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Abstract. Traditional approaches for querying the Web of Data often involve centralised warehouses that replicate remote data.
Conversely, Linked Data principles allow for answering queries live over the Web by dereferencing URIs to traverse remote data
sources at runtime. A number of authors have looked at answering SPARQL queries in such a manner; these link-traversal based
query execution (LTBQE) approaches for Linked Data offer up-to-date results and decentralised (i.e., client-side) execution,
but must operate over incomplete dereferenceable knowledge available in remote documents, thus affecting response times and
“recall” for query answers. In this paper, we study the recall and effectiveness of LTBQE, in practice, for the Web of Data.
Furthermore, to integrate data from diverse sources, we propose lightweight reasoning extensions to help find additional answers.
From the state-of-the-art which (1) considers only dereferenceable information and (2) follows rdfs:seeAlso links, we propose
extensions to consider (3) owl:sameAs links and reasoning, and (4) lightweight RDFS reasoning. We then estimate the recall of
link-traversal query techniques in practice: we analyse a large crawl of the Web of Data (the BTC’11 dataset), looking at the
ratio of raw data contained in dereferenceable documents vs. the corpus as a whole and determining how much more raw data
our extensions make available for query answering. We then stress-test LTBQE (and our extensions) in real-world settings using
the FedBench and DBpedia SPARQL Benchmark frameworks, and propose a novel benchmark called QWalk based on random
walks through diverse data. We show that link-traversal query approaches often work well in uncontrolled environments for
simple queries, but need to retrieve an unfeasible number of sources for more complex queries. We also show that our reasoning
extensions increase recall at the cost of slower execution, often increasing the rate at which results return; conversely, we show
that reasoning aggravates performance issues for complex queries.
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1. Introduction

A rich collection of RDF data has been published on
the Web as Linked Data, by governments, academia,
industry, communities and individuals alike [34]. The
resulting collective of interlinked contributions from
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a wide variety of Linked Data publishers has been
dubbed the “Web of (Linked) Data”: a novel corpus of
structured data distributed across the entire Web, de-
scribed using the Semantic Web standards and made
available under the Linked Data principles.

An open challenge is how to query this novel Web
of Data in an effective manner [5]. SPARQL [48]—
the W3C standardised RDF query language—provides
a powerful declarative means to formulate structured
queries over RDF data. However, processing SPARQL
queries over the Web of Data broaches many technical
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challenges. Traditional centralised approaches cache
information from the Web of Data in local optimised
indexes, executing queries over the replicated content.
However, maintaining up-to-date coverage of a broad
selection of the Web of Data is exceptionally costly;
centralised caches of the Web of Data must settle for
either limited coverage and/or for indexing some out-
of-date information [38, 57, 60]. Users of centralised
query engines will thus often encounter stale or miss-
ing results with respect to the current Web of Data [60].

Conversely, per Linked Data principles, the URIs
that name resources (often) map through HTTP to the
physical location of structured data about them (called
dereferencing). The Web of Data itself can thus be
viewed as a scale-free, decentralised database, con-
sisting of millions of Web documents indexing struc-
tured data [32, 34]. Furthermore, agents can traverse
and navigate the Web of Data through typed “RDF
links” to discover related information [34, § 4.5].

This perspective suggests that queries can be an-
swered directly over the Web of Data using HTTP,
where a number of live querying approaches have re-
cently been proposed that take a (SPARQL) query,
find query-relevant sources on the Web of Data, and
dynamically retrieve data from these sources for run-
time query processing. In one such approach, Hartig
et al. [29] followed the view of the Web of Data as a
global database and proposed to rely on dereference-
able URIs and RDF links for discovering sources rel-
evant to answer a SPARQL query. Later work by Har-
tig [27] calls this idea “Link Traversal Based Query
Execution” (which we abbreviate to LTBQE).

However, in the LTBQE approach, each HTTP
lookup can take seconds to yield content, many such
lookups may be required, and subsequent lookups to
the same remote server may need to be artificially de-
layed to ensure “polite” access (i.e., to avoid inadver-
tent denial-of-service attacks). In the live querying sce-
nario, remote sources are accessed while a user is wait-
ing for answers to their queries: thus response times
are often (necessarily) much slower when compared
with centralised query engines operating over locally
replicated content. Thus, a core challenge for LTBQE
is to retrieve a minimal number of relevant sources
while maximising the number of answers returned. Re-
latedly, the success of LTBQE is premised on the as-
sumption that query relevant data about a resource can
be found in its dereferenced document; as we show
later, this assumption only partially holds.

Herein, we look at the performance and recall of LT-
BQE in practice. We also propose that lightweight rea-
soning extensions—specifically relating to owl:sameAs
and RDFS semantics—can help to “‘squeeze” addi-
tional answers from sources and to find additional
query-relevant sources on the diverse Web of Data.
We apply analysis over a large sample of the Web
of Data to get insights into what ratio of raw data is
available to LTBQE through dereferenceable princi-
ples vs. raw data in the entire corpus; we also anal-
yse to what extent our proposed extensions make ad-
ditional query-relevant data available. We then apply
LTBQE and our extensions to three different SPARQL
query benchmarks to stress-test how the approaches
work in real-world, uncontrolled settings. In general,
we find that LTBQE works best for simple queries that
require traversing a handful (∼≤ 100) sources. We
also show that our reasoning extensions often help to
find additional answers at the cost of increased query
time, but can run into trouble when accessing data
from domains such as DBpedia (which has a high fan-
out of owl:sameAs and schema level links) and can ex-
acerbate performance issues with complex queries.

Paper contributions and structure. This paper ex-
tends previous work [58] where we first introduced
our reasoning extensions. Herein, we propose new
mechanisms for collecting schema data, test additional
benchmarks, and greatly extend discussion through-
out. This paper is then structured as follows:

§ 2 We first present some background work in the
area of Linked Data querying and reasoning.

§ 3 We present some formal preliminaries for RDF,
Linked Data, SPARQL, RDFS and OWL.

§ 4 We reintroduce the LTBQE approach using con-
crete HTTP-level methods.

§ 5 We introduce LiDaQ (Linked Data Query en-
gine): our implementation of LTBQE with novel
reasoning extensions and optimisations.

§ 6 We analyse a crawl of ∼7.4 m RDF/XML docu-
ments from the Web of Data (BTC’11), looking
at issues of dereferenceability.

§ 7 We survey SPARQL benchmarks and how live-
querying papers have evaluated their works. We
then propose a new benchmark called QWalk.

§ 8 We test LTBQE and our reasoning extensions for
three query benchmarks in native Web settings.

§ 9 We conclude with a summary of contributions
and remarks on future directions.
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2. Background and Related Work

Our work relates to research on querying over RDF
data; more precisely, we focus on executing SPARQL
queries over the Web of Data in a manner adhering to
the Linked Data principles. A comprehensive and re-
cent overview of existing approaches to query Linked
Data was published by Hose et al. [37]. We simi-
larly classify relevant query approaches into three cat-
egories (1) materialised systems and data warehouses,
(2) systems that federate SPARQL engines and (3)
live query approaches. Although our own work falls
into the third category, in order to provide a broader
background, in this section we also summarise devel-
opments in the first two categories. Additionally, we
briefly remark on “hybrid” proposals that combine dif-
ferent methods, as well as proposals for new languages
(aside from SPARQL) to query/navigate the Web of
Data. Finally, since our extensions for LTBQE further
relate to research on reasoning over Linked Data, we
also cover some background in this area.

2.1. Materialised Systems

Materialised query-engines use a crawler or other
data-acquisition methods to replicate (i.e., materalise)
remote Web of Data content into a local quad store
over which queries are executed. Such services include
“FactForge” [8]1 (which uses BigOWLIM [7]), “LOD
Cache”2 and Sindice’s “Semantic Web Index” [45]3

(which both use Virtuoso [16]).
The typical goals of such materialised engines are

to maintain broad and up-to-date coverage of the Web
of Data and to process SPARQL queries efficiently.
These objectives are (partially) met using distribution
techniques, replication, optimised indexes, compres-
sion techniques, data synchronisation strategies, and so
on [7,16,25,45]. Still, given that such services often in-
dex millions of documents, they require large amounts
of resources to run. In particular, maintaining a local,
optimal, up-to-date index with good coverage of the
Web of Data is a Sisyphean task.

Unlike these materialised approaches, the LTBQE
approach and our extensions do not require all content
to be indexed locally prior to query execution.

1http://factforge.net/sparql
2http://lod.openlinksw.com/sparql
3http://sparql.sindice.com/

2.2. SPARQL Federation

Given the recent spread of independently operated
SPARQL endpoints on the Web of Data hosting vari-
ous closed datasets with varying degrees of overlap4,
federated SPARQL querying is enjoying growing at-
tention in the research community. The core idea is
to execute queries over a federation of endpoints: to
split an input query, send the relevant sub-queries to
individual (and possibly remote) endpoints in situ, and
subsequently merge and process the final result set.

A primary challenge for federated SPARQL engines
is to decide which parts of a query are best routed
to which endpoint. Many such engines rely on “ser-
vice descriptions” or “catalogues”, which describe the
contents of remote endpoints. One of the earliest such
works (predating SPARQL by over three years) was by
Stuckenschmidt et al. [54], who proposed summaris-
ing the content of distributed RDF repositories us-
ing schema paths (non-empty property chains). More
recently, a variety of proposals have looked at us-
ing service descriptions or catalogues to enable rout-
ing in a federated scenario, including DARQ [49],
SemWIQ [41], SPLENDID [20], ANAPSID [1], etc.
Instead of relying (solely) on pre-computed service de-
scriptions or catalogues, FedX [53] and SPLENDID
(also) probe SPARQL endpoints with ASK sub-queries
to test if they have relevant information.

New federation features were also introduced with
SPARQL 1.1: the SERVICE feature invokes remote end-
points and the VALUES feature can be used to “ship”
batches of intermediate bindings to an endpoint [23].
The SPARQL-DQP system [3] has investigated use of
these SPARQL 1.1 federated features.

However, in recent work, we analysed a broad range
of SPARQL endpoints available on the Web [4]. We
found that half of the endpoints listed in the public
datahub.io catalogue are no longer up, and that many
endpoints have reliability issues. This work thus calls
into question the current practicality of federation as a
solution for querying the open Web.

Like the LTBQE approach and our proposed exten-
sions, federated SPARQL engines may involve retriev-
ing content from remote sources at runtime. However,
unlike federated SPARQL, LTBQE operates over raw
data sources on the level of HTTP, and does not require
the availability of SPARQL interfaces.

4http://www4.wiwiss.fu-berlin.de/lodcloud/state/

http://factforge.net/sparql
http://lod.openlinksw.com/sparql
http://sparql.sindice.com/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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2.3. Live Linked Data Querying

Live querying approaches access raw data sources
at runtime to dynamically select, retrieve and build
a dataset over which SPARQL queries can be evalu-
ated. Ladwig & Tran [39] identify three categories of
such query evaluation approaches: (1) top-down, (2)
bottom-up, and (3) mixed strategy .

Top-down evaluation determines the query relevant
sources before the actual query execution using knowl-
edge about the available sources stored in a “source-
selection index”. These source-selection indexes can
vary from simple inverted-index structures [42, 45], to
query-routing indexes [55], schema-level indexes [54],
and lightweight hash-based structures [59].

The bottom-up query evaluation strategy involves
discovering query-relevant sources on-the-fly during
the evaluation of queries. The LTBQE approach [11,
24,28–30] we extend herein falls into this category (we
define LTBQE in Section 4). The unique challenges for
such an approach are (1) to find as many query-relevant
sources as possible to improve recall of answers; (2) to
conversely minimise the amount of sources accessed
to avoid traffic and slow query-response times; (3) to
optimise query execution in the absence of typical se-
lectivity estimates, etc. [27,29]. In this paper, we focus
on the first two challenges.

As its name suggests, the third strategy, the mixed
approach, combines top-down and bottom-up tech-
niques. This strategy uses (in a top-down fashion)
some knowledge about sources to map query terms
or query sub-goals to sources which can contribute
answers, then discovering additional query relevant
sources using a bottom-up approach [39].

2.4. Hybrid and Navigational Query Engines

A mature Linked Data query service could require
a hybrid strategy that combines complementary ap-
proaches: for example to use a materialised approach
for static datasets, a federated approach for dynamic
datasets where a first-party SPARQL endpoint is avail-
able, or a live approach for dynamic datasets that have
no SPARQL endpoint [38]. A number of works have
investigated such combinations on a variety of levels
(see, e.g., [32, 40, 60]). In previous works we com-
bined LTBQE with a materialised approach for getting
fresher SPARQL query answers from the Web than the
materialised indexes could offer but at a fraction of
the runtime of pure LTBQE [60]. We believe that live

query approaches, such as LTBQE, are most useful in
combination with other query paradigms.

Some authors have also questioned whether or
not SPARQL is the only language needed to query
the Web of Data [5]. There have also been a num-
ber of proposals to extend SPARQL with regular
expressions that capture navigational patterns5, in-
cluding work by Alkhateeb et al. [2], Perez et al.’s
nSPARQL language [47], and Fionda et al.’s Nau-
tiLOD proposal [17]. Such work goes beyond pure
SPARQL querying, but perhaps touches upon some of
the broader potential of querying and consuming the
Web of Data in a declarative manner.

2.5. Reasoning over Web Data

In this paper, we propose lightweight reasoning ex-
tensions for LTBQE, which leverage (some of) the se-
mantics of the RDFS and OWL standards to perform
inferencing and find additional answer and query rele-
vant sources. We now cover some related works in the
area of RDFS/OWL reasoning over the Web of Data.

We investigate a terse profile of reasoning targeted
for Web data. Similarly, Glimm et al. [19] surveyed
the use of RDFS and OWL features in a large crawl
of the Web of Data (viz., BTC’11), applying PageRank
over documents and summating the rank of all doc-
uments using each feature. They found that RDF(S)
features were the most prominently used. From OWL,
owl:sameAs occurred most frequently, though features
like owl:FunctionalProperty had higher ranks.

With respect to scalable rule-based reasoning over
RDFS (and OWL), a number of authors have proposed
separating schema data (aka. terminological data or
T-Box) from instance data (aka. assertional data or
A-Box) during inferencing [35, 61, 62]. The core as-
sumptions are that the volume of schema data is much
smaller than instance data, that schema data are fre-
quently accessed during reasoning, that schema data
are more static than instance data, and that schema-
level inferences do not depend on instance data. Where
these assumptions hold, the schema data can be sepa-
rated from the main body of data and “compiled” into
an optimised form in preparation for reasoning over
the bulk of instance data. We use similar techniques
herein when computing RDFS inferences: we consider
schema data separately from instance data.

5SPARQL 1.1 includes a similar notion called property paths [23].
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Aside from scalability, the freedom of the Web—
where anyone can say anything (almost) anywhere—
raises concerns about the trustworthiness of data for
automated inferencing. On a schema level, for exam-
ple, various obscure documents on the Web of Data
make nonsensical definitions that would (naïvely) af-
fect reasoning across all other documents [10]. Nu-
merous authors have proposed mechanisms to incor-
porate notions of provenance for schema data into the
inferencing process. One such procedure, called au-
thoritative reasoning, only considers the schema def-
initions for a class or property term that are given in
its respectively dereferenceable document [10, 12, 35].
We later use authoritative reasoning to avoid the un-
wanted effects of third-party schema contributions dur-
ing RDFS reasoning. Delbru et al. [14] propose an-
other solution called context-dependent reasoning (or
quarantined reasoning), where a closed scope is de-
fined for each document being reasoned over, incor-
porating only the document itself and other docu-
ments it (recursively) imports or links, thus exclud-
ing the claims of arbitrary Web documents. We later
use a similar import mechanism to dynamically collect
schemata from the Web during RDFS reasoning.

Our extensions involving owl:sameAs semantics do
not directly involve schema data, but rather look at re-
solving coreferent resources in the corpus. Various au-
thors have looked specifically at the use and the quality
of use of owl:sameAs on the Web of Data [15, 22, 36].
Halpin et al. [22] look at the semantics and qual-
ity of owl:sameAs links in Linked Data. Manually in-
specting five hundred owl:sameAs relations sampled
from the Web of Data, they estimated an accuracy
for owl:sameAs links—where sameness could be con-
fidently asserted for the sampled relations—at around
51% (±21%), but found that judges often disagreed.
We later conducted a similar manual inspection of one
thousand owl:sameAs relations, where we asked a dif-
ferent question—is there any difference between these
two resources to confirm that they are not the same?—
and where we estimated a respective (and much more
optimistic) precision of 97.2% [36]. We do not tackle
issues pertaining to the quality of owl:sameAs relations
in this particular work, but acknowledge this as an or-
thogonal challenge for Linked Data [22, 36].

Finally, we are not the first work to look at incorpo-
rating reasoning into SPARQL querying over the Web
of Data. Various materialised approaches for query-
ing Linked Data have incorporated forward-chaining

rule-based reasoners to find additional answers, in-
cluding the SAOR reasoner [35] for YARS2 (which we
use later), Sindice’s context-dependent reasoning [14],
Factforge [8], etc. In terms of reasoning for top-down
querying systems, Li and Heflin [42] also use reason-
ing techniques to find additional results through query
rewriting and bottom-up inferencing.

2.6. Novelty of Present Work

We briefly highlight our novelty. First and foremost,
we evaluate the bottom-up LTBQE approach using var-
ious benchmarks—all in an uncontrolled, real-world
setting—to see what kinds of practical expectations
one can have for answering queries directly over the
Web of Data. Second, we propose and evaluate reason-
ing extensions for LTBQE to find additional sources
on-the-fly and to generate further answers. To the best
of our knowledge, no other work has looked at evaluat-
ing live querying approaches over diverse sources live
on the Web, nor has any other work looked at the ben-
efits of incorporating reasoning techniques into link-
traversal querying techniques for the Web of Data.

3. Preliminaries

In this section, we cover some necessary preliminar-
ies and notation relating to RDF (§ 3.2), Linked Data
(§ 3.3), SPARQL (§ 3.4) and RDFS & OWL (§ 3.5).
Before we continue, however, we introduce a running
example used to explain later concepts.

3.1. Running Example

Figure 1 illustrates an RDF (sub-)graph taken from
five real-world interlinked documents on the Web of
Data.6 Prefixes for the abbreviated CURIE names
used in this section, and throughout the paper, are
available in Appendix C. The graph models informa-
tion about two real-world persons and a paper that
they coauthored together. One author is identified
by the URIs oh:olaf and dblpA:Olaf_Hartig and the
other by cb:chris and dblpA:Christian_Bizer. The URI
dblpP:HartigBF09 refers to the publication both authors
share. The five documents are as follows:

ohDoc:, cbDoc: refer to the personal FOAF profile doc-
uments that each author created for themselves;

6As last accessed on 2013-07-02.
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ohDoc:

oh:olaf

Olaf Hartig

http://...

cb:chris

cb:chris

http://...
Chris Bizer

dblpA:Christian_Bizer

dblpP:HartigBF09dblpA:Olaf_Hartig dblpA:Olaf_Hartig

owl:sameAs
foaf:name

foaf:img Olaf Hartig

rdfs:label

owl:sameAs

foaf:name

foaf:depiction

dblpP:HartigBF09

foaf:knows foaf:maker

dblpP:HartigBF09"2009"^^xsd:gYear

foaf:Agent

rdf:type

dcterms:issued

dblpADoc:Olaf_Hartig

dblpADoc:Christian_Bizer

cbDoc:

rdfs:seeAlso

cbDoc:

dbpedia:Berlin

foaf:based_near

dblpA:Olaf_Hartig

dblpA:Christian_Bizer

foaf:maker

dblpA:Christian_Bizer
foaf:maker

dblpPDoc:HartigBF09

dereferencesdereferences

dereferences

foaf:maker

Christian Bizer

foaf:name

Fig. 1. Snippets taken from five documents on the Web of Data. Individual documents are associated with individual background panes. The
URI of each document is attached to its pane with a shaded tab. The same resources appearing in different documents are joined using “bridges”.
Links from URIs to the documents they dereference to are denoted with dashed links. RDF triples are denoted following usual conventions
within their respective document.

foafSpec:

foaf:img

foaf:depiction

foaf:Person

foaf:Agent foaf:Image

foaf:name

geo:SpatialThingrdfs:label

foaf:based_near rdfs:domain

rdfs:range rdfs:subPropertyOf rdfs:subPropertyOf rdfs:subClassOf rdfs:subClassOf rdfs:range

rdfs:range

Fig. 2. Snippet from the Friend Of A Friend (FOAF) Ontology: a schema document on the Web of Data. External terms have dashed lines.

dblpADoc:Olaf..., dblpADoc:Chris... refer to information
exported from the “DBLP Computer Science Bib-
liography”7 for each author, including a publica-
tion list;

dblpPDoc:HartigBF09 provides information about the
co-authored paper exported from DBLP.

Each document is available as RDF/XML on the Web.
Dereferenceable relationships between resources and
documents are highlighted in Figure 1. Excluding
cbDoc: (which must be looked up directly), the other
four documents can be retrieved by dereferencing the
URI of their main resource; for example, dereferenc-
ing oh:olaf over HTTP returns the document ohDoc:

describing said resource.
In addition, Figure 2 illustrates a subset of RDFS

definitions in a “schema document” extracted from the

7http://www.informatik.uni-trier.de/~ley/db/

real-world FOAF ontology. Although left implicit, all
terms in the foaf: namespace (including the predicates
and values for rdf:type represented in Figure 1) deref-
erence to this document. The relations between classes
and properties shown in this document are well defined
(using model-theoretic semantics) by the RDFS stan-
dard and can be used for automated inference [33].

3.2. RDF

In order to define our methods later, we must first
provide notation for RDF [33].

Definition 1 (RDF Term, Triple and Graph).
The set of RDF terms consists of the set of URIs U,
the blank-nodes B and literals L. An RDF triple t :=
(s, p, o) is an element of the set G := UB × U ×
UBL (where, e.g., UB is a shortcut for U∪B). Here
s is called subject, p predicate, and o object. An RDF
graph G ⊂ G is a finite set of RDF triples. We use the

http://www.informatik.uni-trier.de/~ley/db/
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functions subj(G), pred(G), obj(G), terms(G) to resp.
denote the set of all terms appearing in the subject,
predicate, object and all positions of triples in G.

3.3. Linked Data

The four Linked Data principles [6] are as follows:

LDP1: URIs are used to identify things
LDP2: URIs should be dereferenceable through HTTP
LDP3: Useful RDF content should be provided when

URIs are dereferenced
LDP4: Links should be offered within that content

We now provide some (time-invariant) Linked Data
notation that we use later for defining our methods.
This notation encapsulates the idea of the Web of Data
as a database, where dereferencing URIs acts as a
lookup that returns RDF data about those URIs.

Definition 2 (Data Source and Linked Dataset).
We define the http-download function get : U → 2G

as the mapping from URIs to RDF graphs provided by
means of HTTP lookups which directly return status
code 200 OK and data in a suitable RDF format. We
define the set of (RDF) data sources S ⊂ U as the set
of URIs S := {s ∈ U : get(s) 6= ∅} (i.e., URIs that
return RDF content with 200 Okay). We define a Linked
Dataset as Γ ⊂ get (i.e., a finite set of pairs (s, get(s))
such that s ∈ S). The “global” RDF graph presented
by a Linked Dataset is denoted as

merge(Γ) :=
⊎

(u,G)∈Γ

G

where the operator ‘]’ denotes the RDF merge of RDF
graphs, which ensures that blank node labels in the in-
put graphs are kept distinct in the merged graph [33].

Example 1. Taking Figure 1, e.g., get(ohDoc:) =
{(oh:olaf:, foaf:name, "Olaf Hartig"), . . .}, an RDF
graph containing the five triples in that document.
However, get(oh:olaf) = ∅ since it does not return
a 200 Okay (redirects are supported in the next step).
Thus, ohDoc: ∈ S whereas oh:olaf /∈ S. If we de-
note Figure 1 as the Linked Dataset Γ, we can say
that Γ = {

(
ohDoc:, get(ohDoc:

)
, . . .}, containing five

(URI,RDF-graph) pairs. Then, merge(Γ) is the set of
all 17 RDF triples shown in Figure 1.

Definition 3 (Dereferencing RDF).
A URI may redirect to another URI with a 30x response
code. We denote this function as redir : U→ U, which

first strips the fragment identifier of a URI (if present)
and would then map a URI to its redirect target or to
itself in the case of failure (e.g., where no redirect ex-
ists). We denote the fixpoint of redir as redirs, denot-
ing traversal of a number of redirects (a limit may be
imposed to avoid cycles). We then denote dereferenc-
ing by the composition deref := get ◦ redirs, which
maps a URI to an RDF graph retrieved with status
code 200 OK after following redirects, or which maps
a URI to the empty set in the case of failure. We de-
note the set of dereferenceable URIs as D := {d ∈
U : deref(d) 6= ∅}, where S ⊂ D and we place no
expectations on what deref(d) returns, other than re-
turning some valid RDF. As a shortcut, we denote by
derefs : 2U → 2U×2G

; U 7→ {(redirs(u), deref(u)) |
u ∈ U ∩ D)} the mapping from a set of URIs to the
Linked Dataset it represents by dereferencing all URIs
(only including those in D which return some RDF).

In relation to the formal model of Hartig [28], we
favour concrete HTTP-level methods used for Linked
Data. He models the Web of Linked Data as a triple
W = (D, data, adoc), where our set S is equivalent
to his set D of document IDs, our function get(.) in-
stantiates his (more general) function data(.) for map-
ping document IDs to RDF graphs, and our function
redirs(.) instantiates his function adoc(.) for partially
mapping URI names to document IDs.

Example 2. Taking Figure 1, oh:olaf redirects to
ohDoc:, denoted redir(oh:olaf) = ohDoc:. No fur-
ther redirects are possible, and thus redirs(oh:olaf) =
ohDoc:. Dereferencing oh:olaf gives the RDF graph
in the document ohDoc:, where deref(oh:olaf) =
get
(
redirs(oh:olaf)

)
= get(ohDoc:). Instead taking

the URI cb:chris, redir(cb:chris) = cb:chris and
get(cb:chris) = ∅; this URI is not dereferenceable.
Thus we can say that oh:olaf ∈ D and ohDoc: ∈ D
whereas cb:chris /∈ D.

3.4. SPARQL

We now introduce some concepts relating to the
query language SPARQL [46, 48]. We herein focus
on evaluating simple, conjunctive, basic graph pat-
terns (BGPs), where although supported by our im-
plementation, we do not formally consider more ex-
pressive parts of the SPARQL language, which—
with the exception of non-monotonic features that as-
sume a closed dataset like OPTIONAL in SPARQL and
MINUS/(NOT) EXISTS in SPARQL 1.1 —can be layered on
top [46]. In addition, we consider URIs and not IRIs
for convenience with the RDF preliminaries.
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Definition 4 (Variables, Triple Patterns & BGPs).
Let V be the set of variables ranging over UBL. A
triple pattern tp := (s, p, o) is an element of the set
Q := VUL×VU×VUL.8 For simplicity, we do not
consider blank-nodes in triple patterns (they could be
roughly emulated by an injective mapping from B to
V). A finite (herein, non-empty) set of triple patterns
Q ⊂ Q is called a Basic Graph Pattern, or herein,
simply a query. We use vars(Q) ⊂ V to denote the
set of variables in Q. Finally, we may overload graph
notation for queries, where, e.g., terms(Q) returns all
elements of VUL in Q.

In this paper, we only look at evaluating queries rep-
resenting BGPs. We denote the answers to a query Q
with respect to a Linked Dataset as [[Q]]Γ. We now for-
mally define this notion, where [[Q]]Γ is a set of solu-
tions generated by Q over the merge of graphs in Γ.

Definition 5 (SPARQL solutions).
Call the partial function µ : dom(µ) ∪UL → UBL
a solution mapping with a domain dom(µ) ⊂ V. A
solution mapping binds variables in dom(µ) to UBL
and is the identify function for UL. Overloading no-
tation, let µ : Q → G and µ : 2Q → 2G also resp.
denote a solution mapping from triple patterns to RDF
triples, and basic graph patterns to RDF graphs such
that µ(tp) := (µ(s), µ(p), µ(o)) and µ(Q) := {µ(tp) |
tp ∈ Q}. We now define the set of SPARQL solutions
for a query Q over a (Linked) Dataset Γ as

[[Q]]Γ :={µ | µ(Q)⊆merge(Γ)∧dom(µ) = vars(Q)} .

For brevity, and unlike SPARQL, solutions are herein
given as sets (not multi-sets), implying a default
DISTINCT semantics for queries, and we assume that
answers are given over the default graph consisting of
the merge of RDF graphs in the dataset.

Example 3. Taking Γ from Figure 1, let Q be:� �
SELECT ?maker ?issued WHERE {

dblpP:HartigBF09 foaf:maker ?maker ;
dcterms:issued ?issued . }� �

Then [[Q]]Γ would be:

?maker ?issued
dblpA:Christian_Bizer "2009"^̂ xsd:gYear

dblpA:Olaf_Hartig "2009"^̂ xsd:gYear

8SPARQL allows literals in the subject position [48], though such
patterns cannot match RDF triples as currently defined.

3.5. RDFS and OWL

In preparation for defining our reasoning extensions
to LTBQE, we now give some preliminaries relating
to RDFS and OWL. Our RDFS rules are the subset of
the ρDF rules proposed by Muñoz et al. [44] that deal
with instance data entailments (as opposed to schema-
level entailments).9 For supporting owl:sameAs, we use
a small subset of OWL 2 RL/RDF rules, given in Ta-
ble 1, which constitute a partial axiomatisation of the
OWL RDF-Based Semantics relating to ground equal-
ity. Our selection of rules thus support a small subset
of standard RDFS/OWL semantics that we argue to be
important for answering queries over the Web of Data,
and our approach could be generalised to support, e.g.,
OWL 2 RL/RDF rules with some adaptations.

For a ruleset R and dataset Γ, we denote by Γ • R
the fixpoint of applyingR against Γ such that applying
R over Γ •R yields no new inferences. We now define
Γ •R formally in terms of an immediate consequence
operator (reusing some SPARQL notation for brevity).

Definition 6 (Entailment Rules & Least Model).
An entailment rule is a pair r = (Body,Head)

(cf. Table 1) such that Body, Head ⊂ Q; and
vars(Head) ⊆ vars(Body). The immediate conse-
quences of r for a Linked Dataset Γ are given as:

Tr(Γ) := {µ(Head) | µ ∈ [[Body]]Γ} \merge(Γ) .

In other words, Tr(Γ) denotes the direct unique in-
ferences from a single application of a rule r against
the merge of RDF data contained in Γ. Let R denote
a finite set of entailment rules. The immediate conse-
quences of R over Γ are given analogously as:

TR(Γ) :=
⋃
r∈R Tr(Γ) .

This is the union of a single application of all rules in
R over the data applied to the (raw) data in Γ. Fur-
thermore, let δ ∈ U denote a fresh URI which names
the graph GR of data inferred by R, and let GR0 = ∅.
Now, for i ∈ N, define:

ΓRi := Γ ∪
{(
δ,GRi

)}
GRi+1 := TR(ΓRi ) ∪GRi

The least model of Γ with respect to R is ΓRn for the
least n such that ΓRn = ΓRn+1; at this stage the closure

9We drop implicit typing [44] rules as we allow generalised RDF
in intermediate inferences.
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ID Body Head

R
D

F
S

PRP-SPO1 ?p1 rdfs:subPropertyOf ?p2 . ?s ?p1 ?o . ?s ?p2 ?o .

PRP-DOM ?p rdfs:domain ?c . ?s ?p ?o . ?p a ?c .

PRP-RNG ?p rdfs:range ?c . ?s ?p ?o . ?o a ?c .

CAX-SCO ?c1 rdfs:subClassOf ?c2 . ?s a ?c1 . ?s a ?c2 .

Sa
m

e-
A

s

EQ-SYM ?x owl:sameAs ?y . ?y owl:sameAs ?x .

EQ-TRANS ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .

EQ-REP-S ?s owl:sameAs ?s′ . ?s ?p ?o . ?s′ ?p ?o .

EQ-REP-P ?p owl:sameAs ?p′ . ?s ?p ?o . ?s ?p′ ?o .

EQ-REP-O ?o owl:sameAs ?o′ . ?s ?p ?o . ?s ?p ?o′ .

Table 1
RDFS (ρDF subset) and owl:sameAs (OWL 2 RL/RDF subset) rules

is reached and nothing new can be inferred.10 Hence-
forth, we denote this least model with Γ • R. Query
answers including entailments are given by [[Q]]Γ•R.

Example 4. Let R denote the set of rules in Table 1.
Also, consider Γ as the Linked Dataset comprising
of
(

ohDoc:, get(ohDoc:)
)

from Figure 1 and a second
named graph called foafSpec: with the following sub-
set of triples from Figure 2:

foaf:img rdfs:domain foaf:Person ;
rdfs:range foaf:Image ;
rdfs:subPropertyOf foaf:depiction .

foaf:Person rdfs:subClassOf foaf:Agent .

These (real-world) triples can be retrieved by derefer-
encing a FOAF term; e.g., deref(foaf:img). Now, given
Γ andR, thenGR0 = ∅,GR1 = GR0 ∪TR(ΓR0 ) where, by
applying each rule in R over Γ once, TR(ΓR0 ) contains
the following triples (abbreviating CURIEs slightly):

oh:olaf foaf:depiction <http. . .> . #PRP-SPO1
oh:olaf a foaf:Person . #PRP-DOM

<http. . .> a foaf:Image . #PRP-RNG

dblpA:Olaf owl:sameAs oh:olaf . #EQ-SYM

dblpA:Olaf foaf:knows cb:chris . #EQ-REP-S

...

Subsequently, ΓR1 = Γ ∪ {(δ,GR1 )}, where δ is any
built-in URI used to identify the graph of inferences
and where GR1 contains the unique inferences thus far
(listed above). Thereafter,GR2 = GR1 ∪TR(ΓR1 ), where
TR(ΓR1 ) contains:

10Since our rules are a syntactic subset of Datalog, there is a
unique and finite least model (assuming finite inputs).

oh:olaf a foaf:Agent . #CAX-SCO

dblpA:Olaf foaf:depiction <http. . .> . #EQ-REP-S

dblpA:Olaf a foaf:Person . #EQ-REP-S

dblpA:Olaf owl:sameAs dblpA:Olaf . #EQ-REP-S

oh:olaf owl:sameAs oh:olaf . #EQ-REP-S

...

As before, ΓR2 = Γ∪{(δ,GR2 )}, whereGR2 contains all
inferences collected thus far, andGR3 = GR2 ∪TR(ΓR2 ),
where TR(ΓR2 ) contains:

dblpA:Olaf a foaf:Agent . #CAX-SCO

This is then the closure since TR(ΓR3 ) = ∅; nothing
new can be inferred, and so ΓR3 = ΓR4 . And thus we
can say that Γ •R = ΓR3 = Γ ∪ (δ,GR3 ).

4. Link Traversal Based Query Execution

Having covered some necessary preliminaries, in
the following section, we cover the Link Traversal
Based Query Execution (LTBQE) approach first pro-
posed by Hartig et al. [28, 29] for executing SPARQL
queries over the Web of Data (§ 4.1).

4.1. Overview of Baseline LTBQE

Given a SPARQL query, the core operation of LT-
BQE is to identify and retrieve a focused set of query-
relevant RDF documents from the Web of Data from
which answers can be extracted. The approach begins
by dereferencing URIs found in the query itself. The
documents that are returned are parsed, and triples
matching patterns of the query are processed; the URIs
in these triples are also dereferenced to look for fur-
ther information, and so forth. The process is recursive
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up to a fixpoint wherein no new query-relevant sources
are found. New answers for the query can be computed
on-the-fly as new sources arrive. We now formally de-
fine an idea of query-relevant documents in the context
of LTBQE. This is similar in principle to the generic
notion of reachability introduced previously [28, 30],
but relies here on concrete HTTP specific operations:

Definition 7 (Query Relevant Sources & Answers).
First let uris(µ) := {u ∈ U | ∃v s.t. (v, u) ∈ µ}
denote the set of URIs in a solution mapping µ. Given
a query Q and an intermediate dataset Γ, we define
the function qrel, which extracts from Γ a set of URIs
that can (potentially) be dereferenced to find further
sources deemed relevant for Q:

qrel(Q,Γ) :=
⋃
tp∈Q

⋃
µ∈[[{tp}]]Γ

uris(µ)

To begin the recursive process of finding query-relevant
sources, LTBQE takes URIs in the query—denoted
with UQ := terms(Q) ∩ U—as “seeds”, and builds
an initial dataset by dereferencing these URIs: ΓQ0 :=
derefs(UQ). Thereafter, for i ∈ N, define:11

ΓQi+1 := derefs
(
qrel(Q,ΓQi )

)
∪ ΓQi

The set of LTBQE query relevant sources for Q is
given as the least n such that ΓQn = ΓQn+1, denoted
simply ΓQ. The set of LTBQE query answers for Q is
given as [[Q]]ΓQ , or simply denoted bbQcc.

Example 5. Taking Figure 1, let Q be the following
query looking for the author-names of a given paper:� �
SELECT ?authorName WHERE {

dblpP:HartigBF09 foaf:maker ?author .
?author foaf:name ?authorName . }� �
First, the process extracts all raw query URIs: UQ =

{dblpP:HartigBF09, foaf:name, foaf:maker}. In the next
stage, the engine dereferences these URIs. Given that
redirs(dblpP:HartigBF09) = dblpPDoc:HartigBF09 &
redirs(foaf:maker) = redirs(foaf:made) = foafSpec:,
dereferencingUQ gives two unique named graphs, viz.:(

dblpPDoc:HartigBF09, get(dblpPDoc:HartigBF09)
)

and(
foafSpec:, get(foafSpec:)

)
. These two named-graphs

11In practice, URIs need only be dereferenced once; i.e., only
URIs in qrel(Q,ΓQi )\(qrel(Q,ΓQi−1)∪UQ) need be dereferenced
at each stage.

comprise ΓQ0 . (In fact, only the former graph will ulti-
mately contribute answers.)

Second, LTBQE looks to extract additional query
relevant URIs by seeing if any query patterns are
matched in the current dataset. By reference to the
graph dblpPDoc:HartigBF09 in Figure 1, we see that for
the pattern “dblpP:HartigBF09 foaf:maker ?author .”,
the variable ?author is matched by two unique URIs,
namely dblpA:Christian_Bizer and dblpA:Olaf_Hartig,
which are added to qrel(Q,ΓQ0 ). Nothing else is
matched. Hence, these two URIs are dereferenced and
the results added to ΓQ0 to form ΓQ1 .

LTBQE repeats the above process until no new
sources are found. At the current stage, ΓQ1 now also
contains the two sources dblpADoc:Christian_Bizer and
dblpADoc:Olaf_Hartig needed to return:

?authorName
"Christian Bizer"

"Olaf Hartig"

Furthermore, no other query-relevant URIs are
found and so a fixpoint is reached and the process ter-
minates: bbQcc contains the above results.

4.2. Decidability and completeness

The decidability of LTBQE—and indeed the decid-
ability of the more general problem of evaluating a
SPARQL query over the Web of Data—depends on
how one scopes the sources of data considered for eval-
uation and which features of SPARQL are used.

If one considers an infinite Web of Data—aiming
for what Hartig calls “Web completeness” [28]—then
the evaluation of a SPARQL query is not finitely com-
putable in the general case, even if one considers
only the monotonic features of SPARQL [28]: there
are (countably) infinite documents that may contain
relevant data but that cannot be processed in finite
steps. If non-monotonic features of SPARQL—such as
OPTIONAL, MINUS, etc.—are used in the query, then eval-
uation is not even “eventually computable” by a non-
terminating procedure [28] since, in the general case,
all documents need to be processed before a single
sound solution can be given, making the computation
of each individual solution infinitary.

If one rather considers a reachability condition—
whereby, for example, only the query-relevant sources
in an LTBQE sense are considered in-scope—for sim-
ilar reasons, Hartig [28] shows that queries are still
not finitely computable unless it can be proven that the
number of reachable sources is finite under the given
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conditions. This does not hold for the set of query rel-
evant sources given in Definition 7.

Example 6. The following query asks for a general
description of people known by oh:olaf:� �
SELECT ?s ?p ?o WHERE {

oh:olaf foaf:knows ?s .
?s ?p ?o . }� �
The initial query-relevant sources (per Definition 7)

are the documents dereferenced from oh:olaf and
foaf:maker. Thereafter, all triples in these documents
will match the open pattern, and thus all URIs in
these documents will be considered as potential query-
relevant links. This will continue recursively, crawling
the entire, potentially infinite Web of Data as reach-
able from the query URIs. The problem is not limited
to open patterns; take the following query:� �
SELECT ?o WHERE {

oh:olaf foaf:knows ?s .
?s foaf:knows ?o . }� �

This would end up crawling the connected Web of
FOAF documents, as are linked together by derefer-
enceable foaf:knows links.

Partly addressing this problem, Hartig et al. [29] de-
fined an iterator-based execution model for LTBQE,
which rather approximates the answers provided by
Definition 7. This execution model defines an order-
ing of triple patterns in the query, similar to standard
nested-loop join evaluation. The most selective pat-
terns (those expected to return the fewest bindings)
are executed first and initial bindings are propagated
to bindings further up the tree. Crucially, later triple
patterns are partially bound when looking for query-
relevant sources. Thus, taking the previous example,
the pattern “?s foaf:knows ?o .” will never be used
to find query-relevant sources, but rather partially-
bound patterns like “cb:chris foaf:knows ?o .” will be
used. As such, instead of retrieving all possible query-
relevant sources, the iterator-based execution model
uses interim results to apply a more focused traversal
of the Web of Data. This also makes the iterator-based
implementation order-dependent: results may vary de-
pending on which patterns are executed first and thus
answers may be missed. However, it does solve the
problem of traversing too many sources when low-
selectivity patterns are present in the query.

Relatedly, Harth and Speiser [24] also consider
an order-dependent version of LTBQE. Similar to

Hartig [29], they remark that although the Web-
completeness of SPARQL evaluation is useful as a the-
oretical notion, since the Web of Data cannot be ma-
terialised, more practical but weaker notions of com-
pleteness are also necessary. They propose another
two completeness conditions: seed-complete considers
answers from the set of documents that are within a
fixed-length traversal path from the seed URIs in the
query (the authors propose using the number of query
patterns to decide the maximum hops) and query-
reachable-complete considers a closed dataset of doc-
uments reachable through the LTBQE process under
some ordering of the query patterns. The authors then
demonstrate how Web-complete and query-reachable-
complete conditions coincide if only certain authorita-
tive triples—triples containing URIs that dereference
to the container document—are considered.

We now give some practical examples as to why
LTBQE (be it order-dependent or order-independent)
cannot be Web-complete in the general case.

No dereferenceable query URIs: The LTBQE ap-
proach cannot return results in cases where the query
does not contain dereferenceable URIs. For example,
consider posing the following query against Figure 1:� �
SELECT * WHERE {

cb:chris ?p ?o . }� �
As previously explained, the URI cb:chris is not deref-
erenceable (deref(cb:chris) = ∅) so the query has no
place to start its traversal from.

Unconnected query-relevant documents: Relating to
reachability, results can be missed where documents
are “connected” by a join on literals, blank-nodes or
non-dereferenceable URIs. The following query illus-
trates such a case:� �
SELECT ?olaf ?name WHERE {

oh:olaf foaf:name ?name .
?olaf foaf:name ?name . }� �

Answers (other than oh:olaf) cannot be reached from
the starting URI oh:olaf because the relevant docu-
ments are connected by the literal "Olaf Hartig".

Dereferencing partial information: In the general
case, the effectiveness of LTBQE is heavily dependent
on the amount of data returned by the deref(u) func-
tion. In an ideal case, dereferencing a URI u would re-
turn all triples mentioning u on the Web of Data. How-
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ever, this is not always the case; for example:

� �
SELECT ?s WHERE {

?s owl:sameAs dblpA:Olaf_Hartig . }� �
This simple query cannot be answered since the triple
“oh:olaf owl:sameAs dblpA:Olaf_Hartig .” is not ac-
cessible by dereferencing dblpA:Olaf_Hartig. The as-
sumption that all RDF available on the Web of Data
about a URI u can be collected by dereferencing u is
clearly idealised; hence, later in Section 6 we will em-
pirically analyse how much the assumption holds in
practice, giving insights into the potential recall of LT-
BQE on an infrastructural level.

5. LiDaQ: Extending LTBQE with Reasoning

We now present the details of LiDaQ: our proposal
to extend the baseline LTBQE approach with compo-
nents that leverage lightweight RDFS and owl:sameAs

reasoning in order to improve recall. We first describe
the extensions we propose (§ 5.1), and then describe
our implementation of the system (§ 5.2).

5.1. LTBQE Extensions

Partly addressing some of the shortcomings of the
LTBQE approach in terms of “recall”, Hartig et al. [29]
proposed extending the set of query relevant sources
to consider rdfs:seeAlso links, which sometimes over-
comes the issue of URIs not being dereferenceable.
In the LiDaQ system, we include this extension and
further propose novel extensions that apply reasoning
over query-relevant sources to squeeze additional an-
swers from these sources, which in turn may lead to
recursively finding additional query-relevant sources.

We now describe, formally define and provide mo-
tivating examples for each of the three extensions: fol-
lowing rdfs:seeAlso links, following owl:sameAs links
and applying equivalence inferencing, and collecting
schema information for applying RDFS reasoning.

5.1.1. Following rdfs:seeAlso links:
We first motivate the legacy rdfs:seeAlso extension

with a simple example.

Example 7. Consider executing the following sim-
ple query, asking for images of the friends of oh:olaf,
against the data in Figure 1 using baseline LTBQE:

� �
SELECT ?f ?d WHERE {

oh:olaf foaf:knows ?f .
?f foaf:depiction ?d . }� �

LTBQE first dereferences the content of the query
URI oh:olaf, and then follows and dereferences all
URI bindings for the variable ?f, matching the sec-
ond query pattern “?f foaf:depiction ?d .” over the
retrieved content to find pictures. However, the query
processor needs to follow the rdfs:seeAlso link from
cb:chris (bound to ?f) to cbDoc: since the URI cb:chris
is not dereferenceable (recall that a dashed arrow in
Figure 1 denotes dereferenceability).

Hartig et al. [29] thus proposed to extend LTBQE to
consider rdfs:seeAlso links as follows.

Definition 8 (LTBQE Extension 1: rdfs:seeAlso).
Given a dataset Γ, a set of URIs U and a predicate
URI p, first define:

link(Γ, U, p) := {v ∈ U | ∃u ∈ U s.t.

(u, p, v) ∈ merge(Γ)}

which gives the target of links from URIs in U with
the property p in the data of Γ. Next we extend the
qrel(Γ, U) function from Definition 7 to allow for con-
sidering links through a predicate p as follows:

qrel(Q,Γ, p) := qrel(Q,Γ) ∪ link
(
Γ, qrel(Q,Γ), p

)
Note that qrel(Q,Γ) ⊆ qrel(Q,Γ, p). The extension

to follow rdfs:seeAlso links then follows from Defini-
tion 7 by replacing qrel(Γ, U) with the extended func-
tion qrel(Γ, U, rdfs:seeAlso).

5.1.2. Following and reasoning over owl:sameAs links:
We now motivate the need for owl:sameAs traversal

and reasoning with an example:

Example 8. Consider the following query for Figure 1
asking for friends of oh:olaf that are also co-authors.� �
SELECT ?f WHERE {

oh:olaf foaf:knows ?f , foaf:maker ?p .
?f foaf:maker ?p }� �

Baseline LTBQE returns no answers: LTBQE requires
owl:sameAs support to return Chris as an answer (given
by the equivalences for oh:olaf/dblpA:Olaf_Hartig and
cb:chris/dblpA:Christian_Bizer).
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We now formalise the details of our extension.

Definition 9 (LTBQE Extension 2: owl:sameAs). We
define an extension of LTBQE to consider owl:sameAs

links and inferences. As before, from Definition 7,
replace qrel(Γ, U) with qrel(Γ, U, owl:sameAs), which
follows owl:sameAs links. Next, let R= denote the set
of rules of the form EQ-* in Table 1. Finally, from
Definition 7, replace ΓQi with ΓQi • R=, such that the
owl:sameAs inferences are applied at each step.

5.1.3. Incorporating RDFS schemata and reasoning
Finally, we cover our novel extension for RDFS in-

ferencing, starting with a motivating example.

Example 9. Take the following query over Figure 1
asking for the images(s) depicting oh:olaf:� �
SELECT ?d WHERE {

oh:olaf foaf:depiction ?d . }� �
From Figure 2, we know that foaf:depiction is a sub-
property of foaf:img, and we would thus hope to get
the answer <http://...> from ohDoc:. However, return-
ing this answer requires two thing: (i) retrieving the
RDFS definitions of the FOAF vocabulary; and (ii)
performing reasoning using the first four rules in Ta-
ble 1. In this case, finding the relevant schema infor-
mation (the first step) is quite straightforward and can
be done dynamically since the relevant terms (foaf:img
and foaf:depiction) are within the same namespace
and are described by the same dereferenceable docu-
ment. However, consider instead:� �
SELECT ?d WHERE {

oh:olaf rdfs:label ?d . }� �
In this case, we know from the FOAF schema that
foaf:name is a sub-property of rdfs:label, and so "Olaf
Hartig" should be an answer. However, no FOAF vo-
cabulary term is mentioned in the query, and so the
FOAF schema will not be in the query-relevant scope.
To overcome this, we can provide a static set of schema
information to the query engine as input, or we can
dereference property and class terms mentioned in the
query-relevant data to dynamically retrieve the rele-
vant definitions at runtime.

Definition 10 (LTBQE Extension 3: RDFS). We de-
fine an extension of LTBQE to consider RDFS schema
data and a subset of RDFS inferences. Let Rρ denote
rules {PRP-SPO1, PRP-DOM, PRP-RNG, CAX-SCO} in

Table 1 (other rules could be added as necessary).
From Definition 7, replace ΓQi with (ΓQi ∪ Ψi) • Rρ,
such that inferences are applied at each step. We use
Ψi to denote an auxiliary Linked Dataset containing
schema data at step i.

We are then left to define how Ψi may be acquired,
where we provide three options (Ψa–c

i ).

1. A static corpus of schema data Ψ can be provided
as input, such that Ψa

i := Ψ.
2. The class and property terms used in ΓQi can be

dereferenced. Letting preds(Γ) and o-type(Γ) de-
note, respectively, the set of all URIs appearing
as a predicate, and the set of all URIs appearing
as a value for rdf:type (class instance) in Γ, we
can define Ψb

i as:

Ψb
i := derefs

(
preds(ΓQi ) ∪ o-type(ΓQi )

)
3. Class and property terms can be dereferenced

and schema-level links followed. For a Linked
Dataset Γ, let imports(Γ) denote all URIs ap-
pearing as the subject or object of a triple in
Γ with predicate rdfs:subPropertyOf, rdfs:domain,
rdfs:range or rdfs:subClassOf; or appearing as
the object of owl:imports. Extending Ψb

i as above,
let Ψc

i,0 := Ψb
i , and thereafter, for j ∈ N define:

Ψc
i,j+1 := derefs

(
imports(Ψc

i,j)
)
∪Ψc

i,j

such that links are recursively followed up to a
fixpoint: the least j such that Ψc

i,j = Ψc
i,j+1. We

define Ψc
i as this fixpoint of recursive imports.

The second and third methods involve dynamically
collecting schemata at runtime. The third method of
schema-collection is potentially problematic in that it
recursively follows links, and may end up collecting
a large amount of schema documents (a behaviour we
encounter in evaluation later). However, where, for ex-
ample, class or property hierarchies are split across
multiple schema documents, this recursive process is
required to “recreate” the full hierarchy.

All three extensions—following rdfs:seeAlso links,
following owl:sameAs links & applying owl:sameAs rea-
soning, retrieving RDFS data (using one of three ap-
proaches) & applying RDFS reasoning—can be com-
bined in a straightforward manner. In fact, some an-
swers may only be possible through the combination
of all extensions. We will later explore the effects of
combining all extensions in Section 8.
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5.2. LiDaQ Implementation

The LiDaQ prototype (implemented in Java) draws
together a variety of techniques proposed in the litera-
ture [29, 31, 40] and has five main components, as de-
picted in Figure 3.

Query Processor: uses Jena ARQ to parse and pro-
cess input SPARQL queries and format the output
results.12 We discuss query processing in further
detail below.

Source Selector: decides which query and solution
URIs should be dereferenced and which links
should be followed.

Source Lookup: an adapted version of the LDSpi-
der crawling framework performs the live Linked
Data lookups required for LTBQE. LDSpider re-
spects the robots.txt policy, blacklists typical
non-RDF URI patterns (e.g., .jpeg) and enforces
a half-second politeness delay between two con-
sequential lookups for URIs hosted at the same
pay-level-domain. A per-domain queue is imple-
mented from which a pool of threads polls on a
first-in-first-out basis.13

Local Repository: a custom implementation of an in-
memory quad store (similar to [31]) is used to
cache the content of all query relevant data (in-
cluding inferences and schema data), as well as
indexing triple patterns from the query to match
against the data. Triple-pattern “listeners” match
cached data in a continuous fashion, feeding the
iterators.

Reasoner: the Java-based SAOR reasoner is used to
support rule-based reasoning extensions [10] and
executes inferencing over the local repository.

The query processing algorithm is based on a
nested-loop strategy. During LTBQE, retrieving cer-
tain sources may involve high latency. Thus rather
than blocking while waiting for the result of a par-
ticular request, special non-blocking operators are re-
quired [29, 40], where we adopt a strategy analogous
to the symmetric-index-hash join [40]. When a data-
access operator receives a lookup request, it: (i) reg-
isters the pattern in a hash-table, (ii) pulls all rele-
vant data, currently found in the local repository, as
bindings into the hash-table, (iii) co-ordinates with the
source-selector to request remote accesses as neces-

12http://jena.apache.org/documentation/query/
13http://code.google.com/p/ldspider/
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Fig. 3. LTBQE architecture diagram.

sary, and (iv) registers a listener with the local repos-
itory that will push new relevant data into the opera-
tor’s hash-table as they arrive. Join operators use these
hash-tables to asynchronously concatenate compatible
tuples and return them to higher operators. By caching
intermediate bindings, this asynchronous model en-
sures that all relevant data are consumed—in a bottom-
up, nested-loop sense—as they arrive, no matter when
or from where they arrive [40].

We further investigate some practical optimisations
to minimise the number of query-relevant sources re-
trieved while maximising results. First, we avoid deref-
erencing URIs that do not appear in join positions. We
illustrate this with a simple example:

Example 10. Consider the following query issued
against the example graph of Figure 1, asking for
friends of oh:olaf that have some value defined for
foaf:based_near:� �
SELECT ?f ?fn ?b WHERE {

oh:olaf foaf:knows ?f .
?f foaf:name ?fn .
?f foaf:based_near ?b . }� �

Assuming the rdfs:seeAlso extension is enabled,
LTBQE will visit ohDoc: binding cb:chris for ?f; and
then visit cbDoc: binding "Chris Bizer" for ?fn and
dbpedia:Berlin for ?b. However, dereferencing the lat-
ter URI would be pointless: we do not need any infor-
mation about dbpedia:Berlin to answer the query. Our
optimisation thus proposes to avoid wasting lookups
by not dereferencing URIs bound to non-join variables
such as ?b.

By reducing the amount of sources and raw data
that are accessed—and given that anyone in principle
can say anything, anywhere—we may also reduce the
number of answers that are returned. Taking the pre-

http://jena.apache.org/documentation/query/
http://code.google.com/p/ldspider/
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vious example, for all we know, the document deref-
erenced through dbpedia:Berlin may contain people
based near Berlin that Olaf knows, which would help
to contribute other answers. However, we deem this to
be unlikely in the general case, and note that it goes
against the core LTBQE idea of using Linked Data
principles to find query-relevant sources.

Aside from this optimisation to avoid dereferencing
URIs bound to non-join variables, we note that URIs
in certain positions of a triple pattern may not be worth
dereferencing to look for matching information. For
example, given the pattern “?s foaf:knows ?o .”, we
would not expect to find (m)any triples matching this
pattern in the document dereferenced by foaf:knows. In
the next section, we investigate precisely this matter
for different triple positions, and thereafter propose a
further variation on LiDaQ’s source selection to prune
remote lookups that are unlikely to contribute answers.

6. Empirical Study

LTBQE relies on the assumption that relevant data
are dereferenceable, which may not always hold in
practice. In this section, we analyse a large sample
of the Web of Data to see what ratio of information
is available in dereferenceable documents versus the
total information available in the entire sample. This
provides insights as to what percentage of raw data
is available to LTBQE versus, e.g., a materialised ap-
proach with a complete index over a large crawl of the
Web of Data. We can also test how much additional
raw information is made available by our extensions.

6.1. Empirical corpus

We take the dataset crawled for the Billion Triple
Challenge 2011 (BTC’11) in mid-May 2011 as our
corpus. The dataset consists of 7.4 million RDF/XML
documents spanning 791 pay-level domains (data
providers). URIs extracted from all RDF triples posi-
tions (excluding common non-RDF/XML extensions
like .pdf, .jpg, .html, etc.) were considered for crawl-
ing. The resulting corpus contains 2.15 billion quadru-
ples (1.97 billion unique triples) mentioning 538 mil-
lion RDF terms, of which 52 million (∼10%) are liter-
als, 382 million (∼71%) are blank nodes, and 103 mil-
lion (∼19%) are URIs. We denote the corpus as Γ∼.
The core RDF data are serialised as N-Quads [13]: a
syntax that extends N-Triples with a fourth element,

used in this case to track which triple came from which
source (following our notion of a Linked Dataset).

Alongside the RDF data, all relevant HTTP informa-
tion, such as response codes, redirects, etc., are made
available. However, being an incomplete crawl, not all
URIs mentioned in the data were looked up. As such,
we only have knowledge of redir and deref functions
for 18.65 million URIs; all of these URIs are HTTP
and do not have non-RDF file-extensions. We denote
these URIs by U∼. Of the 18.65 million, 8.37 million
(∼45%) dereferenced to RDF; we denote these byD∼.

Again, this corpus is only a sample of the Web of
Data: we can only analyse the HTTP lookups and the
RDF data provided for the corpus. Indeed, a weak-
ness of our analysis is that the BTC’11 dataset only
considers dereferenceable RDF/XML documents and
not other syntaxes like RDFa or Turtle. Thus, our esti-
mate of what ratios of relevant data are dereferenceable
should be considered as an upper bound since there are
many documents on the Web of Data that we do not
(or cannot [57]) know about.

6.2. Static Schema Data

For the purposes of this analysis, we extract a static
set of schema data for the RDFS reasoning. As argued
in [10], schema data on the Web is often noisy, where
third-party publishers “redefine” popular terms outside
of their namespace. Thus, we perform authoritative
reasoning, which conservatively discards certain third-
party schema axioms (cf. [10]). In effect, our schema
data only includes triples of the following form:

PRP-SPO1 : (s, rdfs:subPropertyOf, o) ∈ deref(s)
PRP-DOM : (s, rdfs:domain, o) ∈ deref(s)
PRP-RNG : (s, rdfs:range, o) ∈ deref(s)
CAX-SCO : (s, rdfs:subClassOf, o) ∈ deref(s)

We call these authoritative schema triples. Table 2
gives a breakdown of the counts of triples of this form
extracted from the dataset, and how many domains
(PLDs) they were sourced from: a total of 397 thou-
sand triples were extracted from schema data provided
by 98 PLDs. We denote this dataset as Ψ∼.

6.3. Recall for Baseline

We first measure the average dereferenceability
of information in our sample. Let data(u,G) give
the triples mentioning a URI u in a graph G, and,
for a dereferenceable URI d, let ddata(d) denote
data(d, deref(d)): triples dereferenceable through d
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Table 2
Breakdown of authoritative schema triples extracted from the corpus

Category Triples PLDs

rdfs:subPropertyOf 10,902 67
rdfs:subClassOf 334,084 82
rdfs:domain 26,207 79
rdfs:range 26,204 77

total 397,397 98

mentioning d in some triple position. We then define
the sample dereferencing recall for d w.r.t. G as:

sdr(d,G) := ddata(d)
data(d,G)

Letting G∼ := merge(Γ∼) denote the merge of our
corpus, we measure sdr(d,G∼), which gives the ra-
tio of dereferenceable triples for d mentioning d vs.
unique triples mentioning d across the corpus. For
comparability, we do not dereference d live, but use
the HTTP-level information of the crawl to emulate
deref(.) at the time of the crawl. We denote by ddata∼
the average of ddata(d) for all d ∈ D∼, and by sdr∼
the average of sdr(d,G∼) for all d ∈ D∼.

We also measure analogues of ddata∼ and sdr∼
where d must appear in specific triple positions: for
example, if LTBQE dereferences a URI in the predi-
cate position of a triple pattern, we wish to know how
often relevant triples—i.e., triples with that URI as
predicate—occur in the dereferenced document, how
many, and what ratio compared with the whole corpus.

Table 3 presents the results, where for different
triples positions we present:

|U∼| : number of URIs in that position,

|D∼| : number of which are dereferenceable,
|D∼|
|U∼|

: ratio of dereferenceable URIs

sdr∼ : as above, with std. deviation (σ)

ddata∼ : as above, with std. deviation (σ)

The row TYPE-OBJECT only considers the object po-
sition of triples with the predicate rdf:type, and the
row OBJECT only considers object positions where the
predicate is not rdf:type.

A number of observations are directly relevant to
LTBQE. Given a HTTP URI (without a common non-
RDF/XML extension), we have a ∼45% success ra-
tio to receive RDF/XML content regardless of the

triple position; for subjects, the percentage increases to
∼85%, etc. If such a URI dereferences to RDF, we re-
ceive on average (at most)∼51% of all triples in which
it appears across the whole corpus. Given a triple pat-
tern with a URI in the subject position, the derefer-
enceable ratio increases to ∼95%, such that LTBQE
would work well for (possibly partly bound) query pat-
terns with a URI in the subject position. For objects of
non-type triples, the ratio drops to 44%. Further still,
LTBQE would perform very poorly for triple patterns
where it must rely on a URI in the predicate position
or a class URI in an object position: the documents
dereferenced from class and property terms rarely con-
tain their respective extension, but instead often con-
tain schema-level definitions.

Table 3 also features high standard-deviation val-
ues: these indicate that dereferenceability is often “all
or nothing”. In relative terms, predicate and type-
object deviations were the highest. Although most
such terms return little or no relevant information—
e.g., dereferencing the predicate in a triple pattern
rarely yields triples where the dereferenced term ap-
pears as predicate—we observed a few predicates and
values for rdf:type return a great many relevant triples
in their dereferenced documents.14

6.4. Recall for Extensions

We now study how much additional data is made
available for query answering by the three LTBQE
extensions. Table 4 presents the average increase in
raw triples made available to LTBQE by considering
rdfs:seeAlso and owl:sameAs links, as well as knowl-
edge materialised through owl:sameAs and RDFS rea-
soning. D+

∼ indicates the subset of URIs in D∼ that
have some relation to the extension, respectively: the
URI has rdfs:seeAlso link(s), has owl:sameAs link(s),
or has non-empty RDFS inferences. Also, ddata+

∼ in-
dicates the analogous ddata∼ measure after the exten-
sion has been applied; i.e., after relevant links are fol-
lowed and/or inferences applied.

6.4.1. Benefit of rdfs:seeAlso extension
The percentage of dereferenceable URIs in D∼

with at least one rdfs:seeAlso link in their derefer-
enced document was∼2% (about 201 thousand URIs).

14Many such examples for both classes and properties come from
the SUMO ontology: see, e.g., http://www.ontologyportal.
org/SUMO.owl#subsumingRelation for a large extension of on-
tology terms provided by the ontology itself.

http://www.ontologyportal.org/SUMO.owl#subsumingRelation
http://www.ontologyportal.org/SUMO.owl#subsumingRelation
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Table 3
Dereferenceability results for different triple positions

Position |U∼| |D∼|
|D∼|
|U∼|

sdr∼ ddata∼

avg. σ avg. σ

ANY 1.87× 107 8.37× 106 0.449 0.51 ±0.5 17.26 ±97.15
SUBJECT 9.55× 106 8.09× 106 0.847 0.95 ±0.19 14.11 ±35.46
PREDICATE 4.77× 104 745 0.016 0.00007 ±0.008 0.14 ±56.68
OBJECT 9.73× 106 4.50× 106 0.216 0.44 ±0.46 2.95 ±60.64
TYPE-OBJECT 2.13× 105 2.11× 104 0.099 0.002 ±0.05 0.07 ±29.13

Table 4
Additional raw data made available through LTBQE extensions

Extension |D+
∼|

|D+
∼|

|D∼|

ddata+
∼

ddata∼

avg. σ

SEEALSO 2.01× 105 0.02 1.006 ±0.04
SAMEAS 1.35× 106 0.16 2.5 ±36.23
RDFS 6.79× 106 0.84 1.8 ±0.76

Where such links exist, following them increases the
amount of unique triples (involving the original URI)
by a factor of 1.006× versus the unique triples in the
dereferenced document alone. We conclude that the
rdfs:seeAlso extension will only marginally affect the
recall increase of LTBQE in the general case.

6.4.2. Benefit of owl:sameAs extension
We measured the percentage of dereferenceable

URIs inD∼ which have at least one owl:sameAs links in
their dereferenced document to be ∼16% for our sam-
ple. Where such links exist, following them and apply-
ing the EQ-* entailment rules over the resulting infor-
mation increases the amount of unique triples (involv-
ing the original URI) by a factor of 2.5× vs. the unique
(explicit) triples in the dereferenced document alone.
The very high standard deviation of ±36.23 shown in
Table 4 is explained by the plot in Figure 4 (log/log),
which shows the distribution of the ratio of increase
by considering dereferenceable owl:sameAs links and
inferences for individual entities: we again see that al-
though the plurality of entities enjoy only a small in-
crease in raw data (close to the x-axis), a few entities
enjoy a very large increase (farther from the x-axis). In
more detail, Figure 5 gives a breakdown for URIs from
individual domains, showing the number of URIs with
an information increase above the indicated threshold
due to owl:sameAs. The graph shows that, e.g., some
URIs from nytimes.com and freebase.com had an infor-

mation increase of over 4000× (mostly due to DB-
pedia links); often the local descriptions were “stubs”
with few triples.
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We conclude that owl:sameAs links are generally not
so common for dereferenceable URIs, but where avail-
able, following them and applying the entailment rules
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generates significantly more (occasionally orders of
magnitude more) data for generating answers.

6.4.3. Benefit of RDFS extension
With respect to our authoritative static schema data

Ψ∼, we measured the percentage of dereferenceable
URIs in D∼ whose dereferenced documents give non-
empty entailments as ∼81%. Where such entailments
are non-empty, they increase the amount of unique
triples (involving the original URI) by a factor of 1.8×
vs. the unique (explicit) triples in the dereferenced
document. We conclude that such reasoning often in-
creases the amount of raw data available for LTBQE
query answering, and by a significant amount.

6.5. Discussion

Before looking at specific queries, in this section
we find that, in the general case, LTBQE works best
when a subject URI is provided in a query-pattern,
works adequately when only (non-class) object URIs
are provided, but works poorly when it must rely on
property URIs bound to the predicate position or class
URIs bound to the object position. Furthermore, we
see that rdfs:seeAlso links are not so common (found
in 2% of cases) and do not significantly extend the raw
data made available to LTBQE for query-answering.
Conversely, owl:sameAs links are a bit more common
(found in 16% of cases) and can increase the available
raw data significantly (2.5×). Furthermore, RDFS rea-
soning often (81% of the time) increases the amount of
available raw data by a significant amount (1.8×).

As discussed previously, we can use these results
to justify a variant of LTBQE that tries to minimise
wasted remote lookups: aside from skipping URIs
bound to non-join variables, and unless collecting
schema data dynamically, this variant skips derefer-
encing predicate URIs bound in triple patterns, or
URIs bound to the objects of triples patterns where the
predicate is bound to rdf:type, since we are unlikely
to find data matching those patterns in the respectively
dereferenced document (cf. Table 3).

7. Query Benchmarks

We wish to evaluate LiDaQ in a realistic, uncon-
trolled environment: answering SPARQL queries di-
rectly over a diverse set of Web of Data sources. To
guide this evaluation, we first survey existing Linked
Data SPARQL benchmarks and look at how other

systems evaluate their approaches (§ 7.1). We con-
clude that no benchmark offers a large and diverse
range of benchmark SPARQL queries and thus pro-
pose QWalk: a novel benchmark methodology tailored
for testing LTBQE-style query-answering approaches
over the broader Web of Data (§ 7.2). Final evaluation
setup and results are presented later in Section 8.

7.1. Existing Linked Data SPARQL Benchmarks

Since we aim to run our evaluation over Linked Data
sources in situ, we ignore benchmarks designed to run
over synthetic datasets such as LUBM [21], BSBM [9],
or SP2Bench [51, 52]. To the best of our knowledge,
this leaves only two standard benchmarks:

FedBench [50] offers three data collections for test-
ing Linked Data querying scenarios:

1. a Life Science Data Collection, which includes
datasets like KEGG, ChEBI, DrugBank and
DBPedia;

2. a synthetic dataset from the SP2Bench frame-
work [51, 52]; and

3. a general Linking Open Data Collection, which
includes datasets like DBpedia, GeoNames, Ja-
mendo, LinkedMDB, The New York Times and
Semantic Web Dog Food.

A query set is defined for each. The first query set
focuses on features of particular interest for fed-
erated query engines, such as the number of in-
volved sources, (interim) query results size, and so
forth. The second query set consists of the original
SP2Bench queries. The third set provides 11 Linked
Data queries and is thus relevant to us.

DBSPB [43] (the DBpedia SPARQL Benchmark)
contains SPARQL queries distilled from real-world
DBpedia logs, consisting of 31.5 million queries is-
sued by various users and agents over a four-month
time-frame in 2010. The raw set of queries is reduced
to a total of 35 thousand queries after less frequently-
occuring query shapes were removed. These 35 thou-
sand queries are clustered to generate 25 templates
that characterise the larger set. These templates can
be “instantiated” to create new queries from DBpedia
data. The core of the templates consist of Basic Graph
Pattern queries with 1–5 triple patterns, but may also
include various combinations of SPARQL query fea-
tures (e.g., OPTIONAL–FILTER–DISTINCT, UNION–FILTER,
and so forth).
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A variety of Linked Data querying papers have also
defined once-off evaluation frameworks. The methods
used by a selection of papers are summarised in Ta-
ble 5. We see that two approaches (FedX [53] and
SPLENDID [20]) evaluate their methods using Fed-
bench, but do not run their queries live. Most papers
simulate HTTP lookups or replicate SPARQL end-
points locally. We see that only two papers feature
evaluation of queries that are run live over HTTP,
both by Hartig [26,27], one involving six hand-crafted
queries over real-world sources [27], the other propos-
ing a “FOAF Letter” application to keep track of so-
cial connections where five query templates are instan-
tiated for 23 people, giving a total of 115 queries.

In summary, there is much diversity in how Linked
Data query proposals have been evaluated. Few bench-
marks have been proposed for real-world Linked Data;
perhaps the most agreed upon is FedBench. Most eval-
uations involve either a handful of custom queries de-
signed to run over a small number of sources (Fed-
Bench), or a large number of (semi-)automatically
generated queries tied to a specific domain (e.g.,
DBPSB) or vocabulary (e.g., FOAF Letter). Few en-
gines run their queries live over remote resources, but
instead replicate raw content or endpoints within a
controlled environment. As such, no live Linked Data
query engine has been evaluated in an uncontrolled,
real-world setting for a large set of diverse queries: the
closest such evaluation is probably FOAF Letter [26],
but which only created queries over FOAF profiles.

7.2. QWalk: Random Walk Query Generation

Given the shortcomings of existing benchmarks, we
propose QWalk: a new benchmark framework that au-
tomatically builds a large set of queries that are an-
swerable (e.g., by LTBQE) over a diverse set of real-
world sources. The core idea is to take a large crawl
of the Web of Data (in this case, the BTC’11 dataset)
and to conduct random walks of different shapes and
lengths through the corpus to generate Basic Graph
Patterns. The walk is guided to ensure that it crosses
documents through dereferenceable links: generated
queries should thus be answerable by LTBQE.

7.2.1. Query shapes
To inform the types of queries we generate, we take

observations from the work of Gallego et al. [18],
who analyse the SPARQL queries logs of the DBPedia
and Semantic Web Dog Food (SWDF) servers. They
found that most queries contain a single triple pattern

(66.41% in DBPedia, 97.25% in SWDF). The maxi-
mum number of patterns found was 15, but such com-
plex queries occurred only rarely. The most common
forms of joins involved subject–subject (59–61%),
subject–object (32–36%) and object–object (4–5%);
few joins involving predicate variables were found in
general. As such, most queries with multiple patterns
are star-shaped, with a few path shaped queries. Star-
shaped joins typically had a low “fan-out”, where 27%
of the DBpedia queries had a fan-out of three, and
3.7% had a fan-out of two; the bulk of the remain-
ing queries were single-pattern with a trivial fan-out of
one, but went up to a maximum of nine. The lengths
of paths in the query were mostly one (98%) or two
(1.8%); very few longer paths were found.

Along similar lines, for our benchmark we generate
queries of elemental graph shapes as depicted in Fig-
ure 6, viz., edge, star and path queries. We now de-
scribe these query types in more detail.

edge queries star queries

path queries

Fig. 6. Visualisation of example query shapes (edge-s, edge-o, s–
path-2, o-path-3, star-2-1); dotted nodes represent variables; solid
nodes represent URIs

Edge queries (edge-<s|o|so>) fetch all triples (edges)
for an entity. We generate three sub-types of
edge queries, asking for triples where a URI ap-
pears as the subject (edge-s); as the object (edge-
o); as the subject and object (edge-so). These
types of queries are very common in Linked Data
browsers or for dynamically serving dereference-
able Linked Data content. An example query for
edge-so would be:� �
SELECT DISTINCT ?p1 ?o ?s ?p2 WHERE {

<d> ?p1 ?o . ?s ?p2 <d> . }� �
Star queries (star-<s3|o3|s2-o1|s1-o2>) consist of three

acyclic triple patterns that share exactly one URI
(called the centre node). These queries are simi-
lar to edge queries but have only constant predi-



20 J. Umbrich et al. / Link Traversal Querying for a Diverse Web of Data

Table 5
Summary of evaluation setups in the Linked Data querying literature

Reference
Queries Measures

Live Evaluation Setup
count type published time results sources

LTBQE1 a) [29] 4 Custom X X X X X Single run
LTBQE1 b) [29] 12 Custom X X X X X BSBM query mixes, RAP Pubby setup
LTBQE2 [31] 200 Custom X X X X X BSBM query mixes, RAP Pubby setup
LTBQE3 [26] 115 Custom X X X X X 3 runs per query
LTBQE4 [27] 3 Custom X X X X X 6 runs per query (1st run warmup)
LT10 [39] 8 Custom X X X X X Controlled with 2 second delay proxy
SIHJoin [40] 10 Custom X X X X X CumulusRDF Linked Data proxy
FedX [53] 11 FedBench X X X X X Local copies of SPARQL endpoints
LH10 [42] 390 Custom X X X X X Simulated HTTP lookups
SPLENDID [20] 14 FedBench X X X X X Local replication of SPARQL endpoints
SPARQL-DQP [3] 7 Custom X X X X X Amazon EC2 instance
QTree [59] 300 Auto-gen. X X X X X Simulated HTTP lookups

cates, asking for specific attributes of a given en-
tity. Each query has 4 constants and 3 variables.
We generate four sub-types of star queries, differ-
ing in the number of triple patterns in which the
centre node appears at the subject (s) or object (o).
An example for star-s2-o1 would be:� �
SELECT DISTINCT ?o1 ?o2 ?s1 WHERE {

<d> foaf:knows ?o1 ; foaf:name ?o2 .
?s1 dc:creator <d> . }� �

Path queries (<s|o>-path-<2|3>) consist of 2 or 3 triple
patterns with constant predicates that form a path
such that precisely two triple patterns share a
given join variable. Precisely two patterns contain
one join variable, and the remaining patterns con-
tain two join variables. Precisely one triple pat-
tern has a URI at either the subject or object po-
sition. We generate four different sub-types: path
shaped queries of length 2 and 3 in which either
the subject or object term of one of the triple pat-
terns is a constant. An example for s-path-2 is:� �
SELECT DISTINCT ?o1 ?o2 WHERE {

dblpP:HartigBF09 foaf:maker ?o1 .
?o1 foaf:name ?o2 . }� �

Query generation We generate queries from the
aforementioned BTC’11 dataset. In total, we generate
100 SELECT DISTINCT queries for each of the above
11 query shapes using random walks in our corpus. To
help ensure that queries return non-empty results (in
case there are no HTTP connection errors or time outs)

we consider dereferenceable information and generate
queries as follows:

1. We randomly pick a pay-level-domain available
in the set of confirmed dereferenceable URIsD∼.

2. We then randomly select a URI from D∼ for that
pay-level-domain.

3. We generate appropriate triple patterns from the
dereferenceable document of the selected URI
based on the query shape being generated.

– If path-shaped queries are being generated,
the URI for the next triple pattern is selected
from the dereferenceable URIs connected to
the previous URI, as per a random walk.

4. One variable is randomly chosen as distinguished
(returned in the SELECT clause) and other variables
are made distinguished with a probability of 0.5.

By randomly selecting a pay-level-domain first (as
opposed to randomly selecting a URI directly), we
achieve a greater spread of URIs across different
datasets. The result of the QWalk process is a large
set of diverse queries with different elemental shapes
that—according to the sampled data—should be an-
swerable through LTBQE methods over real-world
data in a realistic scenario (accessing remote sources).

8. Query Benchmark Results & Discussion

When running queries directly over remote sources,
various challenges come to the fore, including slow
HTTP lookups, unpredictable remote server behaviour,
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high fan-out of links to traverse, the need for polite ac-
cess (in terms of delays between lookups and respect-
ing robots.txt policies), and so forth. As discussed,
most works have evaluated LTBQE-style approaches
in controlled environments using proxies or only for
a small number of queries or sources in uncontrolled
environments. Conversely, we now wish to investigate
the feasibility of LTBQE—and our proposed reason-
ing extensions—for a broad range of diverse queries in
uncontrolled environments so as to characterise how
these methods cope with real-world challenges.

Based on the discussion of the previous section, we
select three complementary benchmarks to run with
LiDaQ, where we execute all queries directly over the
Linked Data Web:

1. DBpedia SPARQL Benchmark (DBPSB), which
generates many queries designed to run over one
domain based on real-world query logs (we en-
countered difficulties running DBPSB with LT-
BQE as summarised later);

2. FedBench Linked Data Queries, which offers
some manually crafted queries designed to run
over a small selection of different domains;

3. QWalk, which offers a large selection of synthetic
queries that can be run directly over a diverse set
of sources.

We first discuss the experimental setup and mea-
sures (§ 8.1). Next we introduce the configurations of
LiDaQ that we evaluate (§ 8.2). We then briefly sum-
marise the problems we encountered when running
DBPSB queries (§ 8.3). Finally, we present detailed
results for FedBench (§ 8.4) and QWalk (§ 8.5).

8.1. Experimental Setup and Measures

All evaluation is run on one server: 4 GB RAM,
Debian OS, 2.2GHz single core. To ensure polite be-
haviour, we enforce a per-domain (specifically per-
PLD) minimum delay of 500 ms between two sequen-
tial HTTP lookups on one domain. Furthermore, we
use a (generous) query timeout of 2 hours.

When running queries live over HTTP, we often en-
counter some “non-deterministic” behaviour: a source
may be readily accessible during some query runs, but
may be unresponsive or not return at all in others. Dif-
ferent HTTP-level issues can occur at different times
for the same source. During initial experiments, we
thus encountered that result size and execution time
can differ for the same query and setup between several
benchmark runs. This “inconsistent” query behaviour

is explained by the fact that we encountered various
HTTP-level issues between different executions for the
same query and setup. We thus define the straightfor-
ward notion of a benchmark stable query to help with
comparability across different setups. We assume that
a query has a core set of relevant documents, which are
accessed in all configurations (introduced in the fol-
lowing section). A benchmark stable query is a query
for which the response codes for each of the core URIs
is the same across all setups runs.

For each query in each evaluation framework, we
record the number of unique results returned and the
total time taken for the query to execute and terminate.
We also record the first result latency, where a query
may begin to return results quickly but may take a long
time to terminate due to a few slow accesses for the
final results. We record the number of HTTP lookups
performed; since individual lookups are slow and we
additionally implement politeness policies, this will be
a major factor for performance issues. We also look at
the raw data processed and number of triples inferred,
both expressed as number of unique triples.

In initial experiments, we found that raw counts of
unique query results sometimes exhibit outliers due to
redundancy caused by joins. We illustrate the problem
with an example QWalk query:

Example 11. Take the following QWalk query:� �
SELECT DISTINCT ?s0 ?o0 ?s1 WHERE {

ebiz: owl:imports ?o0 .
?s0 rdfs:seeAlso ebiz: .
?s1 rdfs:isDefinedBy ebiz: . }� �
Without reasoning, upon dereferencing the ebiz:

URI, we found 1 binding for ?o0, 2 bindings for ?s0

and 199 bindings for ?s1, yielding a total of 1 × 2 ×
199 = 398 results. However, with RDFS reason-
ing enabled, the schema document for RDFS (the so-
called “rdfs.rdfs” document) authoritatively defines
rdfs:isDefinedBy to be a sub-property of rdfs:seeAlso.
Thus, the 199 bindings for ?s1 are added to ?s0, yield-
ing 201 bindings, and a total of 1×201×199 = 39, 999
results, giving a two orders of magnitude increase.

The query results in this example contain many rep-
etitions of terms: each term bound to ?s0 or ?s1 would
appear about 200 times with RDFS reasoning enabled.
Hence we add another measure to help characterise the
“redundancy-free content” of the results: we add the
number of unique result terms found for each distin-



22 J. Umbrich et al. / Link Traversal Querying for a Diverse Web of Data

guished variable in the results. In the above example,
this would give 1 + 2 + 199 = 202 terms without rea-
soning, and 1+201+199 = 401 terms with reasoning.

8.2. LiDaQ Configurations Evaluated

For LiDaQ, given the various extensions, various
ways of collecting RDFS data, and the option to turn
off/on our reduction of sources, we have thirty-two
combinations of possible setups, where we choose the
following ten configurations to evaluate:

Core (CORE): we dereference all URIs appearing in
the query and during the query execution, inde-
pendent from their triple position or role in joins.
No extensions are included. This setup serves pri-
marily as reference to the basic LTBQE profile.

Reduced Core (CORE−): Our reduced configuration
uses our optimised source selection to decide
which URIs are query relevant and should be
dereferenced. We do not dereference URIs bound
to non-join variables, or (unless dynamically re-
trieving schemata) URIs bound to predicates or
values for rdf:type. In theory, we expect the
smallest amount of results and also the fastest
query time and the following extensions are built
upon CORE−, not CORE.

With rdfs:seeAlso links (SEEALSO): this configu-
ration extends the CORE− setup by following
rdfs:seeAlso links. Based on our empirical analy-
sis, we expect that only a small number of queries
will be affected given that ∼2% of URIs have
dereferenceable rdfs:seeAlso links and that fol-
lowing such links finds little relevant data.

With owl:sameAs links and inference (SAMEAS):
this benchmark setup extends the CORE− setup
by considering owl:sameAs links and inference.
We expect an increase in returned results and the
number of lookups. Based on our empirical study,
this should affect a moderate number of queries
given that such links are available for ∼16% of
resources, where, in such cases, inference makes
on average 2.5× more raw data available.

With RDFS inference
(
RDFS[s|d|e]

)
: this benchmark

setup extends the CORE− setup by performing in-
ferences for the RDFS ruleset relying on retrieved
schema information. Based on static schema data,
our empirical analysis suggested that RDFS rea-
soning affects ∼84% of resources for which
it makes about 1.8× more raw data available.
However, we investigate three sub-configurations
based on the methods described in Section 5.1.3:

Static (RDFSs): uses the static schema extracted
earlier from the BTC’11 dataset;

Direct (RDFSd): collects direct schemata by dy-
namically dereferencing predicates and val-
ues for rdf:type;

Extended (RDFSe): collects extended schemata
by dynamically following recursive links
from the direct schemata.

Combined
(
COMB[s|d|e]

)
: this benchmark setup com-

bines all extensions for the previously mentioned
configurations of schema collection. With this
configuration, we expect the highest number of
results, query time and processed and inferred
statements.

For reference, Table 6 summarises these test config-
urations and which features are enabled or disabled.
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CORE− X

SEEALSO X X

SAMEAS X X

RDFSs X X

RDFSd X X

RDFSe X X

COMBs X X X X

COMBd X X X X

COMBe X X X X

Table 6
Overview of the ten LiDaQ benchmark configurations

8.3. DBPSB Result Summary

We first briefly summarise our experiences in try-
ing to use DBpedia SPARQL benchmark (DBPSB) to
test LTBQE and our extensions. DBPSB involves 25
query templates generated from real-world DBpedia
query logs, which are not designed specifically to be
run with LTBQE. Our experiments had broadly nega-
tive results. Full details of the experiments are avail-
able in [56, § 4.5.2.2]. To summarise, of the 25 query
templates, we identified that 16 could not be run by
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LTBQE, due to either containing an OPTIONAL clause15

or only containing property/class URIs in the query
(whose extension cannot be dereferenced in DBpedia).

Next we tried to generate 25 sample queries for each
of the remaining 9 DBPSB templates. We ran the tem-
plate queries provided for the benchmark against the
public DBpedia SPARQL endpoint16 and generated up
to 1,000 results. From these, we randomly selected 25
results to generate the query instances. Of the 9 tem-
plates, we encountered problems instantiating another
3 where the endpoint either timed out or returned too
few results. In running the queries generated by the re-
maining 6 templates17, LTBQE could not return results
for 3 templates due to (non-dereferenceable) RDF lit-
erals being generated in the queries.

The detailed discussion and results for the 3 remain-
ing templates are available in [56, § 4.5.2.2]. To sum-
marise, these three templates involved (1) listing the
types of a given entity (DB1), (2) listing English com-
ments and depictions or homepages for a given entity
(DB13), and (3) a more complex query that asks for the
French-language labels of French prefectures and Ger-
man state capitals (DB17). The results for these three
templates suggested that CORE− offers increased per-
formance over CORE with no loss of results, but we
encountered performance issues with SAMEAS where
there are many outgoing owl:sameAs links from DB-
pedia that did not contribute answers to the DBpedia-
specific queries of DBPSB. Also, although using static
RDFS schema contributed many additional answers
to the first query template, the dynamic import of
schema proved expensive for DBpedia, where classes
and properties dereference to separate documents.

The observation that so few query templates (based
on real-world user logs) could be run by LTBQE is
in itself a negative result and also makes it difficult
to meaningfully interpret the results of our DBPSB
experiments. Acknowledging this, we now rather fo-
cus on the results of the FedBench and QWalk bench-
marks, which are designed with LTBQE in mind.

8.4. FedBench results

We now use the FedBench Linked Data Queries
(§ 7.1) to measure the potential benefit of our proposed

15In SPARQL, OPTIONAL can be combined with a !BOUND(.) filter
to emulate negation-as-failure, which cannot be run over an open
Web of Data (unless a closed-dataset semantics is considered [28]).

16http://dbpedia.org/sparql/
17All template instances are available online: http://code.

google.com/p/lidaq/source/browse/queries/dbpsb.swj.
25.tar.gz

extensions and optimisations. These 11 cross-domain
queries (denoted LD1–11) are designed to return a non-
empty result set if executed over the Web with an
LTBQE-style approach. The queries (along with re-
sults and discussion) can be found in Appendix A.
Our first observation is that 4 out of the 11 manually
crafted FedBench queries contain explicit owl:sameAs
query patterns. This fact ties back with our initial moti-
vation that including owl:sameAs information is impor-
tant to answer queries across diverse sources. In the
case of FedBench, these owl:sameAs relations are in-
cluded explicitly; for our extension this would not be
necessary (though we leave them in for comparabil-
ity across LiDaQ configurations that include/exclude
owl:sameAs inference).

Query Testing We had to make some amendments
to the original 11 FedBench queries. First, since we
count results, we add the DISTINCT solution modifier to
all queries to eliminate duplicates. Second, during ini-
tial tests, we identified that 3 queries were not up-to-
date with the DBpedia knowledge-base. These queries
(LD8–10) used the predicate skos:subject where DB-
pedia now uses dcterms:subject. We directly replaced
these predicates in the query. In one such query (LD9),
we also added a missing @en language tag to the lit-
eral "Luiz Felipe Scolari" to correspond with DBpe-
dia data. Our updated queries are online.18

Other queries returned no results. Two queries (LD6–
7) required data from the geonames.org domain, which
failed because the the robots.txt file on the subdo-
main19 states that all agents are disallowed: we do
not wish to contravene the Robots Exclusion Proto-
col. Query LD9 returns no results for any configuration
(or any run) and query LD10 only sometimes returns
results when owl:sameAs is considered: these are due
to mismatches between the given queries and remote
data that we could not easily fix without dramatically
changing the original query (see Appendix A for de-
tails). Aside from LD7, which only involved the GeoN-
ames domain, we run the other queries for timings,
even if they do not return results.

Overview of Experiments For all benchmark config-
urations, we executed each FedBench query live over
the Web once a week for four weeks. In Appendix A,
for each individual query, we provide detailed results
and discussion (selecting the best of the four runs).

18http://code.google.com/p/lidaq/source/browse/
queries/fedbench.txt

19See http://sws.geonames.org/robots.txt

http://dbpedia.org/sparql/
http://code.google.com/p/lidaq/source/browse/queries/dbpsb.swj.25.tar.gz
http://code.google.com/p/lidaq/source/browse/queries/dbpsb.swj.25.tar.gz
http://code.google.com/p/lidaq/source/browse/queries/dbpsb.swj.25.tar.gz
http://code.google.com/p/lidaq/source/browse/queries/fedbench.txt
http://code.google.com/p/lidaq/source/browse/queries/fedbench.txt
http://sws.geonames.org/robots.txt
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We also include per-query comparison to the existing
SQUIN library for LTBQE [29], which we generally
find to be considerably faster, but which, to the best
of our knowledge, does not include politeness policies;
we thus exclude it for later larger-scale experiments.

Detailed Results Given the number of queries (10),
configurations (11) and measures (6), we leave de-
tailed discussion of results for individual FedBench
queries to Appendix A.

Summarising, we observe that LTBQE works well
for some simpler FedBench queries, but struggles in
an uncontrolled environment for complex queries that
require accessing a lot of sources. For example, even
in the baseline CORE− configuration, LD11 required
performing 1,125 lookups, and the most complex
configuration—COMBe—attempted 17,996 lookups.
Relatedly, we generally observe that LTBQE exten-
sions perform well for simple queries, but exacerbate
performance issues for complex queries. In fact, al-
though RDFS and owl:sameAs extensions work well on
domains like data.semanticweb.org, configurations that
involve following same-as or schema links struggle
for data-providers such as DBpedia, which offer many
such links (both internal and external). On a more pos-
itive note, CORE− often offers significant time savings
over CORE with minimal effect on result sizes.

In addition, results sizes can become quite large
(e.g., LD11 returns 196,448 results in one configura-
tion): the given SPARQL queries often contain numer-
ous result variables in the SELECT clause (e.g., 5 for
LD11) and results can contain high redundancy. For ex-
ample, DBpedia often contains a large number of la-
bels for resources in different languages, where asking
for the labels of result resources may multiply the raw
result sizes by a factor of ten or more and where such
behaviour has a cumulative effect.

In general, we would also expect that the results
given by CORE− should be fewer or equal than for all
other configurations, which are monotonic extensions;
similarly, we would expect equal or more results in
COMBx than RDFSx, SAMEAS and SEEALSO (where
x is one of the schema configurations). This expecta-
tion held true in practice for a number of the earlier
queries (LD1–3), where for queries LD1 and LD3, the
various extensions, including reasoning, found many
more results. This monotonic increase also held true
for certain other cases (e.g., with the exception of
COMBe, LD4 shows this behaviour). However, it did
not hold true in later queries: even selecting the best
run from a span of four weeks, the unrepeatability of

results played a major role in this evaluation. We thus
now focus on characterising this issue.

Reliability Results Running complex queries live
over networks of remote sources raises the question of
reliability and repeatability. We now focus on how the
results varied across the four runs to get a better idea
of the repeatability of LTBQE/LiDaQ in a realistic set-
ting. We summarise the average number of results and
the corresponding standard deviation for each config-
uration and query across all four runs in Table 7.

LD11 in particular shows some unreliable behaviour
across the four runs, where we estimated the abso-
lute deviations to be between ∼28–140% of the mean,
depending on the LiDaQ configuration: as aforemen-
tioned, this query required between 1,103–17,996
lookups. With this exception aside, across all other
queries, the CORE, CORE− and SEEALSO configura-
tions access the fewest sources and produce reliable
results across the four runs. The results for the other
variations—which include reasoning extensions—are
less reliable in general. LD5 and LD10 show high devi-
ations in the number of results returned for SAMEAS,
LD5 shows high deviations for dynamic schema config-
urations, and LD4 shows high deviations for configura-
tions involving RDFS reasoning (though not for com-
bined configurations). In terms of absolute deviation as
a percentage of the mean, we computed that the results
for the other setups vary somewhere between∼2–11%
for most of the queries.

Conclusions When running the queries live over
remote sources, we see complex and unpredictable
behaviour across different configurations and across
time: remote sources may give different responses at
different times (e.g., may give 50x errors during high
server load), and the failure of an important source
may break traversal at that point. We also see that rea-
soning extensions, particular those involving dynamic
schema collection, often make the query behaviour
more unreliable by trying to access more sources.

The FedBench queries predominantly request data
from a few central sites: the first four queries (LD1–
4) are based around the data.semanticweb.org data
provider, and provide generally stable results. Other
queries also rely on the hosts www4.wiwiss.fu-berlin.de
and dbpedia.org and generally demonstrate less sta-
ble behaviour. Taking the former domain, for example,
owl:sameAs extensions can cause erratic behaviour, po-
tentially due to errors in how the relation is used for
the DailyMed and LinkedCT datasets. For DBpedia,
the schema descriptions of class and property terms
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Table 7
Average result size and standard deviation across four query runs

Setup LD1 LD2 LD3 LD4 LD5

avg. σ avg. σ avg. σ avg. σ avg. σ

CORE 333 ±0 185 ±0 191 ±0 50 ±0 21.5 ±24.83
CORE− 333 ±0 185 ±0 190.75 ±0.5 50 ±0 24 ±22.32
SEEALSO 333 ±0 185 ±0 190.75 ±0.5 50 ±0 21.5 ±24.83
SAMEAS 527.25 ±3.95 185 ±0 908.25 ±35.53 146 ±0 67.75 ±135.5
RDFSs 380 ±0 185 ±0 246 ±0 50 ±0 17.5 ±21.24
RDFSd 380 ±0 185 ±0 246 ±0 50 ±0 20.25 ±23.41
RDFSe 380 ±0 185 ±0 246 ±0 37.5 ±25 8 ±9.38
COMBs 674.5 ±14.15 185 ±0 1,385 ±161.85 137 ±92.57 0 ±0
COMBd 662.5 ±14.71 185 ±0 1,428 ±122.36 151.25 ±100.85 3.5 ±7
COMBe 674.5 ±14.15 185 ±0 1,428 ±122.36 88.5 ±59.29 — —

Setup LD6 LD8 LD9 LD10 LD11

avg. σ avg. σ avg. σ avg. σ avg. σ

CORE 0 ±0 9.5 ±10.97 0 ±0 0 ±0 21,801.75 ±6,255.72
CORE− 0 ±0 9.5 ±10.97 0 ±0 0 ±0 14,322 ±12,237
SEEALSO 0 ±0 19 ±0 0 ±0 0 ±0 19,096 ±9,373.88
SAMEAS 0 ±0 10,535.5 ±12,165.35 0 ±0 2,512.5 ±2,973.81 8,466 ±10,940.75
RDFSs 0 ±0 9.5 ±10.97 0 ±0 0 ±0 1,745.5 ±3,491
RDFSd 0 ±0 1 ±2 0 ±0 0 ±0 2,757.25 ±3,508.19
RDFSe 0 ±0 3 ±6 0 ±0 — — — —
COMBs 0 ±0 14,096.75 ±16,295.82 0 ±0 812.25 ±1,624.5 71,438 ±21,634.8
COMBd 0 ±0 — — 0 ±0 0 ±0 177,596.5 ±61,929.13
COMBe 0 ±0 — — — — — — 50,660 ±71,289.96

are hosted in individual documents and often inter-
link with related sources like YAGO and CYC, lead-
ing to unstable behaviour for dynamically retrieving
schemata where many documents need to be recur-
sively retrieved. Given that the queries are restricted
to a few domains, the required politeness delays are a
major factor for performance.

In summary, from the 11 original FedBench queries,
which were designed to be run using LTBQE-style ap-
proaches, 4 queries show promising results, 3 return no
results (2 involving access disallowed by robots.txt),
and the remaining 4 queries show unpredictable be-
haviour across different runs and configurations. Some
of the more complex queries involve accessing thou-
sands and tens of thousands of sources at runtime. By
requesting even more sources, our proposed reasoning
extensions can aggravate reliability issues. This calls
into question the practicality of the LTBQE approach
(and our reasoning extensions) in uncontrolled envi-
ronments for complex queries that span multiple sites
and require many sources to answer.

8.5. QWalk results

Having briefly looked at the DBPSB queries, which
target only the DBpedia domain; and having looked

in more detail at the FedBench queries, which target
a handful of domains; we now look at the results of
the QWalk benchmark (§ 7.2), which builds a large
set of queries answerable over a wide range of real-
world sources. Using random walk techniques over the
BTC’11 corpus, we created 100 queries for each of the
11 elemental shapes of the QWalk benchmark, giving
1,100 initial queries. We then ran these live over re-
mote sources using various configurations of LiDaQ.

Query testing We first wish to filter out queries that
did not return any answers or that did not show bench-
mark stable behaviour. To begin, for the edge query
classes, we look at how many queries return empty re-
sults, how many return stable non-empty results suit-
able for comparison, and how many return unstable
non-empty results (see § 8.1). Our notion of stability
is measured across all ten configurations of LiDaQ,
including the dynamic schema import extensions. We
also looked at the breakdown of stable/unstable/empty
results turning off the dynamic schema import (i.e.,
turning off RDFSd, RDFSe, COMBd, COMBe). The
results are shown in Table 8. Though the stability of
edge-o and edge-so queries are not significantly af-
fected, the number of stable queries for edge-s queries
more than halves. Thus, due to these problems with in-
stability and also long runtimes, and given the num-
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ber of queries in the benchmark, we do not run the dy-
namic schema configurations for QWalk queries.

Table 8
Stable edge queries with and without dynamic schema extensions

Template Total
Stable

wo/dyn. w/dyn.

edge-s 100 60 27
edge-o 100 57 53
edge-so 100 59 54

Considering CORE−, CORE, SEEALSO, SAMEAS,
RDFSs and COMBs configurations for each query
shape, Table 9 provides a breakdown of the total num-
ber of queries that return some results and exhibit sta-
ble or unstable behaviour, as well as the number of
queries with no results. Typewritten numbers corre-
spond to categories for HTTP server response codes
encountered for queries with no results; the column
“mix” indicates at least two different response codes
and the column “data” indicates that the missing re-
sults are not related to URI errors and we assume that
the remote data changed. We select only non-empty
and stable queries for our comparison.

Table 9
Summary of stable/unstable/empty queries for QWalk benchmark

Class
Non-Empty Empty

s. uns. all 4XX 5XX 6XX mix data

edge-o 57 7 36 18 2 11 0 5
edge-s 60 5 35 18 1 11 0 5
edge-so 59 9 32 17 2 8 1 4
o-path-2 62 4 34 16 5 8 1 4
o-path-3 35 25 40 19 3 18 0 0
s-path-2 66 2 32 17 2 11 0 2
s-path-3 51 7 42 18 1 20 0 3
star-0-3 67 6 27 14 0 10 0 3
star-1-2 62 2 36 21 2 12 0 1
star-2-1 70 5 25 11 3 9 1 1
star-3-0 66 15 19 12 0 4 0 3

Detailed Results We now look at the average mea-
sures for results across all (non-empty stable) queries
per query class: we begin with edge queries, then
progress to star queries and eventually to path queries.
Detailed results for each of our measures can be found
for reference in Table 21 of Appendix B. Herein, we
plot the total runtime, result latency and result sizes in

bar plots, where we measure the ratio of the analogous
figure for CORE− (which always returns the fewest re-
sults and should be the fastest). Absolute measures can
be found in Table 21. We generally found a lot of vari-
ance and outliers in our results; hence we plot the 50th,
75th, 90th and 100th percentiles to help show how the
measures varied in the median case (given by the 50th
percentile) and for extremes/outliers (given by higher
percentiles).

edge-*: GET ALL EDGES FOR A GIVEN RESOURCE
Edge queries have the most simple query shape and

are used in a wide range of applications to gather all
available information about a certain entity, e.g., for
the user interfaces of entity search engines. They are
also often (but not always) used as a simple mecha-
nism to support SPARQL DESCRIBE queries. Figure 7a
presents the increase in time over CORE− for all other
configurations across the three classes of edge queries,
broken down by percentiles, with the x-axis presented
in log-scale, where the 100 line indicates no change
from CORE−. Figure 7b analogously presents the in-
crease in result latency (time taken to generate the first
result) and Figure 7c presents the increase in query re-
sults returned versus CORE−.

We can see from the 50th percentile in Figure 7a that
the CORE configuration—which dereferences predi-
cates, values for rdf:type and URIs bound to non-
join variables—often requires significantly more time
to process queries than CORE− across all three edge
query classes, with the most severe case (on the 100th
percentile) taking almost eight times longer for edge-s.
Conversely, Figure 7c shows that CORE almost never
returns additional results beyond CORE−.

We also see that SEEALSO rarely affects perfor-
mance, but very rarely finds additional answers (only
for the 100th percentile are result increases visible).
From the flat 75th percentiles in Figure 7a, we can see
that in the majority of cases, other extensions did not
affect performance significantly, and the time taken to
start returning results was only affected significantly
in outlier cases. However, for total runtimes, the 90th
and 100th percentiles with reasoning show occasional
increases by a factor of ten, but these are offset by
increased result sizes, where modest increases are al-
ready visible on the 50th percentile for RDFSs and
COMBs in the edge-s and edge-so queries: all RDFS
rules offer additional data for edge-s* queries, whereas
only sub-property reasoning offers additional results
for edge-o in the general case. The 75th–100th per-
centiles also show occasional but very large increases
for results in the SAMEAS configuration.
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Fig. 7. Percentiles for ratio of increase in total runtimes, result latency and result sizes vs. CORE− for edge-query classes (log)

star-*: RETRIEVE VALUES FOR SPECIFIC PREDICATES

ABOUT A GIVEN RESOURCE

Star-shaped queries retrieve selected attributes of an
entity. The results for star-shaped queries are presented
in Figure 8 following the same format as before.

Some similar conclusions can again be drawn as
for edge queries. Again, the query time can often be
reduced without a significant effect on query results
by opting for CORE− over CORE; in this case, since
query predicates are set, the savings are made by not
dereferencing values for rdf:type or URIs bound to
non-join variables. The result latency remains rela-
tively stable except for in the 100th percentile outlier.
The notable total-runtime outlier for the query class
star-1-2 in CORE (on the 100th percentile) is due to
one query which took around 1 hour to terminate be-
cause of the download and processing of a very large
document from the ecowlim.tfri.gov.tw provider (such
cases show the importance of also considering the re-
sult latency: this source contributed no results and was
not accessed by configurations built on top of CORE).

Again, we see that SEEALSO had minimal effect on
results returned, but did increase the time significantly
for some of the query classes. RDFS and owl:sameAs

reasoning had an occasional but significant effect on
results size: however, we highlight that the baseline
gave, on average, very few results for star-3-0 and star-0-
3 (cf. Table 21), where a small absolute increase could
account for a very large relative increase, as per the
outliers on the 100th percentile. Also, the large RDFS-
related results outlier for the class star-1-2 is due to the
query mentioned in Example 11.

*-path-*: RETRIEVE TERMS THAT ARE TWO OR THREE

HOPS AWAY FROM A CENTRAL RESOURCE THROUGH

A PATH OF GIVEN PREDICATES

Path-shaped queries allow for exploring recursive
relations in the graph, or to get information about

neighbouring nodes. When compared with edge and
star queries, we would expect path queries to generally
be more expensive for LTBQE to process since they
explicitly require traversing a number of sources.

For path queries, we again show the analogous in-
creases in runtimes for the five configurations in Fig-
ure 9. Again, we see the savings in time for selecting
CORE− over CORE, particularly for the o-path-* classes
of queries. We also see that result latencies are gener-
ally not affected by extensions, other than in the case
of outliers. Across all extensions, the performance hit
for o-path-* queries are not met with gains in results; in
fact, the o-path-3 queries saw no significant gains for
any extension, even for the 100th percentile. We see
the first meaningful gain for SEEALSO in the s-path-3
class, but only for a single outlier query. In this case,
SAMEAS offers only minimal increases in some out-
lier cases. However, the RDFSs extension finds addi-
tional results for s-path-* queries, which are notable al-
ready on the 75th percentile; this extension performs
particularly well for s-path-3 where large gains in re-
sults do not cost comparable increases in total run-
times. The COMBs configuration again offers the most
results, but—with the exception of CORE—at the cost
of the highest runtimes.

Conclusion Across the hundreds of queries run for
the 11 query classes, we consistently find that com-
pared with CORE, the CORE− configuration saves sig-
nificantly on total query runtimes with only minimal
impact on result sizes. With the exception of one query,
we find that SEEALSO finds barely any additional re-
sults, but can sometimes cause a significant increase
in runtime. Reasoning extensions also increase total
runtimes, but regularly contribute additional answers:
SAMEAS offers infrequent but very high increases in
result sizes, where by comparison, RDFSs offers more
frequent but more modest increases in results. These
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Fig. 8. Percentiles for ratio of increase in total runtimes, result latency and result sizes vs. CORE− for star-query classes (log)
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Fig. 9. Percentiles for ratio of increase in total runtimes, result latency and result sizes vs. CORE− for path-query classes (log)

observations on result increases for the three exten-
sions correspond well with the results of our analysis
for the BTC’11 data in Section 6. Throughout, with the
frequent exception of CORE, the combined approach
was indeed the slowest, but always offered the most re-
sults. Although the reasoning extensions often signif-
icantly increased the time taken for queries to termi-
nate, the latency for retrieving the first results was not
significantly increased except in extreme cases.

To help summarise these results, Table 10 presents
the average throughput (results per second) achieved
across all queries per query class.20 We see that CORE

has uniformly the worst throughput of results across
all query classes. We also see that CORE− generally
performs slightly above average, but performs best for
edge-o. With the sole exception of the s-path-3 class,
SEEALSO performs slightly worse than CORE−. In
terms of the reasoning extensions, of the 11 query
classes, the highest throughput for 9 are split between
the SAMEAS (4), RDFSs (4) and COMBs (1) config-

20Given that there is a lot of variance in the raw figures, we ac-
knowledge that average figures are a coarse way to present the re-
sults, but they do help to summarise overall trends.

urations, where, for each configuration, the through-
put of COMBs frequently sits between SAMEAS and
RDFSs. However, aside from CORE, these latter con-
figurations also often perform the worst: they add sig-
nificant overhead to the query execution, but may of-
ten find significantly many additional results: they of-
fer high-risk but high-gain.

Table 10

Results per second for all query classes with configurations shaded
from best (lightest) to worst (darkest) throughput

CORE CORE− SEEALSO SAMEAS RDFSs COMBs

edge-s 1 1.68 1.67 2.15 1.29 1.53
edge-o 3.97 6.48 6.16 5.7 5.37 4.38
edge-so 2.02 2.82 2.66 3.71 3.73 4.82

star-3-0 0.11 0.16 0.15 0.15 0.24 0.2
star-2-1 0.58 1.12 1 1.04 2.14 1.75
star-1-2 0.17 1.6 1.35 1.6 70.97 58.85
star-0-3 0.18 0.35 0.33 0.94 0.24 0.68

s-path-2 0.44 0.72 0.68 0.7 0.83 0.78
s-path-3 1.76 2.45 2.56 2.46 2.43 2.1
o-path-2 1.38 8.39 7.76 10.55 6.36 6.89
o-path-3 0.95 5.7 5.84 6.08 5.04 4.68
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9. Conclusion

In theory, link-traversal query approaches for Linked
Data have the benefit of up-to-date results and decen-
tralised execution. However, a thorough evaluation of
such methods in realistic uncontrolled environments—
for a diverse Web of Data—had not yet been con-
ducted. We have focused on evaluating LTBQE ap-
proaches in this manner and have investigated the pos-
sibility of combining lightweight reasoning methods
with LTBQE to gather and integrate data from diverse
sources during query-answering.

We have characterised what percentage of data is
missed by only considering dereferenceable informa-
tion, we have looked at what percentage of raw data
is made available to LTBQE through various exten-
sions, and we have tested LTBQE and various exten-
sions in uncontrolled environments for three compli-
mentary query benchmarks. Our results show that LT-
BQE works well for simple queries with a derefer-
enceable subject, but, in uncontrolled environments,
struggles for more complex queries that involve ac-
cessing many remote sources at runtime. Furthermore,
we showed that runtimes in uncontrolled environments
are often a factor of politeness policies, since queries
frequently access many documents from few domains.

In terms of the extensions, we have shown that the
selection of sources can be successfully reduced by
ignoring predicate URIs, object URIs for type-triples,
and URIs bound to non-join positions. We have also
shown that the rdfs:seeAlso extension offers little in
terms of results, but occasionally introduces signifi-
cant runtime costs. We also showed that owl:sameAs ex-
tensions can occasionally increase the number of re-
sults found by a great deal, but also comes at signif-
icant costs and introduces unstable behaviour when
run live over domains such as DBpedia. Similarly, we
showed that RDFS reasoning extensions increase re-
sults more frequently than owl:sameAs extensions (e.g.,
in lower percentiles of the QWalk experiments), but
exhibits more moderate increases than the latter exten-
sions (e.g., in the 100th percentiles of QWalk experi-
ments). Through the FedBench experiments, we also
showed that the dynamic import of RDFS data at run-
time works well for simple queries on certain domains
(e.g., data.semanticweb.org), but can introduce insta-
bility for domains such as DBpedia, where schemata
are spread across multiple documents and link to other
domains with similar decentralised schema.

Future Directions The combination of reasoning and
LTBQE has shown the potential to find additional an-
swers, and at a higher rate than without reasoning,
but with the potential to make query-answering un-
stable. At the moment we focus on very lightweight
reasoning, supporting an important subset of the se-
mantics inherent in published Linked Data. Extend-
ing the inference rules to support a broader selection
of OWL features—based on the observations of use
by Glimm et al. [19]—would obviously help to find
more answers. However, even for our lightweight rea-
soning, we already encounter practical problems. In
particular, we showed that following owl:sameAs links
caused problems for some queries that in baseline se-
tups already involve many sources from the DBpe-
dia domain, which offers a high density of owl:sameAs

links from its local data. Furthermore, we noted that
the dynamic import of RDFS data increased the com-
plexity of remote access at runtime (esp. for DBpe-
dia) and thus caused instability and inflated response
times for more complex queries. Thus, we proposed
to use static schema data where we assume that such
data are infrequently updated. A better alternative—
one that we did not investigate—is the use of lazy
schema caching in combination with active refresh
policies. We believe caching schema data would work
well since a few (meta-)vocabularies (such as RDF,
RDFS, OWL, FOAF, DC, DCTERMS, etc.) are used
extremely frequently—something similar to a power-
law driven by preferential attachment—and are gener-
ally quite static. Again, caching has obvious benefits
for LTBQE in general (not just for schema), but herein
we rather focus on query-at-a-time evaluation.

In general, due to various fundamental (e.g., no
support for OPTIONAL, etc.) and practical issues (re-
liance on dereferenceability, assumptions that query-
patterns connect relevant sources through derefer-
enceable URIs, slow access to remote sources, vary-
ing stablity of remote hosts) LTBQE cannot be con-
sidered a complete solution for running complex
SPARQL queries over Linked Data: SPARQL is sim-
ply too complex a query language to be supported
in its entirety and in a practical fashion by LTBQE.
As such, one may consider a different language for
navigational queries, along the lines of proposals
by Fionda et al. [17]. In general, a query language
that would allow for declaratively specifying naviga-
tional aspects of query execution—e.g., stick to the
data.semanticweb.org domain, follow foaf:knows links,
do not follow foaf:homepage links, etc.—would be in-
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teresting, and would allow users to better guide the
query-engine than using a simple SPARQL query.

Taking an alternative view, although not a solution
for SPARQL, LTBQE is an interesting technique for
SPARQL and is complementary to other techniques
for querying Linked Data, such as materialised or fed-
erated approaches. LTBQE offers the potential to get
fresh answers when dynamic information is involved,
or to get sensitive data when user-specific access-
control is in place for some Linked Data source; this is
not possible through centralised approaches. Further-
more, it does not rely on SPARQL interfaces like fed-
erated approaches; also, there are currently no mech-
anisms to discover endpoints in the same manner that
LTBQE discovers sources. As such, the greatest poten-
tial for LTBQE is in combination with other querying
techniques, for example to dynamically freshen-up re-
sults returned by a centralised SPARQL endpoint that
replicates remote content. We have already begun to
investigate this use of LTBQE—as a wrapper for the
public LOD Cache and Sindice SPARQL endpoints–
such that query patterns involving dynamic data are
delegated to LTBQE rather than to replicated indexes,
which are likely to be stale [60]. In such scenarios,
LTBQE is required to deal with simple sub-queries,
which we have shown to be feasible in this paper.

As the Web of Data continues to expand and di-
versify, and as it becomes more dynamic, new query-
ing techniques will be required to keep up with its de-
velopments. Though various Web search engines have
shown the power and potential of centralisation, even
the preeminent Google machinery struggles to give up-
to-date answers over dynamic sources. Linked Data
presents new opportunities in this regard: URI names
appearing in queries also correspond to addresses from
which up-to-date data can be found. Although cen-
tralised approaches will always be relevant—a point
of view which this paper partly confirms—exploring
and combining complementary Linked Data querying
techniques is an important area of research if we are to
meet future challenges. In this paper, we have studied
the realistic strengths and weaknesses of the LTBQE
approach and various extensions. Next steps are to fur-
ther explore how it can be combined with centralised
query engines in an effective manner to freshen up an-
swers over dynamic data, or to find answers from data-
sources outside of the coverage of cached data.

Links Our source code and queries are available at
http://code.google.com/p/lidaq/wiki/Lidaq.
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Appendix

A. FedBench Queries

Herein, we present the results for the individual Fed-
Bench queries. We run the queries four times for each
of the ten LiDaQ experiments, and for comparabil-
ity across different configurations, we present the best
run in terms of results returned, and if tied, by time;
we thus select the run which provided the most sta-
ble behaviour and returned the most results. The vari-
ation between the four runs has already been analysed
in Section 8.4. We also show results for the SQUIN
library (v.0.1.3): we highlight that we only run the
SQUIN implementation once since (to the best of our
knowledge) it does not implement politeness policies,
and thus the LiDaQ configurations may have an advan-
tage in comparison—in any case, we show that SQUIN
is generally faster in total query time than LiDaQ
(likely due to shorter politeness delays) but slower for
first-result times. We do not have measurements for the
intermediate triples processed by SQUIN.

To avoid repetition, we discuss results incremen-
tally; we may only briefly remark again on observa-
tions that have already been made for earlier queries.

LD1: LIST AUTHOR(S) WITH THEIR PAPER(S) FOR
THE POSTER/DEMO TRACK OF ISWC 2008.� �
SELECT DISTINCT * WHERE {

?paper swc:isPartOf swIswc08pd: .
?paper swrc:author ?p .
?p rdfs:label ?n . }� �

Table 11
Benchmark results for query LD1

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 582 333 342.9 4.9 633 23,968 —
CORE− 582 333 343.5 3.7 628 23,013 —
SEEALSO 582 333 361.5 3.6 704 25,229 —
SAMEAS 668 529 391.4 3.9 761 26,269 8,109
RDFSs 615 380 478.8 3.8 628 23,013 11,501
RDFSd 615 380 350.3 5.2 666 23,013 13,984
RDFSe 615 380 356.1 6.6 865 23,013 18,587
COMBs 715 692 571.9 4.4 842 29,212 26,804
COMBd 713 680 461 8.4 1,002 28,485 27,745
COMBe 715 692 512.6 15.8 1,269 29,212 35,418

SQUIN 582 333 86.8 28 703 — —

The results for this query come mostly from one
site: the data.semanticweb.org “Dog Food” server. The
query engine first finds the list of URIs for all 85 de-
mo/poster papers published at ISWC 2008 on the first

document, dereferences these 85 URIs and builds a
list of 288 unique authors, then finally dereferences
these to find a list of 333 unique names (some au-
thors have multiple versions of names). For CORE−,
the politeness policy of two lookups per second leads
to query times of over 5 minutes (the fastest query
time possible here is HTTP

2 seconds). Conversely, al-
though SQUIN performs more lookups than CORE−

and CORE and generates the same results, it is much
faster, but performs at least 8 HTTP lookups/second
to data.semanticweb.org which is four times more than
the bounds of our politeness policy. However, first re-
sults take 4 seconds for LiDaQ (or up to 16 seconds
for dynamic schema) versus 28 seconds for SQUIN.

In this case, we see that CORE− saves few lookups
and little time when compared with CORE, and that
SEEALSO increases the number of sources but not the
number of results. We see that RDFS reasoning finds
some additional results: foaf:name and skos:prefLabel

are found to be sub-properties of rdfs:label and pro-
vide additional name variations, including with lan-
guage tags. Some of the authors have owl:sameAs rela-
tions to external sources, which, with SAMEAS, pro-
vide additional URIs for authors and name variations
using a sub-property of label. The most results are thus
given by the COMB approaches, which are also the
slowest overall.21

LD2: LIST AUTHOR(S) WITH THEIR PAPER(S) IN PRO-
CEEDINGS RELATED TO ESWC 2010.� �
SELECT DISTINCT * WHERE {

?proceedings swc:relatedToEvent swEswc10: .
?paper swc:isPartOf ?proceedings .
?paper swrc:author ?p . }� �
Although LD2 is very similar to LD1—requiring data

mostly from the same Dog-Food provider—the mea-
sures in Table 12 show result sizes that are the same
for all configurations: none of the extensions find any
additional results, where RDFSs adds significant over-
head. First results are often achieved in 4 seconds,
unless schema data need to be collected. The source-
selection savings for CORE− vs. CORE are notable,
where CORE does not dereference the 173 authors
bound to ?p (requiring 173× 2 = 346 lookups includ-
ing 303 redirects) since ?p bindings are not part of a
join. We note that SQUIN performs fewer lookups than

21The additional answers available for RDFS and same-as rea-
soning can be seen from, e.g., http://data.semanticweb.org/
person/mathieu-daquin/rdf.

http://data.semanticweb.org/person/mathieu-daquin/rdf
http://data.semanticweb.org/person/mathieu-daquin/rdf
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Table 12
Benchmark results for query LD2

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 236 185 260.3 3.9 478 20,356 —
CORE− 236 185 69.8 3.5 128 3,662 —
SEEALSO 236 185 70 3.5 128 3,662 —
SAMEAS 236 185 70.3 3.6 128 3,662 —
RDFSs 236 185 202.5 4 128 3,662 2,139
RDFSd 236 185 73.6 5.7 148 3,662 8,193
RDFSe 236 185 77.7 7 363 3,662 12,312
COMBs 236 185 219 4.8 128 3,662 2,139
COMBd 236 185 76.9 12.8 148 3,662 8,124
COMBe 236 185 79.7 22.9 363 3,662 12,162

SQUIN 236 185 24 4.4 171 — —

we would expect if it were to dereference authors, but
still dereferences more URIs than CORE− and its ana-
logues. As such, it would seem that SQUIN also imple-
ments some reduced source-selection optimisations.

LD3: LIST THE AUTHOR(S) WITH THEIR SAME-AS
RELATION(S), AND WITH THEIR PAPER(S) FOR THE
POSTER/DEMO TRACK OF ISWC 2008.� �
SELECT DISTINCT * WHERE {

?paper swc:isPartOf swIswc08pd: .
?paper swrc:author ?p .
?p owl:sameAs ?x ; rdfs:label ?n . }� �

Table 13
Benchmark results for query LD3

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 247 191 388.1 4 760 27,538 —
CORE− 247 191 342.8 8.1 628 23,013 —
SEEALSO 247 191 360 8.2 704 25,229 —
SAMEAS 394 951 389.5 4.2 763 26,248 8,014
RDFSs 263 246 474.7 5 628 23,013 11,501
RDFSd 263 246 349.5 4.9 666 23,013 13,991
RDFSe 263 246 355.8 4.8 865 23,013 18,775
COMBs 422 1,469 569.3 10.4 839 28,485 25,797
COMBd 425 1,583 461.8 18.8 1,008 29,212 28,814
COMBe 425 1,583 511.6 19.1 1,269 29,212 35,547

SQUIN 247 191 87.3 32.2 728 — —

This query adds a triple pattern to query LD1, re-
stricting the list of authors to (explicitly) look for those
with an owl:sameAs relation. This reduces the number
of authors involved from 288 in LD1 to 54 in LD3. We
can see in Table 13 that for configurations without rea-
soning, LD3 returns ∼57% of the number of results of
LD1: the decrease in authors is partially balanced by the
addition of another variable in the results. CORE− of-
fers a moderate performance improvement over CORE
while returning the same results. RDFS reasoning in-
creases result sizes for similar reasons as for LD1, and
at little cost. SAMEAS shows a marked increase in re-

sults size: the additional ?x variable is replaced by all
equivalent URIs for each author, leading to an addi-
tional product of result terms.

LD4: LIST THE AUTHOR(S) WITH PAPER(S) IN THE
PROCEEDINGS OF ESWC 2010 WHO ALSO HAD
ROLE(S) AT THE CONFERENCE� �
SELECT DISTINCT * WHERE {

?role swc:isRoleAt swEswc10: .
?role swc:heldBy ?p .
?proceedings swc:relatedToEvent swEswc10: .
?paper swrc:author ?p .
?paper swc:isPartOf ?proceedings . }� �

Table 14
Benchmark results for query LD4

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 60 50 986.9 33.5 1,805 74,635 —
CORE− 60 50 984.5 50.9 1,801 73,767 —
SEEALSO 60 50 1,019.4 51.9 1,982 81,864 —
SAMEAS 105 146 1,167.4 56.5 2,462 102,286 104,431
RDFSs 60 50 1,140.2 17.5 1,801 73,767 45,352
RDFSd 60 50 1,003 66 1,843 73,767 45,943
RDFSe 60 50 1,023.2 11.5 2,173 73,767 58,374
COMBs 162 203 4,658.4 68.9 2,834 115,707 297,620
COMBd 162 203 2,249.4 172.4 3,383 115,663 557,880
COMBe 80 126 7,211.6 52.9 9,225 109,858 1,702,602

SQUIN 60 50 244.3 236.7 1,981 — —

Again, this query is an extension of LD2 and re-
stricts the list of authors to those who, as well as hav-
ing a paper at ESWC 2010, also had a role at the
conference. Looking at the results in Table 14, even
for CORE−, the query processor performed over 1,800
lookups and our reduced source selection approach
barely affects the number of lookups (in this case, ?p
falls into a join position and 251 people had a role
at ISWC). The fastest time was around 16 minutes
for CORE− (again, ∼ 1,800

2 seconds). However, the
first results often arrived before the one minute mark.
RDFS reasoning alone produces no additional results,
but also does not overly influence runtime. Conversely,
SAMEAS produces additional results, where author
pages are this time dereferenced and owl:sameAs re-
lations found, adding aliases for bindings in ?p. The
combined approaches became unstable, adding addi-
tional HTTP load to what is already a demanding
query. In particular, COMBs and COMBe actually time-
out after roughly two hours; for example, the COMBe
approach retrieved almost ten thousand sources before
timing out, where the owl:sameAs links from authors
on data.semanticweb.org form a bridge to DBpedia,
whose schema data has a high fan-out. From previous
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queries, we have seen that the schema data directly ref-
erenced from data.semanticweb.org is relatively easy
to retrieve using dynamic import mechanisms; how-
ever, the schemata for other sites requires many more
sources to retrieve, particularly in the RDFSe/COMBe
configurations.

LD5: LIST THE NAME(S) OF THE ALBUM(S) BY

MICHAEL JACKSON� �
SELECT DISTINCT * WHERE {

?a dbowl:artist dbpedia:Michael_Jackson .
?a rdf:type dbowl:Album .
?a foaf:name ?n . }� �

Table 15
Benchmark results for query LD5

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 85 43 63.3 6 121 9,017 —
CORE− 85 43 66.8 9 116 8,285 —
SEEALSO 85 43 65.2 7.2 116 8,285 —
SAMEAS 313 271 212.7 14 593 15,179 119,907
RDFSs 85 43 218.3 23.5 116 8,284 7,115
RDFSd 83 42 417.7 9.4 698 8,203 163,163
RDFSe 36 18 4,886.6 12.9 9,729 4,087 302,609
COMBs 0 0 7,341.5 — 780 17,027 745,534
COMBd 15 14 7,200.6 353.7 1,452 14,450 958,611
COMBe — — — — — — —

SQUIN 85 43 16.2 3.9 115 — —

This query shifts the focus to the dbpedia.org data
provider. First dbpedia:Michael_Jackson is derefer-
enced to retrieve URIs for Michael Jackson’s albums,
which are subsequently dereferenced to confirm that
they are albums and to retrieve their name. Primarily,
the results show that following owl:sameAs links from
the DBpedia domain introduces high overhead: there
are a total of 425 URI aliases for Michael Jackson
and his albums on the DBpedia, including owl:sameAs

links to freebase.com, sw.cyc.com, linkedmdb.org and
zitgist.com. The fastest query times take about a
minute for LiDaQ and 16 seconds for SQUIN.

Although SAMEAS runs through (taking 3.28×
longer than CORE−), when same-as and RDFS rea-
soning are combined, LiDaQ becomes unstable: all
COMB approaches timed out, where COMBe threw an
OutOfMemoryException in all four runs before the time-
out was reached due to massive amounts of infer-
ences. Furthermore, the RDFSe configuration with-
out owl:sameAs reasoning showed that the dynamic im-
port of extended schema does not work well for DBpe-
dia, again touching upon nearly ten thousand sources
and generating fewer results than CORE− (which it ex-

tends). In general, the high fan-out of owl:sameAs and
schema-level links on DBpedia—and on sites linked
by DBpedia such as sw.cyc.com—combined with a
query that already accesses over one hundred DBpe-
dia pages in the baseline setup, prove too much for
RDFSe and COMB approaches.

LD6: LIST THE MOVIE DIRECTOR(S) FROM ITALY,
THEIR FILM(S) AND THE OFFICIAL NAME(S) OF LO-
CATION(S) FOR THE FILM(S)� �
SELECT DISTINCT * WHERE {

?director dbowl:nationality dbpedia:Italy .
?film dbowl:director ?director.
?x owl:sameAs ?film .
?x foaf:based_near ?y .
?y geo:officialName ?n . }� �

Table 16
Benchmark results for query LD6

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 0 0 9.6 — 12 17,864 —
CORE− 0 0 6.8 — 2 10,001 —
SEEALSO 0 0 3.6 — 2 10,001 —
SAMEAS 0 0 49.5 — 7 10,067 20,090
RDFSs 0 0 145.2 — 2 10,001 4,580
RDFSd 0 0 27.3 — 49 10,001 1,329
COMBs 0 0 215.3 — 7 10,067 24,922
COMBd 0 0 59 — 64 10,067 71,560
COMBe 0 0 7,223.5 — 945 10,067 427,421

SQUIN 0 0 5.9 — 1 — —

This query intends to span the DBpedia (first three
patterns), LinkedMDB (fourth pattern) and GeoN-
ames (fifth pattern) data providers. However, as we
can see in Table 16, no setup returned any results.
At the time of running the experiments, the derefer-
enced document for dbpedia:Italy contained 10,001
triples due to a manual cut-off set for the exporter,
where many triples (including inlinks) were omitted
and where the dereferenced document included no
dbowl:nationality triples. At the time of writing, the
dereferenced document contains 44,421 triples, in-
cluding 842 dbowl:nationality inlinks. In any case,
as we discuss for the next query, the GeoNames ex-
porter hosting data for the final triple pattern bans ac-
cess from all agents through its robots.txt. Aside from
such issues, we would expect this query to pose a ma-
jor challenge to LTBQE, and to again introduce unsta-
ble behaviour for COMB configurations.

LD7: LIST THE NAME(S) OF THE PARENT FEA-
TURE(S) OF GERMANY
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� �
SELECT DISTINCT * WHERE {

?x geo:parentFeature
<http://sws.geonames.org/2921044/> .

?x geo:name ?n . }� �
LiDaQ will not run this query since the robots.txt22

forbids software agents to access information on the
sws.geonames.org domain. SQUIN does access the
sws.geonames.org domain, but even aside from the
robots.txt issue, the first query pattern is not matched
by any data in the document dereferenced by the given
GeoNames URI for Germany: dereferenced docu-
ments on sws.geonames.org do not contain triples where
the URI appears in the object position.

LD8: LIST THE DRUG(S) IN THE MICRONUTRIENT
CATEGORY, THEIR CAS REGISTRY NUMBER(S),
ALIAS(ES), NAME(S) AND SUBJECT(S)� �
SELECT DISTINCT * WHERE {

?drug drugbank:drugCategory
drugbank:micronutrient .

?drug drugbank:casRegistryNumber ?id .
?drug owl:sameAs ?s .
?s foaf:name ?o .
?s dcterms:subject ?sub . }� �

Table 17
Benchmark results for query LD8

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 39 19 78.9 17.6 351 20,655 —
CORE− 39 19 61.9 25.5 257 7,245 —
SEEALSO 39 19 96.2 21.4 334 7,309 —
SAMEAS 294 21,071 1,374.4 67.1 856 12,839 515,297
RDFSs 39 19 198.5 15.9 257 7,245 4,979
RDFSd 8 4 181.4 132.6 231 774 43,814
RDFSe 24 12 7,514.8 155.5 7,175 5,491 143,236
COMBs 347 29,139 7,354.9 35.5 1,217 15,209 407,741
COMBd 0 0 7,212.1 — 1,289 11,416 73,304
COMBe — — — — — — —

SQUIN 22 10 120.9 10.5 482 — —

From the results in Table 17, we see the improve-
ments of CORE vs. CORE−. In a reverse of previ-
ous trends, SQUIN is faster to begin streaming results
but slower to terminate than CORE/CORE−. The re-
sults for this query show highly unstable behaviour
for all reasoning extensions except RDFSs. In partic-
ular, the consideration of owl:sameAs links snowballs
and introduces huge amounts of inferences, which
we believe to be due to data quality issues with this

22http://sws.geonames.org/robots.txt

relation within Linked Drug Data, and which we
had previously observed in other work [36, § 4.4].23

This of course highlights the problem whereby—even
with counter-measures such as authoritative analysis
of schema data—reasoning exacerbates data quality
issues for remote data providers. When owl:sameAs

and dynamic RDFS import and reasoning is com-
bined for COMBd and COMBe, we encountered further
OutOfMemoryExceptions.

LD9: LIST THE FOOTBALL TEAM(S) THAT WON A

FIFA WORLD CUP AND THAT WERE MANAGED BY

“LUIZ FELIPE SCOLARI”.� �
SELECT DISTINCT * WHERE {

?x dcterms:subject
dbpcat:FIFA_World_Cup-winning_countries .

?p dbpowl:managerClub ?x .
?p foaf:name "Luiz Felipe Scolari"@en . }� �

Table 18
Benchmark results for query LD9

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 0 0 147.3 — 266 29,326 —
CORE− 0 0 147.4 — 260 27,821 —
SEEALSO 0 0 136.4 — 260 27,821 —
SAMEAS 0 0 182.6 — 337 7,915 92,485
RDFSs 0 0 299.2 — 202 22,791 19,642
RDFSd 0 0 904.8 — 1,512 19,133 227,663
RDFSe 0 0 1,607.5 — 3,488 4,928 33,810
COMBs 0 0 7,342.9 — 984 28,211 558,187
COMBd 0 0 7,202 — 1,437 16,109 1,432,297
COMBe — — — — — — —

SQUIN 0 0 25.6 — 247 — —

As we can see from the results in Table 18, none
of the setups returned any content. At the time of the
experiments, the document for the Brazilian national
football team (the answer to ?p) contained parser er-
rors (tested with the W3C validator), which have since
been fixed. We again see that following owl:sameAs

and schema level links from the DBpedia causes huge
overheads, with COMBs and COMBd hitting timeouts,
and COMBe again throwing an OutOfMemoryException

after inferring too much data.

LD10: LIST THE CHANCELLOR(S) OF GERMANY,
THEIR ALIAS(ES) AND LATEST ARTICLE(S)

23We refer the reader to https://groups.google.com/
forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
for detailed discussion.

http://sws.geonames.org/robots.txt
https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
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� �
SELECT DISTINCT * WHERE {
?n dcterms:subject

dbpcat:Chancellors_of_Germany .
?n owl:sameAs ?p2 .
?p2 nytimes:latest_use ?u . }� �

Table 19
Benchmark results for query LD10

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 0 0 55.5 — 165 15,008 —
CORE− 0 0 52.7 — 160 13,692 —
SEEALSO 0 0 52.6 — 160 13,692 —
SAMEAS 200 5,825 7,200.6 310.4 937 18,120 811,104
RDFSs 0 0 195 — 160 13,692 17,008
RDFSd 0 0 321 — 855 4,011 79,345
COMBs 0 0 7,351 — 897 18,404 387,428
COMBd — — — — — — —
COMBe — — — — — — —

SQUIN 0 0 50.1 — 158 — —

This query tries to combine the dbpedia.org and
data.nytimes.com domains. As discussed in Section 8.4,
we mapped skos:subject to dcterms:subject to reflect
current DBpedia data. However, we found that al-
though the content returned for the entities that are
in the DBpedia category “Chancellors of Germany”
contains several owl:sameAs relations to aliases in the
data.nytimes.com domain, these are found in the in-
verse direction of the query pattern. This fact is re-
flected in the results shown in Table 19, where we
only find results if owl:sameAs inferencing is enabled;
in fact, both configurations that returned results timed
out doing so, and again, both configurations involving
the dynamic import of schema data threw exceptions.

LD11: LIST THE NAME(S) OF THE PLAYER(S) ON

THE EINTRACHT FRANKFURT TEAM, THEIR BIRTH-
DAY(S) AND THE NAME(S) OF THEIR BIRTHPLACE(S)� �
SELECT DISTINCT * WHERE {

?x dbpowl:team dbpedia:Eintracht_Frankfurt .
?x rdfs:label ?y .
?x dbpowl:birthDate ?d .
?x dbpowl:birthPlace ?p .
?p rdfs:label ?l . }� �
Table 20 shows that this query involves the largest

amount of results and source lookups of all the Fed-
Bench queries. The combination of over 300 players,
each of which typically has labels in several languages
and has two or three birth-places, each of which in turn
has labels in several languages, leads to large results

sets, even without reasoning. The number of HTTP
Table 20

Benchmark results for query LD11

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 4,240 25,445 607.3 15.1 1,125 354,880 —
CORE− 3,936 23,621 595.8 7.6 1,073 336,615 —
SEEALSO 4,194 25,068 599.2 12.7 1,113 353,961 —
SAMEAS 40 572 7,210.2 80.9 3,741 94,263 2,327,965
RDFSs 1,496 6,982 8,297.4 25.6 450 128,281 103,769
RDFSd 1,281 7,319 2,392.5 27.7 3,896 123,839 271,772
RDFSe — — — — — — —
COMBs 259 77,484 7,345.9 104.5 3,077 97,925 575,314
COMBd 275196,448 7,201.6 51 5,974 92,285 1,577,530
COMBe 240157,198 7,207.9 92.2 17,996 21,574 1,930,660

SQUIN 2,673 15,900 158.9 31.1 1,116 — —

lookups also reflects the breadth of this query, primar-
ily due to lookups on players and places. The reason-
ing extensions again exhibit unstable behaviour, either
eventually timing-out or throwing an exception.

B. QWalk Results

Table 21 presents the detailed average results for the
QWalk experiments across all query classes. For space
reasons, we only present standard deviations for terms,
results and time.

C. CURIE Prefixes

The CURIE prefixes used in this paper are enumer-
ated in Table 22.

Table 22
Mappings for all prefixes used

Prefix URI

cb: http://www.bizer.de#
cbDoc: http://www4.wiwiss.fu-berlin.de/bizer/foaf.rdf
dblp: http://dblp.l3s.de/d2r/

dblpA: http://dblp.l3s.de/d2r/resource/authors/
dblpADoc: http://dblp.l3s.de/d2r/data/authors/

dblpP: http://dblp.l3s.de/d2r/resource/publications/conf/semweb/
dblpPDoc: http://dblp.l3s.de/d2r/data/publications/conf/semweb/

dbpcat: http://dbpedia.org/resource/Category:
dbpedia: http://dbpedia.org/resource/
dbpprop: http://dbpedia.org/property/
dbpowl: http://dbpedia.org/ontology/

dcterms: http://purl.org/dc/terms/
drugbank: http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/

ebiz: http://www.ebusiness-unibw.org/ontologies/consumerelectronics/v1
foaf: http://xmlns.com/foaf/0.1/
geo: http://www.geonames.org/ontology#

nytimes: http://data.nytimes.com/elements/
oh: http://www.informatik.hu-berlin.de/~hartig/foaf.rdf#

ohDoc: http://www.informatik.hu-berlin.de/~hartig/foaf.rdf
owl: http://www.w3.org/2002/07/owl#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#
skos: http://www.w3.org/2004/02/skos/core#
swc: http://data.semanticweb.org/ns/swc/ontology#

swrc: http://swrc.ontoware.org/ontology#
swIswc08pd: http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings

swEswc10: http://data.semanticweb.org/conference/eswc/2010

http://www.bizer.de#
http://www4.wiwiss.fu-berlin.de/bizer/foaf.rdf
http://dblp.l3s.de/d2r/
http://dblp.l3s.de/d2r/resource/authors/
http://dblp.l3s.de/d2r/data/authors/
http://dblp.l3s.de/d2r/resource/publications/conf/semweb/
http://dblp.l3s.de/d2r/data/publications/conf/semweb/
http://dbpedia.org/resource/Category:
http://dbpedia.org/resource/
http://dbpedia.org/property/
http://dbpedia.org/ontology/
http://purl.org/dc/terms/
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/
http://www.ebusiness-unibw.org/ontologies/consumerelectronics/v1
http://xmlns.com/foaf/0.1/
http://www.geonames.org/ontology#
http://data.nytimes.com/elements/
http://www.informatik.hu-berlin.de/~hartig/foaf.rdf#
http://www.informatik.hu-berlin.de/~hartig/foaf.rdf
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2004/02/skos/core#
http://data.semanticweb.org/ns/swc/ontology#
http://swrc.ontoware.org/ontology#
http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings
http://data.semanticweb.org/conference/eswc/2010
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Table 21
Detailed QWalk results for all query classes

Setup Term Results Time (s) First (s) HTTP Data Inferred
avg. σ avg. σ avg. σ

ed
ge

-s

CORE 19.35 ±37.75 16.78 ±37.94 16.79 ±8.19 6.6 17.78 8,676.43 —
CORE− 19.33 ±37.72 16.77 ±37.91 9.99 ±4.81 6.6 2.92 5,772.5 —
SEEALSO 19.33 ±37.72 16.77 ±37.91 10.04 ±5.05 6.42 3.15 5,778.68 —
SAMEAS 25.28 ±63.42 22.73 ±63.76 10.57 ±5.47 6.93 3.27 5,579.42 67.82
RDFSs 24.13 ±37.95 21.77 ±38.01 16.93 ±35.6 6.57 4.55 22,591.2 16,328.55
COMBs 30.07 ±63.66 27.73 ±63.91 18.08 ±38.58 9.5 5.07 22,424.57 16,423.52

ed
ge

-o

CORE 54.16 ±382.48 53.53 ±382.42 13.49 ±8.5 6.19 7.18 3,517.61 —
CORE− 54.18 ±382.47 53.51 ±382.42 8.25 ±5.72 6.17 2.61 1,284.07 —
SEEALSO 54.19 ±382.47 53.53 ±382.42 8.69 ±5.65 6.16 2.77 1,832.04 —
SAMEAS 55.04 ±382.37 54.35 ±382.32 9.53 ±8.07 6.08 3.37 1,984.7 171.67
RDFSs 54.28 ±382.46 54.04 ±382.38 10.06 ±13.42 6.12 2.61 4,557.19 2,789.54
COMBs 55.14 ±382.35 54.88 ±382.27 12.52 ±17.02 6.37 3.46 5,043.68 3,171.05

ed
ge

-s
o

CORE 16.32 ±15 35.34 ±51.01 17.49 ±8.08 6.65 19.86 3,853.07 —
CORE− 16.14 ±15.04 34.66 ±49.83 12.28 ±6.41 6.79 6.46 1,296.02 —
SEEALSO 16.17 ±15.02 34.68 ±49.82 13.01 ±7.22 6.65 7.49 2,551.37 —
SAMEAS 18.19 ±17.4 56.14 ±93.8 15.15 ±11.48 6.68 8.53 1,776.64 393.93
RDFSs 19.71 ±17.52 52.86 ±73.08 14.19 ±14.12 6.65 8.64 4,600.24 2,833.88
COMBs 21.78 ±19.66 81.22 ±122.66 16.84 ±17.08 6.7 11.32 6,317.88 4,121

st
ar

-0
-3

CORE 3.49 ±4.46 2.64 ±4.4 14.9 ±16.5 7.43 13.76 2,099.61 —
CORE− 3.49 ±4.46 2.64 ±4.4 7.47 ±2.57 6.95 1.9 595.42 —
SEEALSO 3.49 ±4.46 2.64 ±4.4 7.94 ±4.64 7.43 1.91 595.42 —
SAMEAS 4.03 ±6.4 8.76 ±49.72 9.31 ±6.82 7.44 2.31 3,098.49 54.58
RDFSs 3.49 ±4.46 2.64 ±4.4 10.88 ±25.86 7.24 1.9 10,328.1 6,816.55
COMBs 4.03 ±6.4 8.76 ±49.72 12.83 ±31.08 7.78 2.33 9,920.43 6,876.52

st
ar

-1
-2

CORE 9.05 ±31.78 11.35 ±53.6 65.84 ±391.73 7.25 13.26 1,709.11 —
CORE− 9.05 ±31.78 11.35 ±53.6 7.08 ±2.18 6.72 1.82 48.74 —
SEEALSO 9.08 ±31.79 11.68 ±53.8 8.68 ±10.44 6.65 2.21 62.81 —
SAMEAS 9.53 ±31.83 13.02 ±54.21 8.15 ±3.94 6.71 2.4 323.32 52.97
RDFSs 12.56 ±53.7 644 ±5,028.56 9.07 ±12.49 6.88 1.82 856.34 556.48
COMBs 13.06 ±53.7 645.95 ±5,028.32 10.98 ±17.91 6.68 2.74 1,354.61 1,017.95

st
ar

-2
-1

CORE 5.53 ±12.82 7.44 ±30.09 12.77 ±16.11 6.41 11.79 515.37 —
CORE− 5.51 ±12.82 7.43 ±30.09 6.63 ±2.13 6.25 1.73 104.11 —
SEEALSO 5.51 ±12.82 7.43 ±30.09 7.46 ±3.37 6.23 1.93 104.5 —
SAMEAS 5.66 ±12.8 7.57 ±30.07 7.25 ±2.69 6.57 1.79 372.14 14.16
RDFSs 6.1 ±13.5 17.04 ±87.46 7.98 ±10.98 6.31 1.73 814.74 409
COMBs 6.24 ±13.47 17.19 ±87.44 9.84 ±13.66 6.99 1.99 797.06 435.4

st
ar

-3
-0

CORE 2.2 ±0.79 1.15 ±0.56 10.18 ±5.65 7.1 6.79 1,242.77 —
CORE− 2.2 ±0.79 1.15 ±0.56 7.16 ±3.26 6.69 1.53 949.88 —
SEEALSO 2.2 ±0.79 1.15 ±0.56 7.76 ±3.99 6.75 1.76 964.27 —
SAMEAS 2.29 ±1.15 1.24 ±1.01 8.33 ±5.6 6.93 1.83 2,138.38 68.39
RDFSs 3.67 ±2.57 2.7 ±2.61 11.46 ±26.25 7.51 1.53 8,817.83 6,742.48
COMBs 3.77 ±2.66 2.8 ±2.7 13.8 ±36.07 9.58 1.95 9,411.11 7,203.71

s-
pa

th
-2

CORE 6.89 ±38.25 6.35 ±38.27 14.42 ±34.39 7.05 14.02 575.45 —
CORE− 6.89 ±38.25 6.35 ±38.27 8.86 ±4.98 6.38 2.8 236.39 —
SEEALSO 6.89 ±38.25 6.35 ±38.27 9.38 ±5.35 6.37 3.08 236.45 —
SAMEAS 7.08 ±38.24 6.74 ±38.32 9.62 ±5.74 6.25 3.52 757.2 71.17
RDFSs 7.79 ±38.17 7.62 ±38.28 9.14 ±5.25 6.49 2.86 2,016.91 1,325.12
COMBs 8 ±38.17 8.03 ±38.32 10.25 ±5.95 6.43 3.98 2,214.55 1,502.45

s-
pa

th
-3

CORE 48.14 ±237.92 28.55 ±122.05 16.21 ±22.62 6.61 16.53 2,605.86 —
CORE− 48.1 ±237.89 28.43 ±121.89 11.6 ±6.73 6.89 4.59 1,302.96 —
SEEALSO 49.35 ±237.82 29.06 ±121.83 11.37 ±8.02 6.51 5.94 1,305.53 —
SAMEAS 48.14 ±237.89 28.47 ±121.88 11.59 ±5.82 6.74 4.71 4,612.86 4.04
RDFSs 48.69 ±237.78 29.02 ±121.76 11.94 ±6.84 7.1 4.61 13,502.16 8,601.94
COMBs 51.59 ±238.09 30.49 ±121.85 14.54 ±17.97 6.88 7.76 13,329.9 8,657.35

o-
pa

th
-2

CORE 96.02 ±379.55 94.26 ±376.01 68.52 ±262.1 7.34 107.06 2,942.29 —
CORE− 96.02 ±379.55 94.26 ±376.01 11.23 ±7.84 7.16 4.18 1,260.85 —
SEEALSO 96.02 ±379.55 94.26 ±376.01 12.15 ±7.95 6.87 4.52 1,261.71 —
SAMEAS 140.79 ±566.69 139.19 ±564.44 13.19 ±9.95 7.24 6.21 7,333.55 1,146.18
RDFSs 96.08 ±379.59 96.03 ±377.18 15.09 ±23.65 7.14 4.18 14,604.69 10,073.15
COMBs 140.87 ±566.71 140.98 ±565.07 20.47 ±36.77 7.32 6.69 18,734.92 12,521.85

o-
pa

th
-3

CORE 83.49 ±268.83 86.06 ±288.12 90.78 ±268.35 7.41 157.46 7,293.86 —
CORE− 83.51 ±268.87 86.09 ±288.15 15.1 ±8.86 7.9 7.43 1,105.51 —
SEEALSO 83.51 ±268.87 86.09 ±288.15 14.75 ±8.35 7.51 7.49 1,105.66 —
SAMEAS 83.51 ±268.87 86.09 ±288.15 14.16 ±8.98 7.09 7.43 3,854.49 —
RDFSs 83.51 ±268.87 86.09 ±288.15 17.1 ±15.34 7.14 7.43 9,336.74 5,481.91
COMBs 83.51 ±268.87 86.09 ±288.15 18.38 ±18.07 8.01 7.51 9,332.71 5,477.31


