
Towards Fuzzy Query-Relaxation for RDF

Aidan Hogan1, Marc Mellotte1, Gavin Powell2, and Dafni Stampouli2

1 Digital Enterprise Research Institute (DERI), National University of Ireland,
Galway, Ireland. Email: {aidan.hogan,marc.mellotte}@deri.org

2 Innovation Works, European Aeronautic Defence and Space Company (EADS),
Newport, UK. Email: {gavin.powell,dafni.stampouli}@eads.com

Abstract. In this paper, we argue that query relaxation over RDF data
is an important but largely overlooked research topic: the Semantic Web
standards allow for answering crisp queries over crisp RDF data, but
what of use-cases that require approximate answers for fuzzy queries over
crisp data? We introduce a use-case from an EADS project that aims
to aggregate intelligence information for police post-incident analysis.
Query relaxation is needed to match incomplete descriptions of entities
involved in crimes to structured descriptions thereof. We first discuss
the use-case, formalise the problem, and survey current literature for
possible approaches. We then present a proof-of-concept framework for
enabling relaxation of structured entity-lookup queries, evaluating differ-
ent distance measures for performing relaxation. We argue that beyond
our specific scenario, query relaxation is important to many potential
use-cases for Semantic Web technologies, and worthy of more attention.

1 Introduction

RDF is a flexible data format, and is well-suited to data integration scenarios.
However, specifying precise queries over integrated, incomplete, heterogeneous
data is much more challenging than likewise in closed, homogeneous settings.
Writing precise queries requires precise knowledge of the modelling and content
of the data. Even if a querying agent knows its exact information needs—and
is able to specify those needs in a crisp, structured request—often, the query
will not align well with heterogeneous data. Furthermore, a querying agent may
not be able to specify the precise “scope” of answers it is interested in, but may
instead only be able to specify some “ideal” criteria that would be desirable.

Current Semantic Web standards and tools only go so far towards matching
the needs of the querying agent and the content of the dataset. RDFS and OWL
only facilitate finding more crisp answers to queries—answers matched directly
by the data or its entailments—and do not directly support a continuous notion
of distance (or similarity) for resources. For example, a query asking for a 2012
blue sports car on sale in New York may also be interested in a 2010 navy
roadster on sale in Newark. Although the subsumption relationship between a
sports car and a roadster could be modelled in RDFS, the distance of resources
such as blue/navy (vs. blue/red) and New York/Newark (vs. New York/Los

Angeles) cannot be succinctly axiomatised in RDFS/OWL for interpretation by
the query answering system. Instead, we argue that the RDF descriptions of
resources can be used to compute an inductive, generic notion of distance.

In this paper, we thus advocate a relaxed form of RDF query-answering where
the query should be interpreted as specifying the ideal criteria for answers, such
that other relevant (but non-crisp) scored answers are returned. This is similar to
top-k query-answering for Information Retrieval engines: a paradigm that works
well in highly-heterogeneous, incomplete scenarios, including Web search.

We first present an industrial use-case from the European Aeronautic De-
fence and Space Company (EADS) that requires matching witness observations
against crisp knowledge integrated from various law-enforcement and intelligence
agencies (§ 2). Next, we provide a survey of literature that relates to the needs
of EADS’ use-case and to query relaxation (§ 3). We then propose a generic
framework for building a relaxed RDF query engine (§ 4); we currently focus on
entity-lookup queries using similarities of RDF terms. Subsequently, we discuss
a generic technique for extracting distance/similarity scores between resources
based on their structured descriptions (§ 5). We then outline an early prototype
for relaxing queries—that represent witness observations—against a dataset of
vehicle descriptions, testing different similarity measures (§ 6). We conclude that
our own results are too preliminary for deployment, but argue that RDF query
relaxation (or more generally “fuzzy querying”) is an important, timely research
topic not only for EADS’ use-case, but may unlock various potential and diverse
Semantic Web applications involving vague/uncertain user requirements.

2 Use-case overview

Our use-case arises from an on-going research project at the European Aeronau-
tic Defence and Space Company (EADS): a large European aerospace, defence
and military contractor. EADS Innovation Works is the corporate research and
technology department of EADS that explores areas of mobility, security and
environment. One of the team’s key interests relates to civilian security, and en-
abling increased agency collaboration through use of intelligent systems. EADS
has been working on the development of systems for intelligence analysis to aid
post-crime police investigations [30], where analysts need to process raw infor-
mation, determine valuable evidence, and identify the entities involved and their
relationships. Investigations often rely on human observations, including police
reports, or statements from victims, witnesses and informers.

Such data are the result of subjective assessment and often carry inherent
vagueness and uncertainty. Human observations provide an estimate of the entity
observed, described in natural language, and may be imprecise (i.e., stating that
a suspect was 1.77 m tall when (s)he was 1.79 m tall) or vague (i.e., “between
1.7 m – 1.85 m”, or “average height”, etc.). Previous work [28,29] analysed issues
with using human intelligence data (HUMINT), and presented methods to align
data in different formats (numeric, textual and ranges). Herein, we view such
observations as structured fuzzy queries to be executed over crisp data.

Posing complex but potentially vague/approximate queries against a crisp in-
dex broaches various issues. Numeric attributes—such as height—can be made
“vague” using standard range queries. However, answers will not be scored: those
near the “sweet-spot” of the range are not distinguished from those near the bor-
ders of plausibility. Given multiple attributes, the need for scoring becomes more
pronounced. Furthermore, given non-numeric attributes (e.g., a navy getaway
car, probably a Toyota), standard query answering offers no support for vague-
ness. Ideally, the query engine should return ranked approximate answers by
relaxing both numeric and non-numeric values. Furthermore, the query should
allow for specifying different levels of relaxation for different attributes; e.g., that
Toyota is more vague and should be relaxed more than navy in the results.

We first considered applying ontologies and deductive methods to the use-
case, looking to formalise the domain and to use fuzzy/annotated reasoning and
querying techniques [20]. We abandoned this approach since (i) no legacy formal
models were already in use; (ii) creating a speculative formal model from scratch
(and fostering agreement) was deemed infeasible given the idiomatic nature of
observations; (iii) inference would be too coarse-grained given the low resolution
of formal knowledge available for the scenario. Instead, we decided to pursue an
inductive approach, touching upon the area of cooperative answering.

3 Background and State-of-the-art

Cooperative answering involves the application of Grice’s Maxims [13]—which
describe how to be helpful in conversation—to information systems. Cooper-
ative answering covers a broader area than our current scope, also trying to
detect/circumvent user misconception, to provide additional justifications for
the answer set, and to include entailed answers (as per deductive reasoning). We
refer the reader to a survey of seminal works by Gaasterland et al. [10] and to a
more recent survey of cooperative databases by Chu [5]. A pertinent technique in
the area of cooperative answering is query relaxation or generalisations, whereby
the criteria specified by the user are “relaxed” to include further, relevant con-
tent in the answers [9]. For example, Schumacher and Bergmann [27] propose
using similarity measures to perform query relaxation in support of case-based
reasoning over databases. Bruno et al. [3] investigate the use of query relaxation
for efficient top-k retrieval over numeric, multi-attribute database relations.

Recently, some authors have looked at deductive query relaxation mechanisms
for RDF [16,17,7,25]. Huang et al. [16], Hurtado et al. [17] and Poulovassilis &
Wood [25] all propose using RDFS semantics to perform relaxation, through,
e.g., generalising query patterns up class or property hierarchies, etc. Dolog et
al. [7] use query rewriting rules to perform logical relaxation based on explicit
user-preference models. For our use-case, logical relaxation alone is too coarse;
e.g., members of the same class are viewed analogously for type relaxation, etc.

Other authors have proposed similarity-based, inductive query relaxation for
RDF [19,8], but focus on lexical analyses. Kiefer et al. [19] propose integrating
“customised similarity functions” into SPARQL, allowing for string similarity

measures such as Levenstein, Jaccard and TF–IDF to be invoked. More recently,
Elbassuoni et al. [8] propose relaxation based primarily on measuring entity sim-
ilarity as the Jensen–Shannon divergence of the language models of virtual prose
documents constructed for each entity. Again, such lexical similarity techniques
are too shallow for our use-case (consider red vs. blue vs. navy); they still do not
leverage the rich, structured descriptions of entities during matching. (Herein,
we may use the dual terms distance and similarity interchangeably.)

Where numerical values are consistently defined for entities (e.g., lat./long.
for places, or L*a*b* triplets for colours, etc.), distances can be computed based
on Euclidean spaces where each attribute is a dimension (i.e.,

√∑n
i=1(ai − bi)2

for ai, bi comparable numerical values for entity A and B resp.). However, match-
ing based on categorical attributes—which are prevalent in RDF data—is more
difficult [2]. An overlap measure coarsely assigns a constant distance d (typically
d = 1) between entities that do not match for a given categorical attribute, or
zero distance otherwise. Otherwise, Boriah et al. [2] survey a number of finer-
grained methods for categorical matching; e.g., the Goodall measure [12] assigns
a higher similarity between entities sharing a more selective category (i.e., a
rare string value). Such measures are data-driven, relying on statistics from the
data to compute distances: consequently, the similarity of two entities can be
influenced by other peers (unlike, e.g., absolute Euclidean distances).

RDF similarity measures are also studied for instance matching. Although in-
stance matching focuses on finding owl:sameAs alignments—and although many
such frameworks rely on deductive methods (e.g., LN2R [26]) or lexical simi-
larity methods (e.g., KnoFuss [22], RDFSim [18]) to generate alignments—a
few inductive similarity metrics have been proposed based on overlaps in the
descriptions of entities [23,15,14]; one such approach is later used in § 5.

4 Relaxation framework

We now propose a conceptual framework for relaxation of an entity query : a list
of attribute–value or attribute–variable pairs Q := 〈(p1, o1), . . . , (pn, on)〉 such
that each pi is a property URI and each oi is either a variable, a URI or a literal
(i.e., Q ⊂ U × VUL).3 A crisp response consists of entities (subjects) with
predicate–object edges directly matching the query, as well as bindings for any
variables in o1, . . . , on. In SPARQL terms, this query model roughly corresponds
to basic graph patterns with a common subject variable; for example:

SELECT * WHERE {?s :colour :blue ; :city :NY ; :type :Sport ; year 2010 ; reg ?r .}

To relax queries, we define a matcher as a function M : VUL×UL→ R[0,1]

that maps a pair of values into a relaxation score: a value in [0, 1] where 1
indicates that the two values are not interchangeable, and 0 indicates perfect
interchangeability (e.g., M(c, c) := 0, M(?v, c) := 0). Each matcher is a distance
function between the query and entity values, respectively. The match function
3 The query is given an ordering for later convenience. We re-use standard RDF no-
tation: V denotes variables, U URIs and L RDF literals. AB denotes A ∪B.

may not be symmetric for pairs of values at different levels of specificity: e.g.,
M(:blue, :navy) might be 0.2 suggesting :navy as a good relaxation for generic
:blue, whereas M(:navy, :blue) might be 0.5 since :navy is more specific.

Matchers then form the core of the relaxation framework, and can be instan-
tiated in different ways (cf. [24]). For numeric attribute matchers (e.g. :year),
normalised distances can be used: letting maxi and mini denote the max./min.
values for a numeric property pi appearing in the data, qvi a value in the query
and evi a value for an entity, we can apply a normalised numeric matcher Mi :

(qoi, eoi) 7→
∣∣∣ qoi−eoi
maxi−mini

∣∣∣. For string attributes with functional character strings
(e.g., registration plates), lexical matchers can be used; we later use a Levenshtein
edit-distance matcher for licence plates such thatMi : (qoi, eoi) 7→ Lev(qvi,evi)

max(|qoi|,|eoi|) ;
other matchers can be used as appropriate. For categorical attributes—with URIs
or a discrete set of literals as values (e.g., colour, city)—creating a matcher of-
ten requires background knowledge about the different values; as per Schumacher
and Bergmann [27], we thus propose to use a similarity table for such attributes,
computed by a background matching process (discussed later in § 5).

Thus, the relaxation framework may involve multiple matchers: a toolbox
of appropriate matchers can be offered to an administrator. Where a suitable
matcher is not found for a pair of values, the query engine can resort to returning
standard “crisp” answers, allowing for an ad-hoc, incremental relaxation frame-
work. We currently do not consider inference or relaxation of properties etc.; our
framework could perhaps be extended as per the literature surveyed in § 3.

For a query Q = 〈(p1, o1) . . . (pn, on)〉 and entity E, the matchers generate a
tuple of numeric distances Mi...n(Q,E) = 〈d1, . . . , dn〉. Considering the query as
the origin, the matchers map entities onto points in an n-dimensional Euclidean
space with each dimension ranging over [0, 1] (a unit n-cube). Where an entity
has multiple values for a given attribute, the closest to the query is used; where
an entity is not assigned a query-attribute, the matcher returns 1.4 Thereafter,
entities on the origin are crisp matches. Otherwise, the distance from an entity to
the query-origin can be measured straightforwardly as a Euclidean distance (in

this case,
√∑n

i=1 d
2
i), or with root-mean squared deviation (RMSD :

√∑n
i=1 d2

i

n).
The overall distance from the query-origin to each entity gives an overall

relaxation score that can be used to order presentation of results, or to perform
top-k thresholding. Furthermore, users can annotate query attribute–value pairs
with a vagueness score that allows for controlling the relaxation of individual
facets (e.g., to allow more relaxation for :colour than :city). Thus a vague query
is defined as Q′ := 〈(p1, o1, v1,) . . . , (pn, on, vn)〉 where v1, . . . , vn ∈ R[0,1] (i.e.,
Q′ ⊂ U ×VUL × R[0,1]). A value vi indicates a threshold for di such that the
entity will only be considered a result if di ≤ vi (e.g., if v1 := 0, then (pi, oi) must
have a crisp match). Thus, the origin and the coordinate 〈v1, . . . , vn〉 prescribe a
region of space (an m-orthotope for m the number of non-crisp query attributes)
within which results fall into, allowing to tweak relaxation results.

4 Intuitively, this is the relaxed form of standard conjunctive query answering.

5 Generating similarity tables for categorical values

The query relaxation framework relies on matchers to define distances between
attribute values. We discussed direct matchers for numerical values (based on
normalised Euclidean distance/RMSD) and for string values (based on nor-
malised edit distances), but left the generation of similarity tables for categorical
values. Such tables can be generated in a number of ways. First, if the set of
categorical values is small enough, tables can be generated manually (on a pay-as-
you-go basis); however, the number of scores needed is quadratic for the number
of values. Otherwise, tables can be (semi-)automatically generated by any form
of similarity measure; e.g., certain categorical attributes (like colours or places)
are described using numeric attributes, allowing use of Euclidean distances.

Background information about the values can also be used to compute simi-
larity scores. For instance, given a sufficient unstructured corpus, distributional
semantic relatedness [11] can generate similarities between terms based on their
co-occurrences in prose text. Given a sufficient structured RDF corpus describing
the terms, instance-matching techniques can be used to generate similarity mea-
sures. Herein, we investigate the latter approach, using a generic RDF similarity
technique which we had previously proposed [14], viz. concurrence, which is de-
signed to cope with diverse RDF corpora; the core premises of concurrence have
also been extended for the purposes of instance matching by other authors [15].
We now introduce the concurrence algorithm, which we use later (§ 6) to mine
make–model similarity scores from an RDF corpus extracted from DBpedia.

Concurrence matches RDF resources based on their shared property-value
pairs (generalising in-links and out-links: i.e., considering both sp and po pairs).
Values are considered purely categorical, such that only crisp matches on shared
pairs are used. Similarity is influenced more by pairs that are determined to be
highly selective (i.e., to be exclusive): if a group of resources share a categorical
value, the similarity score between these resources is boosted proportionate to
the size of the group. This is similar in principle to Goodall’s measures [12,2].

Since RDF assumes an Open World (i.e., incomplete data), the concurrence
method is “monotonic”: similarity is not punished when two resources have dif-
ferent values for an attribute since attributes can have multiple values, and
(without OWL machinery checking cardinalities and ground (in)equalities), it is
difficult to ascertain whether or not two RDF resources necessarily disagree on
an attribute value (as opposed to just the known values differing). Instead, each
additional shared pair monotonically increases the similarity score.

Formally, for an RDF dataset, let card(p, v) denote the number of resources
that share a given property–value pair (abstracting subject/object directional-
ity), indicating how exclusive that pair is in the data. Next, let card(p) denote
the mean cardinality of p across all such values v in the data, indicating how
exclusive the property is (in general). The base similarity score given to all re-
sources sharing the pair (p, v) is then defined as concur(p, v) := 1

card×card(p,v)
,

which returns a value in [0, 0.5) if the pair (p, v) is shared at least once.
Now, two resources sharing multiple pairs are given a multiset of concur scores

C := {c1, . . . , cn}. The concurrence method combines these using a probabilistic

sum, such that ⊥sum(ca, cb) := ca+ cb− ca× cb. Since this function is associative
and commutative, it is well-defined for the multiset C (i.e., by summing pairs
in whichever order).5 The function is also monotonic and outputs a value in
[0, 1] (assuming ∀ci ∈ C(0 ≤ ci ≤ 1)). The intuition behind this aggregation
function is that each additional match score reduces the current distance between
the two resources by a product of itself; for example ⊥sum(0.5, 0.5) = 0.75, or
⊥sum(0.8, 0.2) = 0.8+(1−0.8)×0.2 = 0.84. As per the examples, the probabilistic
sum gives stronger weight to individual high values than an arithmetic sum.

The baseline concurrence method is also adjusted to account for some cases of
dependence between property-value pairs. To reduce the effect of groups of (e.g.,
sub-)properties being given the same value—i.e., pairs {(p1, v), . . . , (pn, v)}—
only the most exclusive such pair (for which concur(pi, v) gives the highest score)
will be used, and the rest discarded. To reduce the effect of repeated shared
values for a given property—i.e., pairs {(p, v1), . . . , (p, vn)}—all shared pairs for
each property p are (probabilistically) summed up separately to a maximum
value of card(p), with these scores then summed to an overall total.

Finally, generating quadratic pair-wise similarity scores may not be feasible
for large datasets. Thus, a threshold t (s.t. t > 2) is specified for large-scale
scenarios where pairs card(p, v) > t are ignored: the number of matches generated
are quadratic wrt. card(p, v) but the respective scores are inverse-proportional.
For example, if card(type, vehicle) = 50, 000, this shared pair would require
generating 50,0002−50,000

2 atomic matches with a score of < 1
50,000 . The threshold

thus allows for pruning potentially massive volumes of low-scoring matches.
Concurrence is implemented using batch processing techniques (sorts/scans),

and have been demonstrated on a corpus of one billion quadruples of openly-
crawled Linked Data (with t := 38). Further details are available in [14].

6 Proof of concept

In this section, we investigate proof-of-concept for the original use-case.

6.1 Vehicles scenario and data

Relating to the crime observation use-case, we focus on vehicle descriptions:
automobile observations are often integral to police investigations, and it would
be easier to find rich, publically available, representative, structured datasets for
the vehicles use-case than, e.g., for weapons or criminals.

The case study was then to match structured, partial, possibly vague and im-
precise queries against a crisp set of car instances. This dataset would emulate
information provided by the UK Driver and Vehicle Licensing Agency (DVLA),
or a Home Office database of recently stolen cars, etc. An observation by a wit-
ness would be something like "a blue getaway car that looked like a Toyota with
5 The probabilistic sum (aka. algebraic sum) is the dual t-conorm of the product t-
norm; it also refers to the probability of a disjunction of independent events.

an ‘LD’ licence plate". The relaxation framework is used to derive a ranked list
of cars from the dataset in order of their relevance to the observation. In this
respect, the observation acts like a query which should be executed against the
car instances. Results should include not only those cars which directly match
the characteristics given in the observation, but also similar cars. Different char-
acteristics of the observation can be annotated with different vagueness values.

For demonstration purposes, we decided that the chosen dataset should con-
tain information about a significant number of car instances, with attributes for
(at least) make, model, colour and body-type, covering common facets of vehi-
cle observations. We thus took an existing structured dataset describing 50,000
car instances based on a popular Irish website advertising used cars. Each car
instance is described using the following six properties: vehicle make (48 unique
values; e.g., Toyota), make–model (491 values; e.g., Toyota Corolla), body style
(8 values; e.g., Saloon), fuel type (5 values; e.g., Diesel), colour (13 values after
normalisation; e.g., navy), and registration (i.e., unique licence plate; 50,000 val-
ues). Taking the raw data, colours were normalised into a set of thirteen defined
values, a new set of UK-style licence plates was randomly generated, and the
data were modelled in RDF using Hepp’s Vehicle Sales Ontology (VSO).6

Notably, all vehicle attributes except licence-plates are categorical, and thus
require tables that encode similarity/distance scores. To relax licence-plate val-
ues, we allow wildcard characters in the query and use the normalised Leven-
shtein measure mentioned earlier. For colour, the thirteen values were mapped to
an L*a*b* three-dimensional colour space, where Delta-E was used to compute
(Euclidean) distances between the colours and generate a matrix for relaxation.7
An open, non-trivial challenge was then posed by the other properties. For fuel-
type, it was particularly unclear what kind of relaxation behaviour should be
expected for the use-case; a set of regular distance scores were manually defined.
Of more interest were the make–model, model and body-style attributes, for
which further background information was needed.

6.2 Mining DBpedia for background information

To acquire a background, structured corpus on the make and make–model values
appearing in the data, we enriched the baseline RDF data with selected DBpedia
exports [1] from Wikipedia: we noted that DBpedia exported a rich set of data
about many of the vehicle make–models, including width, height, categories,
engine, transmission, etc. The resulting RDF data would then serve as input for
similarity techniques to generate scores for subsequent query relaxation.

The first step was to map string values in the data (e.g., Toyota Corolla)
to DBpedia URIs (e.g., http://dbpedia.org/resource/Ford_Mondeo). First at-
tempts were made using the reconciliation function of the “RDF Extension for
Google Refine”8, which allows for mapping strings to resources in a SPARQL
6 Available at http://www.heppnetz.de/ontologies/vso/ns; retr. 2011/12/12
7 Distances in the L*a*b* colour space correspond more closely with discrepancies in
human perception than RGB/CMYK models [32].

8 See http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/; retr. 2011/12/12/

http://dbpedia.org/resource/Ford_Mondeo
http://www.heppnetz.de/ontologies/vso/ns
http://lab.linkeddata.deri.ie/2010/grefine-rdf-extension/

№ Top Overall Matches

1 Honda_Accord Honda_Odyssey

2 Mercedes-Benz_S-Class Mercedes-Benz_SL-Class

3 Suzuki_Alto Suzuki_Wagon_R

4 Ford_Tourneo_Connect Ford_Transit_Connect

5 Mitsubishi_Colt Mitsubishi_Mirage

6 Volvo_S60 Volvo_S80

7 Nissan_Maxima Nissan_Murano

8 Audi_80 Volkswagen Passat

9 Merdeces-Benz_S-Class Merdeces-Benz_W220

10 SEAT_Córdoba SEAT_Ibiza

№ Top Matches Across Makes

8 Audi_80 Volkswagen Passat

11 Audi A3 Škoda_Octavia

13 Audi_TT SEAT_León

25 Citroën_C1 Peugeot_107

27 Hyundai_i10 Kia_Picanto

28 Audi_A3 Seat_Léon

30 Daewoo_Winstorm Opel_Antara

38 Hyundai_Tuscan Kia_Sportage

39 Citroën_C3 Hyundai_Getz

40 SEAT_Toledo Volkswagen_Jetta

Table 1: Top ten make–model matches overall (left) and for distinct makes (right)

endpoint and refining these mappings in a second phase [21]. Although numerous
matches were found, many make–models were not reconciled to DBpedia URIs.

Instead, we adopted a manual approach by appending make–model strings
onto the DBpedia namespace URI, replacing space with underscore. However,
this approach also encountered problems. First, of the 491 string values, 68 mod-
els (14%) did not have a corresponding reference in DBpedia (404 Not Found):
some of the unmatched models were colloquial UK/Irish names (e.g., the make–
model Citroen Distpatch is known elsewhere as Citroën Jumpy), some were
misspelt, and some had encoding issues. These values were manually mapped
based on suggestions from Wikipedia search. Second, some of the matches that
were found returned little data. Of these, some were redirect stub resources
(e.g., Citroen C3 redirects to Citroën C3), where we “forwarded” the mapping
through the redirect. Others still were disambiguation pages (e.g., Ford Focus
disambiguates to Ford Focus International, Ford Focus America and Ford
Focus BEV). Furthermore, some resources redirected to disambiguation pages
(e.g., Ford Focus ST redirect to the Ford Focus disambiguation page). Here,
we mapped strings to multiple resources, where Ford Focus was mapped to the
set of DBpedia resources for { Ford Focus, Ford Focus America, Ford Focus
International and Ford Focus BEV }. In total, 90 strings (18.3%) had to be
manually mapped to DBpedia. Given the mappings, we retrieved 53k triples of
RDF data from DBpedia, following redirects and disambiguation links.

We applied concurrence over the dataset with a threshold t := 200 (each
shared pair with card(p, v) = 200 would generate >20,000 raw concur scores at
least below 0.005). For the 491 original make–model values, concurrence found
non-zero similarity scores for 184k (76%) of the 241k total car-model pairs pos-
sible, with an average absolute match score of 0.08 across all models.

The top ten overall results are presented in Table 1, where we also present
the top ten matches for models with different makes; note that matches are
symmetric and that all matches presented in the table had a similarity score ex-

http://dbpedia.org/resource/Honda_Accord
http://dbpedia.org/resource/Honda_Odyssey
http://dbpedia.org/resource/Mercedes-Benz_S-Class
http://dbpedia.org/resource/Mercedes-Benz_SL-Class
http://dbpedia.org/resource/Suzuki_Alto
http://dbpedia.org/resource/Suzuki_Wagon_R
http://dbpedia.org/resource/Ford_Tourneo_Connect
http://dbpedia.org/resource/Ford_Transit_Connect
http://dbpedia.org/resource/Mitsubishi_Colt
http://dbpedia.org/resource/Mitsubishi_Mirage
http://dbpedia.org/resource/Volvo_S60
http://dbpedia.org/resource/Volvo_S80
http://dbpedia.org/resource/Nissan_Maxima
http://dbpedia.org/resource/Nissan_Murano
http://dbpedia.org/resource/Audi_80
http://dbpedia.org/resource/Volkswagen Passat
http://dbpedia.org/resource/Merdeces-Benz_S-Class
http://dbpedia.org/resource/Merdeces-Benz_W220
http://dbpedia.org/resource/SEAT_C�rdoba
http://dbpedia.org/resource/SEAT_Ibiza
http://dbpedia.org/resource/Audi_80
http://dbpedia.org/resource/Volkswagen Passat
http://dbpedia.org/resource/Audi A3
http://dbpedia.org/resource/�koda_Octavia
http://dbpedia.org/resource/Audi_TT
http://dbpedia.org/resource/SEAT_Le�n
http://dbpedia.org/resource/Citro�n_C1
http://dbpedia.org/resource/Peugeot_107
http://dbpedia.org/resource/Hyundai_i10
http://dbpedia.org/resource/Kia_Picanto
http://dbpedia.org/resource/Audi_A3
http://dbpedia.org/resource/Seat_L�on
http://dbpedia.org/resource/Daewoo_Winstorm
http://dbpedia.org/resource/Opel_Antara
http://dbpedia.org/resource/Hyundai_Tuscan
http://dbpedia.org/resource/Kia_Sportage
http://dbpedia.org/resource/Citro�n_C3
http://dbpedia.org/resource/Hyundai_Getz
http://dbpedia.org/resource/SEAT_Toledo
http://dbpedia.org/resource/Volkswagen_Jetta

ceeding 0.99 indicating highly-relaxable values. Similarity scores are convertible
to distance scores for relaxation using dist = 1− sim.9

The results were of varying quality for our use-case. For the top make–model
match—Honda Accord/Honda Odyssey—the former is a saloon and the latter
is a minivan, and as such, the two models are physically diverse; however both
models share specific/exclusive components (e.g., the same engine) which causes
the high concurrence score. Another such example is given by Nissan Max-
ima/Nissan Murano; also the Seat Cordoba is the saloon version of the SEAT
Ibiza hatchback. This raises a more general issue with the subjective nature
of relaxation: although these pairs may be dissimilar for a witness-observation
use-case, they are similar from a sales or manufacturing perspective. Still, we
see some potentially interesting relaxation for the witness use-case. Many of
the highest-scoring cars are physically similar; besides those of the same make,
many of the matches with different makes are (or have been) based on the same
platform: i.e., are fundamentally the same car with different skins.

Besides manual inspection of top-ranked results, in the absence of a gold
standard, evaluating the large set of concurrence results from DBpedia is diffi-
cult. Although inspection yielded promising examples of relaxation, conversely,
unintuitive/undesirable results were also discovered. For example, the Westfield
SE (a rare model of “kit” sports-car) had very little information in DBpedia, and
hence had no notable concurrence matches; similar problems were encountered
for other rare models.

A major disadvantage of concurrence is that distances are not geometric in
nature: considering resources A, B, C as points, then the concurrence “distance-
vectors”

−−→
AB,

−−→
BC and

−→
AC cannot be considered as true spatial vectors since the

additive property thereof does not hold:
−−→
AB +

−−→
BC 6=

−→
AC. Thus, for example,

if concurrence gives a score of ∼1 indicating near-perfect similarity between B
and C (distance of ∼0), this does not imply that B and C have similar scores to
other cars (|

−−→
BC| ≈ 0 6⇒ |

−−→
BA| ≈ |

−→
CA|). Taking an example from our evaluation,

the Audi RS4 and Audi A4 were matched closely with 0.97; the Audi RS4 and
Audi A8 models were matched with a score of 0.8; but the Audi A4 and Audi
A8 models were matched with a low score of 0.29 despite being very closely
matched to a common model: the first two pairs gained their concurrence scores
through a largely distinct of (incomplete) attributes. This results in unintuitive,
incomparable distance scores when looking beyond just pairs of resources.

Furthermore, the results of the concurrence method is heavily dependent on
the underlying data. DBpedia does not distinguish between different editions of
make–models down through the years, where for example, the RDF data for six
diverse editions of Ford Fiesta—spanning forty years—are presented together
under one resource since they are described in one Wikipedia article (albeit with
separate info-boxes). Due to these, and other issues relating to data quality, we
decided to pursue tests over a smaller, cleaner dataset.

9 Alternatively, the similarities could be normalised into a non-parametric, rank-based
distance, where a relaxation value of 0.5 includes the top-half similar models.

6.3 Comparing concurrence vs. numerical matching

For evaluating the concurrence method, we wanted to compare its results against
standard Euclidean distances over numerical attributes. We attempted to ex-
tract numerical values from the DBpedia make–model data, but the presence
of multiple values per attribute and the incompleteness of the data precluded
any meaningful numerical analysis. Hence, a manual evaluation corpus was gath-
ered directly from Wikipedia for which concurrence and standard numerical ap-
proaches could be compared. The corpus consisted of tabular data describing 200
make–model–edition values in terms of numerical values and ranges (years pro-
duced, doors, engine capacity, wheelbase, length, width, height and curb weight)
as well as categorical values (make, model, edition, body-style); the dataset was,
however, incomplete as not all values could be found for all editions surveyed.

Since this evaluation dataset focuses primarily on numeric values, we mod-
ified the discrete concurrence algorithm to consider continuous values. Given a
set of property-value pairs {(p, v1), . . . , (p, vn)} with each vi ∈ R a value for
a specific car-edition, and given two resources (editions) with pairs (p, va) and
(p, vb) respectively (where va ≤ vb), we define the numeric cardinality between
the two values as ncard(p, va, vb) := |{vi : ∃(p, vi) and va ≤ vi ≤ vb}|, denoting
the number of resources that fall in the inclusive range of those two values for
that property [va, vb], assuming single-valued attributes for brevity. The concur-
rence score for a crisp categorical value becomes concur(p, v) := 1

card(p,v) and for a
numeric value becomes concur(p, va, vb) :=

1
ncard(p,va,vb)

. Furthermore, we turned
off concurrence’s thresholding and dependence filters, which were not required
for the clean, small dataset at hand (reverting to a simple probabilistic sum).

We then measured the correlation between results for the modified concur-
rence algorithm, and for non-normalised RMSD (distances not divided by the
max −min denominator) and normalised RMSD (distances for each attribute
pre-normalised into [0, 1]) computed over numerical attributes. To quantify the
correlation, we used Kendall’s τ , which measures correlation between two order-
ings: the τ value is in the range [−1, 1] where −1 indicates a perfect negative cor-
relation (the orderings are “reversed”), 0 indicates independence of orderings, and
1 indicates a perfect correlation (the same ordering). The correlation between
the concurrence and non-normalised RMSD was positive but weak (∼0.1): with-
out the pre-normalisation of values, attributes with larger units (such as years
in the thousands) tended to have high influence. However, between concurrence
and normalised RMSD values, the correlation was higher at ∼0.54: the main
difference was attributable to the monotonic nature of concurrence, which did
not punish mismatches between single values to the same extent as the nor-
malised RMSD measure. RMSD had the more favourable results in this regard
due in part to the clean nature of the data. Conversely, concurrence gave better
matches for incomplete data, where RMSD gave very high scores.

Finally, we compiled the 40,000 make–model–edition similarity scores for
each approach into similarity scores for make–models, makes and body-styles by
taking the average across all pairs in the generalised groups. For example, to
generate a similarity score between saloon and hatchback body styles (say the

sets S and H resp.), we took the average of all edition-similarities between both
groups (i.e., the arithmetic mean of scores for all edition-pairs in S ×H).

6.4 Experimenting with query relaxation

With various matcher mechanisms and tables in hand, we turned to testing query
relaxation against the 50k vehicles dataset. We developed a simple prototype
to take a vague query, perform a full scan of the dataset computing relaxation
scores for each entity based on the matchers, and return a ranked list of answers.
Although the query algorithm is linear, we acknowledge that sub-linear (and sub-
second) query times might be required for deployment. There are various avenues
to enable sub-linear performance (for entity search): (i) if crisp facets are given,
these can be looked up directly where relaxation is then used to filter initial
results (similar in principle to SPARQL FILTERs); (ii) given a matcher based
on a table of similarities or on numeric distance, the corresponding vagueness
score for the query facet can be used to compute a range query that can be
executed as a table lookup (assuming an index with the correct sort order is
available); (iii) special relaxation indices can be built, for example, using Locality
Sensitive Hashing to index Euclidean points and enable efficient neighbourhood
searches [4]. Different optimisations are feasible for different types of matchers.
We leave further investigations of optimisations for related work: our current
aim is to validate the proposed techniques and offer proof-of-concept.

Table 2 presents the top-5 results for three example witness observations,
which were modelled as structured vague queries and run against the vehicles
dataset. Vagueness scores are manually chosen for proof-of-concept: mapping
textual vagueness to numeric vagueness is out of scope. For the matchers, we
used a normalised Levenshtein edit-distance for licence plates; the L*a*b*-based
similarity table for colour; and for make, model, edition and body-style, we used
three configurations with similarities computed from the 200 vehicle-editions
dataset (for which we could compute three sets of results) using (i) concurrence,
(ii) normalised Euclidean and (iii) absolute Euclidean distance measures. The
scores are based on RMSD from the query origin (subtracted from one).

Observation A gives an example of relaxation for colours; however, note
that the original query also requests relaxation for models, but where colour
distances are typically much shorter. No difference occurs between the differ-
ent matcher configurations for car-make (the first relaxed car-make appears in
position 10–11). This is a weakness of the framework: different matchers may
produce incomparable distances, creating an “imbalance” in the relaxation across
different attributes; a possible solution is the use of rank-based distances. From
Observation B, we see maroon being returned as a crisp match for red and
see example relaxation of models; from the scoring, we also note that different
matchers may vary in terms of inclusiveness. Finally, Observation C uses the
Levenshtein edit-distance matcher for licence-plates in combination with colour
relaxation, where the black result is questionable.

In the absence of a gold standard, we could not evaluate precisely the ef-
fectiveness of the relaxation framework for generating relevant, approximate,

Observation A: “A greenish car, maybe a Peugeot”.
Relaxed query: {(colour, green, 0.2), (make, Peugeot, 0.8)}

№ All Approaches (same results)
result score

1 Peugeot green 1.00
2 Peugeot yellow 0.96
3 Peugeot brown 0.95
4 Peugeot teal 0.95
5 Peugeot aqua 0.93

Observation B: “A red SUV, looked like a Land Rover Freelander”.
Relaxed query: {(colour, red, 0), (body, SUV, 0), (model, LR.-Freelander, 0.8)}

№ Concurrence Norm. Euclidean Abs. Euclidean
result score result score result score

1 LR. Freelander red 1.00 LR. Freelander red 1.00 LR. Freelander red 1.00
2 LR. Freelander maroon 1.00 LR. Freelander maroon 1.00 LR. Freelander maroon 1.00
3 Hyundai Trajet red 0.86 Hyundai Tuscon red 0.93 Hyundai Tuscon red 0.84
4 Kia Sorento red 0.86 Hyundai Tuscon maroon 0.93 Hyundai Tuscon maroon 0.84
5 Kia Sorento maroon 0.86 Kia Sorento red 0.92 Renault Scenic red 0.84

Observation C: “A light Audi A3 8L, 2006 UK reg. starts with SW and ends with M ”.
Relaxed query: {(colour, white, 0.4), (edition, Audi-A-8l, 0.1), (reg, SW?6??M, 0.4)}

№ All Approaches (same results)
result score

1 Audi A3 8L SW06RWM yellow 0.92
2 Audi A3 8L SF56GCN white 0.91
3 Audi A3 8L BW06LJN gray 0.90
4 Audi A3 8L SW04TVH black 0.85
5 Audi A3 8L AE56MWM maroon 0.83

Table 2: Example observations, relaxed queries and results

well-graded answers. Generating high-quality distance scores based on categori-
cal values is much more challenging than for numeric attributes [2], but a crucial
part of inductive query relaxation for RDF. Table 2 provides some preliminary
results towards query relaxation for RDF, but based on the outlined problems,
the results were deemed currently unsuitable for deployment in the use-case.
However, we believe that with further investigation, such methods can be im-
proved and adapted for use in other less critical applications, such as relaxing
query results from public SPARQL endpoints.

7 Conclusion

In this paper, we introduced a use-case from EADS involving matching wit-
ness observations against structured entity descriptions. We proposed query-
relaxation as a framework within which to tackle the problem. We discussed how
matchers can be used to enable query relaxation, how different matchers can be
combined and used for different attributes, and how RDF similarity techniques
can be used to compile similarity scores for categorical values. We presented
the results of various proof-of-concept experiments with the goal of perform-
ing query-relaxation over 50k car descriptions. We discussed using DBpedia to

mine background information for make–model similarity scores, computed using
our proposed concurrence method. We subsequently compared the correlation
between the results of a modified version of our concurrence method and that
of standard Euclidean distance measures. Finally, we presented some example
query-relaxation results based on vague observations of vehicles as per the use-
case. Unfortunately, the results were not deemed reliable enough for deployment.

As such, lots more work is left to do and many challenges are left unad-
dressed. Beyond our use-case, we argue that cooperative answering and query
relaxation is an important, timely topic for Semantic Web researchers to pursue:
RDF stores often index diverse datasets with complex schemata, against which
writing precise queries is extremely challenging. Query relaxation would then find
application in various areas, including Web search and recommender systems [3],
e-commerce [6], case-based reasoning [27], reconciliation [21], etc. As discussed,
current instance matching techniques can be repurposed for relaxation.

In summary, we would hope to see further proposals towards “cooperative
SPARQL engines” which intelligently aid users—using a mixture of deductive
and inductive techniques—in the daunting task of answering potentially vague
queries over diverse RDF datasets. We have taken tentative steps in this direc-
tion, looking at query relaxation for entity queries. Further focus on inductive
techniques—like those proposed by Stuckenschmidt [31] or Hu et al. [15]—will
also better position the Semantic Web community to support applications need-
ing “intelligence” beyond just crisp semantics and logics.

Acknowledgements: This paper was funded in part by by Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Lion-2). We thank Nuno Lopes, Axel Polleres,
Ali Hasnain and Maciej Dabrowski for their contributions.

References

1. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia - a crystallization point for the Web of Data. J. Web Sem.,
7(3):154–165, 2009.

2. S. Boriah, V. Chandola, and V. Kumar. Similarity measures for categorical data:
A comparative evaluation. In SDM, pages 243–254, 2008.

3. N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over relational
databases: Mapping strategies and performance evaluation. ACM Trans. DB Syst.,
27(2):153–187, 2002.

4. S. Chaudhuri, M. Datar, and V. R. Narasayya. Index selection for databases: A
hardness study and a principled heuristic solution. IEEE Trans. Knowl. Data Eng.,
16(11):1313–1323, 2004.

5. W. W. Chu. Cooperative database systems. In Wiley Encyclopedia of Computer
Science and Engineering. John Wiley & Sons, Inc., 2008.

6. M. Dabrowski and T. Acton. Modelling preference relaxation in e-commerce. In
FUZZ-IEEE, pages 1–8, 2010.

7. P. Dolog, H. Stuckenschmidt, H. Wache, and J. Diederich. Relaxing RDF queries
based on user and domain preferences. J. Intell. Inf. Syst., 33(3):239–260, 2009.

8. S. Elbassuoni, M. Ramanath, and G. Weikum. Query relaxation for entity-
relationship search. In ESWC (2), pages 62–76, 2011.

9. T. Gaasterland. Cooperative answering through controlled query relaxation. IEEE
Expert, 12(5):48–59, 1997.

10. T. Gaasterland, P. Godfrey, and J. Minker. An overview of cooperative answering.
J. Intell. Inf. Syst., 1(2):123–157, 1992.

11. E. Gabrilovich and S. Markovitch. Computing semantic relatedness using
Wikipedia-based explicit semantic analysis. In IJCAI, pages 1606–1611, 2007.

12. D. W. Goodall. A new similarity index based on probability. Biometrics, 22(4),
1966.

13. P. Grice. Logic and conversation. Syntax and semantics, 3, 1975.
14. A. Hogan, A. Zimmermann, J. Umbrich, A. Polleres, and S. Decker. Scalable and

distributed methods for entity matching, consolidation and disambiguation over
Linked Data corpora. J. Web Sem., 10:76–110, 2012.

15. W. Hu, J. Chen, and Y. Qu. A self-training approach for resolving object corefer-
ence on the semantic web. In WWW, pages 87–96, 2011.

16. H. Huang, C. Liu, and X. Zhou. Computing relaxed answers on RDF databases.
In WISE, pages 163–175, 2008.

17. C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Query relaxation in RDF. J.
Data Semantics, 10:31–61, 2008.

18. E. Ioannou, O. Papapetrou, D. Skoutas, and W. Nejdl. Efficient semantic-aware
detection of near duplicate resources. In ESWC (2), pages 136–150, 2010.

19. C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of isparql: A virtual
triple approach for similarity-based semantic web tasks. In ISWC/ASWC, pages
295–309, 2007.

20. N. Lopes, A. Polleres, U. Straccia, and A. Zimmermann. AnQL: SPARQLing up
annotated RDFS. In ISWC, pages 518–533, 2010.

21. F. Maali, R. Cyganiak, and V. Peristeras. Re-using cool URIs: Entity reconciliation
against LOD hubs. In LDOW, 2011.

22. A. Nikolov, V. S. Uren, E. Motta, and A. N. D. Roeck. Integration of semantically
annotated data by the KnoFuss architecture. In EKAW, pages 265–274, 2008.

23. J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt. Leveraging termi-
nological structure for object reconciliation. In ESWC (2), pages 334–348, 2010.

24. R. Oldakowski and C. Bizer. SemMF: A framework for calculating semantic simi-
larity of objects represented as RDF graphs. In ISWC (Poster Proc.), 2005.

25. A. Poulovassilis and P. T. Wood. Combining approximation and relaxation in
semantic web path queries. In ISWC (1), pages 631–646, 2010.

26. F. Saïs, N. Pernelle, and M.-C. Rousset. Combining a logical and a numerical
method for data reconciliation. J. Data Semantics, 12:66–94, 2009.

27. J. Schumacher and R. Bergmann. An efficient approach to similarity-based retrieval
on top of relational databases. In EWCBR, pages 273–284, 2000.

28. D. Stampouli, M. Brown, and G. Powell. Fusion of soft information using TBM.
In 13th Int. Conf. on Information Fusion, 2010.

29. D. Stampouli, M. Roberts, and G. Powell. Who dunnit? An appraisal of two people
matching techniques. In 14th Int. Conf. on Information Fusion, 2011.

30. D. Stampouli, D. Vincen, and G. Powell. Situation assessment for a centralised
intelligence fusion framework for emergency services. In 12th Int. Conf. on Infor-
mation Fusion, 2009.

31. H. Stuckenschmidt. A semantic similarity measure for ontology-based information.
In FQAS, pages 406–417, 2009.

32. M. Tkalčič and J. F. Tasič. Colour spaces: perceptual, historical and applicational
background. In IEEE EUROCON, pages 304–308, 2003.

	Towards Fuzzy Query-Relaxation for RDF
	Introduction
	Use-case overview
	Background and State-of-the-art
	Relaxation framework
	Generating similarity tables for categorical values
	Proof of concept
	Vehicles scenario and data
	Mining DBpedia for background information
	Comparing concurrence vs. numerical matching
	Experimenting with query relaxation

	Conclusion

