
Everything You Always Wanted to Know About Blank Nodes ∗
Aidan Hogan a, Marcelo Arenas b, Alejandro Mallea b, Axel Polleres c,

aDepartment of Computer Science, Universidad de Chile
bDepartment of Computer Science, Pontificia Universidad Católica de Chile

cVienna University of Economics and Business (WU), Welthandelsplatz 1, 1020 Vienna, Austria

Abstract

In this paper we thoroughly cover the issue of blank nodes, which have been defined in RDF as ‘existential variables’. We
first introduce the theoretical precedent for existential blank nodes from first order logic and incomplete information
in database theory. We then cover the different (and sometimes incompatible) treatment of blank nodes across the
W3C stack of RDF-related standards. We present an empirical survey of the blank nodes present in a large sample of
RDF data published on the Web (the BTC–2012 dataset), where we find that 25.7% of unique RDF terms are blank
nodes, that 44.9% of documents and 66.2% of domains featured use of at least one blank node, and that aside from
one Linked Data domain whose RDF data contains many “blank node cycles”, the vast majority of blank nodes form
tree structures that are efficient to compute simple entailment over. With respect to the RDF-merge of the full data,
we show that 6.1% of blank-nodes are redundant under simple entailment. The vast majority of non-lean cases are
isomorphisms resulting from multiple blank nodes with no discriminating information being given within an RDF
document or documents being duplicated in multiple Web locations. Although simple entailment is NP-complete and
leanness-checking is coNP-complete, in computing this latter result, we demonstrate that in practice, real-world RDF
graphs are sufficiently “rich” in ground information for problematic cases to be avoided by non-naive algorithms.

Key words: blank nodes, rdf, simple entailment, leanness, skolemisation, semantic web, linked data

Introduction

Although the adoption of RDF [46] has broad-
ened on the Web in recent years [11], one of its core
features—blank nodes—has been sometimes misun-
derstood, sometimes misinterpreted, and sometimes
ignored by implementers, other standards, and the
broader Semantic Web community. This lack of con-
sistency between the standard and its actual use
calls for investigation: are the semantics and the cur-

? But Were Afraid to Ask
Email addresses: ahogan@dcc.uchile.cl (Aidan Hogan),

marenas@ing.puc.cl (Marcelo Arenas),
aemallea@ing.puc.cl (Alejandro Mallea),
axel.polleres@wu.ac.at (Axel Polleres).

rent definition of blank nodes appropriate for the
needs of the Web community?

The standard semantics for blank nodes in-
terprets them as existential variables [36], de-
noting the existence of some unnamed resource.
These semantics make even “simple” entailment
checking—entailment without further well-defined
vocabularies—intractable [36]. RDF and RDFS en-
tailment are based on simple entailment, and are
thus also intractable due to blank nodes [36].

However, in the documentation for the RDF stan-
dard (e.g., RDF/XML [9], RDF Primer [49]), the
existentiality of blank nodes is not directly treated;
ambiguous phrasing such as “blank node identifiers”
is used, and examples for blank nodes focus on rep-

Preprint submitted to Elsevier 15 December 2016

resenting resources that do not have a natural URI.
Furthermore, the standards built upon RDF some-
times have different treatment and requirements for
blank nodes. As we will see, standards and tools are
often, to varying degrees, ambivalent to the existen-
tial semantics of blank nodes, where, e.g., the stan-
dard query language SPARQL can return different
results for two graphs considered equivalent by the
RDF semantics [4] and takes seemingly contradic-
tory positions on whether or not (named) graphs
can share blank nodes.
Being part of the RDF specification, blank nodes

are now a core aspect of Semantic Web technol-
ogy: they are featured in several W3C standards, a
wide range of tools, and hundreds of datasets across
the Web, but not always with the same meaning
(or at least, with the same intent). Dealing with
the issue of blank nodes is thus not only impor-
tant and timely, but also inherently complex and
potentially costly: before weighing up alternatives
for blank-nodes, their interpretation and adoption—
across legacy standards, tool, and published data—
must be considered.
Given the complexity of the situation currently

surrounding blank nodes—which spans several stan-
dards, several perspectives, a plethora of tools and
hundreds of RDF publishers—our goal in this paper
is to bring clarity to this thorny issue by covering
all aspects in one article. We provide a comprehen-
sive overview of the current situation surrounding
blank nodes, from theoretical background to stan-
dardisation. We also provide novel techniques and
results for analysing the blank nodes published in
real-world Linked Data. Our outline is as follows:
§2 We provide some formal preliminaries relating

to RDF and blank nodes.
§3 We discuss blank nodes from a theoretical per-

spective, relating them to background con-
cepts from logic and database theory and, in
so doing, we recapitulate some core worst-
case complexity results. We further discuss
Skolemisation in the context of RDF.

§4 We look at how tasks such as simple entail-
ment and leanness checking can be performed
in practice, where we discuss why worst-case
complexity results are rarely encountered and
remark on how SPARQL (the standard RDF
query language) can be used for such tasks.

§5 We then survey how blank-nodes are treated
in the Semantic Web standards, how they are
interpreted, what features rely on them, and

remark on trends of adoption.
§6 We look at the role of blank nodes in pub-

lishing, their prevalence of use in real-world
Linked Data, and what blank node morpholo-
gies exist in the wild.

§7 We give a detailed analysis of the prevalence
of blank nodes that are made redundant by
simple entailment, designing methods to effi-
ciently identify non-leanness in RDF graphs
and discussing the results for a large sample
of real-world Linked Data.

§8 Finally, in light of the needs of the various
stakeholders already introduced, we discuss
some alternatives for handling blank nodes.

This paper extends a previously published confer-
ence paper [48]. Herein, we provide extended discus-
sion throughout, we update our empirical analysis for
a more recent dataset, and we provide detailed tech-
niques and results relating to classifying blank nodes
as lean or non-lean.

Running Example. Throughout this paper, we
use the RDF graph given in Figure 1 to illustrate
our discussion. This graph states that the tennis
player :Federer won the :FrenchOpen in 2009; it
also states that he won :Wimbledon where one such
win was in 2003. 1

Preliminaries

We begin by introducing the abstract representa-
tion [32, 54] of the formal RDF model [36, 46] used
in our theoretical discussion. We also introduce the
semantics of RDF graphs containing blank nodes.

The RDF data model

We assume the existence of pairwise disjoint infi-
nite sets U (URIs), L (literals) and B (blank nodes),
where we write UB for the union of U and B, and
similarly for other combinations. 2 An RDF triple is

1 Throughout, we will omit the prefix declarations in
SPARQL queries for brevity. The default prefix is used for
example URIs. Other standard prefixes can be checked at
the service http://prefix.cc. All URLs mentioned in this pa-
per were retrieved at the time of writing: 2013/11/10.
2 We generally stick to the term “URI” instead of “IRI”
(supported by RDF 1.1) to follow conventions familiar from
the literature. For the purposes of this paper, URIs and IRIs
can be considered interchangeable.

2

http://prefix.cc

:Federer

:TennisPlayer

type

"Roger Federer"

name

_:b2wins

_:b1

wins precededBy

_:b3

wins precededBy

:FrenchOpenevent

"2003"
year

"2009"

year
:GrandSlamTournamenttype :Wimbledontype

event

event

Fig. 1. An RDF graph for our running example. In this graph, URIs are preceded by ‘:’, blank nodes by ‘_:’ and literals are
enclosed in quotation marks.

a tuple (s, p, o) ∈ UB×U×UBL where s is called
the subject, p the predicate and o the object.

Definition 2.1 An RDF graph (or simply “graph”,
where unambiguous) is a finite set of RDF triples.

The set of terms of a graph G, denoted by
terms(G), is the set of elements of UBL that oc-
cur in the triples of G. A vocabulary is a subset of
UL. The vocabulary of G, denoted by voc(G), is de-
fined as terms(G)∩UL. Given a vocabulary V and
a graph G, we say that G is a graph over V when-
ever voc(G) ⊆ V . A graph G is ground if it does not
contain blank nodes (i.e., terms(G) ∩B = ∅).
A map is a partial function µ : UBL → UBL

whose domain is denoted by dom(µ) and is the iden-
tity on URIs and literals, i.e., µ(u) = u for all u ∈
dom(µ) ∩UL; blank nodes can be mapped to any
term. Given a graph G, we define µ(G) as the set
of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. We
overload the meaning of map and we say that a map
µ is from G1 to G2 (or is a homomorphism from
G1 to G2), denoted by µ : G1 → G2, if dom(µ) =
terms(G1) and µ(G1) ⊆ G2. Moreover, we use nota-
tion G1 → G2 if such a map µ exists. Finally, we say
that two graphs G1 and G2 are isomorphic, denoted
by G1 ∼= G2, if there exists a map µ : terms(G1)→
terms(G2) such that µ maps blank nodes to blank
nodes on a one-to-one basis and such that for ev-
ery triple (s, p, o), it holds that (s, p, o) ∈ G1 if and
only if (µ(s), µ(p), µ(o)) ∈ G2. A graph is trivially
isomorphic with itself per the identity mapping.
A map µ is consistent with G if µ(G) is an RDF

graph, i.e., if s is the subject of a triple in G, then
µ(s) ∈ UB, and, trivially, if p is the predicate of a
triple in G, then µ(p) ∈ U, etc. 3 If µ is consistent
with G, we say that µ(G) is an instance of G. An

3 µ can only be inconsistent with G if it maps a subject of
a triple in G from a blank node to a literal.

instance µ(G) of G is proper if µ(G) has fewer blank
nodes thanG. This occurs when µmaps blank nodes
to URIs or literals and/or maps two or more blank
nodes to the same blank node.

We now define two important operations on
graphs. The union of G1 and G2, denoted G1 ∪G2,
is the set theoretical union of their sets of triples. A
merge ofG1 andG2, denoted 4 G1 +G2, is the union
G′1 ∪G′2, where G′1 and G′2 are isomorphic copies of
G1 and G2, respectively, and where the sets of blank
nodes in G′1 and G′2 are disjoint from each other. All
possible merges of G1 and G2 are pair-wise isomor-
phic such thatG1 +G2 is unique up to isomorphism,
and we thus call it the merge of G1 and G2.

Semantics of RDF graphs

Applying a standard logical treatment, notions of
interpretation and entailment for RDF graphs were
defined by Hayes [36]; we now introduce these con-
cepts, omitting datatype interpretations for brevity
as they are not directly concerned with our discus-
sion of blank nodes. Furthermore, for now, we do
not consider the use of vocabularies with predefined
semantics (like RDF(S) or OWL); we discuss blank
nodes in the context of these standards in Section 5.
Graphs that do not use such predefined vocabular-
ies are called simple; we now define their semantics.

Definition 2.2 A simple interpretation I over a
vocabulary V is a tuple I = (Res,Prop,Ext, Int)
such that:
(i) Res is a non-empty set of resources, called the

domain or universe of I;
(ii) Prop is a set of properties (not necessarily dis-

joint from or a subset of Res);

4 Sometimes denoted G1]G2.

3

(iii) Ext : Prop → 2Res×Res is a mapping that as-
signs an extension to each property; and

(iv) Int : V → Res ∪ Prop is the interpretation
mapping that assigns a resource or a property
to each element of V such that Int is the identity
for literals.

The semantics of RDF graphs is based on the no-
tion of simple entailment whereby a simple inter-
pretation can serve as a model of a graph. Given
a vocabulary V and a simple interpretation I =
(Res,Prop,Ext, Int) over V , a ground triple (s, p, o)
over V is true under I if:

– I interprets p as a property (that is, Int(p) ∈
Prop), and thus I assigns an extension (a set
of pairs of resources) to the interpretation of
the name p, and

– the interpretation of the pair (s, o) belongs to
the extension of the interpretation of p, that
is, (Int(s), Int(o)) ∈ Ext(Int(p)).

These definitions do not yet consider the inter-
pretation of blank nodes; for this, we need to define
a version of the simple interpretation mapping that
includes the set of blank nodes as part of its domain.

Definition 2.3 Let G be an RDF graph and I =
(Res,Prop,Ext, Int) be a simple interpretation. Let
A : B → Res be a function from blank nodes to re-
sources and let IntA denote an amended version of
Int that includes B as part of its domain such that
IntA(x) = A(x) for x ∈ B and IntA(x) = Int(x) for
x ∈ UL. We say that I is a model of G if I is an
interpretation over voc(G) and there exists a map-
ping A such that for each (s, p, o) ∈ G, it holds that
Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)).

Given RDF graphs G and H, we say that G
simple-entailsH, denoted byG |= H, if every model
of G is also a model of H. Intuitively speaking, G
simple-entails H if the information contained in H
is a subset of the information contained in G: if ev-
ery model of G turns out to be a model ofH as well,
then H does not provide more information than G.
This can be seen from a formal point of view with
the following result.

Theorem 2.4 ([19, 32]) Given two RDF graphsG
and H, the simple entailment G |= H holds if and
only if there is a map µ : H → G. 2

An immediate consequence of this theorem is

that deciding simple entailment is NP-complete. 5

It is also known that the intractability of deciding
whether an RDF graph G simple-entails a graph H
depends only on the structure of the subgraph of H
induced by its blank nodes [56].

Along with the notion of entailment comes the
notion of leanness. Recall that a subgraph is a subset
of a graph and a proper subgraph is a subgraph with
fewer triples.

Definition 2.5 An RDF graph G is lean if there is
no map µ such that µ(G) is a proper subgraph of G;
otherwise, the graph is non-lean.

In other words, a graph is non-lean if it con-
tains “redundant” triples 6 ; that is, it is not simple-
entailed by a smaller graph. Alongside the notion
of graphs being lean or non-lean, we may also intu-
itively refer to blank nodes as being lean or non-lean.

Definition 2.6 We call a blank node b in terms(G)
non-leanwith respect toG if there exists a map µ such
that µ(G) is a proper subgraph of G and there exists
a term x in terms(G) such that x 6= b and µ(b) = x.
In this case, we call x a witness for non-lean b with
respect to G. Otherwise if b has no such witness, we
call it lean with respect to G.

Non-lean blank nodes are the cause of redundant
triples in non-lean graphs. A graph is non-lean if and
only if it contains one or more non-lean blank nodes.

Example 2.7 The graph G in Figure 1 is non-lean
as the triple (_:b3, event, :Wimbledon) is made re-
dundant by (_:b1, event, :Wimbledon): if µ is a map
that replaces _:b3 by _:b1 and is the identity else-
where, then µ(G) is a proper subgraph of G. We say
that the blank node _:b3 is non-lean and that its wit-
ness is _:b1.

The notion of leanness for RDF graphs corre-
sponds to the notion of the core of a graph in-
troduced by Hell and Nes̆etr̆il [39], and studied
in the context of data exchange [24] and Web
databases [32]. In fact, from these results [39, 24],
it is possible to conclude that the complexity of the
problem of verifying whether or not an RDF graph

5 Simple entailment can be directly stated in terms of graph
homomorphism as first observed by Carroll [36, §7.1]. Later,
ter Horst also demonstrated the NP-complete result by re-
duction from the clique problem [65].
6 Redundant, at least, in the sense of simple entailment per
the official semantics.

4

G is lean, is coNP-complete, as demonstrated previ-
ously by Gutierrez et al. [32].

Theoretic background

The idea of existential blank nodes is not entirely
new and has direct analogues in other fields. To give
a broader theoretical context, in this section, we re-
late the standard semantics of blank nodes to exis-
tentials in first-order logic (§3.1), to null values in
database theory (§3.2) and we also look at the for-
mal background to Skolemisation, which has been
proposed as a formal method for treating existential
blank nodes as fresh constants (§3.3).

Existential variables in first-order logic

As was mentioned in Section 2, the existentiality
of blank nodes is given by the extension function A
for an interpretation mapping Int. In this section,
we briefly show that this way of interpreting blank
nodes can be precisely characterised in terms of ex-
istential variables in first-order logic.
Let G be an RDF graph. Let V be an infinite set

of variables disjoint with U, L and B, and assume
that ρ : UBL→ UVL is a one-to-one function that
is the identity on UL. For every triple t = (s, p, o) in
G, define ρ(t) to be the fact triple(ρ(s), ρ(p), ρ(o)),
for triple a ternary predicate. We then define Th(G)
as a first-order sentence of the following form:

Th(G) = ∃x1 · · · ∃xn

(∧
t∈G

ρ(t)
)
,

where x1, . . ., xn are the variables from V mentioned
in
∧

t∈G ρ(t). Then we have the following equiva-
lence between the notion of (simple) implication for
RDF graphs and the notion of logical consequence
for first-order logic.

Theorem 3.1 (implicit in [22]) 7 Given two
RDF graphs G andH, the simple entailment G |= H
holds if and only if Th(G) |= Th(H). 2

Interestingly, the above theorem tells us that the
(simple) implication problem for RDF graphs can be
reduced to the implication problem for existential

7 The translation to a first-order setting in [22] uses F-
Logic [45] instead of classical first-order logic, which slightly
differs from our encoding here but may be considered as
syntactic sugar.

first-order formulas without negation and disjunc-
tion. Given that the latter problem can be solved
by checking whether there exists a homomorphism
from the consequent to the premise of the implica-
tion [19], one obtains Theorem 2.4 as a corollary of
Theorem 3.1.

Incomplete information in database theory

We now show that the work on incomplete infor-
mation for relational databases can also be used to
characterise simple entailment with blank nodes. 8

In the relational world, null values are used to
represent incomplete information [41, 29, 1]. More
precisely, assume as given a set D of constants and
a set N of null values, where D and N are dis-
joint, and assume as given a relational schema R =
{R1, . . . , Rn}, where each Ri is a relation name of
arity ki (1 ≤ i ≤ n). Then an instance I of R (with
complete information) assigns to each relation sym-
bolRi a finite ki-ary relationRI

i ⊆ Dki ; that is, a ki-
ary relation including only constants. On the other
hand, a naive instance I of R (with incomplete infor-
mation) assigns to each relation symbol Ri (1 ≤ i ≤
n) a finite ki-ary relation RI

i ⊆ (D∪N)ki ; that is, a
ki-ary relation including constants and null values.

Example 3.2 The following is a naive instance
over a schema consisting of a ternary relation R:

R

a b n

c d n

This naive instance contains two tuples where a, b,
c and d are constants (a, b, c, d ∈ D), and n is a null
value (n ∈ N). 2

The use of the same null value n in the two tuples
in Example 3.2 indicates that the value of the third
column for these tuples is the same, although it is
not known. More precisely, the semantics of naive
instances is given in terms of an interpretation func-
tion that is defined as follows. Given a naive instance
I of a relational schema R, define nulls(I) as the set
of nulls mentioned in I. Moreover, given a null sub-
stitution ν : nulls(I) → D, for every R ∈ R define
ν(RI) = {ν(t) | t ∈ RI}, where ν(t) is obtained by
replacing every null n in t by its image ν(n). Then

8 We discuss more closely the treatment of blank nodes in
the related RDB2RDF standard later in Section 5.6.

5

for every naive instance I, define the set of represen-
tatives of I, denoted by rep(I), as [41]:

{J | J is an instance of R and there exists
ν : nulls(I)→ D such that

for every R ∈ R, it holds that ν(RI) ⊆ RJ}.

That is, a representative of a naive instance I is ob-
tained by replacing the null values of I by constants,
and possibly by also adding some extra tuples men-
tioning only constants.

Example 3.3 If e is a constant value, then the fol-
lowing are three representatives of the naive instance
mentioned in Example 3.2:

R

a b a

c d a

R

a b e

c d e

R

a b e

c d e

b c d

Each such representative replaces the null term n in
the naive instance of Example 3.2 with a constant,
and in the third case, adds an extra tuple with only
constants.

A naive instance I is then said to be contained in
a naive instance J if rep(I) ⊆ rep(J) [2].

Example 3.4 Assume that J is the following naive
instance:

R

a b n1
c d n2

In this naive instance, a, b, c, d ∈ D and n1, n2 ∈ N.
Thus, we have that the naive instance I in Example
3.2 is contained in J , while J is not contained in I.

Not surprisingly, the notion of containment for
naive instances can be used to characterise the no-
tion of simple entailment for RDF graphs. More pre-
cisely, assume that D = U ∪ L and N = B, and for
every RDF graph G, define I(G) as a naive instance
over the relational schema {triple(·, ·, ·)} such that
tripleI(G) = G (that is, each triple (s, p, o) in G is
stored in I(G) as the fact triple(s, p, o)). Then we
have the following equivalence between the notions
defined in this section:

Theorem 3.5 Given two RDF graphsG andH, the
simple entailment G |= H holds if and only if I(G)
is contained in I(H). 2

Thus we see the relationship between simple en-

tailment for RDF graphs and the use of nulls for
relational databases with incomplete information.

Skolemisation

In first-order logic, Skolemisation 9 is a way of
removing existential quantifiers from a formula in
prenex normal form (a chain of quantifiers followed
by a quantifier-free formula). The process was orig-
inally defined and used to generalise a theorem by
Jacques Herbrand about models of universal theo-
ries [16].

The central idea of Skolemisation is to replace ex-
istentially quantified variables by “fresh” constants
that are not used in the original formula. For ex-
ample, ∃x∀y R(x, y) can be replaced by the formula
∀y R(c, y), where c is a fresh constant, as this new
formula also represents the fact that there exists a
value for the variable x (in fact, x = c) such that
R(x, y) holds for every possible value of variable y.

Similarly, if we let f denote a fresh unary function
symbol that is not used in the original formula, then
∀x∃y (P (x)→ Q(y)) can be replaced by ∀x(P (x)→
Q(f(x))) since we know that for every possible value
of variable x, there exists a value of variable y that
depends on x and such that P (x)→ Q(y) holds.

When the original formula does not have univer-
sal quantifiers, only constants (or 0-ary functions)
are introduced in the Skolemisation process. In our
study of simple RDF graphs only existential quanti-
fiers are needed (see Definition 2.3), so we will talk
about Skolem constants only. However, if Skolemisa-
tion were to be used to study satisfiability of logical
formulae of more expressive languages (e.g., OWL),
Skolem functions would be needed. 10

The most important property of Skolemisation in
first-order logic is that it preserves satisfiability of
the formula being Skolemised. In other words, if ψ
is a Skolemisation of a formula ϕ, then ϕ and ψ are
equisatisfiable, meaning that ϕ is satisfiable (in the
original vocabulary) if and only if ψ is satisfiable
(in the extended vocabulary, with the new Skolem
functions and constants). However, all simple RDF
graphs are trivially satisfiable thanks to Herbrand
interpretations [36], in which URIs and literals are
interpreted as their corresponding (unique) syntac-

9 Named after Norwegian logician Thoralf Skolem.
10Skolem functions are also required for the use of blank
nodes in SPARQL CONSTRUCT queries [57]. We discuss
the role of blank nodes in SPARQL later in Section 5.4.

6

tic forms instead of “real world” resources; thus, eq-
uisatisfiability is trivial at the level of simple entail-
ment. However, when the satisfiability of logical for-
mulae of more expressive languages are considered
(e.g., considering well-defined vocabulary layered on
top of simple entailment, such as RDFS or OWL),
the equisatisfiability of a formula and its Skolemised
form becomes a non-trivial property.

Simple Entailment Checks in Practice

Thus far we have looked at the theoretical per-
spective of simple entailment in relation to prob-
lems in other areas, focusing on the worst case com-
plexity of checking simple entailment and leanness.
However, worst-case scenarios for simple entailment
checking rarely occur in practice. In this section,
we look at more practical aspects of the problem of
simple entailment, starting with a tighter bound for
simple entailment checking in common cases (§4.1),
and discussing how checking simple entailment and
leanness can be supported through basic graph pat-
tern matching in SPARQL, for which efficient off-
the-shelf implementations can be used (§4.2).

Tighter bound for entailment in practice

As previously discussed, the fact that simple
entailment in the presence of existentials is NP-
complete follows as a corollary of various NP-
complete problems in other related fields [36, 6, 65].
However, Pichler et al. [56] examine a tighter bound
for common cases, noting that for RDF graphs with
certain blank node morphologies, simple entailment
checks become tractable.
Towards defining these tractable cases, let G

be an RDF graph, and consider the blank graph
blank(G) = (V,E) where the set of vertices V is
B ∩ terms(G) and the set of edges E is given as:

{(b, c) | b ∈ V, c ∈ V, b 6= c and there exists
P ∈ terms(G) such that (b, P, c) ∈ G

or (c, P, b) ∈ G}.

In other words, blank(G) gives an undirected graph
connecting blank nodes appearing in the same triple
in G (loops are of no consequence). Let G andH de-
note two RDF graphs with m and n triples respec-
tively. Pichler et al. [56] demonstrated that perform-
ing the simple entailment check G |= H has the up-
per boundO(n2+mn2k), where k = tw(blank(H))+

1 for tw(blank(H)) the treewidth of blank(H) [56].
We will survey the treewidth of such blank graphs
in published data in Section 6.2, which provides an
empirical upper-bound for the expense of simple en-
tailment checks in real-world RDF graphs.

The complexity of checking the simple entailment
G |= H thus relies on the treewidth ofH. We remark
that a graph H may entail non-lean graphs with
higher treewidth, but that this does not affect the
bound on complexity.

Example 4.1 Take the graph H:

<x> <p> <x> .

This graph simple-entails H ′ with a blank node
cycle as follows:

_:x1 <p> _:x2 .
_:x2 <p> _:x3 .
_:x3 <p> _:x1 .

The entailment is based on the existence of a map
µ that maps all blank nodes in H ′ back to <x>. In
fact, considering such a map µ, H would entail any
subset of (B∪{<x>})×{<p>}× (B∪{<x>}). Hence
H entails RDF graphs with arbitrary blank graphs.
However, if checking G |= H, only the treewidth

of H is important, not the graphs that it entails.

Checking simple entailment and leanness using basic
graph pattern evaluation

SPARQL is the standard query language for RDF
and can be used to support simple entailment [27].

SPARQL queries are defined over a SPARQL
dataset, given as {G0, (u1, G1), . . . , (un, Gn)} where
u1, . . . , un are distinct URIs and G0, . . . , Gn are
RDF graphs. Each pair (ui, Gi) is called a named
graph and G0 is called the default graph. Thus,
SPARQL is not defined directly over RDF, but
rather over sets of named RDF graphs. The
SPARQL standard then allows for basic graph pat-
tern matching, which primarily involves posing con-
junctive queries against named combinations of
these graphs, along with other features such as op-
tionals (i.e., left-joins), unions (i.e., disjunctions),
filters, solution modifiers, and so forth. SPARQL 1.1
extends this feature-set towards including property
paths, aggregates, sub-queries, entailment regimes
and much more.

7

The problem of simple entailment can be trivially
stated in terms of evaluating basic graph patterns in
SPARQL [27], which allows simple entailment tasks
to be performed using widely available, optimised,
off-the-shelf SPARQL engines.
To check if the simple entailment G |= H holds

using SPARQL:
(i) construct a SPARQL query by using H as a

basic graph pattern and embedding it in an
ASK query;

(ii) construct a SPARQL dataset containing only
G as a default graph;

(iii) execute the query against the dataset.
The true or false result returned from the ASK
query indicates whether or not G |= H.

Example 4.2 LetG be the graph of Figure 1 and let
H be an RDF graph with the following five triples: 11

_:player a :TennisPlayer ; :wins _:ev1 , _:ev2 .
_:ev1 :year 2003 . _:ev2 :year 2009 .

To see if the simple entailment G |= H holds, we can
use SPARQL: we can create a default graph using
G and evaluate the following query representing H
against it:

PREFIX : <http://example.org/>
ASK {
_:player a :TennisPlayer ; :wins _:ev1 , _:ev2 .
_:ev1 :year 2003 . _:ev2 :year 2009 .

}

Blank nodes in SPARQL are treated as non-
distinguished variables that will match any term in
the data but cannot be projected as a result.
In this case, the answer to the query is true, in-

dicating that G |= H.

SPARQL can also be used to determine if a graph
is (non-)lean. Recall that a graph G is lean if and
only if it has no proper subgraph G′ ⊂ G such that
G′ |= G under simple entailment. Let n be the num-
ber of triples in G that contain a blank node and let
{G1, . . . , Gn} be the set of graphs constructed by re-
moving one such triple fromG. ThenG is lean if and
only if G 6|= Gi for 1 ≤ i ≤ n. Each of these simple
(non-)entailment checks can be run using the above
procedure with SPARQL.

11We assume reader familiarity with Turtle and SPARQL
syntax.

Alternatively, instead of using n ASK queries to see
if a graph is non-lean, we can use a single SELECT
query. Let V represent an infinite set of variables
disjoint with UBL and (as before in Section 3.2)
let ρ : UBL → UVL be a one-to-one function
that is the identity on UL. Also let ρ(s, p, o) de-
note (ρ(s), ρ(p), ρ(o)) and ρ(G) denote {ρ(s, p, o) :
(s, p, o) ∈ G}. Here, ρ is used to generate surrogate
(distinguished) query variables for each blank node.
To check if a graph G is lean using SPARQL basic
graph pattern evaluation:
(i) construct a SPARQL query with ρ(G) as a

basic graph pattern embedded in a SELECT *
query;

(ii) construct a SPARQL dataset containing only
G as a default graph;

(iii) execute the query against the dataset.
Consider each solution to the query as a mapping

from the blank nodes of the surrogate variables to
terms in the graph. Conceptually, each solution is
a homomorphism from G onto itself (modulo the
names of blank nodes, which may not be preserved
in the solutions to the SPARQL queries). Then G is
non-lean if and only if there exists a solution which
maps a surrogate variable to a ground term, or two
or more surrogate variables to the same term.

Example 4.3 Take the following RDF graph G; a
subset of the RDF graph represented by Figure 1.

:Federer a :TennisPlayer ; :wins _:b1 , _:b2 , _:b3 .
_:b1 :event :Wimbledon ; :year 2003 .
_:b2 :event :FrenchOpen ; :year 2009 .
_:b3 :event :Wimbledon .
_:b2 :precededBy _:b1 , _:b3 .

For clarity of example, we map blank nodes to surro-
gate query variables using the simple syntactic con-
vention ρ(_:b) = ?b. We then wrap ρ(G) into the
following SPARQL SELECT DISTINCT * query. 12

PREFIX : <http://example.org/>
SELECT DISTINCT * WHERE {
:Federer a :TennisPlayer ; :wins ?b1 , ?b2 , ?b3 .
?b1 :event :Wimbledon ; :year 2003 .
?b2 :event :FrenchOpen ; :year 2009 .
?b3 :event :Wimbledon .
?b2 :precededBy ?b1 , ?b3 .

}

12The DISTINCT keyword is optional, but helps for clarity.

8

If we apply the above query against G, the query
solutions returned would be:

?b1 ?b2 ?b3

_:x _:y _:z
_:x _:y _:x

Here we see that the SPARQL engine returns differ-
ent blank nodes from the original graph. If we use the
second answer to rewrite G, mapping _:b3 and _:b1
to the same blank node (_:x in this case), we end up
with a graph G′ with fewer triples than G. Hence we
have identified some redundancy between _:b1 and
_:b3. Likewise, if a blank node were to be mapped
to a URI, G would be non-lean (to see this, consider
replacing _:b1 in the example with some URI).

As per simple entailment, checking if a graph G
is (non-)lean can be performed using off-the-shelf
SPARQL engines. Additionally, if the function ρ and
its inverse can be “preserved” when evaluating the
query (e.g., using an ad hoc syntactic convention),
then a SPARQL engine can also identify non-lean
blank nodes and their witnesses, making the process
of subsequently leaning a graph straightforward.

Blank nodes in the standards

Having looked at the theoretical and practical as-
pects of the semantics of blank nodes, in this section,
we look at the current treatment of blank nodes in
standards related to RDF.We first look at the use of
blank nodes in the syntaxes recommended for seri-
alising RDF, viz. RDF/XML [9], N-Triples [8], Tur-
tle [7], RDFa [40] and JSON-LD [63]. We also pro-
vide detailed discussion of the role of blank nodes
within standards relating to RDF, viz. RDFS [15],
OWL (2) [62], SPARQL (1.1) [58, 34], RIF [12] and
RDB2RDF [21, 3]. Developments relating to the cur-
rent RDF 1.1 Working Drafts [20, 37] will be dis-
cussed later in Section 8.

RDF Syntaxes

We first give a general discussion on the role of
blank nodes in RDF syntaxes, and in particular, how
they are serialised.

Support for blank nodes. In all RDF syntaxes,
blank nodes can be explicitly labelled such that they
can be referred to at any point within the document.

In fact, in the N-Triples syntax where all RDF terms
must be given in full, blank nodes must always be ex-
plicitly labelled. Explicit labels allow blank nodes to
be referenced outside of nested elements and thus to
be used in arbitrary graph-based data even though
the underlying syntaxes (e.g., XML) are inherently
tree-based. Note that we will study cyclic blank node
structures in published data later in Section 6.2.

Features requiring blank nodes. An RDF tool
can safely perform a one-to-one relabelling of blank-
nodes without affecting the interpretation of the
data: the strings used to label blank-nodes do not
matter so long as they do not collide with other such
labels. Using this feature, blank nodes play a ma-
jor role for providing shortcuts in RDF/XML, Tur-
tle and RDFa, where triple positions (that are not
important to name with a URI or literal) can be
left implicit using syntactic sugar. In such cases, the
parser will automatically assign consistent blank-
node labels for these implicit positions when extract-
ing triples. Using a similar principle, blank nodes
are also used in shortcuts for n-ary predicates and
RDF lists (a.k.a. containers) in Turtle, RDF/XML
and (potentially) JSON-LD [7, 9, 63] as well as con-
tainers and reification in RDF/XML [9].

Example 5.1 Consider representing an ordered list
of Tennis Grand-Slams in RDF, where we can use
the Turtle shortcut:

:GrandSlam :order (:AustralianOpen :FrenchOpen
:Wimbledon :USOpen) .

which encodes an (ordered) RDF list. This would be
equivalently representable in Turtle’s square-bracket
syntax (left) as:

:GrandSlam :order
[rdf:first :AustralianOpen ; rdf:rest
[rdf:first :FrenchOpen ; rdf:rest
[rdf:first :Wimbledon ; rdf:rest
[rdf:first :USOpen ; rdf:rest rdf:nil]]]] .

or in the full triple form as:

:GrandSlam :order _:b1 .
_:b1 rdf:first :AustralianOpen . _:b1 rdf:rest _:b2 .
_:b2 rdf:first :FrenchOpen . _:b2 rdf:rest _:b3 .
_:b3 rdf:first :Wimbledon . _:b3 rdf:rest _:b4 .
_:b4 rdf:first :USOpen . _:b4 rdf:rest rdf:nil .

The first shortcut notation omits both the auxiliary
blank nodes, as well as the standard RDF vocabu-

9

lary used to represent ordered lists in triple form.
The second shortcut notation omits only the auxiliary
blank nodes, using nested implicit elements to repre-
sent the tree-structured list. Neither of the first two
notations would be possible without automatically-
generated blank-node labels.

Similar shortcuts using unlabelled blank nodes
hold for n-ary predicates, reification and contain-
ers in RDF/XML. It is important to note that such
shortcuts can only induce “trees” of blank nodes,
branching from subject to object; for example:

_:b1 :p _:b2 . _:b2 :p _:b1 .

cannot be expressed without manually labelling
blank nodes, no matter which RDF syntax is under
consideration. This is due to the tree-based syntaxes
used to serialise RDF, which rely on nested elements
(e.g., XML for RDF/XML and RDFa and JSON for
JSON-LD).
The JSON-LD [63] specification departs from

RDF by allowing blank nodes as predicates. Much
like blank nodes in the subject or object position of
RDF, blank nodes in the predicate position allow
publishers to forego minting a URI for properties
in their JSON-LD document (thus narrowing the
adoption gap between native JSON and JSON-LD).

Issues with blank nodes. Given a fixed, seri-
alised RDF graph (i.e., a document), labelling of
blank nodes can vary across parsers and across time.
Checking if two representations originate from the
same data thus often requires an isomorphism check,
for which in general, no polynomial algorithms are
known (cf. e.g. [18] in the RDF context; isomor-
phism checking is, however, polynomial for “blank
node trees” [44]). Furthermore, consider a use-case
tracking the changes of a document over time; given
that parsers can assign arbitrary labels to blank
nodes, a simple syntactic change to the document
may cause a dramatic change in blank node la-
bels, making precise change detection difficult (other
than on a purely syntactic level).

In practice. Parsers typically feature a system-
atic means of labelling blank nodes based on the ex-
plicit blank node labels and the order of appearance
of implicit blank nodes.

The popular Jena Framework 13 offers sound and
complete methods for checking the isomorphism of
two RDF graphs.

In a study of Linked Data dynamics, Käfer et
al. [42] applied a heuristic algorithm for guessing
if two RDF graphs were equal (i.e., that two ver-
sions of an RDF graph remain the same): the algo-
rithm sets the comparison of all pairs of blank nodes
across documents as equal, where if the number of
triples is the same and the set of RDF triples in both
documents is equal under this heuristic, the algo-
rithm considers the documents as provisionally iso-
morphic. If the heuristic returns true, only then is
the Jena library used to execute a full isomorphism
check. Comparing 29 versions of over eighty thou-
sand RDF documents, the authors found that in all
cases, documents were provisionally isomorphic if
and only if they were isomorphic.

Tzitzikas et al. [67] propose heuristic methods
to identify subgraph-isomorphisms involving blank
nodes, with the goal of computing a minimal delta
between RDF graphs. They define the size of the
delta between two RDF graphs as the edits (triple
addition/deletions) required to make the graphs iso-
morphic and search for a blank node bijection be-
tween the two graphs that minimises this edit dis-
tance. Since subgraph-isomorphism is NP-complete,
the authors propose two tractable approximations.
The first is based on the Hungarian method for pair-
wise comparison, which produces smaller deltas but
at additional cost. The second algorithm computes
signatures for blank nodes based on the ground in-
formation associated with them, which produces
larger deltas but at reduced cost.

In a separate issue—and as previously
mentioned—the JSON-LD [63] specification per-
mits use of blank nodes in the predicate position
resulting in a form of “generalised RDF”. However,
the semantics of blank nodes in the predicate posi-
tion is not defined by the RDF Semantics [36, 37].
Likewise most of the standards and tools built on
top of RDF do not support blank-nodes in such po-
sitions. The JSON-LD specification states that to
map such data to RDF, URIs (or more accurately
IRIs) must first be minted for predicate terms.

13http://jena.sourceforge.net/

10

http://jena.sourceforge.net/

RDF Schema (RDFS)

RDFSchema (RDFS) is a lightweight language for
describing RDF vocabularies, which supports fea-
tures such as class and property hierarchies (i.e.,
subsumption), the definition of domain- and range-
classes associated with property terms, and oth-
ers besides. The RDFS vocabulary—including, e.g.,
rdfs:domain, rdfs:range, rdfs:subClassOf and
rdfs:subPropertyOf—is well-defined by means of
a (normative) model-theoretic semantics, accompa-
nied by a (non-normative) set of entailment rules to
support inferencing [36, 54]. A sample of such rules
is shown in Table 1.

Support for blank nodes. RDFS entailment is
built on top of simple entailment, and thus supports
an existential semantics for blank nodes as described
in Section 2.

Features requiring blank nodes. The restric-
tions placed on which terms can appear in which po-
sition of an RDF triple would, without further treat-
ment, make the entailment rules incomplete with re-
spect to RDFS semantics. To (help) overcome this
problem, blank nodes are used as “surrogates” to
represent literals in the subject position where lit-
erals would otherwise be disallowed. The RDF Se-
mantics document [36] proposes using rules lg & gl
in Table 1 to implement this bijection between lit-
erals and surrogate blank nodes.

Example 5.2 To see why surrogate blank nodes are
necessary, consider the (somewhat unorthodox) RDF
graph:

:Federer atp:name "Roger Federer" .
atp:name rdfs:range atp:PlayerName .

which should RDFS-entail the triple:

"Roger Federer" a atp:PlayerName .

However, the latter triple is not a valid RDF triple
since a literal appears in the subject position; thus it
will not be inferred (the domain of the ?v variable in
the rdfs3 rule would prevent the inference). And so,
to achieve the valid inference:

_:RogerFederer a atp:PlayerName .

(i.e., that a member of atp:PlayerName does ex-
ist) requires the use of a surrogate blank node (viz.
_:RogerFederer) through rule lg.

The inverse rule gl then allows surrogates to
“travel” back as literals into the object position,
though examples of such behaviour are again not
necessarily intuitive.

Example 5.3 This time take the triples:

:hasType rdfs:range rdfs:Class .
:RogerFederer :hasType "TennisPlayer" .

where the first triple is axiomatically true in RDFS;
then we should be able to infer the following:

:RogerFederer :hasType _:TennisPlayer .
_:TennisPlayer rdf:type rdfs:Class .
_:TennisPlayer rdfs:subClassOf _:TennisPlayer .
_:TennisPlayer rdfs:subClassOf "TennisPlayer" .

which ultimately concludes in the final triple that
there is a subclass of "TennisPlayer" (in this case,
itself). To get this latter inference, we require appli-
cation of rules lg, rdfs3, rdfs10 and then finally gl, re-
spectively. The inference would not be possible with-
out a combination of lg/gl.

Again, using a literal to represent an RDFS class
is highly unorthodox. In summary, the use of surro-
gate blank-nodes covers certain corner-cases for the
completeness of RDFS entailment rules caused by
positional restrictions in RDF terms.

Issues with blank nodes. As previously dis-
cussed, the existential semantics of blank nodes
makes RDFS entailment, which is built upon sim-
ple entailment, NP-complete [36, 32, 65, 54]. Fur-
thermore, simple entailment rules are not range-
restricted unlike other rules for RDF(S): existential
variables that appear in the heads of rules need not
appear in the body of rules, with consequences for
guarantees of termination. Of course, the lg & gl
rules are safe in this respect given that there is a one-
to-one mapping between the finite set of literals in
the RDF graph and the set of surrogate blank nodes
produced. However, in the most naive sense, simple
entailment rules can infer an arbitrary set of (highly
non-lean) triples with arbitrary blank node labels.
In fact, since RDFS entailment axiomatically entails
reflexive subclass and subproperty triples, in theory,
all RDF graphs, including the empty RDF graph,

11

Table 1. Selection of RDFS rules. Variables are defined with restrictions as follows: dom(?a) = dom(?b) = U;
dom(?u) = dom(?v) = UB; dom(?x) = dom(?y) = UBL; dom(?l) = L. Rule gl only permits the inverse mapping of lg.

ID Body Head

lg ?u ?a ?l . ⇒ ?u ?a _:l .
gl ?u ?a _:l . ⇒ ?u ?a “l” .

rdfs2 ?a rdfs:domain ?x . ?u ?a ?y . ⇒ ?u rdf:type ?x .
rdfs3 ?a rdfs:range ?x . ?u ?a ?v . ⇒ ?v rdf:type ?x .
rdfs7 ?a rdfs:subPropertyOf ?b . ?u ?a ?y . ⇒ ?u ?b ?y .
rdfs9 ?u rdfs:subClassOf ?x . ?v rdf:type ?u . ⇒ ?v rdf:type ?x .
rdfs10 ?u rdf:type rdfs:Class . ⇒ ?u rdfs:subClassOf ?u .

will RDFS-entail arbitrary blank node graphs (per
Example 4.1).
Otherwise, the RDFS rules would only operate

over the fixed terms of the RDF graph terms(G)
and the built-in RDF(S) vocabularyR itself. Unfor-
tunately R contains infinite container-membership
properties of the form rdf:_n for n ∈ N. Without
simple entailment and these container-membership
properties, the complete RDFS-entailments of a
graph G would be bounded by (terms(G)∪R)3 and
thus could be fully materialised.
Furthermore, ter Horst [65] showed that the

RDFS entailment lemma in the non-normative sec-
tion of the RDF Semantics is incorrect: blank node
surrogates are still not enough for the completeness
of the standard RDFS entailment rules, where blank
nodes would also need to be allowed in the predicate
position. We now give an example.

Example 5.4 Consider the three triples:

:Federer :wins _:b1 .
:wins rdfs:subPropertyOf _:p .
_:p rdfs:domain :Competitor .

Using the standard RDFS entailment rules (includ-
ing lg & gl), we cannot infer the triple :Federer
rdf:type :Competitor, since the required interme-
diate triple :Federer _:p _:b1 is not valid in RDF
and there is no standard mechanism by which surro-
gate URIs can be used to represent blank nodes and
literals in the predicate position.

This incompleteness can be remedied by either:
(i) allowing non-valid RDF triples (generalised

RDF) in intermediate inferences [65, 30]); or
(ii) by the addition of special inference rules to

handle such cases; see, for example, [54].

In practice. Many practical RDFS reasoners ig-
nore simple entailment and surrogate blank nodes,
instead opting to support a “ground” subset of the
RDFS semantics [54, 68, 70].

Web Ontology Language (OWL)

The Web Ontology Language (OWL) 14 is, in
principle, a vocabulary consisting of URIs in the
owl: namespace that carry additional semantics,
thus extending the possibilities of expressing im-
plicit knowledge in RDF beyond RDFS. OWL is
thus a more expressive language than RDFS and
partly re-uses the RDFS vocabulary.

With the advent of OWL 2, there are now eight
standard (sub-)languages in the OWL standard [30]:
OWL Lite, OWL DL, OWL Full, OWL 2 EL, OWL
2 QL, OWL 2 RL, OWL 2 DL and OWL 2 Full. Each
profile is a syntactic subset of the OWL language.
Furthermore, OWL defines two different semantics
for its profiles: an RDF-Based Semantics [59] and
a Direct Semantics [52]. The RDF-Based Seman-
tics is applicable for arbitrary RDF graphs (a.k.a.
OWL 2 Full), but common reasoning tasks are un-
decidable [30]. The Direct Semantics requires re-
strictions on RDF data to ensure decidability, with
sound and complete algorithms for many reasoning
tasks known from ongoing work on Description Log-
ics (DL) theory [5] and other areas.

Support for blank nodes. The OWL Structural
Specification [53] permits use of anonymous individ-
uals in assertions, which allow for representing ob-
jects that are local to a given ontology and whose
identity is not given. Individuals that are not anony-
mous are called named individuals. Anonymous indi-

14Recently extended to OWL 2.

12

viduals are analogous to blank nodes in RDF and are
represented in the structural specification with the
familiar blank node syntax (e.g., _:anAnonIndiv).
The structural syntax also states that if two ontolo-
gies are being imported, any anonymous individuals
they share with the same labels must be “standard-
ised apart”; this is directly analogous to the notion
of an RDF merge.
The RDF-Based Semantics of OWL is built on

top of simple entailment and thus directly considers
blank nodes as existentials [59]. Conversely, the Di-
rect Semantics of OWL does not directly treat any
notion of simple entailment or leanness with respect
to anonymous individuals [52]; instead, the existen-
tial semantics of anonymous individuals is somewhat
hidden in the definition of a model:

“. . . an interpretation I = [. . .] is a model of an
OWL 2 ontology O [. . .] if an interpretation J =
[. . .] exists such that ·J coincides with ·I on all
named individuals and J satisfies O”

— [52, §2.4]

In this definition, J can vary from I on the inter-
pretation of anonymous individuals. As such, this
definition paraphrases the usual semantic definition
of existentials in first-order logic, or, respectively,
the semantic definition of blank nodes in simple en-
tailment, which is defined in terms of a blank node
assignmentA extending an interpretation I (see Def-
inition 2.3).
Apart from anonymous individuals, concept-level

existentials are commonly used in OWL axioms:
for example, the implicit assertion that :Federer
won “something” can be expressed in the DL ax-
iom { Federer } v ∃wins.>, i.e., on a semantic level
above blank nodes and more generally, above the
RDF representation of OWL axioms. Such axioms
can then entail the existence of novel anonymous in-
dividuals that may not otherwise hold under simple
entailment.

Features requiring blank nodes. The Direct
Semantics of OWL does not operate directly over
RDF, but rather operates over axioms that can be
mapped to and from RDF triples [55]. A single ax-
iom can be serialised as multiple triples, involving
either an n-ary predicate representation, or some-
times an RDF list. Once parsed, these axioms can
themselves be mapped to logical formulae for inter-
pretation by a reasoner.

Example 5.5 The DL concept ∃wins.> can be ex-
pressed structurally as the axiom

ObjectSomeValuesFrom(OPE(:wins) CE(owl:Thing))

which maps to the following three RDF triples:

_:x a owl:Restriction .
_:x owl:someValuesFrom owl:Thing .
_:x owl:onProperty :wins .

Such axioms can always be mapped to RDF triples.
The mapping can also be executed in the reverse di-
rection: from RDF to structural axioms and logical
formulae. However, the mapping from RDF graphs
to OWL 2 structural axioms is only possible for a
restricted subset of RDF graphs [55].

Blank nodes are also required to represent RDF lists
used in the mapping, e.g., of OWL union classes,
intersection classes, enumerations, property chains,
complex keys, etc. An important aspect here is the
locality of blank nodes: if the RDF representation
from Example 5.5 is valid in a given graph, it is still
valid in an OpenWorld since, e.g., an external docu-
ment cannot add another value for owl:onProperty
to _:x. This protects axioms from interference with
other documents and also ensures that the descrip-
tions of axioms are “closed” within the local docu-
ment. For this reason, the use of blank nodes as aux-
iliary nodes for representing axioms is enforced by
the OWL standard when interpreting RDF graphs
using the Direct Semantics [55].

Issueswith blank nodes. RDFSemantics-based
tools encounter similar issues as for RDFS, where
simple entailment is NP-complete and where, e.g.,
the OWL 2 RL/RDF ruleset requires use of gener-
alised triples [30]. The Direct Semantics places re-
strictions on the use of certain features for anony-
mous individuals; the most prominent example is
the owl:hasKey feature, which can only be used to
infer equivalence between named individuals.

As an aside, OWL contains the vocabulary term
owl:differentFrom, which can be used to state
that two terms refer to different elements of the do-
main. An interesting case could thus arise if two
blank nodes are inferred to be owl:differentFrom
each other but where one makes the other non-lean.
If the RDF graph representing such an ontology was
leaned, the OWL semantics of the ontology would
then change. However, to the best of our knowledge,

13

such a case is effectively impossible. We speculate
that due to the Open World Assumption and a lack
of a Unique Name Assumption, it is impossible to
construct a case that distinguishes two blank nodes
as different-from each other while making one non-
lean due to the other. The only counter-example we
could find relied on a syntactic relaxation of lists in
the OWL RDF-Based Semantics [59]:

_:x a owl:AllDifferentFrom ;
rdf:first _:b1 , _:b2 ;
rdf:rest _:y .

_:y rdf:first _:b1 , _:b2 ;
rdf:rest rdf:nil .

:Fred :spouse _:b1 , _:b2 .
:Polygamist owl:equivalentClass

[owl:minCardinality 2 ; owl:onProperty :spouse] .
:Monogamist owl:equivalentClass

[owl:cardinality 1 ; owl:onProperty :spouse] .

In this case, _:b1 is rendered non-lean by _:b2
and vice-versa, and we now also have the distinc-
tion _:b1 owl:differentFrom _:b2. If we leaned
the graph, we would have that :Fred was of type
:Monogamist. If we did not lean the graph, we would
have that :Fredwas of type :Polygamist. However,
this case additionally constructs inconsistencies due
to having that _:b1 owl:differentFrom _:b1 and
_:b2 owl:differentFrom _:b2 from the ill-formed
list (one such inconsistency would still be preserved
if the graph were leaned).

In practice. Rule-based reasoners, which typi-
cally support some partial axiomatisation of the
RDF-Based Semantics such as DLP [31], pD* [65] or
OWL 2 RL/RDF [30], often apply Herbrand inter-
pretations over blank nodes effectively turning the
problem of simple entailment into set containment.
Conversely, ter Horst proposed pD*sv [65], which
contains an entailment rule with an existential blank
node in the head to support owl:someValuesFrom,
but we know of no system supporting this rule.
Conversely, reasoners that implement OWL’s Di-

rect Semantics—such as FaCT++ [66], HermiT [25],
RacerPro [33], Pellet [61], etc.—often support exis-
tential semantics and anonymous individuals.

SPARQL Protocol and RDF Query Language

As discussed in Section 4.2, SPARQL [58] is the
standard query language for RDF. The extended

SPARQL 1.1 specification has recently become a
W3C recommendation [34], adding new features
such as SPARQL 1.1 property paths, aggregates,
sub-queries, entailment regimes and much more.

Support for blank nodes. With respect to
querying over blank nodes in the dataset, SPARQL
considers blank nodes as constants that are local to
the scoping graph they appear in [58]. SPARQL does
not rigourously define the notion of a scoping graph,
except to state that the same scoping graph is used
to generate all results for a query, which leaves open
the possibility of blank nodes being shared across
different named graphs. SPARQL does however dis-
tinguish the scopes of query, results and data, stat-
ing that the blank nodes cannot be shared across
these scopes. 15

Example 5.6 The query:

SELECT DISTINCT ?X
WHERE {
:Federer :wins ?X .
?X :event :Wimbledon .
}

issued over the graph depicted in Figure 1 would
return

{
{(?X, _:b1)}, {(?X, _:b3)}

}
as distinct so-

lution mappings, here effectively considering blank
nodes as constants. Note that the blank node labels
are not significant.

As discussed in Section 4.2, SPARQL engines can
also be used to support various tasks over RDF
graphs containing existential blank nodes, including
simple entailment and leanness checking.

Features requiring blank nodes. SPARQL
uses blank nodes in the WHERE clause of the query
to represent non-distinguishable variables, i.e., vari-
ables that can be arbitrarily bound, but that cannot
be returned in a solution mapping. 16 Blank nodes
can also be scoped within a query at the level of

15This clarification may serve as a corrigendum for our pre-
vious paper in which we stated that blank nodes cannot be
shared across graphs in SPARQL [48]. This statement is mis-
leading in that although blank nodes cannot be shared across
scoping graphs, they can be shared across named graphs.
16 In SPARQL, blank nodes are not true existential variables
in that they must be bound to a specific term. As such, blank-
nodes act analogously to query variables whose substitutions
cannot be projected. This will be discussed again later in
the context of SPARQL 1.1 Entailment Regimes.

14

basic graph patterns, which are often (but not al-
ways) delimited using braces. Basic graph patterns
with blank nodes can always be expressed by re-
placing blank nodes with fresh query variables that
are themselves non-distinguished; however, since
SPARQL inherits the same syntax as Turtle, blank
nodes do enable shortcuts for querying lists and
anonymous nested elements.
A second use for blank-nodes is within CONSTRUCT

templates, which generate RDF data from solu-
tion mappings: a blank node appearing in a query’s
CONSTRUCT clause is replaced by a fresh blank node
for each solutionmapping in the resulting RDF (sim-
ilar, in fact, to a Skolem function).

Example 5.7 This query exemplifies the use of
blank-nodes as non-distinguishable variables in the
query body and their use in the CONSTRUCT clause:

CONSTRUCT { _:FedererWins :yearWon ?y ; :event ?e . }
WHERE {
:Federer :wins _:t .
_:t :event ?e ; :year ?y .

}

requests some tournaments (_:t) in which :Federer
won, as well as the year (?y) and event (?e) for each.
In fact, the term _:t could be replaced by any arbi-
trary variable (e.g.., ?t) without affecting the query.
The bindings for year and event are then used to
generate RDF triples as a result, where based on the
graph in Figure 1, the following four triples would be
produced:

_:x :yearWon "2003" ; :event :Wimbledon .
_:y :yearWon "2009" ; :event :FrenchOpen .

whereby a fresh blank node is produced for each result
tuple. Again, the blank-node labels are not significant.

Issues with blank nodes. A practical problem
posed by blank nodes is that which is often called
“round-tripping” whereby a blank node returned in
a solution mapping cannot be referenced in a further
query. More generally, once a blank node leaves its
original scope it can no longer be directly referenced.
Consider receiving the result binding (?X, _:b1) for
the query in Example 5.6. One cannot ask a subse-
quent query for what year “the” tournament labelled
_:b1 took place since the _:b1 term in the solution
mapping no longer has any relation to that in the
originating graph: again, the labels need not corre-
spond to the original data. Even if the blank-node

label used in the data is known, there is no mecha-
nism to reference that blank node in SPARQL. This
issue was discussed by the SPARQLWorkingGroup,
but was postponed and left without a solution. 17

An additional problem is posed by the COUNT fea-
ture introduced by SPARQL 1.1, which can be used
to count result bindings. Keeping aligned with the
semantics of SPARQL, COUNT enumerates terms in
the RDF graph, and not resources in the interpreta-
tion. Thus, the COUNT feature will consider all URIs
as distinct, even though, for example, OWL does not
have a Unique Name Assumption: two URIs that
may refer to the same real-world “element” of the
interpretation will still be counted twice. A simi-
lar treatment is applied to blank nodes, which are
treated as distinct terms in the graph. However,
two graphs that the RDF semantics considers to
be equivalent (under simple entailment) may give
different results for COUNT. For instance, applying
COUNT(?X) in an analogue of the query in Exam-
ple 5.6 would answer that :Federer won an event
at :Wimbledon twice. Posing the same COUNT query
over a lean (and thus RDF equivalent [36]) version
of Figure 1 would return once.

This is, in fact, a specific symptom of an under-
lying mismatch between the semantics of SPARQL
and RDF [4]. Even if G |= H under simple entail-
ment, the results for a SPARQL query over H need
not be a subset of G; the COUNT feature is an ob-
vious example, but SPARQL also contains features
like NOT EXISTS, filters, etc., that break this mono-
tonicity.

With respect to the possibility of blank nodes be-
ing shared across named graphs, one potential is-
sue occurs with the definition of the FROM keyword
in SPARQL, which is used to create a new default
graph from the content of one or more named graphs
such that their combined content can be queried
without requiring explicit GRAPH clauses in the ba-
sic graph pattern. When multiple FROM graphs are
specified, SPARQL states that the graphs should
be merged together (as defined in Section 2.1), such
that blank nodes in different named graphs are
forced to remain distinct in the generated default
graph [58, §12.3.2]. This seems contrary to the po-
sition that SPARQL allows named graphs to share
blank nodes, in which case a union would seem
preferable. In fact, the SPARQL 1.1 Service Descrip-

17http://w3.org/2001/sw/DataAccess/issues#bnodeRef

15

http://w3.org/2001/sw/DataAccess/issues#bnodeRef

tion specification [71] takes a different perspective,
and provides a vocabulary term for endpoints to
state that they are initialised with a default graph
that is the union of all named graphs but provides
no such term for merging all named graphs.

Example 5.8 We use an example to demonstrate
why the confusion over whether named graphs should
be unioned or merged can affect query answering.
Take two named graphs. The first, named :g1, con-

tains the following triple:

_:b1 :year "2003" .

The second, named :g2, contains the following triple:

_:b1 :event :Wimbledon .

We can then ask if there was a 2003Wimbledon event
mentioned in the data:

ASK { ?s :year "2003" ; :event :Wimbledon . }

If the SPARQL dataset is initialised with the union
of :g1 and :g2 as the default graph, then the answer
is true.
Consider the same query but where the default

dataset is explicitly constructed using FROM clauses:

ASK FROM :g1 FROM :g2
WHERE { ?s :year "2003" ; :event :Wimbledon . }

The blank nodes from the two graphs will be kept
distinct by the merge and the answer will be false.

Blank nodes have also caused issues in the def-
inition of SPARQL 1.1 Entailment Regimes [27,
26], which state how various standard entailment
regimes (including RDF, RDFS, D, OWL RDF-
Based, OWL Direct and RIF Core) can be used to
provide “implicit answers” to SPARQL queries. In
particular, there has been some debate about how
blank nodes should be treated in the context of the
OWL Direct Semantics entailment regime [47, 26,
27], mostly due to the limited use of blank nodes
as non-distinguished variables such that they must
match a specific term in the graph (or its entail-
ments) rather than being satisfied when something
is implicitly known to exist. 18 The reason for de-
bate is best illustrated with an example.

18See the mail-thread starting at http://lists.w3.org/
Archives/Public/public-rdf-dawg/2010OctDec/0318.html.

Example 5.9 Take the simple query:

SELECT ?winner
WHERE { ?winner :wins _:something . }

As per Figure 1, consider a graph containing the
triples:

:Federer :wins _:b1 , _:b2 , _:b3 .

The above query will return :Federer as an an-
swer. However, if instead the RDF graph encoded
the DL axiom { :Federer } v ∃wins.>, which can
be interpreted under OWL semantics as stating that
:Federer did win something, the answer set will be
empty. This is because the term _:something is ex-
pected to match a specific RDF term in the graph
(or its entailments), and does not behave as a true
existential variable. OWL Direct Semantics would
not make existential knowledge explicit using blank
nodes, but rather using concepts, where a more com-
plete query could be written as:

SELECT ?winner
WHERE {
{ ?winner :wins _:something . }
UNION
{ ?winner rdf:type _:hasWin .
_:hasWin rdf:type owl:Restriction .
_:hasWin owl:someValuesFrom owl:Thing .
_:hasWin owl:onProperty :wins . }

}

which would cover both representations of existential
knowledge. (If the OWL Direct-Semantics Entail-
ment Regime were enabled, only the latter part of the
UNION would be necessary: the latter axiom would be
entailed from any triples matching the former part.)

Blank nodes in SPARQL basic graph patterns are
not considered to be true existential variables as this
would change the core meaning of blank nodes in
SPARQL, leading to different behaviours across dif-
ferent entailment regimes. When querying for the
existence of an implicit element under the OWL Di-
rect Semantics entailment regime, it is thus neces-
sary to query for existential concepts as illustrated
in the previous example.

In practice. Implementations generally follow
the SPARQL specification in their treatment of
blank nodes. However, to support “round-tripping”
of blank nodes, SPARQL engines often implement
custom syntaxes that allow blank nodes to be ref-

16

http://lists.w3.org/Archives/Public/public-rdf-dawg/2010OctDec/0318.html
http://lists.w3.org/Archives/Public/public-rdf-dawg/2010OctDec/0318.html

erenced outside of their original scoping graph (col-
loquially known as “Skolemisation” where, per Sec-
tion 3.3, the existential variable is replaced with a
fresh constant). For example, ARQ 19 is a commonly
(re)used SPARQL Java library and it supports
a non-standard <_:b1> style syntax for terms in
queries, indicating that the term can only be bound
by a blank node labelled “b1” in the data. Other en-
gines supporting similar syntax include Garlik and
RDFLib. Virtuoso 20 supports the <nodeID://b1>
syntax with similar purpose, but where blank nodes
are only externalised in this syntax and (perhaps
unusually) where the built-in SPARQL function
isBlank(<nodeID://b1>) evaluates as true. An-
other solution proposed to the SPARQL Working
Group was to specify a USING BNODEREF key-phrase
before the WHERE clause to indicate that blank nodes
in the respective query should be interpreted as
constants. 21 However, this was not included for
SPARQL 1.1.

Rule Interchange Format (RIF)

Both RDFS and OWL are associated with various
sets of entailment rules that support some subset of
the semantics of the respective language. However,
neither standard supports the idea of user-defined
rules. Instead, the recently standardised Rule Inter-
change Format (RIF) can be used. RIF aims to of-
fer a common means to interchange rules across the
Web, and thus goes beyond RDF in scope. Most
relevant for RDF are the RIF Basic Logic Dialect
(BLD) [13] and RIF Core [12]. RIF BLD allows for
serialising and exchanging domain-specific entail-
ment rules and can be applied for RDF data [13].
RIF Core is a terse syntactic subset of RIF BLD [12].

Example 5.10 The RDFS-entailment rule rdfs2
from Table 1 could be written in RIF’s presentation
syntax [13] as follows:

Forall ?u ?x ?a ?y (?u [rdf:type -> ?x] :-
And(?a [rdfs:domain -> ?x] ?u [?a -> ?y]))

RIF’s presentation syntax borrows from F-logic [45],
encoding RDF triples (s p o) as frames s[p->o] and
using ‘:-’ for encoding (rule) implication.

19http://jena.sourceforge.net/ARQ/
20http://virtuoso.openlinksw.com/
21http://www.w3.org/2009/sparql/wiki/Feature:
BlankNodeRefs

Aside from the RDF(S) entailment rules, any ar-
bitrary Horn rules over RDF, optionally with built-
in calls in the rule body, can be expressed in RIF.

Support for blank nodes. RIF does not directly
support blank nodes. Quoting from the standard:

“RIF does not have a notion corresponding ex-
actly to RDF blank nodes. RIF local symbols,
written _symbolname, have some commonality
with blank nodes;”

—[23, §2]

In other words, although RDF graphs with blank
nodes cannot be directly expressed in RIF, “local
symbols” are supported that are only visible within
the scope of a RIF document.

While RIF allows existentially quantified vari-
ables in rule bodies, existential quantification in
rule heads (and thus in factual statements such as
in RDF triples) is not supported. Inspired by sup-
port for existentials in Description Logics, there has
been some recent work on likewise extending cer-
tain guarded fragments of Horn rules with existen-
tials while still preserving decidability of basic rea-
soning tasks [17]; however, these proposals have not
yet made it into the RIF standard.

Example 5.11 For instance, a “rule” expressing
that a member of the class :Winner has won “some-
thing” would need an existential in the rule head.

Forall ?X (Exists ?Y (?X [:wins -> ?Y] :-
?X [rdf:type -> :Winner]))

While such rules would not be expressible in RIF
BLD (which disallows existentials in rule heads), the
same can be modelled in DL (and likewise in OWL)
easily: Winner v ∃wins.>.

While blank nodes and existentials in rule heads
are not supported in RIF natively, the Skolemisa-
tion of rules with existentials in rule heads could be
expressed in RIF BLD, which supports full function
symbols. That is, a Skolemised form of the existen-
tial rule from Example 5.11 could be expressed as
follows:

Forall ?X (?X[:wins -> sk(?X)] :-
?X [rdf:type -> :Winner])

17

http://jena.sourceforge.net/ARQ/
http://virtuoso.openlinksw.com/
http://www.w3.org/2009/sparql/wiki/Feature:BlankNodeRefs
http://www.w3.org/2009/sparql/wiki/Feature:BlankNodeRefs

The combination of arbitrary RDF graphs (in-
cluding blank nodes) and RIF rules is defined in [23],
which combines RDF interpretations and interpre-
tations of a RIF ruleset. To check whether an RDF
graph G and a RIF ruleset R entails an RDF graph
G′, it is sufficient to encode a Skolemised version of
G as a set of (skolemized) RIF facts sk(G), and to
subsequently encode G′ as a query (with existen-
tials) over R∪sk(G) (see [23, §9.1]). As such, simple
entailment can also be supported in RIF.

Example 5.12 As a continuation of Example 4.2,
checking whether the graph G from Fig. 1 simple-
entails H can also be tested in RIF. First we encode
G as a set of RIF facts sk(G) using Skolemization;
in this example, we use a RIF local constant _x to
encode a blank node _:x with the same label.

Document (Group (
:Federer [rdf:type -> :TennisPlayer]
:Federer [:name -> "Roger Federer"]
:Federer [:wins -> _b1]
:Federer [:wins -> _b2]
:Federer [:wins -> _b3]
...))

The entailment graph H from Example 4.2 would
then be translated into the following existential RIF
formula, where blank nodes are translated to vari-
ables instead of local constants.

Exists ?player ?ev1 ?ev2
(And (?player [rdf:type -> :TennisPlayer]

?player [:wins -> ?ev1]
?player [:wins -> ?ev2]
?ev1 [:year -> 2003]
?ev2 [:year -> 2009]))

This “query” can then be issued against sk(G) (in
combination with a RIF ruleset R if provided) to see
if the entailment holds.

This method of performing simple entailment us-
ing RIF is analogous to that presented in Exam-
ple 4.2 for SPARQL.

Features requiring blank nodes. As with the
OWL mapping, RIF rules and formulas can be se-
rialised as RDF, where the mapping again makes
heavy use of blank nodes [35]. Since the syntax
is even more verbose than the encoding of OWL
axioms into RDF triples, we refer the reader to,
e.g., [35, §11] for a concrete example rather than in-
cluding one herein.

In practice. To the best of our knowledge, there
have been few instances of RIF being adopted in
the context of RDF in practice. Among the imple-
mentations listed at the RIF Working Group’s im-
plementation page 22 , SILK 23 is probably the most
actively developed tool, but does not report full sup-
port of RDF compatibility (as defined in [23]), nor
does it mention any issues with blank nodes explic-
itly. FuXi is the only system in the list that mentions
explicit support for RDF—in the form of OWL 2
RL in RIF—but details are not published; from the
web-page on FuXi’s semantics, it is not clear if any
issues with blank nodes were encountered, though at
the time of writing, there is a brief mention of blank
nodes appearing in the head of a rule. 24 Another
(unlisted) academic RIF implementation with RDF
support has been reported by Marano et al. [50], but
is not actively maintained at the time of writing of
this paper.

RDB2RDF

Given an increasing interest in publishing rela-
tional data as RDF, the RDB2RDF W3C Working
Group was tasked with standardising a language for
mapping relational data into RDF. As a result of
the activity of this group, two languages were pro-
posed: a direct mapping [3] that translates a rela-
tional database into RDF without any input about
the transformation process from the user, and a gen-
eral mapping language [21] where users can specify
their own rules for translating a relational database
into RDF. In what follows, we show how blank nodes
are used in the direct mapping [3].

Support for blank nodes. The input of the di-
rect mapping is a relational database, including the
schema of the relations being translated and the set
of keys and foreign keys defined over them. The out-
put of this language is an RDF graph that may con-
tain blank nodes.

Features requiring blank nodes. The RDF
graph generated in the translation process identi-
fies each tuple in the source relational database by
means of a URI. If the tuple contains a primary key,
then this URI is based on the value of the primary

22http://www.w3.org/2005/rules/wiki/Implementations
23http://silk.semwebcentral.org/
24https://code.google.com/p/fuxi/wiki/FuXiSemantics

18

http://www.w3.org/2005/rules/wiki/Implementations
http://silk.semwebcentral.org/
https://code.google.com/p/fuxi/wiki/FuXiSemantics

key. If the tuple does not contain such a constraint,
then a blank node is used to identify it in the gen-
erated RDF graph [3].

Example 5.13 Assume that the following table
Tweets stores information about tweets in Twit-
ter [3]:

Tweets ID Text
1 I like RDF
1 I like blank nodes

Each row of the table stores a tweet (Text) from a
person with identifier ID. This table does not have
a primary key, thus each of its tuples is identified by
a blank node when translated by the direct mapping.
More precisely, in this case the direct mapping pro-
duces the following triples:

_:a rdf:type <Tweets> .
_:a <Tweets#ID> "1" .
_:a <Tweets#Text> "I like RDF" .

_:b rdf:type <Tweets> .
_:b <Tweets#ID> "1" .
_:b <Tweets#Text> "I like blank nodes" .

In these triples, URI <Tweets> is generated
by concatenating some base URI (for example,
http://example.org/) with the string Tweets,
while URIs <Tweets#ID> and <Tweets#Text> are
generated by concatenating the base URI with the
strings Tweets#ID and Tweets#Text.

Issues with blank nodes. In the mapping pro-
cess, blank nodes are used as identifiers of tuples
without primary keys [3], and as such, two of these
blank nodes should not be considered as having the
same value. Thus, the existential semantics of blank
nodes in RDF is not appropriate for this use.

Example 5.14 Continuing with Example 5.13,
now assume that table Tweets contains repeated tu-
ples:

Tweets ID Text
1 I like RDF
1 I like blank nodes
1 I like RDF

In this case, the direct mapping produces the follow-
ing triples:

_:a rdf:type <Tweets> .
_:a <Tweets#ID> "1" .

_:a <Tweets#Text> "I like RDF" .

_:b rdf:type <Tweets> .
_:b <Tweets#ID> "1" .
_:b <Tweets#Text> "I like blank nodes" .

_:c rdf:type <Tweets> .
_:c <Tweets#ID> "1" .
_:c <Tweets#Text> "I like RDF" .

The generated RDF graph G is not lean: given the
map µ such that µ(_:a) = µ(_:c) = _:a and
µ(_:b) = _:b, we have that µ(G) is a proper sub-
graph of G. However, the blank nodes _:a and _:c
are generated to represent distinct tuples in the table
Tweets, and as such, they should not be considered
as having the same value.

In practice. The direct mapping has been im-
plemented in several systems: D2RQ 25 , RDF-
RDB2RDF 26 , SWObjects dm-materialize 27 , XS-
PARQL [10], Ultrawrap [60] and db2triples 28 . In
all these systems, blank nodes are used as identifiers
when translating a relation without a primary key,
so the existential semantics of blank nodes in RDF
is not appropriate for the RDF graphs generated by
any of these systems.

Summary of standards

We have looked at blank nodes in the context
of all the Web standards directly related to RDF,
discussing how blank nodes are supported, which
features rely on them, what issues have arisen sur-
rounding them, and how implementations handle
them. In the various RDF syntaxes, blank nodes en-
able various syntactic shortcuts and relax the re-
quirement to assign a global URI to everything. In
RDFS and OWL, blank nodes can be interpreted
as existential variables, although ground semantics
are often applied in practice. In OWL, RIF and
RDB2RDF, blank nodes are used as unnamed nodes
when mapping structural information to RDF. In
SPARQL queries, blank nodes are interpreted as
non-distinguished variables, or as Skolem functions
when given in CONSTRUCT clauses.

The two primary “semantic mismatches” we iden-
tify with respect to blank nodes involve SPARQL

25http://d2rq.org/
26https://metacpan.org/release/RDF-RDB2RDF
27http://swobjects.svn.sourceforge.net
28https://github.com/antidot/db2triples

19

http://d2rq.org/
https://metacpan.org/release/RDF-RDB2RDF
http://swobjects.svn.sourceforge.net
https://github.com/antidot/db2triples

and the direct mapping of RDB2RDF. In SPARQL,
two non-isomorphic RDF graphs that simple-entail
each other can return different answers: thus, for
example, leaning an RDF graph can change the
SPARQL answers derived from it for certain queries.
In the RDB2RDF direct mapping, identical source
tuples in the relational table will yield non-lean
blank nodes in the output RDF graph, but each such
blank node represents the existence of a tuple in the
source and should not be considered “redundant”.

Blank nodes in publishing

In this section, we survey the use of blank nodes
in RDF data published on the Web. The recent
growth in RDF Web data is thanks largely to the
pragmatic influence of the Linked Data commu-
nity [11, 38]. Linked Data guidelines are unequivo-
cal on the subject of blank node usage. In the re-
cent book “Linked Data: Evolving the Web into a
Global Data Space” [38], Heath andBizermake their
only reference to blank nodes in the section entitled
“RDF Features Best Avoided in the Linked Data
Context”, as follows:

“The scope of blank nodes is limited to the doc-
ument in which they appear, [...] reducing the
potential for interlinking between different Linked
Data sources. [...] it becomes much more difficult
to merge data from different sources when blank
nodes are used, [...] all resources in a data set
should be named using URI references.”

—[38, §2.4.1]

With this (recent) guideline discouraging blank
nodes in mind, we now provide an empirical study
of blank nodes in published data on the Web.

Our analyses are based on the Billion Triple Chal-
lenge 2012 (BTC–2012) corpus, which represents a
large sample of RDF published on the Web. Using
conventions for a SPARQL dataset, we may denote
this corpus as {M, (u1, G1), . . . , (un, Gn)}, where
each Gi is an RDF graph referring to an individ-
ual Web document, ui is the URL from which that
RDF document was retrieved (with 200 Okay), and
M is a (virtual) default graph composed of the RDF
merge of all G1, . . . , Gn. The sets of blank nodes in
each graph G1, . . . , Gn are pairwise disjoint.
The dataset is represented on-disk as a list of

quadruples Q, written in the N-Quads syntax.

Quadruples extend RDF triples to add a fourth el-
ement containing the graph URI. Thus we can say
that Q =

⋃
1≤i≤n Gi × ui. Letting π denote a pro-

jection operator, we can also say M = πs,p,o(Q).
In the following, we use the dataset notation or the
quadruple notation equivalently, as convenient.

The BTC–2012 corpus consists of 1.230 billion
unique quadruples extracted from 8.373 million
RDF documents, collected through a crawl con-
ducted in May 2012. 29 The corpus consists of data
collected from 829 different pay-level domains, which
are direct subdomains of either top-level domains
(such as dbpedia.org), or country code second-level
domains (such as bbc.co.uk). Henceforth, when we
mention domain, we thus refer to a PLD (unless oth-
erwise stated).

We begin this section by looking generally at the
prevalence of blank nodes in published data (§6.1).
We then look at the morphology of blank nodes in
such data, looking at how blank-nodes are intercon-
nected and measuring the treewidth of blank-node
structures embedded in RDFWeb documents to get
an idea of how difficult simple entailment and lean-
ing are in practice (§6.2). In Section 7, we continue
the discussion by looking at the prevalence of non-
lean RDF data in our sample of Web data.

Prevalence of blank nodes in Web data

First, we looked to measure the raw prevalence of
blank nodes and their use in real-world RDF data:
(i) Of the 1.230 billion unique quadruples in the

BTC–2012 corpus, 274.194 million (22.3%)
had a blank node in the subject position and
94.211 million (7.7%) had a blank node in the
object position.

(ii) Of the 8.373million documents comprising the
corpus, 3.758 million (44.9%) featured at least
one blank node.

(iii) Of the 341.733 million unique RDF terms
(URIs, literals and blank nodes) appearing in
the data, 88.677 million (25.9%) were blank
nodes. 30

29http://km.aifb.kit.edu/projects/btc-2012/. We pre-filtered
the data to remove HTTP header information output by the
crawler as this is not “native” RDF. Note that no BTC–
2013 dataset has been made available: BTC–2012 is the most
recent edition.
30146.871 million (43.0%) were literals and 106.185 million
(31.1%) were URIs.

20

http://km.aifb.kit.edu/projects/btc-2012/

Table 2. Top 25 publishers of blank nodes in our corpus

№ Domain BNodes %BNodes LOD?

1 data.gov.uk 54,898,287 27.39 X
2 freebase.com 14,918,969 31.95 X
3 livejournal.com 11,757,431 56.97 X
4 legislation.gov.uk 3,310,772 46.45 X
5 ontologycentral.com 1,907,525 79.47 X
6 vu.nl 658,538 37.27 X
7 neuinfo.org 279,935 42.44 X
8 opera.com 233,578 6.89 X
9 geovocab.org 210,263 67.45 X
10 loc.gov 147,997 10.95 X
11 bbc.co.uk 94,077 16.41 X
12 bibsonomy.org 79,543 41.17 X
13 codehaus.org 48,943 90.52 X
14 opencalais.com 28,873 41.32 X
15 vocab.org 14,867 75.33 X
16 w3.org 11,141 9.47 X
17 174.129.12.140 8,136 54.07 X
18 soton.ac.uk 7,970 2.76 X
19 southampton.ac.uk 4,420 9.40 X
20 fao.org 4,183 2.59 X
21 identi.ca 4,098 0.34 X
22 semanticweb.org 3,932 2.50 X
23 mondeca.com 3,849 49.74 X
24 lehigh.edu 3,781 18.72 X
25 openlylocal.com 3,431 13.09 X

(iv) Of these 88.677 million unique blank nodes,
88.673 million (99.995%) appeared in the sub-
ject position of at least one triple, and 86.596
million (97.7%) appeared in the object posi-
tion of at least one triple.

Thus, we can already surmise that blank nodes are
prevalent in RDF data on the Web. Furthermore,
we see that almost all blank nodes appear at least
once in both the subject and object position, but
occur most prevalently in the former: on average,
a given blank node appears as the subject of 3.09
triples, and the object of 1.06 triples. Relatedly, in
the various RDF syntaxes, blank nodes can appear
multiple times in the subject position without the
need for explicit labelling, but can only appear once
in the object position without such labelling.

Next we look at the domains publishing blank
nodes: of the 829 pay-level domains contributing
to the corpus, 549 (66.2%) feature use of at least
one blank node in their published data. Table 2
shows the top 25 domains exporting blank nodes

in the corpus. 31 The “%BNodes” column indi-
cates the percentage of all unique terms appear-
ing in the domain’s corpus which are blank nodes
(i.e., |voc(Md)|

|terms(Md)| represented as a percentage forMd

the RDF merge of all documents from that do-
main d in the corpus). The “LOD?” column indi-
cates whether the domain is featured in the LOD
cloud: we extracted the list of domains mentioned in
the CKAN/LOD metadata repository, where of the
829 domains contributing to the BTC–2012 dataset,
78 (9.4%) were mentioned in the LOD repository
(see [43] for related discussion comparing coverage
of the BTC–2011 dataset and the LOD cloud).

Summarising the use of blank nodes on a domain
level, of the 829 domains contributing to our corpus,
280 (33.8%) did not publish any blank nodes. The
mean percentage of unique terms that were blank
nodes across all domains—i.e., the mean of %BN-
odes for all domains—was 7.6% (±12.3 pp.), indi-
cating that although a small number of high-volume
domains publish many blank nodes (cf. Table 2),
many other domains publish blank nodes muchmore
infrequently. The analogous mean figures including
only those domains appearing in the LOD cloud di-
agram was (surprisingly) 26.4% (±22.5 pp.) and ex-
cluding LOD domains was 5.7% (±8.6 pp.).

Structure of blank nodes in Web data

As per Section 3.1, the problem of checking the
simple entailment G |= H is made difficult by con-
nected blank nodes in H forming cycles, and, more
specifically, by blank(H) having high treewidth. To
get an overview of the structure of the connected
blank nodes in the BTC–2012 corpus, for each doc-
ument Gi contained within, we extracted blank(Gi)
and separated out the non-singleton connected com-
ponents (henceforth simply called “components”)
thereof using a Union-Find algorithm [64]: recall
that given the locality of blank nodes, they can only
be linked within the given document.

In terms of the connectedness of blank-nodes
within documents, we observed the following:
(i) Of the 3.758 million documents containing at

least one blank node, 1.477 million (39.3%)
contained connected blank-nodes: i.e., con-

31 In the older corpus analysed in the previous version of this
paper [48], the hi5.com domain was found to export massive
volumes of blank nodes. This domain no longer exports RDF.

21

tained at least one triple with two unique
blank nodes, giving a non-empty blank(Gi).

(ii) Across these documents, we found a total of
3.334 million components, with an average of
2.26 components for a document containing
some connected blank nodes.

(iii) Taken together, these components contained
62.938 million unique blank nodes, which im-
plies that 71.0% of all unique blank nodes were
connected, and each component contained on
average 18.8 unique blank nodes.

Hence, we see that most blank nodes are connected,
and if connected, a blank node connects to approx-
imately eighteen other blank nodes, on average.

We are now interested in the nature of these
connections between blank nodes. In Figure 2 we
plot the distribution of the 62.938 million connected
blank-nodes for different values of in-degree and out-
degree: here, we consider a variation of blank(Gi)
which takes directed edges from subject blank nodes
to object blank nodes in the same triple (and again
disregards loops).
(i) The graph shows that blank nodes occasion-

ally have much higher values for out-degree
relative to in-degree. Though the highest in-
degree observed was 17, the analogous figure
for out-degree was 1,320.

(ii) The outliers observable around the 1,000 mark
are due to FOAF social-data exporters that
implement a limit on the number of connec-
tions a user can have.

(iii) Not shown in the (log/log) graph are the num-
ber of connected blank-nodes with in-degree
or out-degree of zero, which, resp., was 2.241
million (3.5%) and 15.212 million (4.1%).

(iv) We see that the vast majority of blank nodes
have an in-degree of 0 or 1 (98.0%) and an out-
degree of 0 or 1 (95.6%).

The distribution of in-degree and out-degree sug-
gests again that blank nodes tend to “fan out” from
subject to object, and not vice-versa. This again
could be attributed to the tree-like layout of popu-
lar RDF syntaxes and the role blank-nodes play in
them. Conversely, the low number of blank nodes
with an in-degree of zero—which are candidates to
form the root of a polytree—sets an upper-bound on
the percentage of subject-to-object polytrees repre-
sented by the 3.334 million components at 67.1%.

Digging into the structure of these components
in more detail, recall from Section 4 that checking

1 10 100 1,000

10

1,000

100,000

10,000,000

Degree

№
o
f
b
la
n
k
n
o
d
es

In-degree

Out-degree

Fig. 2. Distribution of degree of connected blank nodes in
directed blank graphs (log/log)

the simple entailment G |= H has the upper bound
O(n2 +mn2k), where k is one plus the treewidth of
the blank node structure blank(H) [56]. All graphs
whose treewidth is greater than one are cyclic, and
the higher the treewidth, the higher the cyclicity
and the harder entailment becomes. As such, and as
stated previously, simple entailment checking only
becomes difficult when blank nodes form cycles:

“[...] in practice, an RDF graph contains rarely
blank nodes, and even less blank triples. 32 Hence,
most of the real RDF graphs are acyclic or have
low treewidth such as 2, and the entailment can
be tested efficiently [...].”

—[56, §4]

To cross-check this claim, we checked the
treewidth of all 3.334 million (undirected) compo-
nents using the QuickBB algorithm [28], imple-
mented in the LibTW package [69]. The distribution
of values is given in Table 3. Notably, 62.3% of the
components are acyclical with a treewidth of one,
and supporting the above claim, we found that only
19 components have a treewidth of three or more.
A total of 17 domains published blank-node compo-
nents with cycles, 4 of which published components
with treewidth greater than two.

The two components with the highest treewidth
(of six) were found in one document. 33 To give an
impression of the “complexity” of such a graph, Fig-
ure 3 draws one such component, where vertexes are

32 In the terminology of [56], a blank triple is an element of
B×U×B.
33http://smiy.sourceforge.net/prv/rdf/spin_-_prv_rules.owl

22

http://smiy.sourceforge.net/prv/rdf/spin_-_prv_rules.owl

Table 3. The distribution of treewidths for blank node com-
ponents in our data (‘∼’ indicates a negligible percentage)

Treewidth Components % Components

1 2,082,921 62.3
2 1,258,774 37.7
3 11 ∼
4 4 ∼
5 2 ∼
6 2 ∼

blank nodes and edges represent blank triples. 34

A minimal sub-graph with treewidth of 6 is high-
lighted in bold: removing any edge from this sub-
graph would reduce its treewidth (this minimal sub-
graph is not necessarily unique). From this example,
we can state an empirical upper bound of O(n2 +
mn2×(6+1)) = O(n2 + mn14) for simple entailment
within this large sample of real-world graphs.

Fig. 3. The blank-node component with the highest
treewidth in our data (treewidth of 6, 32 vertices, 47 edges).
A minimal sub-graph with treewidth 6 is highlighted in bold.

We conclude that the majority of documents sur-
veyed contain acyclical blank node structures. Fur-
thermore, with a low average in-degree of 1.07, we
conclude that blank nodes mostly tend to form di-
rected trees from subject to object. However, unlike

34 In the earlier version of this paper, we found a variety
of documents with high-treewidth blank-node structures on
the rdfabout.com site [48]. The highest treewidth found was
seven for a component of 451 blank nodes with 887 edges.
However, these documents are no longer available on the
Web and are not found in our updated data.

observations for previous datasets [48], we see a sig-
nificant number of blank-node components (37.7%)
containing cycles. Of the 1,258,774 with a treewidth
of 2, we found that 1,257,229 of these (99.9%) origi-
nated from a single domain, data.gov.uk, which is
also the largest producer of blank nodes in our data
(cf. Table 2). Aside from this domain, the vast ma-
jority of blank nodes form acylical graph structures.

Survey of publishers

To further understand how blank nodes are used,
we made a simple poll asking interested parties
what is their intended meaning when they publish
triples with blank nodes. We sent the poll to two
W3C’s public mailing lists, Semantic Web and Link-
ing Open Data 35 , and got 88 responses. In order to
identify active publishers, we asked participants to
indicate which datasets appearing in the LOD cloud
(if any) they have contributed to, where 10 publish-
ers claimed contributions to a current LOD dataset.

At the top of the web page, before the questions,
we explicitly stated that “. . . the poll is trying to
determine what you intend when you publish blank
nodes. It is not a quiz on RDF Semantics. There is
no correct answer”. We deliberately kept the survey
terse, asking two simple questions. The options and
results for both questions are presented in Table 4,
broken down by all responses (88) and responses
from publishers involved in a LOD dataset (10).

In the first question, we asked participants in
which scenarios they would publish a graph contain-
ing the following triple: “:John :telephone _:b .”.
We chose the :telephone predicate as an abstract
example that could be read as having a literal or
URI value. 36 Participants were told to select zero
or more options which would cover all reason(s) why
they might publish such a triple.

In the second question, we asked participants to
select zero or more scenarios in which they would
publish a graph containing (only) the two triples
“:John :telephone _:b1, _:b2 .”.

The poll had an optional section for comments;
a number of criticisms (∼12) were raised about the
:telephone example used and the restriction of hav-
ing only one or two triples in the graph. This leaves
ambiguity as to whether the participant would pub-

35mailto:semantic-web@w3.org and mailto:public-lod@w3.org
respectively.
36For example, using the tel: URI scheme.

23

mailto:semantic-web@w3.org
mailto:public-lod@w3.org

Table 4. Details and results of the survey of two mailing lists (public-lod@w3.org and semantic-web@w3.org)

Question 1: When would you publish the triple “:John :telephone _:b .” alone?

Option Responses
All (88) LOD (10)

1a John has a tel. number whose value is unknown. 46.4% 20.0%
1b John has a tel. number but its value is hidden, e.g., for privacy. 23.9% 0.0%
1c John has no tel. number. 0.0% 0.0%
1d John may or may not have a tel. number. 2.3% 0.0%
1e John’s number should not be externally referenced. 18.2% 0.0%
1f I do not want to mint a URI for the tel. number. 37.5% 30.0%
1g I would not publish such a triple. 41.0% 70.0%

Question 2: When would you publish the triples “:John :telephone _:b1, _:b2 .” alone?

Option Responses
All (88) LOD (10)

2a John does not have a tel. number. 0.0% 0.0%
2b John may not have a tel. number. 0.0% 0.0%
2c John has at least one tel. number. 23.9% 0.0%
2d John has two different tel. numbers. 23.9% 10.0%
2e John has at least two different tel. numbers. 35.2% 40.0%
2f I would not publish such triples. 50.0% 70.0%

lish blank nodes at all (which was the intended ef-
fect) or would not publish that specific example (an
unintended effect). Thus, we note that answers 1g

and 2f might be over-represented. Also, one con-
cern was raised about the “right” semantics of blank
nodes in RDF (namely, that John has a telephone
number, without saying anything about our knowl-
edge of the number) not being an alternative, but we
felt that with respect to the intent of the publisher,
this was covered by option 1b .

Despite possible limitations of the poll, we observe
that the intent with which blank nodes are used
is mostly compatible with the semantics of blank
nodes: noting that the standard semantics for both
graphs is simply “John has at least one telephone
number”, only the non-existent/non-applicable op-
tions 1c , 1d , 2a and 2b contradict or are more gen-
eral than the standard semantics. Of these, only 1d

was selected and only by 2.3% of participants.
The intent represented by the other options are

compatible with the standard semantics, either be-
ing equivalent or being more specific. Taking 1g mi-
nus 2f , 9% of all participants would not publish
specifically non-lean blank nodes. Almost half would
publish the triple to represent an unknown value
(compatible with existential semantics). Over one
third would use blank nodes simply to avoid mint-
ing URIs. Of the 10 LOD publishers, 7 would not

publish such examples, 2 would publish blank nodes
to represent unknown values, etc.

In the second question, with respect to the intent
to more specifically state that John has (at least)
two telephone numbers, even using URIs, this is not
possible within RDF(S) due to the Open World As-
sumption and the lack of a Unique Name Assump-
tion. 37 A publisher can only state that John has
at least zero or at least one telephone number(s).
However, there is a slight nuance between the URI
case and the blank node case. As opposed to the
URI case, under the standard RDF semantics, addi-
tional blank nodes would be considered redundant
and could validly be removed by a leaning operation.
As stated before, this could affect, for example, the
results of SPARQL queries over the data. 38

Although blank nodes are a divisive issue, our sur-
vey results show that in ∼97.7% of cases, the intent
with which blank nodes are published is not incom-
patible with their semantics. However, publishers of-
ten have more specific intents (such as representing
the existence of multiple real-world relationships),
which cannot be captured by existential blank nodes
or more generally by the semantics of RDF(S) alone.

37 It would be possible using literals or using OWL semantics.
38One could subjectively argue that this is a problem with
SPARQL or a problem with blank nodes or a problem with
RDF or a problem with the publishers’ intent. There is no
clear answer.

24

(Non-)lean blank nodes in Web data

Our previous analysis has shown that blank nodes
are prevalent in real-world data, that they often form
trees and contain low treewidth and that the intent
of publishers when using blank nodes can vary. In
this section, we explore further the prevalence of
lean versus non-lean blank nodes in real-world data
(see Definition 2.6). Based on our BTC–2012 corpus,
we analyse how often non-lean blank nodes occur in
real-world data, where they occur, and in what form.
We are interested in non-lean blank nodes across
documents as well as within documents: i.e., with
respect to the RDF merge of our entire corpus (M)
and not just within individual documents (Gi).

In general, leaning requires finding a (non-trivial)
homomorphism within or between blank-node com-
ponents as per the previous definition of a map µ.
Homomorphisms are also at the core of evaluat-
ing SPARQL BGPs and in Section 4, we discussed
how (non-)leanness can be evaluated using SPARQL
queries. By viewing leanness-checking from the per-
spective of surrogate SPARQL queries, one gets a
better sense of the challenges faced when trying to
classify blank nodes as lean or non-lean in a corpus
such as the BTC–2012 dataset, and the vast amount
of computation that is involved.
Using this SPARQL analogy, we can state that the

problem of classifying (non-)lean blank nodes across
the entire BTC–2012 corpus is equivalent to running
29.081 million SPARQL queries (for all components,
including singletons), 1.258 million of which contain
cycles, with an average of 3.04 variables and 10.54
conjunctive patterns per query, with the largest
query containing 4,570 variables and 9,155 conjunc-
tive patterns, all to be evaulated over a dataset con-
sisting of 1.230 billion quadruples. For the set of
29.081 million SPARQL queries that would be used
to represent these components, the full distribution
of variables and patterns per query is depicted in
Figure 4, which gives an impression of the scale of the
problem faced, where there would be a non-trivial
amount of queries with thousands of query patterns
and query variables. 39

Given the sheer scale of the problem, we do not
use a SPARQL engine to determine which blank

39This distribution is equivalent to the distribution of the
number of blank nodes per component (variables) and the
number of triples in which those blank nodes appear per
component (patterns).

1 10 100 1,000 10,000

10

1,000

100,000

10,000,000

№ of patterns or variables

№
o
f
q
u
er
ie
s

Patterns

Variables

Fig. 4. Distribution of patterns and variables in the SPARQL
queries representing blank node components in the data

nodes are lean or non-lean in the corpus: there is sim-
ply no precedent for a SPARQL engine being able
to support such a computationally intensive work-
load of extremely large queries. Instead of trying to
build surrogate queries and answer them all individ-
ually as fast as possible, we heavily batch-process
the data, trying to partially answer many queries
at once. We rely heavily on sorts, scans and merge-
joins. In the design of our algorithms, we rely on
certain characteristics of the data, for example, that
it consists of millions of “small” documents within
which blank nodes are locally scoped. Our core ap-
proach is to reduce, insofar as possible and as early
as possible, the problem space by iteratively iden-
tifying lean blank-nodes (that cannot “match” any-
thing and thus no longer have to be considered as
“variables”) and factoring them out of the computa-
tion. We thus have a multi-phase operation, which
increases in complexity for a smaller volume of data
as more and more lean blank nodes are identified.

All processing is run on a single machine with a
Quad-code Intel® Xeon® E5606 @2.13GHz, 64GB
RAM, and an SATA hard-drive. We do not focus
primarily on optimising runtimes, but given the
challenging nature of the computation involved, we
rather settle for computing the results on the avail-
able hardware within a reasonable time-frame and
presenting the results. For example, although much
of the processing—primarily involving sorts, scans
and merge-joins—could be distributed over multi-
ple machines, or even parallelised to take advantage
of multiple cores, we currently implement single-
threaded programs. Code is developed in Java using

25

the NxParser library 40 for processing and sorting
data in the N-Quads format. 41 Our methods are all
based on tuple-at-a-time iterators built over on-disk
GZipped files of the line-delimited syntaxes similar
to N-Quads or N-Triples. Source code is available
from http://sw.deri.org/svn/sw/2011/06/bnodes/.
In preparation for the following processing, we

dictionary encode the blank nodes of the BTC–2012
dataset, assigning unique integer labels in a manner
consistent with an RDFmerge of the individual doc-
uments. This process helps reduce later memory re-
quirements: integers have less overhead than strings
in-memory. To perform the encoding, for each doc-
ument in the corpus, we build an in-memory dictio-
nary that maps the original blank node label to an
integer identifier based on a running global count of
all blank nodes encountered. The blank nodes are
rewritten and the corresponding statements are out-
put. The encoding took 3.5 h to run.

Before we continue, we also formalise some core
concepts that will be used frequently in the following
sections.
When we classify a blank node as lean, we con-

sider it thenceforth as a Skolem constant (or sim-
ply a “Skolem”). For this, we reserve the set S for
Skolemised blank nodes that are known to be lean.
Blank nodes that have not been classified as lean
(i.e., that have been classified as non-lean or remain
unclassified) are contained in the usual set B, where
B and S are considered disjoint. We denote by sk :
B → S the one-to-one Skolemisation function for
blank nodes. We likewise relax the notion of RDF
graphs to allow Skolems in positions where blank
nodes are allowed.
Our methods frequently rely on the notion of an

edge or set of edges for an RDF term, which we now
formally define.

Definition 7.1 Let G be an RDF graph and let x ∈
terms(G) be an RDF term in that graph. We denote
by out(G, x) := {(p, o) | (x, p, o) ∈ G} the outward
labelled edges (or simply “out-edges”) of x in G.
We denote by in(G, x) := {(p, s) | (s, p, x) ∈ G}
the analogous inward labelled edges (or simply “in-
edges”) of x in G.
For convenience, we also provide notation that

captures both inward and outward edges in the one
representation. We define the set of all such edges

40http://sw.deri.org/2006/08/nxparser/
41http://sw.deri.org/2008/07/n-quads/

as E := U × ULBS × {+,−}, where the first ele-
ment denotes the predicate, the second element de-
notes the value (subject or object), and the third ele-
ment is a special symbol used to denote either an out-
ward edge (+) or an inward edge (−). We denote by
edge(G, x) := (out(G, x)× {+}) ∪ (in(G, x)× {−})
the set of all edges for x in G. For an edge e ∈ E,
edge−(G, e) := {x ∈ terms(G) | e ∈ edge(G, x)} de-
notes the set of all terms in G with that edge. By
gedge(G, x) := edge(G, x)∩U×ULS×{+,−}, we
denote the set of all ground edges for x inG. Finally,
we denote by edges(G) :=

⋃
x∈terms(G) edge(G, x) the

set of all edges for all RDF terms in G and analo-
gously by gedges(G) the set of all ground edges in G.

Skolemising trivially lean blank-nodes

We start with a simple sufficient condition for a
blank node b to be lean with respect to a graph
G: we can say that b is lean with respect to G if
b is associated with a unique ground edge. 42 More
specifically, we call such a blank node trivially lean.

Proposition 7.2 A blank node b is trivially lean
for an RDF graph G if there exists a ground edge e ∈
gedge(G, b) such that for all x ∈ terms(G), x 6= b,
it holds that e /∈ gedge(G, x). A trivially lean blank
node is also lean (per Definition 2.6). 2

The first phase of our analysis thus identifies blank
nodes that are trivially lean. We also remark that
there is a notion of recursion implicit in Proposi-
tion 7.2: if we Skolemise blank nodes found to be
trivially lean, these new Skolems present new ground
edges that may trigger the Skolemisation of further
trivially lean blank nodes. We will analyse the effect
of this recursion later when discussing results.

Example 7.3 In Figure 1, the blank node _:b2
is trivially lean since it contains two ground
edges that do not appear for another term else-
where in the graph: (:event, :FrenchOpen,+) and
(:year, "2009",+). Either of these edges would be
sufficient to make _:b2 lean. Similarly _:b1 is also
trivially lean due to the edge (:year, "2003",+)
However, _:b3 is not trivially lean since neither
of its two ground edges—(:wins, :Federer,−) and
(:event, Wimbledon,+)—are unique.

42A blank node with a blank edge on a unique predicate
would also be lean, but we do not consider this rare case:
there are only 57,235 unique predicates in the BTC–2012
dataset vs. 88.677 million unique blank nodes.

26

http://sw.deri.org/svn/sw/2011/06/bnodes/
http://sw.deri.org/2006/08/nxparser/
http://sw.deri.org/2008/07/n-quads/

1: function triviallyLean(Q) . Q a list of quadruples
2: QSPOG ← sort Q by SPOG
3: QOPSG ← sort Q by OPSG
4: S ← uniqueEdges(QSPOG, 0, 1, 2)
5: S ← S ∪uniqueEdges(QOPSG, 2, 1, 0)
6: Q′ ← mark all Skolems S in Q
7: return Q′ . trivially lean blank nodes Skolemised
8: function uniqueEdges(G,x,p,y) . also accepts quads
9: assumes G = (t1, . . . , tn), unique, grouped-by x, p
10: S ← ∅
11: for i← 1; i ≤ n; i++ do . π denotes projection
12: if πx(ti) ∈ ULS∧ (i = 1∨ πx,p(ti) 6= πx,p(ti−1))
∧ (i = n ∨ πx,p(ti) 6= πx,p(ti+1)) ∧ πy(ti) ∈ B then

13: S ← S ∪ sk({πy(ti)})
14: return S . S ⊂ S: a set of Skolems

Algorithm 1. Find trivially lean blank nodes

Consider a version of Figure 1 without the edge
:precededBy between _:b1 and _:b2, and consider
that we Skolemise _:b2 per the reasons above. Now
_:b3 can be (recursively) considered lean per Propo-
sition 7.2 since in this version of the graph, _:b3 con-
tains a unique grounded edge from the Skolem _:b2
through the relation :precededBy.

Implementation Algorithm 1 outlines our
method for finding trivially lean blank nodes. As per
lines 2–3, we can sort the BTC–2012 dataset on-disk
into two lexicographical orders: subject–predicate–
object–graph (SPOG) and object–predicate–subject–
graph (OPSG). Sorting the data groups all triples
with the same SP/OP edges together. Scanning first
the SPOG order (line 4), then the OPSG order (line 5),
we can quickly identify blank-nodes that do not
share an SP or OP edge with any other RDF term
in the graph, noting these blank nodes as Skolems
(function uniqueEdges, where we overload the
function to work for triples or quadruples). We
use new Skolems to detect unique edges during an
iteration, but only apply each scan once (i.e., we
do not reach a fixpoint in this phase although the
function triviallyLean in Algorithm 1 could be
looped until a fixpoint on S). After a single scan
of both orders, we then create one output file that
Skolemises blank-nodes by marking them with a
reserved syntax (line 6).

Timing Overall, the entire process of sorting and
scanning both orders and writing the Skolemised
output took approximately 23.4 h. The two external
sorts for SPOC and OPSC ordering took 8.3 h and
9.8 h respectively. Thereafter, scanning each order
required about 1.1 h, and writing the Skolemised

output required 3.1 h, giving a total of 5.3 h runtime
(after sorting).

Results From the total set of 88.677 million
unique blank nodes, in the first scan of SP edges,
we Skolemised 15.148 million blank nodes (17.1%
of all blank nodes). In the first scan of OP edges,
we Skolemised a further 46.696 million blank nodes
(52.7% of all blank nodes). Thus, per Proposi-
tion 7.2, using only one iteration, we could Skolemise
a total of 61.844 million trivially lean blank nodes
(69.7% of all blank nodes) due to having a unique
ground edge. These novel Skolems are mentioned in
216.214 million statements, representing 17.6% of
all data and 78.9% of the statements containing a
blank node.

As previously stated, the process is in theory re-
cursive and the algorithm could be applied until a
fixpoint. We tested a fixpoint version of the algo-
rithm, which required 26 iterations of both orders
and took 53.9 h (excl. sorting, vs. 5.3 h for one pass).
Figure 5 plots the number of additional Skolems
found in each subsequent iteration, where we found
that the number of additional blank nodes identi-
fied as lean trailed off dramatically after the first it-
eration (the 26th iteration found no new lean blank
nodes, confirming the fixpoint). Since 99.81% of the
blank nodes that were Skolemised were found in the
first pass, we deemed it unproductice to run Algo-
rithm 1 until fixpoint. Instead, we only run a single
pass and propose an alternative and more efficient
method for recursively identifying further lean blank
nodes in the next section.

1 4 7 10 13 16 19 22 25

1

100

10,000

1,000,000

100,000,000

Iteration №

№
o
f
n
ew

S
k
o
le
m
s
fo
u
n
d SPOG order

OPSG order

Fig. 5. Number of trivially lean blank nodes found per
iteration

27

Propogating Skolems through reachability

We have found that the majority of blank nodes
are trivially lean. However, after one iteration of the
previous phase, there are still 26.834 million blank
nodes (30.3%) left unclassified. Instead of running
the previous “global” algorithm until fixpoint, we
can take advantage of the fact that unlike URIs
and literals, Skolems are local to a given document
Gi. This locality means that if a blank node has a
unique edge involving a Skolem in its local docu-
ment, then that edge is also globally unique. Thus
we can partition the problem of detecting and prop-
agating unique edges with Skolems over individual
documents Gi instead of the global mergeM , allow-
ing to reach local closures on a per-document basis.
This offers huge computational benefits.

Still, we see from the global experiment that the
amount of Skolems found in subsequent iterations
trails off very quickly, relative to the overall volume
of blank nodes. Analogously, we would expect rela-
tively few Skolems to be produced by applying local
closures, even if more efficient. However, the locality
of Skolems allows us to further broaden our search
for lean blank nodes with the following observation.
If a blank node has an edge connecting to a Skolem,
then it can only be made non-lean by a term in the
local document connected by the same predicate in
the same direction to the same Skolem.

Definition 7.4 LetG be an RDF graph and letE :=
edges(G) ∩ (U × S × {+,−}) denote the set of all
edges in G associated with a Skolem. We then denote
the set of all sets of Skolem neighbours for G by
skn(G) := {edge−(G, e) | e ∈ E}.

Lemma 7.5 Let G be an RDF graph and let N ∈
skn(G) be a set of Skolem neighbours in G. Let G′
be an arbitrary RDF graph such that terms(G) ∩
terms(G′) ∩ BS = ∅. It holds that any blank node
b ∈ N ∩B can only be made non-lean with respect to
G ∪G′ by a witness in N (see Definition 2.6). 2

In other words, each set of Skolem neighboursN ∈
skn(G) is “closed” under leanness: a blank node in
N can only be made non-lean by a witness in N .
Furthermore, ifN contains only blank nodes and/or
Skolems, then we have all the information about the
edges for all terms in N in the local document: if
any blank node in N contains an edge in the local
document that is unique from all the other blank
nodes and/or Skolems in N , then it must be lean for

the entire dataset (as per Proposition 7.2).

Proposition 7.6 For a graph G, let N ∈ skn(G),
N ⊂ BS be a set of Skolem neighbours in G com-
prised solely of blank nodes and Skolems. Let G′
be an arbitrary RDF graph such that terms(G) ∩
terms(G′) ∩ BS = ∅. If a blank node b ∈ N ∩ B is
trivially lean for the graph G as per Proposition 7.2,
then it is also lean for G ∪G′. 2

Using this principle, by looking at individual doc-
uments with at least one Skolem in the dataset, we
can identify further global Skolems while only look-
ing at local data. Furthermore, the process can again
be iterative: a newly discovered Skolem may lead to
a new set of Skolem neighbours in G that may lead
to further Skolems, and so forth.

Example 7.7 The two graphs in Figure 6 exemplify
a common pattern we found in our data, relating to
social networks outputting FOAF profiles that use
blank nodes to refer to individual users. Gj is a pro-
file for joeFoo and lists his friends along with some
unique information like his email address. Gk is the
profile for janeBar, listing similar friends.
Only _:j1 and _:k1 are trivially non-lean across

the merge of the graphs and these two blank nodes
are Skolemised per the previous phase. Now we have
two sets of Skolem neighbours anchored by these two
Skolems. The edge (:knows, <_:j1>,−) forms Nj =
{_:j2, _:j3, _:j4}. The edge (:knows, <_:k1>,−)
forms Nk = {_:k2, _:k3, _:k4}.
Taking Nj for the moment, we know that a blank

node in that set can only be made non-lean by a
term in that set. Thus, to show that a blank node b
is lean in Nj, it is sufficient to find a ground edge
unique for the terms of Nj. Since Nj only contains
blank nodes, all such edges can be found inGj. Hence
we can ultimately Skolemise all blank nodes in Nj

and analogously in Nk: although no such blank node
contains any globally-unique ground edge, each such
blank node contains an edge unique for the blank
nodes connected to the same Skolem.

Implementation Algorithm 2 gives an overview
of the method we use to perform the local “closures”
of trivially-lean blank nodes. We take as input the
data marked with Skolems as output from Algo-
rithm 1 (a single-pass). In order to group the data
for each document together, on line 2, we first sort
the input quadruples lexicographically by graph (we
apply GSPO ordering, but any G* ordering would be
sufficient). This allows us to sequentially scan the

28

mailto:joe@foo.com

_:j1

mbox

“joeFoo”

user

_:j3
knows

_:j2
knows

_:j4
knows

“jillBar”
user

“johnBaz”
user

“janeQux”
user

(a) Gj

mailto:jill@bar.com

_:k1

mbox

“jillBar”

user

_:k3
knows

_:k2
knows

_:k4
knows

“joeFoo”
user

“johnBaz”
user

“janeQux”user

(b) Gk

Fig. 6. Two example snippets of connected blank nodes taken from different RDF graphs

data grouped by source document (as indicated by
line 3). For each document with at least one Skolem,
we then build a list of all sets of Skolem neighbours in
memory (line 10), and discard sets containing a URI
or a literal (line 11; these neighbour sets may involve
relevant triples outside of the current document).
For each remaining set, we load all triples mention-
ing all neighbour terms into memory (lines 12 &
14) and Skolemise blank nodes with a unique edge
therein (lines 13 & 15). Skolems are marked in the
document (line 17) and then the next neighbour set
is analysed. We recurse until no new Skolems are
found (the repeat loop starting on line 8), reaching
a fixpoint. The next document is then loaded.
AlthoughAlgorithm 2 containsmany nested loops

(stated this way for succinctness), the sum of the
cardinalities of all candidate sets that can be created
for a graph G is bounded by the size of G since each
element of each candidate set must be associated
with a triple that connects it to a Skolem, per Defi-
nition 7.4. The number of repeat loops required to
reach a fixpoint is bounded by the total number of
blank nodes in G. As we will see however, in prac-
tice, one loop is sufficient in the majority of cases.

Timing The total time taken for this phase was
20 h. Applying an external sort of the data for GSPO
order took a total of 8.5 h. Running the local leanness
checking and outputing the newly Skolemised data
took 11.5 h.

Results From the total set of 88.677 million
unique blank nodes, of which 61.844 million (69.7%)
were Skolemised in the previous phase, we could
Skolemise an additional 11.009 million blank nodes
(12.4%) using the described process. In 98.6% of

1: function propagateLean(Q′) . output from Alg. 1
2: QGSPO ← sort Q by GSPO
3: assume QGSPO = {(u1, G1), . . . , (un, Gn)}
4: for i← 1; i ≤ n; i++ do
5: load Gi into memory
6: define sort orders GSPO, GOPS for Gi
7: Snew ← terms(Gi) ∩ S, Sall ← Snew, G′i ← Gi
8: repeat
9: Snext ← ∅
10: for all N ∈ skn(Gi) do . per Def. 7.4
11: if N ⊂ BS then
12: G′α ← σobj∈N (G′SPO) . σ for selection
13: Sα ← uniqueEdges(G′α, 0, 1, 2)
14: G′β ← σsub∈N (G′OPS)
15: Sβ ← uniqueEdges(G′β , 2, 1, 0)
16: Snext ← Snext ∪ Sα ∪ Sβ
17: G′i ← mark all Skolems Snext in G′i
18: Snew ← Snext \ Sall
19: Sall ← Sall ∪ Snew
20: until Snew = ∅
21: return Q′′ = {(ui, G′i), . . . , (un, G′n)}

Algorithm 2. Closing trivially lean blank nodes

cases, one iteration was sufficient to reach closure;
in the worst case, 1,556 iterations were required.

After this phase, we are left with 15.825 million
blank nodes (17.8%) to classify.

Unique set of ground edges

Thus far, we have looked for lean blank nodes
based on having a single unique ground edge, start-
ing with edges that were unique in the global data,
moving on to edges that were unique in sets of
Skolem neighbours. Together, these two steps were
sufficient to classify 82.2% of all blank nodes in
the BTC–2012 dataset as lean. After these phases,
we observed that of the remaining 15.825 million
blank nodes left to classify, 11.518 million (72.8%)

29

1: function gedgeSet(Q′′) . output from Alg. 2
2: B ← terms(Q′′) ∩B, Bnl? ← ∅ . Bnl?: non-lean?
3: for all b ∈ B do
4: load edge(b,Q′′) into memory
5: for all x ∈ terms(Q′′) do . on-disk index join
6: Bold ← Bnl?
7: for all e ∈ gedge(Q′′, x) do
8: Bnew ← {b ∈ B \Bold | e ∈ gedge(Q′′, b)}
9: for all b ∈ Bnew \ {x} do
10: if gedge(Q′′, b) ⊆ gedge(Q′′, x) then
11: Bnl? ← Bnl? ∪ {b}
12: Bold ← Bnew ∪Bold
13: S ← sk(B \Bnl?)
14: Bnl ← {b ∈ Bnl? | edge(Q′′, b) = gedge(Q′′, b)}
15: Q′′′ ← mark all Skolems S in Q′′
16: return Q′′′ and Bnl

Algorithm 3. Classify based on ground-edge set

were unconnected; i.e., they only had ground edges
(although no such edge was unique). Many such
blank nodes were disconnected by the introduction
of Skolems in previous phases.
In this third phase, we focus on classifying these

unconnected blank nodes by checking to see if any
other RDF term in the data has a super-set of the
ground edges that it has.
First, we can state that a blank node is lean if all

of its ground edges are not all held by another RDF
term in the data.

Proposition 7.8 Let G be an RDF graph and let
b ∈ terms(G)∩B be a blank node in G. If there does
not exist an x ∈ terms(G) such that gedge(G, b) ⊆
gedge(G, x), then b is lean in G. 2

Furthermore, we can state that if a blank node
is unconnected and all of its ground edges are held
by another RDF term in the data, then that blank
node is non-lean.

Proposition 7.9 Let G be an RDF graph and let
b ∈ terms(G) ∩ B be a blank node in G such that
edge(G, b) = gedge(G, b) (i.e., b is unconnected). If
there exists an x ∈ terms(G) such that edge(G, b) ⊆
edge(G, x), then b is non-lean in G. 2

Together, these two conditions can be used to clas-
sify all 11.518 million unconnected blank nodes in
the data as either lean or non-lean. Per Proposi-
tion 7.8 we can further classify some connected blank
nodes as lean.

Example 7.10 None of the four blank nodes in Fig-
ure 7 contains a unique edge by itself. However,
the set of ground edges (the combination of year,

wins and event) for _:b2 and _:b3 are unique; thus,
we can classify these two blank nodes as lean. For
the unconnected blank node _:b1, its set of edges
{(:wins, :Nadal,−), (:event, :FrenchOpen,+)} is
a subset of those for _:b2, and thus we can classify
_:b1 as non-lean. Since _:b4 is connected and its
ground edges are covered by _:b3, we do not classify
it in this phase.

Implementation Algorithm 3 presents a high-
level overview of the process, which consists of two
main steps. Returning to the querying analogy, this
step is equivalent to running 15.825 million “star-
shaped” queries with one variable. Running this
method for a dataset the size of the BTC–2012 and
for 15.825 million unclassified blank nodes broaches
on significant engineering challenges, where we now
give a brief overview of the methods and optimisa-
tions employed (some of which are omitted from the
algorithm for brevity).

In the first step, lines 2–4, an in-memory index of
unconnected blank nodes and their edges is created:
the reduced number of blank nodes left to classify
after the first two phases makes this feasible. The
index is created by scanning over the SPOG sorted
order (grouped by inlinks) and the OPSG sorted or-
der (grouped by outlinks), loading edges for blank
nodes into memory. To improve memory efficiency,
we dictionary encode edges using sequential inte-
gers. The index supports looking up the set of all
(unconnected blank nodes) with a particular edge.
The index can also return a subset of blank nodes
for which the given edge is the most selective (i.e.,
the most rare edge for each blank node); we can use
this feature as an optimisation in the next phase.

In the second step, lines 5–12, the edges for all
RDF terms in the data are materialised and checked
against the in-memory index. To achieve this, an on-
disk index join is applied over the SPOG and OPSG
sorted orders, aligning on the primary RDF term in
the subject (SPOG)/object (OPSG) position. This al-
lows for sequentially scanning through all quadru-
ples where a given RDF term is in the subject or
object position, further allowing to generate the set
of edges for all RDF terms. The edges for each RDF
term are written to disk and are dictionary encoded
using the same identifiers as before; to reduce the
data sizes, only edges associated with at least one
blank node from the in-memory index are recorded.

Then for each RDF term, line 8 retrieves all blank
nodes sharing an edge with the current RDF term

30

:TennisPlayer

:Nadal

type

“Rafael Nadal”

name

_:b2wins

_:b1

wins

_:b3wins

precededBy

_:b4

wins
precededBy

:FrenchOpen
event

event

“2008”

year

year

:Wimbledon
event

event

:GrandSlamTournament

type

type

Fig. 7. An RDF graph to illustrate classification according to having a unique set of ground edges

and line 10 checks each such blank node to see if
its ground edges are a subset of those for the cur-
rent RDF term. These checks are performed against
the in-memory index. Though not shown in the al-
gorithm, line 8 only retrieves blank nodes for which
the given edge e is the most selective. This opti-
misation considerably reduces the number of blank
nodes to be checked by the algorithm; for example,
it would avoid repeatedly matching large numbers of
blank nodes to large number of terms based on low-
selectivity edges like (rdf:type, foaf:Person,+),
unless necessary (i.e., it was the most selective edge
that they shared, which would be a rare case). We
also implement most-recently-used caching methods
to skip over redundant RDF terms (line 5) sharing
an identical edge-set with one that was recently seen.
Finally, on line 13, any blank node whose ground

edges are not found to be a subset of those for an-
other RDF term in the data can be classified as lean,
as per Proposition 7.8. On line 14, any unconnected
blank node whose edges are a subset of those for
another RDF term in the data can be classified as
non-lean, as per Proposition 7.9.

Timing The entire process took 13.41 h.
Building the in-memory index for blank nodes

and recording the dictionary-encoded edges for all
RDF terms took 4.36 h. A total of 6.787 million
unique ground edges were found. The Java heap-
space cost for the in-memory index was estimated
at 20.78 GB. 43

In the next phase, 61.881 million RDF terms
with a total of 134.007 million (relevant) edges were
checked against the unconnected blank nodes in the
in-memory index. The cache had a 70.9% hit rate

43Using java.lang.management.ManagementFactory.-
getMemoryMXBean().getHeapMemoryUsage().getUsed().

suggesting that after filtering irrelevant edges, many
of the remaining RDF terms have identical edge sets.
Running these checks took 9.04 h.

Results This phase classified 11.520 million blank
nodes (13.0% of all original blank nodes; 72.8%
of previously unclassified blank nodes). Of these,
10.410 million (90.36%) were classified as lean and
1.110 million were classified as non-lean (9.64%).
As aforementioned, all unconnected blank nodes
were classified. However, only 1,386 connected blank
nodes were classified in this step (as lean).

With respect to the 1.110 million non-lean blank
nodes, we found 1.115 million unique correspond-
ing witnesses, creating 9.722 million unique pairs of
blank nodes and their witnesses (i.e., pairs of the
form (b, x) where b 6= x, all edges for b are ground
and gedge(Q′′, b) ⊆ gedge(Q′′, x)). Only 935 wit-
nesses were URIs; the rest were blank nodes. Of
the 9.722 million pairs, 9.467 million (97.37%) were
between unclassified blank nodes and 9.459 million
(97.28%) involved pairs of isomorphic blank nodes
that were witnesses for each other (i.e., (b, b′) where
b 6= b′, all edges for both are ground and both sets
of ground edges are equal).

Furthermore, of the 9.722 million pairs, 8.493 mil-
lion (87.35%) involved a pair of blank nodes from
the same pay-level-domain and, more specifically,
1.718 million (17.67%) involved blank nodes from
within the same document. In the former case of
blank nodes being on the same domain but in dif-
ferent documents, many such documents were syn-
tactic copies present in different Web locations (giv-
ing 200 OK under different URLs) but on the same

31

domain. 44 In the latter more specific case of a non-
lean blank node having a blank node witness in the
same document, these were due to blank nodes be-
ing left “underspecified” in certain exporters. We
present one such example:

Example 7.11 On the Semantic Web Dog Food
server (data.semanticweb.org), we found many
instances of non-lean documents for author pro-
files. Taking an example of the RDF docu-
ment available from http://data.semanticweb.org/
person/claudio-gutierrez/ rdf , in our crawl (and at
the time of writing), we found triples of the following
form:

_:b1 rdf:_1 swperson:claudio-gutierrez .
_:b2 rdf:_2 swperson:claudio-gutierrez .
_:b3 rdf:_2 swperson:claudio-gutierrez .
...

These triples use container-membership predicates
of the form rdf:_n. Each blank node refers to an
author-list and each blank node only appears in one
triple as above: since the document refers to a spe-
cific author, only that author is listed in the local
container. Intuitively, each blank node represents a
positional authorship, where an author can have mul-
tiple papers as first author, second author, etc. How-
ever, authorships cannot be traced back to specific pa-
pers and all blank nodes representing authorships at
a given position contain precisely the same informa-
tion, leading to non-leanness within the document.
Intuitively, these blank nodes are not redundant since
they preserve some information about the cardinal-
ity of the authorship position (e.g., how many first-
authorships for that person the site knows of); how-
ever, this information is lost (due to the lack of a
UNA and the existentiality of blank nodes in RDF).

Minimal isomorphic graphs

As a result of the previous three phases, we have
classified 95.15% of all blank nodes, leaving 4.305
million left to classify. We know that these remain-
ing blank nodes are connected and that their set of

44As an example, see http://vocab.org/bio/0.1/Event.rdf and
http://vocab.org/bio/0.1/Formation.rdf; there were 81 such
copies in the data. Though syntactically identical, the re-
sulting RDF graphs are not isomorphic due to the presence
of relative URIs without an explicit base URI.

ground edges is not a subset of those for any other
RDF term in the data. 45

In the previous phase, although we could only
classify unconnected blank nodes as non-lean, we
found that the majority of blank nodes classified
thusly were isomorphic (97.28%). In this phase, we
further identify isomorphism for connected blank
nodes: we look for minimal isomorphic graphs that
preserve the connectedness of blank nodes and from
which we can classify further non-lean blank nodes.
Although we will not detect all remaining non-lean
blank nodes and the homomorphisms that cause
them, the isomorphic case (as defined in Section 2.1)
offers computational benefits that allows us to nar-
row down the search space before going further.

First, in terms of worst-case complexity, the graph
isomorphism problem is in NP (not known to be
NP-complete or in P), whereas graph homomor-
phisms are known to be NP-complete. More impor-
tantly, graph isomorphism is a well-studied problem
with a number of well-known algorithms, such as
the Nauty algorithm [51], where efficient implemen-
tations are possible for many practical cases (par-
ticularly vertex intransitive graphs). In addition,
such algorithms tackle simple graphs, whereas RDF
graphs contain further “ground” information that
can be used to quickly reduce the search space of
isomorphic candidates, as we will see later.

First, we give a formal statement of the condition
we check in this phase.

Proposition 7.12 Let G1 and G2 be two RDF
graphs not sharing any blank nodes. IfG1 ∼= G2 (i.e.,
they are isomorphic per Section 2.1), then all blank
nodes in terms(G1 ∪ G2) ∩ B are non-lean with re-
spect to G1 ∪G2. 2

In order to check this condition, from the data,
we construct a set of minimal RDF graphs that do
not share any blank nodes but whose union precisely
covers all data containing blank nodes and where
each individual graph in the set minimally preserves
the connectedness of blank nodes.

Definition 7.13 We define the blank-node parti-
tion bnp : 2UBS×U×UBSL → 22UBS×U×UBSL of an
RDF graph G as the set of RDF graphs G such that
the following three conditions hold:

45Given that we found some new Skolems in the last phase,
we could re-run the second phase again to trigger fur-
ther Skolems (e.g., _:b4 in Example 7.10 now connected to
<_:b3>); however, the last phase only touched upon 1,386
connected blank nodes so we deemed this to not be worth it.

32

http://data.semanticweb.org/person/claudio-gutierrez/rdf
http://data.semanticweb.org/person/claudio-gutierrez/rdf
http://vocab.org/bio/0.1/Event.rdf
http://vocab.org/bio/0.1/Formation.rdf

(i)
⋃

G′∈G G
′ = {(s, p, o) ∈ G | s ∈ B ∨ o ∈ B};

(ii) no two graphs in G share a blank node;
(iii) for all G′ ∈ G, blank(G′) is connected.
If G is ground, then bnp(G) := ∅.

The blank-node partition of an RDF graph is
unique, where each graph in bnp(G) is associated
with a connected component of blank(G), contain-
ing all and only those triples in G mentioning a
blank node from that component. Our task now is to
search for isomorphic graphs within the blank-node
partition of the BTC–2012 data.

:Nadal _:b1
wins

:FrenchOpen
event

(a) _:b1

:Nadal _:b3
wins

_:b2

wins precededBy

_:b4

wins precededBy

:FrenchOpen
event

“2008”

year

year

:Wimbledon

event

event

(b) _:b2,_:b3,_:b4

Fig. 8. The two graphs in the blank node partition of the
RDF graph in Figure 7.

Example 7.14 The blank graph taken from the data
in Figure 7 contains two connected components with
the vertices {_:b1} and {_:b2, _:b3, _:b4}. Fig-
ure 8 depicts the corresponding blank node partition
with two graphs. The goal in this phase is to con-
struct all such graphs from the BTC–2012 data and
look amongst them for isomorphic graphs (see Sec-
tion 2.1; graphs that are identical up to a one-to-one
blank node relabelling). The blank nodes in such iso-
morphic graphs can then be classified as non-lean.
(In fact, since {_:b1} is unconnected, it would have
been classified in the previous phase.)

Implementation Algorithm 4 outlines the pro-
cess we use to find isomorphic graphs within the
blank-node partition of the data.
First, on lines 3–5, instead of scanning through all

of the data again to compute the blank-node par-
tition, we can re-use the edge-sets for blank nodes
extracted in the previous phase and load them into

memory (as per Algorithm 3). These edge-sets pre-
serve all of the required information to construct the
blank-node partition of the data in memory for the
remaining unclassified blank nodes.

Second, on lines 6–15, we begin to label the ver-
tices of each graph using similar methods to the
Nauty algorithm. In the Nauty algorithm, aside from
trivially rejecting isomorphism (based on, e.g., the
size of the graph), the first step is to label the consid-
ered graphs according to vertex invariants, which are
preserved in an isomorphism. A prominent example
of a vertex invariant would be its degree, where a
vertex in one graphmust be mapped to a vertex with
the same degree in its isomorph, helping to narrow
the search space. In the case of RDF graphs, there
are many more “vertex invariants” available with
which to label vertices (blank nodes), which leads to
more discriminating labels and smaller search spaces
(cf. the signature method of Tzitzikas et al. [67]). On
lines 6–15, for each blank node that has not already
been classified, we compute a hash function over
all of its edges, capturing the number of edges, the
predicate and directionality of each, and the ground
subject/object value of each (if present). Here, the
hash(.) function denotes a method to compute a
hash over a tuple (preserving ordering), whereas the
⊕ (XOR) operator combines hashes commutatively
and associatively (agnostic to order). 46

Third, on line 16 we call a function colour, which
uses the initial vertex hashes to “colour” the graph
(as also performed by, e.g., the Nauty algorithm).
The colouring assigns a more detailed hash (what we
call a “colour”) to each vertex by propagating ver-
tex invariants through edges in the graph to some
fixed depth, thus encoding how the vertices are con-
nected. At depth 0, the colour of the graph is the
same as the initial hashes produced for each ver-
tex. At depth n, the colour of a vertex combines the
colour of that vertex at depth n−1 with the colours
at depth n−1 of its neighbours (including the respec-
tive edge direction(s) and predicate(s) to that neigh-
bour). Deeper colourings capture more detailed in-
formation about the connections in the graph.

Fourth, on lines 17–27, we group graphs according
to having the same bag of vertex colours and check
that the graphs in each group are indeed isomor-
phic: we know that isomorphic graphs must have the
same such “colour bag”, and we know that each such

46XOR is chosen as a bit-wise operator where the truth
tables are balanced in output for 1’s and 0’s: otherwise the
hash would tend towards signed 231 (for OR) or 0 (for AND).

33

colour bag should be highly discriminating for most
practical cases. However, certain graphs (esp. vertex
transitive graphs) may share a colour bag and not be
isomorphic; though we assume such cases to be rare
in practice, we still need to confirm that the graphs
in each such group are indeed isomorphic. We thus
create and iterate over each such group (line 21) and
check that the contained graphs are isomorphic. On
lines 23–25, to avoid checking all pairs of graphs,
where possible, we skip checks involving graphs that
have been confirmed to be isomorphic with one that
was already checked; hence, in the common case that
all m graphs in a group are isomorphic, only m− 1
checks are needed (otherwise, if none are isomor-
phic, the worst case is m(m−1)

2 pair-wise symmetric
and irreflexive checks).
Finally, line 25 calls the verifyIso function with

two graphsG andG′ and their associated colourings
(where the colour bags of both graphs are assumed
equal). The function performs an isomorphism check
by iterating over all possible bijections from the
blank nodes in G to the blank nodes in G′ that pre-
serve colouring. Since the colour bags of both graphs
are already known to be equal, we know that there is
one such bijection; however, we do not knowwhether
or not any such bijection is an isomorphism. Hence,
we iterate through all colour-preserving bijections,
returning true for the first bijection λ such that
λ(G) = G′, or false if no such bijection is found.
The total set of all possible colour-preserving bijec-
tions Λ (defined on line 41) then depends on how ef-
fective the colouring scheme is at distinguishing ver-
tices. If we define B/∼ := {B1, . . . , Bn} as the quo-
tient set of blank nodes B in G by the same-colour
relation, then the total number of colour-preserving
bijections between vertices in G and G′ is given as
|Λ| =

∏
1≤i≤n |Bi|!. Thus if each vertex in G (and

thus inG′) has a unique colour, then |Λ| = 1. Other-
wise, in the worst-case, if G (and thus G′) contains
k blank node vertices with one colour, then |Λ| = k!.
However, we assume that in most practical cases, the
colourings of the graphs will be sufficiently discrim-
inating to permit very few permutations of colour-
preserving mappings. 47 When isomorphic graphs
are found, their blank nodes are classified as non-
lean (line 27).

47Algorithms like Nauty implement other checks before this
phase, such as removing automorphisms from the graphs
that could lead to multiple vertexes in a graph sharing the
same colour. Our “naive” algorithm without automorphism
checking was sufficient for the cases encountered.

1: static depth . how many hops to colour graph
2: function findIso(Q′′′, Bnl) . output from Alg. 3
3: for all b ∈ (terms(Q′′′) ∩B) \Bnl do
4: load edge(b,Q′′) into memory
5: G ← bnp(Q′′′) . using union–find over edge(b,Q′′)
6: init C[][] . assoc. array for graph colours
7: define hash(T) . a hash for an ordered tuple T
8: for all G′ ∈ G do
9: init H[] . assoc. array of vertex hashes
10: for all b ∈ (terms(G′) ∩B) \Bnl do
11: for all e ∈ edge(b,Q′′′) do . π: projection
12: if π2(e) /∈ B then h← hash(e)
13: else h← hash(π1,3(e)) . remove b.node
14: if H[b] = null then H[b]← h

15: else H[b]← H[b]⊕ h . ⊕: XOR
16: C[G′]← colour(G′, H[], depth) . vertex colours
17: define bag(A[]) . the bag of values in A[]
18: define Gi ∼ Gj ←→ bag(C[Gi]) = bag(C[Gj])
19: init ∼= . isomorphic equiv. rel. (refl., trans., sym.)
20: B′nl ← Bnl . non-lean blank nodes
21: for all G′ ∈ G/∼ do . G/∼ : quotient set by ∼
22: Done← ∅
23: for i← 1; i < |G′| ∧ i /∈ Done; i++ do
24: for j ← i+ 1; j ≤ |G′| ∧ j /∈ Done; j++ do
25: if verifyIso(G′i, G′j , C[Gi], C[Gj]) then
26: assert G′i ∼= G′j
27: B′nl ← B′nl ∪ terms(G′i ∪G′j) ∩B
28: Done← Done ∪ {i, j}
29: return B′nl
30: function colour(G′, C0[], d) . d: depth, C0 initial
31: if d = 0 then return C0[] . C0 typically hashes
32: Cd−1[]← colour(G′, C0[], d− 1)
33: Cd[]← Cd−1[] . assoc. array of vertex colours
34: for all b ∈ terms(G) ∩B do
35: for all e ∈ edge(b,G) : π2(e) ∈ B do
36: h← hash(π1(e), Cd−1[π2(e)], π3(e))
37: Cd[b]← Cd[b]⊕ h . ⊕: XOR
38: return Cd[]
39: function verifyIso(G,G′, C[], C′[]) . G ∼ G′
40: B ← terms(G) ∩B, B′ ← terms(G′) ∩B
41: Λ← {λ : B 1:1→ B′ | C[b] = C′[λ(b)] for all b ∈ B}
42: for all λ ∈ Λ do . λ: colour-preserving bijection
43: if λ(G) = G′ then
44: return true . λ is an isomorphic map
45: return false

Algorithm 4. Finding minimal isomorphic graphs

Timing We first tried the algorithm for depth = 0
(directly using the vertex hashes). However, the al-
gorithm failed to terminate in reasonable time: cer-
tain graphs contained tens of blank nodes with pre-
cisely the same ground edges and predicates, where
the number of colour-preserving mappings (gener-
ated on line 41) exceeded billions and where not
all such cases were isomorphic. Thus we see that
without colouring, the “direct” hashes computed for

34

blank nodes are not discriminating enough.
We then set depth = 1 and this time, the com-

putation terminated after slightly over 1 h. At this
colouring depth, only 11 cases generated more than
one mapping, with 8 cases generating two mappings,
1 case generating four mappings (2!2 due to two sets
of two blank nodes with the same colour), 1 case
generating 663 thousand mapping (2!5 × 3!2 × 4!3)
and the worst case generating 1.493 million map-
pings (2!3× 3!5× 4!). The algorithm required about
two minutes to find an isomorphism in each of the
latter two cases.

Results The blank node partition of the data
(considering only unclassified blank nodes as ver-
tices) resulted in 1.222 million components contain-
ing 4.305 million (unclassified) blank nodes (a mean
of 3.52 blank nodes per component). Partitioning
these 1.222 million graphs into equivalence classes
that share a colour-bag resulted in 41,753 sets of
graphs, of which, 29,252 contained more than one
graph. In all cases, graphs sharing a (depth 1) colour-
bag were found to be isomorphic. Figure 9 presents
the resulting distribution of isomorphic equivalence
classes, where we see that although in the most com-
mon case only two graphs are isomorphic, we also
found many examples of larger equivalence classes
where a variety of peaks are visible. Taking one ex-
ample, we found 39 equivalence classes containing
precisely 1,688 graphs. As per the results of the pre-
vious section for unconnected blank nodes, these
connected isomorphic cases were again often due
to the verbatim replication of RDF documents in
different locations. However, we also found isomor-
phic blank nodes within 19,720 documents, where
19,390 such documents were associated with the
legislation.(data.)gov.uk domains. For exam-
ple, at the time of writing, http://legislation.data.
gov.uk/mwa/2008/2/data.rdf contained isomorphic
connected blank nodes referring to modifications of
the same type to the same legislative document on
the same grounds; although these isomorphic blank
node clusters probably intend to refer to distinct
modifications, the data associated with them is in-
sufficient to distinguish them and the existential se-
mantics of blank nodes further (and perhaps prob-
lematically) makes each copy redundant.
In summary, this phase classified an additional

4.268 million blank nodes as non-lean (99.14% of
previously unclassified blank nodes, 4.81% of orig-
inal blank nodes), leaving only 36,956 blank nodes

unclassified (00.86% of previously unclassified blank
nodes, 00.04% of original blank nodes).

1 10 100 1,000 10,000

1

10

100

1,000

10,000

Equivalence class size

№
o
f
eq

u
iv
a
le
n
ce

cl
a
ss
es

Fig. 9. Distribution of the number of graphs that are iso-
morphic

Final homomorphisms The previous four
phases have classified 99.96% of blank nodes, of
which 93.94% were classified as lean and 6.06% were
classified as non-lean. 48 We are left with 36,956
blank nodes. We know that each of these blank
nodes is connected, that their ground edge set is
a subset of that for another term in the dataset,
and that none of the connected components are
isomorphic.

Since we have reduced the set of unclassified blank
nodes by three orders of magnitude, and since we
have run out of “tricks” to reduce the search space,
we now test the remaining blank nodes for the stan-
dard homomorphism condition.

Implementation We use a method similar to
that already described in Section 4.2 (see also Ex-
ample 4.3), where SPARQL basic graph pattern
matching is used to evaluate (non-)leanness. This is
only now feasible since we have reduced the problem
space considerably after the previous phases: con-
sidering the remaining unclassified blank node par-
tition of the data, in engineering terms, the task is
now equivalent to running 13,547 SPARQL queries

48 If a blank node is classified as non-lean in either of the
previous two phases, then all of the blank nodes it is con-
nected to (if any) must also be classified as non-lean. Hence,
none of the unclassified blank nodes are connected to a blank
node that has been classified as non-lean.

35

http://legislation.data.gov.uk/mwa/2008/2/data.rdf
http://legislation.data.gov.uk/mwa/2008/2/data.rdf

over the full BTC–2012 data with an average of 2.73
variables and 10.42 triple patterns per query.
To run these checks, we implement a similar mech-

anism to standard basic graph pattern matching in
SPARQL but implement custom optimisations for
reducing the data sizes such that they can be in-
dexed in memory. Algorithm 5 provides an overview
of the process.
On lines 2–6, we begin by loading the edges of

the remaining unclassified blank nodes into mem-
ory: we selectively load these from the list of dictio-
nary encoded edges used in the previous phases. We
also load the predicates associated with blank nodes,
which are used later to filter triples from the dataset
that are relevant for basic graph pattern matching:
any triple with a predicate not in this set is irrele-
vant to the process (recall that since a blank node
cannot appear in the predicate position, all of our
“triple patterns” have bound predicates).
Next, on lines 8–12, we create an in-memory map

from the remaining blank nodes to all terms in the
data whose ground edges are a super-set of those
for the blank node: this process is analogous to that
sketched in Algorithm 3, lines 6–12, but where we
also consider connected blank nodes. A blank node
with no ground edges will be matched by all terms:
in practice (not shown in the algorithm for brevity),
we use a special symbol to denote this case rather
than load all such terms for each such blank node.
This candidate set narrows down the set of terms
that blank nodes can be bound to in the basic graph
pattern matching phase later and can again be used
to filter irrelevant triples from the main dataset.
On line 13, we again load the blank node parti-

tion, considering only unclassified blank nodes. This
blank node partition is built directly from the in-
memory index of blank node edges loaded earlier.
Each graph in the partition represents a “query”
that we want to generate solutions for to test for the
existence of the non-trivial/non-automorphic homo-
morphisms that indicate non-leanness.
Thereafter, on lines 14–17, we scan the full data

and, using the predicate set and candidate set pro-
duced earlier, we filter irrelevant triples that cannot
be mapped from the blank edges loaded in mem-
ory. As aforementioned, blank nodes with no ground
edges could potentially match a large number of
triples: in practice (again not shown in the algo-
rithm for brevity), we implement further checks for
such cases by looking at the predicates associated
with such blank nodes, the candidates for the blank

nodes they are connected to, etc., to reduce the
number of relevant triples insofar as possible. All
triples that are considered relevant are loaded into
a dictionary-encoded in-memory index for graph
matching later. 49

In the last phase, lines 19–28, for each graph in
the blank node partition, we apply basic graph pat-
tern matching—considering the blank nodes in that
graph as variables—against the graph itself. If we
find a solution that maps a variable to a ground
term, the blank node corresponding to that vari-
able is non-lean. If we find a solution where multiple
variables are mapped to the same blank node, then
we know that at least one of the blank nodes cor-
responding to those variables is non-lean, where we
can check the total number of terms bound for each
such variable to discover which are non-lean.

The bgpMatch function itself is similar to stan-
dard basic graph pattern matching, considering
blank nodes as variables in the “query” graph G.
However, instead of matching ground edges in the
graph, the candidate set can be used instead, allow-
ing the algorithm to focus on matching the blank
edges in the graph. The candidate set is also used
to generate selectivity estimates for triples in the
query graph, enabling join-ordering optimisations
on line 33. Solutions for blank edges are generated
in order of selectivity using standard nested-loop
equi-joins; on line 37, these solutions are checked
to ensure that they correspond with the candidate
sets for each blank node based on its ground edges.
Though not shown in the algorithm, if neither the
subject nor the object of the triple have been previ-
ously mapped (i.e., both are unbound blank nodes),
where possible, instead of querying all triples with
the given predicate, we pre-bind the most selective
blank node with all terms from the candidate set.

Timing The entire process took 7.41 h. The ma-
jority of time was spent scanning the data to build a
new candidate set, scanning the data a second time
to identify relevant triples, and dictionary encoding
relevant data for loading the index. A total of 44.546
million dictionary-encoded triples were loaded into
memory, taking approximately 30GB of heap-space.
Once all of the data were filtered, prepared and

49The in-memory index consists of nested maps in two or-
ders: p → {s → O} and p → {o → S}. We know that pred-
icates must be bound since blank nodes cannot appear in
this triple position, hence two orders are sufficient.

36

1: function homomorphism(Q′′′, B′nl) . from Algs. 3 & 4
2: B ← (terms(Q′′′) ∩B) \B′nl . B : unclassified
3: P ← ∅ . in-mem
4: for all b ∈ B do
5: load edge(b,Q′′′) into memory
6: P ← P ∪ π1(edge(b,Q′′′)) . collect predicates
7: initM[] . in-mem assoc. array of candidate bindings
8: for all x ∈ terms(Q′′′) do
9: Bx ← {b ∈ B | gedge(b,Q′′) ⊆ gedge(x,Q′′)}
10: for all bx ∈ Bx do
11: M[bx]←M[bx] ∪ {x}
12: SO ←

⋃
b∈BM[b] . in-mem

13: G ← {G ∈ bnp(Q′′′) | terms(G) ∩B 6= ∅} . in-mem
14: G′ ← ∅ . in-mem
15: for all (s, p, o) ∈ Q′′′ do . ignores g term in quads
16: if s ∈ SO ∧ p ∈ P ∧ o ∈ SO then . filter triples
17: G′ ← G′ ∪ {(s, p, o)} . collect relevant triples
18: B′′nl ← ∅, S ← ∅
19: for all G ∈ G do . run each bnp(Q′) as query
20: M ← bgpMatch(G,G′,M)
21: let M(b) denote {x | ∃µ ∈M : µ(b) = x}
22: B′′nl ← B′′nl ∪ {b | ∃x ∈M(b) : b ∈ UL}
23: A← {µ ∈M | µ is injective ∧ ∀x : µ(x) ∈ B}
24: for all µ ∈M \A do . non-automorphisms
25: for all b, b′ : b 6= b′ ∧ µ(b) = µ(b′) do
26: if |M(b)| ≥ |M(b′)| then
27: B′′nl ← B′′nl ∪ {b}
28: S ← (terms(G) ∩B)/B′′nl
29: Q′′′′ ← mark all S in Q′′′
30: return Q′′′′ and B′′nl
31: function bgpMatch(G,G′,M) . processed in memory
32: Gb ← G ∩ (B×U×B) .M binds for ground edges
33: Gb[1, . . . , n]← order Gb by desc. selectivity
34: M0 ← {µ∅} . µ : map per §2.1; µ∅: blank map
35: for 1 ≤ i ≤ n do
36: M ′i ←Mi−1 ./ {µ | µ(Gb[i]) ⊆ G′} . ./: join
37: Mi ← {µ ∈M ′i | for all (b, x) ∈ µ : x ∈M(b)}
38: return Mn . solutions for BGP matching

Algorithm 5. Classifying final homomorphisms

loaded, it took less than a second to perform the in-
memory basic graph pattern matching required for
the 13,547 graphs in the blank node partition.

Results Of the 13,547 graphs checked, 13,513
(99.75%) returned only one (identity) solution, in-
dicating that the blank nodes in those graphs were
lean. Multiple solutions were found for 34 graphs
(00.25%), indicating the presence of non-lean blank
nodes; of the 189 blank nodes in these graphs, 167
were confirmed as non-lean. Only one URI was found
as a witness; all of the remaining mappings involved
blank nodes on the same pay-level-domain, where 15
non-lean blank nodes weremapped to blank nodes in
the same document (there were 5 such documents).

In summary, of the 36,956 blank nodes left to clas-
sify after the previous phases, 36,789 (99.55%) were
classified as lean and 167 (00.45%) were classified
as non-lean. All blank nodes in the BTC–2012 data
have now been classified.

Summary

In the BTC–2012 dataset, containing a sample
of 8.373 million RDF documents crawled from the
Web, we found a total of 88.678 million unique blank
nodes. Of these, 83.299million (93.93%) are lean and
5.378 million (6.07%) are non-lean. Of the non-lean
blank nodes, the vast majority are isomorphic cases,
which occur for two main reasons: (i) either docu-
ments are copied verbatim in multiple locations on
the Web, typically due to quirks in how the data are
hosted; or (ii) blank nodes within local documents
are left “underspecified” and thus referentially am-
biguous, where we would conjecture that the intent
is often to refer to different real-world things with
each blank node. Aside from isomorphic cases, non-
lean blank nodes are relatively rare in the dataset,
with very few “proper” homomorphisms found rel-
ative to the size of the data considered.

With respect to our process of classifying all of the
blank nodes, we presented five phases of increasing
complexity to incrementally reduce and refine the
problem space. Figure 10 presents this iterative re-
duction, showing the distribution of the number of
unclassified blank nodes in each graph of the blank
node partition after every phase (log/log). We argue
that every phase is necessary: each algorithm grows
in complexity and memory requirements and no al-
gorithm could have been run without the reduction
in the problem size provided by the algorithm(s)
that preceded it.

Most importantly, building upon our treewidth
analysis, we have demonstrated that although in
a worst-case analysis simple entailment is NP-
complete and leanness-checking is coNP-complete,
and although the isomorphism and homomorphism
algorithms we have presented are indeed exponen-
tial, problematic exponential cases do not occur in
practice. In real-world RDF graphs, blank nodes are
associated with selective, ground information that
can be used to restrict the search space for the graph
matching problems that their existential semantics
gives rise to. In this section, we have demonstrated
that processing lean/non-lean blank nodes is feasi-
ble over the merge of 8.373 million real-world RDF

37

1 10 100 1,000

10

1,000

100,000

10,000,000

№ of blank nodes

№
o
f
p
a
rt
it
io
n
s

Raw

Trivial

Sk. Neigh.

Edge-Sets

Isomorphism

Fig. 10. Distribution of number of unclassified blank nodes
in each component of the blank node partition after each
phase (log/log)

graphs containing 88.678 million blank nodes. 50

Alternatives for blank nodes

A number of alternatives have been proposed for
how blank nodes can be treated in the blank node
standards, particularly in the context of the RDF
1.1 Working Group. We now discuss some of these
alternatives.

Deprecate/disallow blank nodes

The first alternative is to deprecate or disallow the
use of blank nodes in RDF. However, blank nodes
are a useful convenience for publishers. They en-
able succinct shortcuts in the various RDF syntaxes,
making, for example, RDF collection shortcuts eas-
ier to read and to write in RDF/XML, Turtle and
JSON-LD. They also make the assignment of URIs
to resources optional, which may be useful in cases
where a particular resource has a transient nature
(e.g., a resource representing the last access of a doc-
ument or a current sensor reading), or more gener-
ally where a particular resource should not be exter-
nally referenceable (e.g., closed RDF lists or n-ary
predicates used for OWL axioms).
Removing blank nodes altogether would also re-

quire revision to a number of W3C standards. All
of the standard RDF syntaxes would need to be re-
vised, including the removal of shortcut syntaxes or
their revision to instead use generative URIs. RDFS

50Though admittedly it was not at all straightforward in
engineering terms.

entailment would have to be changed to not rely
on the use of surrogate blank nodes for complete-
ness. The OWL–RDF mapping would need to be
revised to not require the use of blank nodes. The
RDB2RDF Direct Mapping would need an alterna-
tive output for rows with no primary key. SPARQL
would need to be revised to not allow blank nodes
in the query syntax and to support generative blank
nodes in CONSTRUCT clauses by other means, and so
forth. Such revisions would be non-trivial on both a
technical and community level.

It is also unclear how legacy RDF data should be
handled if blank nodes were to be removed. As we
have seen, blank nodes are prevalent in Web data.
New versions of RDF tools would not be able to
support legacy RDF data, or they would have to
employ some deterministic method of creating URIs
for blank nodes. This raises other questions as to
how URIs should be minted for blank nodes in a
consistent manner (discussed in the next section).

A much simpler alternative along these lines is
to continue discouraging the “unnecessary” use of
blank nodes, as per the non-normative Linked Data
guidelines laid out by Heath and Bizer [38].

Ground semantics

Instead of defining blank nodes as existential vari-
ables, another option is to assign them a ground
semantics, such that they are interpreted in a sim-
ilar fashion to URIs. All blank nodes would thus
be considered lean and constant and simple entail-
ment would be reduced to set containment of RDF
graphs. However, applying a ground semantics to
blank nodes would raise some non-trivial issues.

First, if blank nodes are considered as constants
local to a given scope (e.g., a given RDF document
or a given version of an RDF document), then an
RDF graph containing blank nodes from one scope
can never simple-entail an RDF graph containing
blank nodes from another scope. Thus if two appli-
cations operating in different scopes parse the same
document at the same time 51 , these RDF graphs
would not (simple-)entail each other. The notion
of two graphs being semantically equivalent up to

51Or in the lingo of the RDF 1.1 Working Group, “if the
two applications retrieve two RDF Graphs from the one
Graph Container with one Graph Serialisation”. See http:
//www.w3.org/2011/rdf-wg/wiki/Graph_Terminology.

38

http://www.w3.org/2011/rdf-wg/wiki/Graph_Terminology
http://www.w3.org/2011/rdf-wg/wiki/Graph_Terminology

blank node labelling would no longer be a logical
corollary in the case of a ground semantics.
Another alternative would be to consider a hybrid

semantics for blank nodes where they are consid-
ered as ground within a local scope but existential
across scopes. Thus for example, in the two triples
“:John :telephone _:b1 , _:b2” from our survey,
neither triple would be considered redundant un-
der this semantics. Instead, a new operation called
a “lean-merge” could be defined for combining RDF
graphs in multiple scopes. The lean-merge operation
would merge two RDF graphs but, roughly speak-
ing, would remove non-lean blank nodes whose ho-
momorphisms require data from multiple graphs.
Thus, the lean-merge of two RDF graphs originat-
ing from, say, the same document would not dupli-
cate all triples with blank nodes, but would rather
preserve the cardinality of the original RDF graph.
Although this would preserve all blank nodes in the
original RDF graph and not consider any term as
redundant, such a semantics would be even more
complicated and far less intuitive than the existing
semantics.
Otherwise, if blank nodes are considered as global

constants similar to a URI, then schemes are re-
quired to generate identifiers for unlabelled blank
nodes. Such schemes have been discussed under the
heading of “Skolemisation” in the community and
by the RDF 1.1 Working Group [20, 37]. The first
question would be what type of identifiers these
are; should blank nodes be mapped to URIs or a
disjoint set of RDF terms? If URIs are used, how
should the mapping from unlabelled blank nodes to
global URIs be performed? It would seem unfeasible
to retro-fit identity onto (unlabelled) blank nodes
in an RDF graph: as the graph changes and blank
nodes are reordered and edges are added/removed,
identifying which blank node originated from which
would be a seemingly arbitrary process. Hence novel
URIs would probably need to be generated each
time a document is parsed to avoid clashes; such
a proposal for “Skolem IRIs” has been made in
the working drafts of the upcoming RDF 1.1 stan-
dard [20, 37]. Skolem IRIs could solve issues relat-
ing to, e.g., round-tripping in SPARQL discussed in
Section 5.4, but would conservatively yield a large
number of redundant “single-use” URIs.

Well-behaved RDF

Another option would be to restrict the use of
blank nodes in RDF graphs to avoid problematic
cases for simple entailment and leanness checks. In
the previous version of this paper [48], we men-
tioned the possibility of disallowing blank node cy-
cles in RDF graphs, potentially by disallowing blank
node labels in the pertinent syntaxes. 52 This was
based on the observation that the vast majority
of RDF documents published on the Web at that
time featured acyclical blank nodes and that such
cases were easier to implement simple entailment
and leanness checks for. (Since the original publica-
tion of that paper, and in the results currently pre-
sented in Section 6.2, we now find that the promi-
nent data.gov.uk site is producing large numbers
of cyclical blank nodes.)

Booth [14] further developed this idea into a pro-
posal for a profile of RDF called “Well-Behaved
RDF”. The core motivation for this profile is to allow
implementers to develop tractable lightweight meth-
ods (such as leaning, or “canonicalisation” in the
words of Booth) that support the semantics of blank
nodes for acyclical cases, which fall within the Well-
Behaved RDF profile. These tools could then claim
full compliance for Well-Behaved RDF graphs. Any
RDF documents falling outside the profile (such as
data from the data.gov.uk site) would not be well-
supported by such tools.

The proposal is a practical one, saving develop-
ers implementation costs that are required to sup-
port the rather niche case of cyclical blank nodes. By
defining Well-Behaved RDF as a profile, no changes
would be required to the existing standards. On
the other hand, the definition of Well-Behaved RDF
graphs requires further refinement: Booth defines
the profile as any RDF graph that can be seri-
alised in Turtle without using explicit blank node
labels. However, this is only a subset of RDF graphs
with acyclical blank nodes (e.g., trees expanding
in a object-to-subject direction would be excluded
although their implementation would be no more
difficult). Furthermore, the core rationale of Well-
Behaved RDF—being able to support polynomial-

52 In fact, the original 1999 W3C Recommendation for
RDF did not allow such labels, where blank nodes could
only form directed trees. This was later seen as a miss-
ing feature and rdf:nodeID was added to RDF/XML
for the 2004 standard. See http://www.w3.org/2000/03/
rdf-tracking/#rdfms-syntax-incomplete.

39

http://www.w3.org/2000/03/rdf-tracking/#rdfms-syntax-incomplete
http://www.w3.org/2000/03/rdf-tracking/#rdfms-syntax-incomplete

time entailment—applies equally to a much broader
range of RDF graphs with bounded treewidth, as we
have discussed in Section 6.2. Hence, the practical
benefits to consumers of assuming a Well-Behaved
RDF profile would need more thorough analysis
alongside different variations of formal definitions.

No change

Given the varied use of blank nodes in numerous
standards and a large volume of published data, any
change to the core semantics of blank nodes would
incur a huge cost at this stage. Even if the core
semantics could be conveniently changed, it is not
clear what a better alternative would be. Although,
for example, the process of leaning an RDF graph
can change the results given by SPARQL queries,
or can remove information about identical tuples
in the direct mapping of RDB2RDF, leaning is an
optional process and can be (and often is) ignored
by practitioners. The existential semantics also suc-
cinctly captures some of the intuitive meaning of
the RDF data model, including the equivalence of
RDF graphs modulo arbitrary blank node labels.
Furthermore, the standard semantics of blank nodes
is not incompatible with the intent of publishers, but
rather generalises their intents.
The problems with the existential semantics of

blank nodes are thus mainly an academic issue, af-
fecting worst-case analyses of entailment for RDF
graphs. Similarly, a developer of a Semantic Web
application may have to implement methods to sup-
port entailment checks, equivalence checks and lean-
ness operations, which involves a heavy implementa-
tion cost. But applications can optionally assume a
Herbrand semantics to avoid having to analyse blank
node homomorphisms. Even if they choose to con-
sider simple entailment or to perform leaning, as we
have shown in this paper, not only is simple entail-
ment tractable for all real-world graphs (which have
bounded treewidth), but in practice, blank nodes
are associated with rich ground information that al-
lows for anchoring graph matching problems, reduc-
ing the search space considerably for such tasks.

The RDF 1.1 Working Group has similarly de-
cided not to change the core semantics of blank
nodes. Instead, more practical alternatives are to
discourage the overuse/abuse of blank nodes and to
provide Skolemisation schemes for mapping blank
nodes to globally “novel” URIs. Though not ex-

plored by the RDF 1.1 Working Group, rubber-
stamping profiles of RDF that enable tractable en-
tailment could be another pragmatic compromise.

Conclusions

In this paper, we have provided a detailed dis-
course on the issue of blank nodes in RDF.

We first provided a formal background for blank
nodes, relating their existential semantics to similar
concepts from first-order logic and nulls in database
theory. We then discussed some practical issues re-
lating to simple entailment, where we discussed
tighter bounds for the complexity of simple entail-
ment and discussed the relation of simple entailment
and leanness checking to the problem of basic graph
pattern matching in SPARQL.

Next we looked through all of the standards built
on top of RDF, highlighting how they support blank
nodes, which of their features rely on blank nodes,
andwhat sorts of issues blank nodes have caused.We
discussed how blank nodes enable convenient short-
cuts in the various RDF syntaxes, how the RDFS
entailment rules use surrogate blank nodes to ensure
completeness, how the OWL standard requires the
use of blank nodes for n-ary predicates and lists in
the RDF–OWL mapping, how SPARQL uses blank
nodes in the CONSTRUCT as a Skolem function but
may return different answers for RDF graphs that
are equivalent under the RDF semantics, how the
interpretation of blank nodes as non-distinguished
variables causes issues for SPARQL entailment, how
simple entailment can be supported under RIFBLD,
and how the Direct Mapping in the RDB2RDF stan-
dard can produce non-lean RDF output from iden-
tical tuples without primary keys.

We then began surveying the use of blank nodes in
published data. Analysing the BTC–2012 dataset,
we found that 25.7% of unique terms were blank
nodes, that 44.9% of documents contained at least
one blank node, and that 66.2% of domains use some
blank node(s). We thus concluded that blank nodes
are prevalent in real-world data despite, e.g., the
fact that they are discouraged from use in various
LinkedData guidelines [38]. The largest producers of
blank nodes were the data.gov.uk, freebase.com
and livejournal.com sites, where the former two
are in the LOD cloud. Looking at the complexity of
real-world blank node structures, we found that the
data.gov.uk site produces a large number of cycli-
cal blank graphs, but that aside from this domain,

40

the vast majority of blank nodes form trees. The
highest treewidth we found for a real-world blank
graph was 6, translating into an empirical upper
bound of O(n2 + mn14) for the simple entailment
check G |= H where |G| = m and |H| = n. Other-
wise, almost all blank graphs were acyclical.We then
conducted a survey to see why publishers use blank
nodes; based on 88 responses, we found that the cur-
rent semantics of blank nodes generalised the intent
of publishers when using them in 97.7% of cases.
We also looked at the prevalence of lean vs. non-

lean blank nodes in the BTC–2012 dataset. Using a
five-stage process designed to iteratively reduce the
search space of unclassified blank nodes, we clas-
sified 93.9% of the blank nodes as lean and 6.1%
as non-lean. Almost all of the non-lean cases were
due to isomorphisms, where documents are repli-
cated in multiple Web locations or where documents
contain underspecified blank nodes. By computing
this result, we also demonstrated that, despite be-
ing intractable, simple entailment and leaning pro-
cedures are feasible at large scale over real-world
data: most blank nodes are associated with highly-
selective ground information that can be used to
significantly narrow the search space for homomor-
phisms. Furthermore, difficult cases such as graphs
with high treewidth or vertex-transitivity, etc., are
not (often) encountered in practice.
Finally, we discussed a number of possible alter-

natives that have been proposed for blank nodes,
by us, the community, and the RDF 1.1 Working
Group. We generally concluded that any change to
the core semantics of blank nodes would now incur
a great cost, particularly given their use in numer-
ous standards, their support implemented by vari-
ous tools, and their presence in millions of RDF doc-
uments published on the Web. The most practical
solution going forward would seem to be to leave the
standard semantics of blank nodes as they are, of-
fering methods for practitioners to optionally map
them to Skolem IRIs where necessary. And indeed,
this would seem to be the strategy that the RDF 1.1
Working Group has adopted [37, 20].

Acknowledgements The work presented in this
article has been funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Líon-
2), by an IRCSET postgraduate grant, by Marie
Curie action IRSES under Grant No. 24761 (Net2),
by FONDECYT Grant No. 1131049 and by the Mil-
lennium Nucleus Center for Semantic Web Research
under Grant No. NC120004.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, P. C. Kanellakis, and G. Grahne. On the
representation and querying of sets of possible worlds.
Theor. Comput. Sci., 78(1):158–187, 1991.

[3] M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Se-
queda. Direct Mapping of Relational Data to RDF.
W3C Recommendation, Sept. 2012. http://www.w3.
org/TR/rdb-direct-mapping/.

[4] M. Arenas, M. Consens, and A. Mallea. Revisiting
Blank Nodes in RDF to Avoid the Semantic Mismatch
with SPARQL. In RDF Next Steps Workshop, June
2010.

[5] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider. The Description Logic Hand-
book: Theory, Implementation and Application. Cam-
bridge University Press, 2002.

[6] J.-F. Baget. RDF entailment as a graph homomor-
phism. In International Semantic Web Conference,
pages 82–96, 2005.

[7] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and
G. Carothers. RDF 1.1 Turtle: Terse RDF Triple Lan-
guage. W3C Recommendation, Feb. 2014. http://www.
w3.org/TR/turtle/.

[8] D. Beckett, G. Carothers, and A. Seaborne. RDF 1.1
N-Triples: A line-based syntax for an RDF graph. W3C
Recommendation, Feb. 2014. http://www.w3.org/TR/
n-triples/.

[9] D. Beckett and B. McBride. RDF/XML Syntax Speci-
fication (Revised). W3C Recommendation, Feb. 2004.
http://www.w3.org/TR/rdf-syntax-grammar/.

[10] S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and
A. Polleres. Mapping between RDF and XML with
XSPARQL. J. Data Semantics, 1(3):147–185, 2012.

[11] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data
– The Story So Far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[12] H. Boley, G. Hallmark, M. Kifer, A. Paschke,
A. Polleres, and D. Reynolds. RIF Core Dialect. W3C
Recommendation, June 2010. http://www.w3.org/TR/
rif-core/.

[13] H. Boley and M. Kifer. RIF Basic Logic Dialect. W3C
Recommendation, June 2010. http://www.w3.org/TR/
rif-bld/.

[14] D. Booth. Well Behaved RDF: A Straw-Man Proposal
for Taming Blank Nodes, Dec. 2012. http://dbooth.org/
2013/well-behaved-rdf/Booth-well-behaved-rdf.pdf.

[15] D. Brickley and R. Guha. RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation,
Feb. 2004. http://www.w3.org/TR/rdf-schema/.

[16] S. R. Buss. On Herbrand’s Theorem. In D. Leivant,
editor, LCC, volume 960 of Lecture Notes in Computer
Science, pages 195–209. Springer, 1994.

[17] A. Calì, G. Gottlob, T. Lukasiewicz, B. Marnette, and
A. Pieris. Datalog±: A Family of Logical Knowledge
Representation and Query Languages for New Appli-
cations. In LICS, pages 228–242, 2010.

[18] J. J. Carroll. Signing RDF Graphs. In ISWC, pages
369–384, 2003.

41

http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-bld/
http://www.w3.org/TR/rif-bld/
http://dbooth.org/2013/well-behaved-rdf/Booth-well-behaved-rdf.pdf
http://dbooth.org/2013/well-behaved-rdf/Booth-well-behaved-rdf.pdf
http://www.w3.org/TR/rdf-schema/

[19] A. K. Chandra and P. M. Merlin. Optimal implemen-
tation of conjunctive queries in relational data bases.
In STOC, pages 77–90, 1977.

[20] R. Cyganiak, D. Wood, and M. Lanthaler. RDF
1.1 Concepts and Abstract Syntax. W3C Rec-
ommendation, Feb. 2014. http://www.w3.org/TR/
rdf11-concepts/.

[21] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB
to RDF Mapping Language. W3C Recommendation,
Sept. 2012. http://www.w3.org/TR/r2rml/.

[22] J. de Bruijn and S. Heymans. Logical foundations of
(e)rdf(s): Complexity and reasoning. In ISWC/ASWC,
pages 86–99, 2007.

[23] J. de Bruijn and C. Welty. RIF, RDF and OWL Com-
patibility. W3C Recommendation, June 2010. http:
//www.w3.org/TR/rif-rdf-owl/.

[24] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
getting to the core. TODS, 30(1):174–210, 2005.

[25] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and
Z. Wang. HermiT: An OWL 2 Reasoner. Journal of
Automated Reasoning, 2014. (to appear).

[26] B. Glimm and M. Krötzsch. SPARQL beyond subgraph
matching. In International Semantic Web Conference,
pages 241–256, 2010.

[27] B. Glimm and C. Ogbuji. SPARQL 1.1 Entailment
Regimes. W3C Recommendation, Mar. 2013. http:
//www.w3.org/TR/sparql11-entailment/.

[28] V. Gogate and R. Dechter. A Complete Anytime Al-
gorithm for Treewidth. In UAI, pages 201–208, 2004.

[29] G. Grahne. The Problem of Incomplete Information in
Relational Databases, volume 554 of Lecture Notes in
Computer Science. Springer, 1991.

[30] B. C. Grau, B. Motik, Z. Wu, A. Fokoue, and C. Lutz.
OWL 2 Web Ontology Language: Profiles. W3C
Recommendation, Oct. 2009. http://www.w3.org/TR/
owl2-profiles/.

[31] B. Grosof, I. Horrocks, R. Volz, and S. Decker. De-
scription Logic Programs: Combining Logic Programs
with Description Logic. In WWW, 2004.

[32] C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Foun-
dations of Semantic Web Databases. In PODS, June
2004.

[33] V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The
RacerPro knowledge representation and reasoning sys-
tem. Semantic Web, 3(3):267–277, 2012.

[34] S. Harris, A. Seaborne, and E. Prud’hommeaux.
SPARQL 1.1 Query Language. W3C Recommendation,
Mar. 2013. http://www.w3.org/TR/sparql11-query/.

[35] S. Hawke and A. Polleres. RIF In RDF (Second Edi-
tion). W3C Working Group Note, Feb. 2013. http:
//www.w3.org/TR/rif-in-rdf/.

[36] P. Hayes. RDF Semantics. W3C Recommendation,
Feb. 2004.

[37] P. J. Hayes and P. F. Patel-Schneider. RDF 1.1 Se-
mantics. W3C Recommendation, Feb. 2014. http:
//www.w3.org/TR/rdf11-mt/.

[38] T. Heath and C. Bizer. Linked Data: Evolving the
Web into a Global Data Space, volume 1. Morgan &
Claypool, 2011.

[39] P. Hell and J. Nes̆etr̆il. The core of a graph. Discrete
Mathematics, 109(1-3):127–126, 1992.

[40] I. Herman, B. Adida, M. Sporny, and M. Birbeck.

RDFa 1.1 Primer – Second Edition. W3C Work-
ing Group Note, Aug. 2013. http://www.w3.org/TR/
xhtml-rdfa-primer/.

[41] T. Imielinski and W. L. Jr. Incomplete information in
relational databases. J. ACM, 31(4):761–791, 1984.

[42] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne,
and A. Hogan. Observing Linked Data Dynamics. In
ESWC, pages 213–227. Springer, 2013.

[43] T. Käfer, J. Umbrich, A. Hogan, and A. Polleres. To-
wards a Dynamic Linked Data Observatory. In LDOW,
2012.

[44] P. J. Kelly. A congruence theorem for trees. Pacific
Journal of Mathematics, 7(1), 1957.

[45] M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. JACM,
42(4):741–843, 1995.

[46] G. Klyne and J. J. Carroll. Resource Description
Framework (RDF): Concepts and Abstract Syntax.
W3C Recommendation, Feb. 2004. http://www.w3.org/
TR/2004/REC-rdf-concepts-20040210/.

[47] I. Kollia, B. Glimm, and I. Horrocks. SPARQL query
answering over OWL ontologies. In ESWC, volume
6643 of LNCS, pages 382–396. Springer, 2011.

[48] A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On
blank nodes. In International Semantic Web Confer-
ence, pages 421–437, 2011.

[49] F. Manola, E. Miller, and B. McBride. RDF Primer.
W3C Recommendation, Feb. 2004. http://www.w3.org/
TR/2004/REC-rdf-primer-20040210/.

[50] M. Marano, P. Obermeier, and A. Polleres. Processing
RIF and OWL2RL within DLVHEX. InWeb Reasoning
and Rule Systems - Fourth International Conference
(RR2010), pages 244–250, 2010.

[51] B. McKay. Practical Graph Isomorphism. In Congres-
sus Numerantium, volume 30, pages 45–87, 1980.

[52] B. Motik, P. F. Patel-Schneider, and B. C. Grau. OWL
2 Web Ontology Language Direct Semantics. W3C
Recommendation, Oct. 2009. http://www.w3.org/TR/
owl2-direct-semantics/.

[53] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL
2 Web Ontology Language Structural Specification and
Functional-Style Syntax. W3C Recommendation, Oct.
2009. http://www.w3.org/TR/owl2-syntax/.

[54] S. Muñoz, J. Pérez, and C. Gutierrez. Simple and
efficient minimal RDFS. J. Web Sem., 7(3):220–234,
2009.

[55] P. F. Patel-Schneider and B. Motik. OWL 2 Web
Ontology Language Mapping to RDF Graphs. W3C
Recommendation, Oct. 2009. http://www.w3.org/TR/
owl2-direct-semantics/.

[56] R. Pichler, A. Polleres, F. Wei, and S. Woltran. dRDF:
Entailment for Domain-Restricted RDF. In ESWC,
pages 200–214, 2008.

[57] A. Polleres, F. Scharffe, and R. Schindlauer.
SPARQL++ for mapping between RDF vocabularies.
In OTM 2007, pages 878–896, 2007.

[58] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, Jan. 2008.
http://www.w3.org/TR/rdf-sparql-query/.

[59] M. Schneider. OWL 2 Web Ontology Language RDF-
Based Semantics. W3C Recommendation, Oct. 2009.
http://www.w3.org/TR/owl2-rdf-based-semantics/.

42

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/rif-rdf-owl/
http://www.w3.org/TR/rif-rdf-owl/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rif-in-rdf/
http://www.w3.org/TR/rif-in-rdf/
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl2-rdf-based-semantics/

[60] J. Sequeda and D. P. Miranker. Ultrawrap: SPARQL
execution on relational data. J. Web Sem., 22:19–39,
2013.

[61] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical OWL-DL reasoner. Journal
of Web Semantics, 5(2):51–53, 2007.

[62] M. K. Smith, C. Welty, and D. L. McGuinness. OWL
Web Ontology Language Guide. W3C Recommenda-
tion, Feb. 2004. http://www.w3.org/TR/owl-guide/.

[63] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and
N. Lindström. JSON-LD 1.0: A JSON-based Serial-
ization for Linked Data. W3C Recommendation, Jan.
2014. http://www.w3.org/TR/json-ld/.

[64] R. E. Tarjan and J. van Leeuwen. Worst-case analysis
of set union algorithms. J. ACM, 31(2):245–281, 1984.

[65] H. J. ter Horst. Completeness, decidability and com-
plexity of entailment for RDF Schema and a semantic
extension involving the OWL vocabulary. J. of Web
Sem., 3:79–115, 2005.

[66] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Op-
timizing Terminological Reasoning for Expressive De-

scription Logics. J. Autom. Reasoning, 39(3):277–316,
2007.

[67] Y. Tzitzikas, C. Lantzaki, and D. Zeginis. Blank Node
Matching and RDF/S Comparison Functions. In In-
ternational Semantic Web Conference, pages 591–607,
2012.

[68] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen.
Scalable Distributed Reasoning Using MapReduce. In
International Semantic Web Conference, pages 634–
649, 2009.

[69] T. van Dijk, J.-P. van den Heuvel, and W. Slob.
Computing treewidth with LibTW, 2006. http://www.
treewidth.com/docs/LibTW.pdf.

[70] J. Weaver and J. A. Hendler. Parallel Materialization
of the Finite RDFS Closure for Hundreds of Millions
of Triples. In International Semantic Web Conference
(ISWC2009), pages 682–697, 2009.

[71] G. T. Williams. SPARQL 1.1 Service Description. W3C
Recommendation, Mar. 2013. http://www.w3.org/TR/
sparql11-service-description/.

43

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/json-ld/
http://www.treewidth.com/docs/LibTW.pdf
http://www.treewidth.com/docs/LibTW.pdf
http://www.w3.org/TR/sparql11-service-description/
http://www.w3.org/TR/sparql11-service-description/

	Introduction
	Preliminaries
	The RDF data model
	Semantics of RDF graphs

	Theoretic background
	Existential variables in first-order logic
	Incomplete information in database theory
	Skolemisation

	Simple Entailment Checks in Practice
	Tighter bound for entailment in practice
	Checking simple entailment and leanness using basic graph pattern evaluation

	Blank nodes in the standards
	RDF Syntaxes
	RDF Schema (RDFS)
	Web Ontology Language (OWL)
	SPARQL Protocol and RDF Query Language
	Rule Interchange Format (RIF)
	RDB2RDF
	Summary of standards

	Blank nodes in publishing
	Prevalence of blank nodes in Web data
	Structure of blank nodes in Web data
	Survey of publishers

	(Non-)lean blank nodes in Web data
	Skolemising trivially lean blank-nodes
	Propogating Skolems through reachability
	Unique set of ground edges
	Minimal isomorphic graphs
	Summary

	Alternatives for blank nodes
	Deprecate/disallow blank nodes
	Ground semantics
	Well-behaved RDF
	No change

	Conclusions

