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Abstract. Querying over cached indexes of Linked Data often suffers
from stale or missing results due to infrequent updates and partial cov-
erage of sources. Conversely, live decentralised approaches offer fresh
results directly from the Web, but exhibit slow response times due to
accessing numerous remote sources at runtime. We thus propose a hy-
brid query approach that improves upon both paradigms, offering fresher
results from a broader range of sources than Linked Data caches while
offering faster results than live querying. Our hybrid query engine takes a
cached and live query engine as black boxes, where a hybrid query plan-
ner splits an input query and delegates the appropriate sub-queries to
each interface. In this paper, we discuss query planning alternatives and
their main strengths and weaknesses. We also present coherence measures
to quantify the coverage and freshness for cached indexes of Linked Data,
and show how these measures can be used for hybrid query planning to
optimise the trade-off between fresh results and fast runtimes.

1 Introduction

Current query approaches over Linked Data offer either (i) fast query times
by materialising local optimised indexes [2,10,3] that cache Web data, but at
the cost of potentially incomplete or outdated results; or (ii) fresh results by
accessing query relevant data from the Web at runtime, but at the cost of slower
query times [4,16,8]. This trade-off between fresh and fast results becomes even
more crucial as Linked Data expands and becomes more dynamic.

In previous work [18], we identified and started to address this tradeoff prob-
lem, proposing the hybrid query execution architecture as shown in Figure 1.
Our envisioned query engine has two SPARQL interfaces to combine (i) the
performance of a centralised SPARQL store (henceforth: cache) with (ii) the
up-to-date results of a live SPARQL engine. We do not build yet another lo-
cal or live SPARQL engine, nor do we design techniques for either: instead, we
propose to take off-the-shelf engines (one live and one cache) as black boxes
and investigate the techniques by which they can be combined in a complemen-
tary way. Our proposed engine can be seen as adding a live “query wrapper”
for existing SPARQL stores, or as adding a SPARQL-enabled cache for live ap-
proaches. The core components of our architecture are (i) a coherence monitor
that computes and stores statistics about the dynamicity and coverage of cache
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Fig. 1. Architecture of a hybrid query-engine.

data; and (ii) a query planner that uses these statistics to (amongst other tasks)
decide which parts of the query should be run against the cache and which live.
By getting the cache to quickly service query patterns for which it has good up-
to-date coverage, and by running the remaining patterns of the query live, our
hybrid query planner aims to optimise the aforementioned trade-off of fresh vs.
fast results; the coherence monitor provides the statistics that make this feasible.

As an abstract motivating example, say that a user asks a Linked Data cache:
What are the current temperatures in European capital cities?
Also, say that the cache endpoint has up-to-date information on which cities are
capitals. However, say that this endpoint does not have knowledge (or perhaps
only has partial knowledge) of which continent the cities are on; this informa-
tion will have to be retrieved live. Furthermore, information about temperatures
indexed by the cache endpoint are likely to be old; hence, to avoid stale results,
this information should only be fetched live. Ideally, our hybrid query approach
would use the cache endpoint to quickly return a list of capital cities, go live
over the Web to check which ones are European, and then (also live) retrieve
the current temperatures of these capitals directly from source. To enable this
hybrid execution, we need knowledge of the coverage and freshness of the cache.

Finding an effective trade-off between fresh and fast results by combining
live and centralised caches introduces a wide range of challenges. In this work,
we contribute towards the realisation of our envisioned hybrid query engine [18]
by further investigating two core aspects. First, we mention various alternatives
for query planning and review their strengths and weaknesses for a black box
scenario in which the participating query engines are not aware of their role.
Second, we propose various coherence-estimate formulae needed for generating
effective hybrid query plans, comparing them against each other and discussing
different approaches to obtain these statistics from a black box centralised cache.

We continue this paper with some background on Linked Data query answer-
ing (Section 2). We discuss various alternatives for creating hybrid query plans in
Section 3. Next, we propose methods to probe centralised caches so as to collect
coherence estimates, and present results for two public Linked Data SPARQL
engines (Section 4). We then conclude and discuss future work (Section 5).



2 Background

Centralised approaches for SPARQL query execution integrate data from dif-
ferent sources and are designed to provide (i) fast execution times by building
optimised indexes and (ii) scalability through vertical partitioning or data dis-
tribution. However, constantly maintaining a broad and fresh coverage of remote
data from millions of sources is unfeasible in such approaches. Current centralised
SPARQL endpoints cover selected subsets of Linked Data, e.g., FactForge [2]; or
aim to achieve a broad coverage of Linked Data, e.g., OpenLink’s LOD cache1

and the Sindice [10] SPARQL endpoint2 (both powered by Virtuoso [3]).
Recently, various authors have proposed methods for executing SPARQL

queries “live”, by accessing remote data in situ and at runtime [8,10,14,16,4].
This guarantees up-to-date and complete results wrt. to the accessed data. Lad-
wig and Tran [8] categorise three variations of such approaches, which are (i)
top-down, (ii) bottom-up, and (iii) mixed strategies. Top-down evaluation de-
termines remote, query-relevant sources using a source-selection index, such as
inverted-index structures [10], query-routing indexes [14], or lightweight hash-
based structures [16]. Bottom-up query evaluation strategies discover relevant
sources on-the-fly during the evaluation of queries, starting from a “seed set”
of URIs taken from the query. The seminal proposal in this area is called link-
traversal based query execution (LTBQE) [4]. In the third strategy [8], an initial
seed list potentially containing more sources than actually relevant is generated
in a top-down fashion. Additional relevant sources are discovered by using a
bottom-up approach. In a sense, our hybrid-query proposals follow this strategy.

While the above approaches access raw data sources directly, an orthogonal
approach to live querying is that of federated SPARQL, where queries are exe-
cuted over a group of possibly remote endpoints [12,13,1]. Like in our proposal,
federation involves splitting and delegating sub-queries to different engines. Fed-
erated SPARQL approaches either use service descriptions that are indexed lo-
cally and used to route queries [12,13], or rely on user-specified service URIs [1].

Recent works look to combine local (i.e., centralised) and remote (i.e., live)
querying on a theoretical, engineering and social level (e.g., [5,18]). However, to
the best of our knowledge, no one has looked at deciding which parts of a query
are suitable for local/remote execution. Our work also relates to research on
guaranteeing (Web) cache coherence [11] and semantic caching [7]. However, such
systems typically rely entirely on cached data or completely discard it. Various
authors have recently discussed invalidation of internal SPARQL caches [9,19]
but rather focus on local index coherence, not on remote (Web) coherence.

3 Query Planner

Traditional query planning within closed systems focuses on optimising for per-
formance by ordering the execution of query operators to minimise intermediate

1 http://lod.openlinksw.com/sparql
2 http://sparql.sindice.com/

http://lod.openlinksw.com/sparql
http://sparql.sindice.com/


results. Such query planning often relies on selectivity estimates, which indicate
the amount of results a given operation will generate. For hybrid query plan-
ning, we wish to optimise for both speed and freshness. Thus, analogous to
(and in combination with) selectivity estimates that optimise for speed, we need
other metrics to optimise for freshness. Recalling that (sub-)queries will often
be answered faster by materialised indexes than live engines, in the interest of
speed, we wish to push as much of the query processing to the cache endpoint.
However, we only want to send requests for which the cache has fresh data avail-
able. Hence, along with selectivity estimates, we also need coherence estimates
to measure how well synchronised the cache is wrt. the Web. We will propose
and test concrete measures and techniques for computing coherence estimates
for a cache endpoint in Section 4. For now, we introduce high-level approaches
for creating hybrid query plans that optimise for both speed and freshness.

Split types The core aim of the query planner is to decide which parts of the
input query should go to the cache, which parts should go live, and how results
can be combined. In terms of splitting the query, there are two high-level options:

Multi-split In this approach, there is no restriction placed on how many splits
are made in the query or on which parts go where. This is the most general
case. However, if the query is split into many parts, processing the query will
involve a lot of coordination of interim results and synchronisation between
the cache and the live engines.3 Also, if the cache is accessed through a public
interface, it may not allow a sufficient query rate for this approach to work.

Single-split Another simpler (but more restricted) option is to split the query
into two: a cache and a live sub-query. Much less coordination is then required
between engines. Assuming nested evaluation, an open question is whether
the cache or live request should be run first.4 We argue that going to the
cache first makes more sense: (i) this would only require a single query to be
run against the cache’s materialised index, (ii) the cache can quickly return
initial results, (iii) results from the cache give more information (bindings)
to the live engine for finding query-relevant sources from the Web.

Reordering strategies As per traditional selectivity optimisation, before the query
can be split, the query (join) tree needs to be reordered to decide which query
primitives are executed first.5 Here we also wish to optimise for freshness; hence,
the ordering can include selectivity for speed and/or coherence for freshness.

Selectivity-based ordering Query patterns in the join tree are first ordered
by selectivity. Selectivities for each pattern can be computed by rule-based

3 Where supported, SPARQL 1.1 VALUES could be helpful to ship bindings, but would
still require a synchronisation point for each split.

4 If both parts of the query are deemed to have low selectivity, they could be run in
parallel and hash-joined.

5 We focus on optimising simple BGPs. Aside from features like OPTIONAL, MINUS and
(NOT) EXISTS, other query features and optimisations can be layered above.



estimates or variable-counting techniques [13]), from analysis of prevalence of
patterns in Web data, by sampling data from the cache using probe queries,
or (where supported) by posing SPARQL 1.1 COUNT queries or queries for
statistical summaries against the cache indexes. Patterns that match and
return fewer data are executed earlier to minimise interim results.

Coherence-based ordering Query patterns are ordered by the coherence of
cache data available for them; coherence gauges the coverage and freshness of
cache indexes for answering a pattern (more coherence implies broader and
fresher cache coverage). Coherence measures can be computed for patterns
based on analysis of the dynamicity of Web data, using probe queries against
the cache which can be compared with live results, or (assuming cooperation
of the cache) by listening for updates to the cache indexes [19]. A single-split
strategy is appropriate for this ordering, where patterns that can be best
answered by the cache will be executed first and the rest then answered live.

Both orderings have inherent advantages and disadvantages. The selectivity-
based ordering should minimise interim results but makes no guarantees about
freshness. In particular, (in)coherent patterns will be mixed throughout the
query tree. This raises another crucial question for the query planner: where
to split a query. One option is to apply selectivity ordering but use coherence
estimates to decide split positions, where either (i) a multi-split is used to fully
leverage the performance of the cache while guaranteeing freshness or (ii) a
single-split is used at the lowest incoherent pattern, which will minimise coordi-
nation but end up running coherent patterns live that the cache could answer.
For single-splits, one could also use a pre-defined threshold of coherence to sup-
port user-defined expectations of freshness.

Conversely, the coherence-based ordering maximises freshness but makes no
guarantees about the size of interim results. This ordering lends itself well to
a single-split strategy, where all of the highly-coherent patterns can be first
sent directly to the cache; for deciding where to split, a threshold can be used as
mentioned before, or a simple fixed-position split strategy can be employed (e.g.,
always send only the least coherent pattern live). However, in this approach, the
cache sub-query may have a low selectivity and require the cache to materialise a
lot of results. In the best case, high selectivity and high coherence correlate with
each other such that there is no conflict in the fresh vs. fast trade-off. However,
as we will see for experiments in the next section, this is not necessarily the case.

Finally, we highlight that the hybrid query planner is responsible for ordering,
splitting, delegating and executing sub-queries. The sub-queries sent to the cache
or to the live engines are then subject to internal optimisations. This is particu-
larly relevant for single-split coherence-ordering, where the sub-query delegated
to the cache endpoint will be reordered according to internal selectivities.

In summary, hybrid query planning is a challenging problem and presents
many alternative strategies to explore. We will leave further investigation of these
alternatives for future work. For now, we focus on the extraction of coherence
measures from public cache endpoints, as required for the above methods.
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Fig. 2. Result set (Venn) diagram

SELECT ?sIn ?pIn ?oOut ?pOut

WHERE {
?sIn ?pIn <entityURI> .

<entityURI> ?pOut ?oOut .

}

Fig. 3. Entity-query template

4 Coherence Estimation

In the general case, the degree of optimisation that can be achieved for a query
depends on the quality of the statistics available to the query planner. As pre-
viously discussed, we first and foremost need coherence estimates to gauge the
extent to which, for a given query pattern, the cached indexes are coherent
with respect to current information available on the Web. We identify two main
approaches to obtain knowledge about coherence for different query patterns.

Cache-independent estimates involve monitoring a large range of Linked
Data sources to build a comprehensive, global picture of the dynamicity
of the Web of Data. Previous empirical studies [17,15] have shown varying
levels of dynamicity across Linked Data sources; furthermore, we speculate
that dynamicity varies by the schema of data [17]. In term of benefits, cache-
independent estimates can be applied generically to any store (and indeed
to other use-cases) [6]; however, they give no indication as to the specific
coverage or update rates, etc., of the cache engine at hand.

Cache-specific estimates involve periodically comparing the results of a cen-
tralised store against the current version of Linked Data on the Web. Versus
a broad empirical study, cache-specific analysis is more sensitive to the par-
ticular update patterns and coverage of that store. As shown later in our
experiments, analogous coherence estimates can vary for different caches.

For the above mentioned reason, we focus on cache-specific estimates where
Figure 2 illustrates how the results from the live engine (L) and results from the
cached centralised engine (C) may diverge. The cache may return results that live
querying does not (∆C := C\L), some of which may be stale, others of which may
be accurate but involve a source that the live engine did not access. Conversely,
the live approach may find answers that the cache could not (∆L := L\C), some
of which may be caused by remote data changing, others of which may be from
sources that the store did not cache. Some of the results—which we deem to be
coherent—are the same for the cache and the Web (∆∩ := L ∩ C).

In order to test coherence, we propose to probe both the cache’s endpoint
and the Web with a broad range of simple queries and compare the results,



characterising parts of the cache’s index that are likely to be stale or missing.
We view results as consisting of variable–binding pairs (i.e., C, L⊂ V × UL
reusing common notation for the set of all query variables, URIs and literals
resp.) and we exclude answers involving blank nodes to avoid issues of scoping
and inconsistent labelling. We identified two possible methods by which queries
can be used to test coherence.

Document-based estimates Assuming the SPARQL cache uses Named Graphs to
track the original source of information on the Web, we can compare the data
for a Web document against the data cached in the corresponding graph using
GRAPH queries. However, (and as is the case for the two caches we test later)
many stores do not have consistent naming of graphs: sometimes the graph may
indeed refer to a particular Web document, but oftentimes the graph will be a
high-level URI (e.g., http://dbpedia.org), informally indicating a dump from
which the data were loaded but which cannot be directly retrieved.

Triple pattern estimates Thus, we instead focus on triple-based estimates. To
ensure lightweight statistics with broad applicability, our notion of coherence for
triple patterns centres around predicates. This restricts our approach to triple
patterns with a constant as predicate; other patterns are assigned a default
estimate. To derive a comparable set of results for generating triple-pattern
estimates, we probe the cache and the live engine with a broad set of entity
queries (see Figure 3). To quantify the coherence of predicates based on the
results, we study two measures. To present these, we apply notation from Fig-
ure 2 to the results of the probe queries, adding subscripts to indicate results
for a certain query, e.g., ∆L

q . We denote results involving a predicate p as, e.g.,

∆L
q(p) := {r ∈ ∆L

q : (?pIn, p) ∈ r∨(?pOut, p) ∈ r}, and say p ∈ ∆L
q iff ∆L

q(p) 6= ∅.

Query-based coherence: The coherence of a predicate p is measured as the
ratio of queries for which p appeared in ∆L. For the full set of queries Q,
let Mq(p) denote for how many queries a live result involving the predicate
was missing at least once in the cache results (Mq(p) = |{q ∈ Q : p ∈ ∆L

q}|).
In addition, we count Lq(p) = |{q ∈ Q : p ∈ Lq}| as the queries for which
the live engine returned at least one result containing p. The query-based
coherence of the predicate p is then computed as:

cohq(p) = 1− Mq(p)

Lq(p)
.

Result-based coherence: For this measure, we inspect the ratio of missing
results for a predicate p, rather than the fraction of stale queries. Let Mr(p)
denote the count of all live results involving the predicate p that were missed
by the cache, summated across all queries (Mr(p) =

∑
q∈Q |∆L

q(p)|). Let
Lr(p) denote the count of all results involving p retrieved by the live engine
(Lr(p) =

∑
q∈Q |Lq(p)|). The result-based coherence is then:

cohr(p) = 1− Mr(p)

Lr(p)
.

http://dbpedia.org


Experimental setup To test the different coherence-estimate proposals, we con-
ducted experiments with two SPARQL stores that cache a broad range of Linked
Data: “the Semantic Web Index” hosted by Sindice, and the “LOD Cache”
hosted by OpenLink (see Section 2). We randomly sampled 12 thousand URIs
from the 2011 Billion Triple Challenge dataset6, which contains over 2.1 billion
quadruples taken from over 7.4 million RDF/XML documents on 791 pay-level
domains.7 For each URI, we ran the entity query listed in Figure 3 against both
caches and live with our LTBQE implementation, giving us a large set of results
to compare. Experiments were run in early March 2012; we extracted coherence
estimates for 2,550 predicates in OpenLink and 1,627 predicates in Sindice.

Results We first explored the difference between our two measures. We measured
the correlation between both measures across all predicates using Kendall’s τ
which measures the agreement in ordering for two measures in a range of [−1, 1],
where −1 indicates perfectly inverted ordering and 1 indicates the exact same
ordering. We found a τ value of 0.98 for OpenLink and 0.95 for Sindice, with
a negligible p-value, indicating very strong agreement between both coherence
measures. Henceforth, we use the result-based formula cohr(.) as it returns more
granular results—e.g., it had 8% fewer scores of precisely 0 than cohq(.)—and
thus results in fewer ties and fewer trivial decisions when ordering patterns.

Using the cohr(.) measure, we observed that 67% of the tested predicates
in the OpenLink index are entirely up-to-date (cohr(p) = 1), versus 30% of
the predicates for the Sindice endpoint. In contrast, information for 14% of the
tested predicates for OpenLink are entirely missing or out-of-date (cohr(p) = 0),
versus 40% for Sindice; these high percentages are due to partial coverage of
Web sources, outdated data-dumps in the index, and predicates with dynamic
values. Hence we see that these caches are not up-to-date for many predicates,
which motivates our current investigation of hybrid-query techniques.

Furthermore, we analysed the correlation for coherence estimates of the same
predicates across both endpoints. The τ -score was 0.16, again with a negligible
p-value. The low correlation highlights the endpoint-specific nature of these mea-
sures: the hybrid query approach tackles both the endpoint-independent problem
of dynamicity and the endpoint-specific problem of index coverage and updates.

Finally, we looked at the correlation between the selectivity of predicates
(i.e., how often they occur) and their coherence, which may have potential con-
sequences for query planning. Specifically, for each endpoint, we compared the
number of (live) results generated for each predicate across all queries and their
cohr(p) value. The τ -value for OpenLink was 0.1, indicating that less selective
patterns tend to have slightly lower coherence; the analogous τ -value for Sindice
was −0.03, indicating a negligible correlation in the opposite direction. Though
limited, we take this as anecdotal evidence to suggest that correlation between

6 http://challenge.semanticweb.org/
7 We considered using the SPARQL 1.1 SAMPLE keyword, but (i) Virtuoso does not

support SPARQL 1.1; (ii) SAMPLE does not guarantee randomness of results. A pay-
level-domain is the level that one pays to register (e.g., bbc.co.uk, dbpedia.org).

http://challenge.semanticweb.org/


the selectivity and coherence of predicates is weak, if any. This observation makes
the choice between selectivity- and coherence-based ordering even more crucial.

Predicate–domain estimates So far, we näıvely assume a single coherence value
for predicates in all cases, ignoring subject or object URIs: keeping information
for each subject/object would have a high overhead. However, the coherence
of predicates may vary depending on the site from which the subject/object
originated. We can thus generalise subject/object values into pay-level-domains
(PLD) and then track coherence for predicate–domain pairs. We mapped the en-
tity URIs of the queries to their PLDs (581 PLDs with a maximum of 74 queries
per domain) and resolved the coherence of predicates for individual PLDs. We
found that the difference between coherence values across all PLD pairs was≤ 0.1
for ∼40% of the OpenLink and ∼15% of the Sindice predicates. All remaining
predicates exhibited a higher variance for coherence values across different PLDs.

Maintenance Assuming the cooperation of the endpoint, various methods can be
used to learn about content changes or updates to the centralised index (similar
in principle to internal SPARQL caching proposals [19]). Data providers may
push change notifications to the endpoints and/or the endpoints can learn about
changes by actively monitoring remote sources [15]; this information can then be
pushed to the coherence monitor. In a strict black box scenario, where only the
public SPARQL interface is available for the cache, one has to periodically re-
run or update the gathered statistics, where queries that are observed to return
static results could be probed less frequently in an adaptive monitoring setup [6].
In addition, the system could perform a demand-based or “lazy” maintenance of
statistics that is based on, e.g., (i) keeping only frequent query patterns up-to-
date or (ii) actively updating coherence estimates as hybrid queries are processed.

5 Conclusion

In this paper, we proposed a hybrid query architecture that aims to combine
the strengths of centralised cache endpoints, which provide fast results, and the
strengths of novel live querying approaches, which provide fresh results from a
broad range of Linked Data sources. First, we proposed different techniques by
which coherence and selectivity estimates can be combined with reordering and
hybrid-split strategies to design an effective hybrid query plan that (potentially)
speeds up live results while freshening up cache results. Second, we discussed
different coherence estimate formulae and various methods of extracting the nec-
essary information from endpoints to compute the values, e.g., based on probing
queries. We conducted an empirical study based on two public endpoints and
showed that data are often stale or missing, and that the proposed coherence
measures are indeed well-suited to identify this. Furthermore, we showed that
the coherence estimates differ for the same predicates across different endpoints
and also across different data providers for the same endpoints.

Given the potential scope and dynamicity of Linked Data, query engines will
need to employ a wide range of techniques to efficiently offer fresh results with



broad coverage. We believe that our hybrid query proposals make a significant
step in this direction by combining both centralised and decentralised query
paradigms to exploit both cached and live results. Towards making our proposals
a concrete reality, our next steps involve implementing, evaluating and further
exploring the combinations of hybrid query techniques presented herein.
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