts
Require: NEW LINKS: G−r /* 〈u, v〉0...m sorted by v */
Require: CONTEXTS: C /* 〈c1, . . . , cn〉 sorted */

1: G−p := {}
2: for all 〈u, v〉i ∈ G−r do
3: if i = 0 ∨ ci 6= ci−1 then
4: write := false
5: if cj ∈ C then /* m-join */
6: write := true
7: end if
8: end if
9: if write then

10: write(〈u, v〉i,G−p)

11: end if
12: end for
13: return G−p /* on-disk, pruned, rewritten, sorted inlinks */

50

Algorithm 5 Analyse graph
Require: OUT LINKS: G /* 〈u, v〉0...n sorted by u */
Require: IN LINKS: G− /* 〈w, x〉0...n sorted by x */

1: V := 0 /* vertex count */
2: u−1 := ⊥
3: for all 〈u, v〉i ∈ G do
4: if i = 0 ∨ ui 6= ui−1 then
5: V++
6: for all 〈w, x〉j ∈ G− | ui−1<xj< ui do /* m-join */
7: V++; write(xj ,DANGLE)

8: end for
9: end if

10: end for
11: for all 〈w, x〉j ∈ G− | xj > un do /* m-join */
12: V++; write(xj ,DANGLE)

13: end for
14: return DANGLE /* sorted, on-disk list of dangling vertices */
15: return V /* number of unique vertices */

Algorithm 6 Rank graph
Require: OUT LINKS: G /* 〈u, v〉0...m sorted by u */
Require: DANGLING: DANGLE /* 〈y0, . . . yn〉 sorted */
Require: MAX. ITERATIONS: I /* typ. I := 10 */
Require: DAMPING FACTOR: D /* typ. D := 0.85 */
Require: VERTEX COUNT: V

1: i := 0; initial := 1
V

; min := 1−D
V

2: dangle := D ∗ initial ∗ |DANGLE|
3: /* GENERATE UNSORTED VERTEX/RANK PAIRS */
4: while i < I do
5: mini := min+ dangle

V
; PRtmp := {};

6: for all zj ∈ DANGLE do /* zj has no outlinks */
7: write(〈zj ,mini〉,PRtmp)

8: end for
9: outj := {}; rank := initial

10: for all 〈u, v〉j ∈ G do /* get ranks thru strong links */
11: if j 6= 0 ∧ uj 6= uj−1 then
12: write(〈uj−1,mini〉,PRtmp)
13: if i 6= 0 then
14: rank := getRank(uj−1,PRi) /* m-join */
15: end if
16: for all vk ∈ out do
17: write(〈vk, rank|out| 〉,PRtmp)

18: end for
19: end if
20: outj := outj ∪ {vj}
21: end for
22: do lines 12–18 for last uj−1 := um
23: /* SORT/AGGREGATE VERTEX/RANK PAIRS */
24: PRi+1 := {}; dangle := 0

25: for all 〈z, r〉j ∈ sort(PRtmp) do
26: if j 6= 0 ∧ zj 6= zj−1 then
27: if zj−1 ∈ DANGLE then /* m-join */
28: dangle := dangle+ rank

29: end if
30: write(〈zj−1, rank〉,PRi+1)

31: end if
32: rank := rank + rj
33: end for
34: do lines 27–30 for last zj−1 := zl
35: i++ /* iterate */
36: end while
37: return PRI /* on-disk, sorted vertex/rank pairs */

51

Appendix C. Prefixes

In Table C.1, we provide the prefixes used throughout
the paper.

Prefix URI
Vocabulary prefixes

aifb: http://www.aifb.kit.edu/id/
b2r2008: http://bio2rdf.org/bio2rdf-2008.owl#
bio2rdf: http://bio2rdf.org/bio2rdf_resource:
contact: http://www.w3.org/2000/10/swap/pim/contact#
dct: http://purl.org/dc/terms/
ecs: http://rdf.ecs.soton.ac.uk/ontology/ecs#
fb: http://rdf.freebase.com/ns/
foaf: http://xmlns.com/foaf/0.1/
frbr: http://purl.org/vocab/frbr/core#
geonames: http://www.geonames.org/ontology#
geospecies: http://rdf.geospecies.org/ont/geospecies#
lld: http://linkedlifedata.com/resource/entrezgene/
mo: http://purl.org/ontology/mo/
opiumfield: http://rdf.opiumfield.com/lastfm/spec#
owl: http://www.w3.org/2002/07/owl#
po: http://purl.org/ontology/po/
pres: http://www.w3.org/2004/08/Presentations.owl#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
sc: http://umbel.org/umbel/sc/
sioc: http://rdfs.org/sioc/ns#
skos: http://www.w3.org/2004/02/skos/core#
wgs84: http://www.w3.org/2003/01/geo/wgs84_pos#
wn: http://xmlns.com/wordnet/1.6/

Instance-data prefixes
dav: http://www.openlinksw.com/dataspace/org.../dav#
enwiki: http://en.wikipedia.org/wiki/
kingdoms: http://lod.geospecies.org/kingdoms/
vperson: http://virtuoso.openlinksw.com/dataspace/person/

Table C.1
CURIE prefixes used in this paper

52

