
Keyword-Based Navigation and Search
over the Linked Data Web

Luca Matteis
Dept. of Computer Science

Sapienza University of Rome
matteis@di.uniroma1.it

Aidan Hogan
Dept. of Computer Science

University of Chile
ahogan@dcc.uchile.cl

Roberto Navigli
Dept. of Computer Science

Sapienza University of Rome
navigli@di.uniroma1.it

ABSTRACT
Keyword search approaches over RDF graphs have proven
intuitive for users. However, these approaches rely on local
copies of RDF graphs. In this paper, we present an algo-
rithm that uses RDF keyword search methodologies to find
information in the live Linked Data web rather than against
local indexes. Users navigate between documents by specify-
ing keywords that are matched against triples. Navigation
is performed through a pipeline which streams results to
users as soon as they are found. Keyword search is assisted
through the resolution of predicate URIs. We evaluate our
methodology by converting several natural language ques-
tions into lists of keywords and seed URIs. For each question
we measured how quickly and how many triples appeared in
the output stream of each step of the pipeline. Results show
that relevant triples are streamed back to users in less than
5 seconds on average. We think that this approach can help
people analyze and explore various Linked Datasets in a fol-
low your nose fashion by simply typing keywords.

1. INTRODUCTION
On the traditional “Web of Documents”, navigation is

characterized by following links (with anchor text) between
documents. On the Web of Data (also known as Linked
Data), documents contain structured resource descriptions,
where resources are interlinked with specific properties. This
increased granularity has opened the door to new approaches
for browsing [1] and querying [2, 3, 4] this information space,
navigating links that match user-specified structured pat-
terns. With such methods, we are getting closer to answer-
ing complex queries against the live Linked Data web, and
not just against a crawled and hardly up-to-date index.

However, users of these link traversal approaches need:
(i) to provide a formal description of the portion of the Web
they wish to traverse upfront and (ii) to know which URIs
to follow at each step of the navigation (similar to writing
SPARQL queries, for example, where users need to under-
stand the structure of the data). Furthermore, users may

Copyright is held by the author/owner(s).
WWW2015 Workshop: Linked Data on the Web (LDOW2015).

time

Figure 1: Navigating the Web of Documents involves click-
ing through various URIs coming from different sources.

time

hometown

hometown geo

geo

cl
os

e
by

close by

close by

filmed

filmed

actor

actor

Figure 2: Navigating the Web of Data using our approach
involves typing keywords rather than clicking.

often wish to explore different combinations of data sources
and URIs to get a more complete picture; they are unlikely
to know what navigational steps or what URIs are relevant
until they actually encounter them.

In order to avoid the need for users to specify a complex
structured query upfront [2, 4] or for local free-text indexes
to be built [5, 6], we propose an approach that combines key
aspects of (i) Linked Data navigation, such as link traversal
techniques [2] and semantic controlled navigation [4]; and
(ii) RDF search methodologies [5, 6]. The overall idea is
that starting at (a) given location(s) on the Web, the user
can interactively specify the next step by typing keywords
that are matched against the current data and used to find
and traverse links, adding more data. Users can thus use
keywords to navigate and answer questions across multiple
datasets without needing to know their structure or vocab-
ulary beforehand or without needing to go through a (pos-
sibly out-of-date or incomplete) centralized index. All the
user needs to start is the seed URL of an initial document.

This paper continues with discussion of related work in
Section 2. We introduce our methodology in Section 3 and
provide a detailed algorithm in Section 4. In Section 5 we
evaluate our approach against similar existing techniques.
In Section 6 we conclude and discuss future work.

2. RELATED WORK
Several works propose methods for browsing and navigat-

ing Linked Datasets. NautiLOD [4] was our main source
of inspiration, providing a language for navigating the Web
of Data in a controlled manner. Other approaches, such as
Link Traversal Querying [7] and Linked Data Frag-
ments [8], allow for querying Linked Datasets by resolv-
ing and traversing URIs automatically. Unlike these ap-
proaches, we do not require an upfront query or plan.

Instead our approach enables users to perform their dis-
coveries “on the go”. In this sense it is somewhat similar
to Linked Data browsers such as Tabulator [1]. However,
Tabulator is more akin to a traditional browsing scenario
on the Web of Documents. Figures 1 and 2 draw a com-
parison. In both scenarios, the user is involved in every
step. But rather than clicking to resolve a link manually,
our approach enables users to search for multiple links using
keywords: in our approach, the navigation can branch.

Versus keyword search approaches (e.g., see [5, 6]), we do
not require a local inverted index. We rather aim to enable
live exploration of the Web in search of (up-to-date) answers.

A related technique that combines both navigation and
search is Treo [9], which accepts a natural language ques-
tion that it uses to navigate a Linked Dataset in search for
answers. However, Treo again requires an upfront question.
Likewise Treo is assisted by third-party corpora, such as
Wikipedia, to find specific keyword paths to follow, while
our approach (currently) relies entirely on Linked Data.

In terms of streaming results to users on-the-fly, Triple
Pattern Fragments [3] was a source of inspiration.

3. KEYWORD-BASED NAVIGATION AND
SEARCH

To navigate and search the Web of Data using our ap-
proach, users (or agents) initiate their browsing similar to
the usual Web of Documents: they provide a list of starting
locations (seed URIs).1 The navigation starts by resolving
the seed URIs after which users are invited to introduce a
keyword. The keyword is used to search for relevant con-
tent against the information retrieved. This process is illus-
trated in more detail in Figure 3 where we perform a navi-
gation from seed URI http://harth.org/andreas/foaf#ah
looking for relevant information using the keyword “known”.
URIs found using this keyword are sent to an output stream.
In the upper-right corner we see this entire process happen-
ing again, using a new keyword and new seed URIs, namely
the ones returned from the earlier step.

In the following sub-sections, we will explain in more de-
tail the navigation and search aspects of our approach.

3.1 Navigation
The type of navigation we use to browse the Linked Data

Web in a programmatic way is similar to other works such as
LDpath2 and NautiLOD [4]. These approaches rely specif-
ically on following RDF links between resources and servers.
However, these methods only work in scenarios where users
know upfront which RDF links they wish to follow whereas
our approach does not make this assumption. Instead, our
navigation is interactive and driven by keywords rather than

1One could imagine these URIs coming from a search engine
or bookmark list, etc.
2http://marmotta.apache.org/ldpath/

known interest

Andreas
Harth

Kjetil
Kjernsmo

Sarven
Capadisli

Semantic Web

Philosophy

Figure 4: Navigation using a streaming pipeline

explicit URIs or regular expressions, allowing for a more flex-
ible and less rigorous browsing experience. Furthermore, in
other related approaches, users typically have to construct
queries upfront and wait for the entire process to finish be-
fore they can act on the results. Instead we rely on returning
results to users in a streaming fashion as quickly as possible,
enabling the discovery of data as you go.

To enable the streaming of results, we structure the nav-
igation process in the form of a pipeline. Each element of
the pipeline is responsible for searching against the data it
receives. Figure 4 gives an example. The resource Andreas
Harth is fed into the first element of the pipeline, and us-
ing the keyword “known”, we look for relevant triples. These
triples are then sent to an output, which becomes the in-
put stream for the next element of the pipeline. Rather
than having to wait for the process to finish at each step,
we act on results as soon as they are found. Thus the sec-
ond element can already start processing the resource Kjetil
Kjernsmo even though the earlier step has not finished look-
ing for triples. This enables users to continue the naviga-
tion using new keywords, even while other elements of the
pipeline are still busy looking for relevant results.

3.2 Search
To find relevant triples at each step of the pipeline, several

methodologies can be used. For instance, work such as [5]
show that keyword search against RDF structures is achiev-
able with high accuracy. We keep the search component
modular, so that specific implementations can decide which
technique to utilize. In the evaluation section herein we per-
form search using a string similarity algorithm against the
string representation of each triple.

<http :// harth . org . . . f o a f#ah>
f o a f : knows

<http :// csarven . ca/#i> .
f o a f : knows

rd f s : comment
”A person known by . . . ” .

known

Andreas
Harth

Kjetil
Kjernsmo

Sarven
Capadisli

Figure 5: Search using predicate resolution

To enable further matches, we extend the search with
content acquired by resolving the predicate URIs associated
with the current resource. When matching RDF links, we
are thus not only limited to matching tokens in the URI
string itself, but can match labels, comments, etc. Figure
5 shows an example of how predicate resolution can enrich
a search result. For the Andreas Harth resource, no triples
are found using the keyword “known”. However, by resolv-
ing predicate URIs we are able to find triples within the
foaf:knows predicate that match the keyword. We can there-
fore use triples with the foaf:knows predicate that are asso-
ciated with our main resource to continue our navigation.

http://harth.org/andreas/foaf#ah
http://marmotta.apache.org/ldpath/

Excerpt of the navigation showing
the contents of the streams as the
navigation proceeds along the
keyword pipeline.

Seed URI:
http://harth.org/andreas/foaf#ah

Keywords: known, interest

output
stream
known

Andreas
Harth

Kjetil
Kjernsmo

Sarven
Capadisli

“Andreas
Harth”

http://harth.org/andreas/foaf#ah

rdfs:label

foaf:knows

foaf:know
s

rdfs:label “label”

“A human-readable
name for the
subject.”

rdfs:label

rdfs:comment

foaf:knows “knows”

“A person known by
this person...”

rdfs:label

rdfs:comment

Kjetil
Kjernsmo

Sarven
Capadisli

Kjetil
Kjernsmo

“Kjetil
Kjernsmo”

rdfs:label

Semantic Web

foaf:topic interest

http://www.kjetil.kjernsmo.net/foaf#me

Sarven
Capadisli

“Sarven
Capadisli”

rdfs:label

Chess

Philosophy

foaf:interest

foaf:interest

http://csarven.ca/#i

output
stream

interest

Semantic Web Chess Philosophy

Figure 3: What are the interests of the people known by Andreas Harth?

Many predicate URIs will resolve to an entire ontology or
vocabulary and not just to the term identified. For instance,
the URI http://xmlns.com/foaf/0.1/knows resolves to a
description of the entire FOAF vocabulary. For this reason
our approach relies only on the triples where the resolved
URI appears in either the subject or object position.

4. ALGORITHM
We will now describe our approach in more detail by pre-

senting an algorithm and explaining its functionality using
a walkthrough example. The question in Figure 3 involves
accessing data from different sources and following specific
paths based on the people Andreas knows. To represent this
question formally we define a seed URI from which the nav-
igation initiates, and an ordered set of keywords we need
to follow to answer our question (e.g., in the order entered
interactively by the user). Each keyword is effectively an
element in the pipeline. Algorithm 1 gives an overview of
the procedure for a single element of the pipeline.

The algorithm takes as input a stream which we call S,
and a keyword k. By following Figure 3, once the URI
http://harth.org/andreas/foaf#ah appears in the stream
S (line 1), we resolve this URI and assign the triples returned
to the set R (line 2). Next on line 3 we apply our search
methodology against the set R using the keyword k (which
is“known”) and the found triples are assigned to the set F . If
triples are found we extract the URIs from the found triples
(line 5) and write the resulting URIs to our output stream
out. For the keyword “known” no triples were found, there-
fore nothing is written to the output stream yet.

Next on line 8 we obtain triples that were not yet found
and assign them to the set T . We proceed by resolving the
predicate URIs of this set. We loop through each triple of
this set on line 9, and we resolve each predicate on line 10.
We then apply our search methodology against the set P
using the keyword “known” with found triples assigned to
the set F ′ (line 12); if F ′ is non-empty, we extract new

Algorithm 1 Keyword-based navigation and search

Input: input stream S and keyword k
Output: output stream out of URIs found
1: upon URI in stream S do
2: R← triples from resolving URI
3: F ← search for k in R and return triples
4: if F.length > 0 then
5: N ← { unvisited URIs of F except predicates }
6: out.write(N)
7: end if
8: T ← R− F
9: for each triple t ∈ T do

10: P ← triples from resolving predicate of t
11: F ′ ← search for k in P and return triples
12: if F ′.length > 0 then
13: N ← { unvisited URIs of t except predicates }
14: out.write(N)
15: end if
16: end for

URIs from the current triple t (line 13). On line 14 we write
the extracted URIs to the stream out. Thanks to predicate
resolution, we now match triples with predicate foaf:knows,
resulting in 2 output URIs, namely http://csarven.ca/#i

and http://www.kjetil.kjernsmo.net/foaf#me.
Figure 3 continues by listening for the keyword“interest”.

The algorithm is re-executed with an input stream fed from
the output stream of the earlier execution. We therefore
obtain 2 URIs in the input stream; for each of these URIs
the process is repeated. The process terminates when all
processing has finished for the given keywords or the user
manually terminates the session.

It is important to note that the resolution of URIs can oc-
cur in parallel. In the evaluation section we specifically cre-
ate a new thread for each request to obtain higher through-
put. URIs resolved should also be cached to avoid unneces-
sary re-retrieval of commonly requested documents.

http://harth.org/andreas/foaf#ah
http://harth.org/andreas/foaf#ah
http://www.kjetil.kjernsmo.net/foaf#me
http://csarven.ca/#i
http://xmlns.com/foaf/0.1/knows
http://harth.org/andreas/foaf#ah
http://csarven.ca/#i
http://www.kjetil.kjernsmo.net/foaf#me

6.26 9.26 31.6
1

10

100

836

time(s)

#
tr

ip
le

s

known

interest

(a) What are the interests of the people known by
Andreas Harth? 2 keywords and 1 seed URI:

http://harth.org/andreas/foaf#ah

2.03 3 10 27

10

115

time(s)

#
tr

ip
le

s

match

definition

(b) What are the available definitions for the English
noun “apple”? 2 keywords and 1 seed URI:

http://babelnet.org/rdf/s00005054n

2.91 5.94 7.55

1

10

45

time(s)

#
tr

ip
le

s

dbpedia

airport
runway

(c) What are the lengths of the runways of the airports
in Rome, Italy? 3 keywords and 1 seed URI:

http://sws.geonames.org/3169070/

2.2 4.3 6.8 10 18.4

50

63

74

time(s)

#
tr

ip
le

s

director

based

@it

(d) Give me the locations of the movies directed by Ridley
Scott, in Italian. 3 keywords and 1 seed URI:

http://data.linkedmdb.org/resource/director/8472

Figure 6: Execution of questions

5. EVALUATION
The main characteristic of our keyword-based navigation

and search is that it allows to answer questions “as you
go” by simply typing keywords. The primary purpose of
this preliminary evaluation is to check whether our identi-
fied method produces relevant results in an acceptable time
frame. To this end, we performed two different experiments:

1. First we executed a series of questions, each repre-
sented as a set of keywords with a seed URI, using our
identified approach. We measured how fast and how
many relevant triples appeared in the output streams.

2. Next we compared our methodology against a similar
implementation called swget [10], a multi-threaded
tool that executes NautiLOD expressions (swgetM),
and we measured the response times at each navigation
step for both approaches.

5.1 Experimental setup
To run the experiments, we implemented our navigation

pipeline component using an observer pattern and our search
component as a multi-threaded Java process that uses the
open source Apache Any233 library to resolve URIs and
obtain triples. We instantiated keyword search by utilizing
the dice coefficient4 string matching algorithm which works
especially well with strings of variable length. The swget
comparison does not take into account our search method-
ology since we use explicit URIs. As HTTP requests were
run in parallel in different threads, to avoid many simultane-
ous connections that may overload the servers and generate

3http://any23.apache.org/
4http://www.catalysoft.com/articles/StrikeAMatch.
html

errors, we used a thread pool size of 5 (swget was also con-
figured with this size). All results for all the experiments
are the average of 5 runs.

5.2 Results
Figures 6a, 6b, 6c and 6d show the contents of the var-

ious output streams at specific times. Each plotted mark
represents data being written to the stream.

We will analyze the results in terms of response time (re-
ception of first solution for every keyword) and navigation
hop time (reception of first solution between each keyword).
For the question in Figure 6a, the response time is around
6 seconds for the first keyword and 9 seconds for the sec-
ond keyword. This is mainly due to the fact that we had to
resolve the predicate URIs in order to find triples matching
the first “known” keyword. The average navigation hop time
is 7.7 seconds. For the question in Figure 6b, the response
time is 2 seconds for the first keyword and 2.3 seconds for
the second. The navigation hop time is 2.2 seconds. For
this question we see that the results are returned quicker
because we did not have to resort to predicate resolution.
For the questions in Figure 6c and 6d, triples relating to the
first keyword are found in 2.8 and 2.2 seconds respectively,
5.9 and 4.3 seconds for the second keyword, and 7.5 and 5.8
seconds for the third keyword. The navigation hop time is
5.4 and 4.1 seconds. For these two questions we see that,
even with a greater number of keywords, the navigation hop
time remains below 10 seconds.

In summary, in these results we can see that response
times are all under 10 seconds. Even more important is the
navigation hop time, which suggests that users can navigate
across resources, and match relevant triples, in around 5 sec-
onds on average. These results, although preliminary, show
us that browsing the Web of Data using keywords is possi-
ble within the bounds of interactive time-frames, albeit a bit

http://harth.org/andreas/foaf#ah
http://babelnet.org/rdf/s00005054n
http://sws.geonames.org/3169070/
http://data.linkedmdb.org/resource/director/8472
http://any23.apache.org/
http://www.catalysoft.com/articles/StrikeAMatch.html
http://www.catalysoft.com/articles/StrikeAMatch.html

sluggish by modern browsing terms. Methods for improving
response times are discussed in the future work section.

swget comparsion: The speed difference between swget
and our approach (indicated as kbld) is shown in Figure
7 where we see swget’s response time increasing especially
for results returned by following owl:sameAs links. With
our approach the response times are stable without any rel-
evant jumps. The quicker response times of our approach are
mainly due to our pipeline algorithm which, instead of wait-
ing for each step to finish, sends results along the pipeline
as soon as they are found; our goal is specifically to enable
interactivity. swget was configured to stream results, how-
ever, it still performs a breadth-first search which means
each step has to finish before the navigation can continue.

dbp
:tea

m
dbp

:cit
y

dbo
:isP

artO
f

dbo
:ca

pita
l

dbp
:ca

teg
ory

owl
:sam

eAs

rdf
s:la

bel
0

5

10

15

20

2.06 2.9

6.7
8.66 9.08 9.47

11.25

1.96
3.56

7.5

10.35 10.7 11.02

17.52

ti
m

e(
s)

kbld
swget

Figure 7: Response times comparison. Seed URI:
http://dbpedia.org/resource/Michael_Jordan

6. CONCLUSION AND FUTURE WORK
In this short paper we combined RDF keyword search

methodologies with Linked Data traversal techniques. Pre-
liminary results showed that combining these two method-
ologies – with pipeline-based navigation and predicate res-
olution search – enables clients to explore the Web of Data
using keywords. Our approach of streaming results back to
the user as quickly as possible shows that applications can
be developed to make use of our keyword-based approach.

For future work we would like to further develop and eval-
uate the techniques presented. Reasoning methods could be
used to induce and find other relevant information. Babel-
Net [11] may be useful to match synonyms and translations.
Disambiguation methods such as Babelfy [12], using the
context acquired during navigation, may increase the accu-
racy of the search. For traversal and navigation techniques,
presenting a summary of the most used keywords available
at each resource could assist users with navigation. Sev-
eral issues arise when URIs are unavailable or when limits
are imposed by data providers; better approaches are also
needed for concurrent resolution of URIs so as to provide
quick response times while not straining servers. Future
work could therefore provide better methods for effectively
crawling Linked Datasets at runtime.

We would also like to look at the potential of using our
keyword-based approach inside an application such as Tab-
ulator [1]. Furthermore we would like to implement a stan-
dalone application to showcase the possibilities of this ap-
proach, namely a browser that navigates Linked Data re-
sources using keywords rather than clicking links.

Acknowledgments
Sapienza affiliated authors gratefully acknowledge support
from the LIDER project (№ 610782), a Coordination and
Support Action funded by the European Commission un-
der FP7. This work was also supported by the Millennium
Nucleus Center for Semantic Web Research under Grant
№ NC120004, and Fondecyt under Grant № 11140900.

7. REFERENCES
[1] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,

R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets,
“Tabulator: Exploring and Analyzing linked data on
the Semantic Web,” in In Proceedings of the 3rd
International Semantic Web User Interaction
Workshop, 2006.

[2] O. Hartig, C. Bizer, and J.-C. Freytag, “Executing
SPARQL Queries over the Web of Linked Data,” in
ISWC’09, 2009.

[3] R. Verborgh, O. Hartig, B. De Meester,
G. Haesendonck, L. De Vocht, M. Vander Sande,
R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de
Walle, “Querying Datasets on the Web with High
Availability,” in ISWC’14, pp. 180–196, 2014.

[4] V. Fionda, C. Gutierrez, and G. Pirró, “Semantic
Navigation on the Web of Data: Specification of
Routes, Web Fragments and Actions,” in WWW’12,
pp. 281–290, 2012.

[5] S. Elbassuoni and R. Blanco, “Keyword search over
RDF graphs,” in Proceedings of the 20th ACM
international conference on Information and
knowledge management, pp. 237–242, ACM, 2011.

[6] A. Hogan, A. Harth, J. Umbrich, S. Kinsella,
A. Polleres, and S. Decker, “Searching and browsing
Linked Data with SWSE: The Semantic Web Search
Engine,” Journal of Web Semantics, vol. 9, no. 4,
pp. 365–401, 2011.

[7] O. Hartig and J.-C. Freytag, “Foundations of traversal
based query execution over Linked Data,” in
HYPERTEXT, pp. 43–52, ACM, 2012.

[8] R. Verborgh, M. Vander Sande, P. Colpaert,
S. Coppens, E. Mannens, and R. Van de Walle,
“Web-Scale Querying through Linked Data
Fragments,” in Proceedings of the 7th Workshop on
Linked Data on the Web, 2014.

[9] A. Freitas, J. G. Oliveira, E. Curry, S. O’Riain, and
J. C. P. da Silva, “Treo: Combining Entity-Search,
Spreading Activation and Semantic Relatedness for
Querying Linked Data,” in Proc. of 1st Workshop on
Question Answering over Linked Data (QALD-1) at
the 8th Extended Semantic Web Conference (ESWC
2011), 2011.

[10] V. Fionda, C. Gutierrez, and G. Pirro, “The swget
portal: Navigating and acting on the web of linked
data,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 26, pp. 29–35, 2014.

[11] R. Navigli and S. P. Ponzetto, “BabelNet: The
Automatic Construction, Evaluation and Application
of a Wide-Coverage Multilingual Semantic Network,”
Artificial Intelligence, vol. 193, pp. 217–250, 2012.

[12] A. Moro, A. Raganato, and R. Navigli, “Entity
Linking meets Word Sense Disambiguation: a Unified
Approach,” TACL, vol. 2, pp. 231–244, 2014.

http://dbpedia.org/resource/Michael_Jordan

	Introduction
	Related Work
	Keyword-based Navigation and Search
	Navigation
	Search

	Algorithm
	Evaluation
	Experimental setup
	Results

	Conclusion and Future work
	References

