
Reifying RDF: What Works Well With Wikidata?

Daniel Hernández1, Aidan Hogan1, and Markus Krötzsch2

1 Department of Computer Science, University of Chile
2 Technische Universität Dresden, Germany

Abstract. In this paper, we compare various options for reifying RDF
triples. We are motivated by the goal of representing Wikidata as RDF,
which would allow legacy Semantic Web languages, techniques and tools
– for example, SPARQL engines – to be used for Wikidata. However,
Wikidata annotates statements with qualifiers and references, which re-
quire some notion of reification to model in RDF. We thus investigate
four such options: (1) standard reification, (2) n-ary relations, (3) single-
ton properties, and (4) named graphs. Taking a recent dump of Wikidata,
we generate the four RDF datasets pertaining to each model and discuss
high-level aspects relating to data sizes, etc. To empirically compare the
effect of the different models on query times, we collect a set of bench-
mark queries with four model-specific versions of each query. We present
the results of running these queries against five popular SPARQL imple-
mentations: 4store, BlazeGraph, GraphDB, Jena TDB and Virtuoso.

1 Introduction

Wikidata is a collaboratively edited knowledge-base under development by the
Wikimedia foundation whose aim is to curate and represent the factual informa-
tion of Wikipedia (across all languages) in an interoperable, machine-readable
format [20]. Until now, such factual information has been embedded within mil-
lions of Wikipedia articles spanning hundreds of languages, often with a high
degree of overlap. Although initiatives like DBpedia [15] and YAGO [13] have
generated influential knowledge-bases by applying custom extraction frameworks
over Wikipedia, the often ad hoc way in which structured data is embedded in
Wikipedia limits the amount of data that can be cleanly captured. Likewise,
when information is gathered from multiple articles or multiple language versions
of Wikipedia, the results may not always be coherent: facts that are mirrored
in multiple places must be manually curated and updated by human editors,
meaning that they may not always correspond at a given point in time.

Therefore, by allowing human editors to collaboratively add, edit and curate
a centralised, structured knowledge-base directly, the goal of Wikidata is to keep
a single consistent version of factual data relevant to Wikipedia. The resulting
knowledge-base is not only useful to Wikipedia – for example, for automatically
generating articles that list entities conforming to a certain restriction (e.g.,
female heads of state) or for generating infobox data consistently across all lan-
guages – but also to the Web community in general. Since the launch of Wikidata



in October 2012, more than 80 thousand editors have contributed information on
18 million entities (data items and properties). In comparison, English Wikipedia
has around 6 million pages, 4.5 million of which are considered proper articles.
As of July 2015, Wikidata has gathered over 65 million statements.

One of the next goals of the Wikidata project is to explore methods by which
the public can query the knowledge-base. The Wikidata developers are currently
investigating the use of RDF as an exchange format for Wikidata with SPARQL
query functionality. Indeed, the factual information of Wikidata corresponds
quite closely with the RDF data model, where the main data item (entity) can
be viewed as the subject of a triple and the attribute–value pairs associated with
that item can be mapped naturally to predicates and objects associated with the
subject. However, Wikidata also allows editors to annotate attribute–value pairs
with additional information, such as qualifiers and references. Qualifiers provide
context for the validity of the statement in question, for example providing a time
period during which the statement was true. References point to authoritative
sources from which the statement can be verified. About half of the statements
in Wikidata (32.5 million) already provide a reference, and it is an important
goal of the project to further increase this number.

Hence, to represent Wikidata in RDF while capturing meta-information such
as qualifiers and references, we need some way in RDF to describe the RDF
triples themselves (which herein we will refer to as “reification” in the general
sense of the term, as distinct from the specific proposal for reification defined in
the 2004 RDF standard [3], which we refer to as “standard reification”).

In relation to Wikidata, we need a method that is compatible with existing
Semantic Web standards and tools, and that does not consider the domain of
triple annotation as fixed in any way: in other words, it does not fix the domain
of annotations to time, or provenance, or so forth [22]. With respect to general
methods for reification within RDF, we identify four main options:

standard reification (sr) whereby an RDF resource is used to denote the
triple itself, denoting its subject, predicate and object as attributes and
allowing additional meta-information to be added [16,4].

n-ary relations (nr) whereby an intermediate resource is used to denote the
relationship, allowing it to be annotated with meta-information [16,8].

singleton properties (sp) whereby a predicate unique to the statement is cre-
ated, which can be linked to the high-level predicate indicating the relation-
ship, and onto which can be added additional meta-information [18].

Named Graphs (ng) whereby triples (or sets thereof) can be identified in a
fourth field using, e.g., an IRI, onto which meta-information is added [10,5].

Any of these four options would allow the qualified statements in the Wiki-
data knowledge-base to be represented and processed using current Semantic
Web norms. In fact, Erxleben et al. [8] previously proposed an RDF represen-
tation of the Wikidata knowledge-base using a form of n-ary relations. It is
important to note that while the first three formats rely solely on the core RDF
model, Named Graphs represents an extension of the traditional triple model,



adding a fourth element; however, the notion of Named Graphs is well-supported
in the SPARQL standard [10], and as “RDF Datasets” in RDF 1.1 [5].

Thus arises the core question tackled in this paper: what are the relative
strengths and weaknesses of each of the four formats? We are particularly inter-
ested in exploring this question quantitatively with respect to Wikidata. We thus
take a recent dump of Wikidata and create four RDF datasets: one for each of
the formats listed above. The focus of this preliminary paper is to gain empirical
insights on how these formats affect query execution times for off-the-shelf tools.
We thus (attempt to) load these four datasets into five popular SPARQL engines
– namely 4store [9], BlazeGraph (formerly BigData) [19], GraphDB (formerly
(Big)OWLIM) [2], Jena TDB [21], and Virtuoso [7] – and apply four versions of
a query benchmark containing 14 queries to each dataset in each engine.

2 The Wikidata Data-model

Figure 1a provides an example statement taken from Wikidata describing the
entity Abraham Lincoln. We show internal identifiers in grey, where those begin-
ning with Q refer to entities, and those referring to P refer to properties. These
identifiers map to IRIs, where information about that entity or relationship can
be found. All entities and relationships are also associated with labels, where
the English versions are shown for readability. Values of properties may also be
datatype literals, as exemplified with the dates.

The snippet contains a primary relation, with Abraham Lincoln as subject, po-
sition held as predicate, and President of the United States of America as object. Such
binary relations are naturally representable in RDF. However, the statement is
also associated with some qualifiers and their values. Qualifiers are property
terms such as start time, follows, etc., whose values may scope the validity of the
statement and/or provide additional context. Additionally, statements are often
associated with one or more references that support the claims and with a rank
that marks the most important statements for a given property. The details are
not relevant to our research: we can treat references and ranks as special types
of qualifiers. We use the term statement to refer to a primary relation and its
associated qualifications; e.g., Fig. 1a illustrates a single statement.

Conceptually, one could view Wikidata as a “Property Graph”: a directed
labelled graph where edges themselves can have attributes and values [11,6]. A
related idea would be to consider Wikidata as consisting of quins of the form
(s, p, o, q, v), where (s, p, o) refers to the primary relation, q is a qualifier prop-
erty, and v is a qualifier value [12]. Referring to Fig. 1a again, we could encode a
quin (:Q91, :P39, :Q11696, :P580, "1861/03/14"^^xsd:date), which states that
Abraham Lincoln had relation position held to President of the United States of Amer-
ica under the qualifier property start time with the qualifier value 4 March 1861. All
quins with a common primary relation would constitute a statement. However,
quins of this form are not a suitable format for Wikidata since a given primary
relation may be associated with different groupings of qualifiers. For example,
Grover Cleveland was President of the United States for two non-consecutive



terms (i.e., with different start and end times, different predecessors and succes-
sors). In Wikidata, this is represented as two separate statements whose primary
relations are both identical, but where the qualifiers (start time, end time, follows,
followed by) differ. For this reason, reification schemes based conceptually on
quins – such as RDF* [12,11] – may not be directly suitable for Wikidata.

A tempting fix might be to add an additional column and represent Wikidata
using sextuples of the form (s, p, o, q, v, i) where i is an added statement identifier.
Thus in the case of Grover Cleveland, his two non-consecutive terms would be
represented as two statements with two distinct statement identifiers. While in
principle sextuples would be sufficient, in practice (i) the relation itself may
contain nulls, since some statements do not currently have qualifiers or may
not even support qualifiers (as is the case with labels, for example), (ii) qualifier
values may themselves be complex and require some description: for example,
dates may be associated with time precisions or calendars.3

For this reason, we propose to view Wikidata conceptually in terms of two
tables: one containing quads of the form (s, p, o, i) where (s, p, o) is a primary
relation and i is an identifier for that statement; the other a triple table storing
(i) primary relations that can never be qualified (e.g., labels) and thus do not
need to be identified, (ii) triples of the form (i, q, v) that specify the qualifiers as-
sociated to a statement, and (iii) triples of the form (v, x, y) that further describe
the properties of qualifier values. Table 1 provides an example that encodes some
of the data seen in Fig. 1a – as well as some further type information not shown
– into two such tables: the quads table on the left encodes qualifiable primary
relations with an identifier, and the triples table on the right encodes (i) qual-
ifications using the statement identifiers, (ii) non-qualifiable primary relations,
such as those that specify labels, and (iii) type information for complex values,
such as to provide a precision, calendar, etc.

Compared to sextuples, the quad/triple schema only costs one additional
tuple per statement, will lead to dense instances (even if some qualifiable primary
relations are not currently qualified), and will not repeat the primary relation
for each qualifier; conversely, the quad/triple schema may require more joins for
certain query patterns (e.g., find primary relations with a follows qualifier).

Likewise, the quad/triple schema is quite close to an RDF-compatible encod-
ing. As per Fig. 1b, the triples from Table 1 are already an RDF graph; we can
thus focus on encoding quads of the form (s, p, o, i) in RDF.

3 From Higher Arity Data to RDF (and back)

The question now is: how can we represent the statements of Wikidata as triples
in RDF? Furthermore: how many triples would we need per statement? And
how might we know for certain that we don’t lose something in the translation?

The transformation from Wikidata to RDF can be seen as an instance of
schema translation, where these questions then directly relate to the area of
3 See https://www.wikidata.org/wiki/Special:ListDatatypes; retr. 2015/07/11.

https://www.wikidata.org/wiki/Special:ListDatatypes


Abraham Lincoln [Q91]
position held [P39] President of the United States of America [Q11696]

start time [P580] “4 March 1861”
end time [P582] “15 April 1865”
follows [P155] James Buchanan [Q12325]
followed by [P156] Andrew Johnson [Q8612]

(a) Raw Wikidata format

:X1

:Q12325
:P155

:Q8612
:P166

:D1

:P580

:D2

:P582

1861-03-04
:time

1865-04-15
:time

11

:timePrecision

:timePrecision

:Q1985727

:preferredCalendar

:preferredCalendar

(b) Qualifier information common to all formats

:X1:Q91
r:subject

:P39

r:predicate

:Q11696
r:object

(c) Standard reification

:Q91 :X1
:P39s

:Q11696
:P39v

:P39

:valueProperty:statementProperty

(d) n-ary relations

:Q91 :Q11696
:X1

:P39

:singletonPropertyOf

(e) Singleton properties

:X1

:Q91 :Q11696
:P39

(f) Named Graphs

Fig. 1: Reification examples



Table 1: Using quads and triples to encode Wikidata

Quads

s p o i

:Q91 :P39 :Q11696 :X1
. . . . . . . . . . . .

Triples

s p o

:X1 :P580 :D1
:X1 :P582 :D2
:X1 :P155 :Q12325
:X1 :P156 :Q8612
. . . . . . . . .
:D1 :time "1861-03-04"^^xsd:date
:D1 :timePrecision "11"
:D1 :preferredCalendar :Q1985727
. . . . . . . . .
:Q91 rdfs:label "Abraham Lincoln"@en
. . . . . . . . .

relative information capacity in the database community [14,17], which studies
how one can translate from one database schema to another, and what sorts
of guarantees can be made based on such a translation. Miller et al. [17] relate
some of the theoretical notions of information capacity to practical guarantees
for common schema translation tasks. In this view, the task of translating from
Wikidata to RDF is a unidirectional scenario: we want to query a Wikidata
instance through an RDF view without loss of information, and to recover the
Wikidata instance from the RDF view, but we do not require, e.g., updates on
the RDF view to be reflected in Wikidata. We therefore need a transforma-
tion whereby the RDF view dominates the Wikidata schema, meaning that the
transformation must map a unique instance of Wikidata to a unique RDF view.

We can formalise this by considering an instance of Wikidata as a database
with the schema shown in Table 1. We require that any instance of Wikidata
can be mapped to a RDF graph, and that any conjunctive query (CQ; select-
project-join query in SQL) over the Wikidata instance can be translated to a
conjunctive query over the RDF graph that returns the same answers. We call
such a translation query dominating. We do not further restrict how translations
are to be specified so long as they are well-defined and computable.

A query dominating translation of a relation of arity 4 (R4) to a unique
instance of a relation of arity 3 (R3) must lead to a higher number of tuples in
the target instance. In general, we can always achieve this by encoding a quad
into four triples of the form (s, py, oz), where s is a unique ID for the quad, py
denotes a position in the quad (where 1 ≤ y ≤ 4), and oz is the term appearing
in that position of the quad in R4.

Example 1. The quad :Q91 :P39 :Q11696 :X1 can be mapped to four triples:

:S1 :P1 :Q91
:S1 :P2 :P39
:S1 :P3 :Q11696
:S1 :P4 :X1



Any conjunctive query over any set of quads can be translated into a conjunctive
query over the corresponding triple instance that returns the same answer: for
each tuple in the former query, add four tuples to the latter query with a fresh
common subject variable, with :P1 . . . :P4 as predicate, and with the correspond-
ing terms from the sextuple (be they constants or variables) as objects. The fresh
subject variables can be made existential/projected away. �

With this scheme, we require 4k triples to encode k quads. This encoding can
be generalised to encode database tables of arbitrary arity, which is essentially
the approach taken by the Direct Mapping of relational databases to RDF [1].

Quad encodings that use fewer than four triples usually require additional as-
sumptions. The above encoding requires the availability of an unlimited amount
of identifiers, which is always given in RDF, where there is an infinite supply of
IRIs. However, the technique does not assume that auxiliary identifiers such as
:S1 or :P4 do not occur elsewhere: even if these IRIs are used in the given set of
quads, their use in the object position of triples would not cause any confusion.
If we make the additional assumption that some “reserved” identifiers are not
used in the input quad data, we can find encodings with fewer triples per quad.

Example 2. If we assume that IRIs :P1 and :P2 are not used in the input
instance, the quad of Example 1 can be encoded in the following three triples:

:S1 :P1 :Q91
:S1 :P2 :P39
:S1 :Q11696 :X1

The translation is not faithful when the initial assumption is violated. For ex-
ample, the encoding of the quad :Q91 :P39 :P1 :Q92 would contain triples :S2
:P1 :Q91 and :S2 :P1 :Q92, which would be ambiguous. �

The assumption of some reserved IRIs is still viable in practice, and indeed
three of the encoding approaches we look at in the following section assume
some reserved vocabulary to be available. Using suitable naming strategies, one
can prevent ambiguities. Other domain-specific assumptions are also sometimes
used to define suitable encodings. For example, when constructing quads from
Wikidata, the statement identifiers that are the fourth component of each quad
functionally determine the first three components, and this can be used to sim-
plify the encoding. We will highlight these assumptions as appropriate.

4 Existing Reification Approaches

In this section, we discuss how legacy reification-style approaches can be lever-
aged to model Wikidata in RDF, where we have seen that all that remains is to
model quads in RDF. We also discuss the natural option of using named graphs,
which support quads directly. The various approaches are illustrated in Fig. 1,
where 1b shows the qualifier information common to all approaches, i.e., the
triple data, while 1c–1f show alternative encodings of quads.



Standard Reification The first approach we look at is standard RDF reifica-
tion [16,4], where a resource is used to denote the statement, and where addi-
tional information about the statement can be added. The scheme is depicted in
Fig. 1c. To represent a quad of the form (s, p, o, i), we add the following triples:
(i, r:subject, s), (i, r:predicate, p), (i, r:object, o), where r: is the RDF vo-
cabulary namespace. We omit the redundant declaration as type r:Statement,
which can be inferred from the domain of r:subject. Moreover, we simplify
the encoding by using the Wikidata statement identifier as subject, rather than
using a blank node. We can therefore represent n quadruples with 3n triples.

n-ary Relation The second approach is to use an n-ary relation style of mod-
elling, where a resource is used to identify a relationship. Such a scheme is
depicted in Fig. 1d, which follows the proposal by Erxleben et al. [8]. Instead
of stating that a subject has a given value, the model states that the subject
is involved in a relationship, and that that relationship has a value and some
qualifiers. The :subjectProperty and :valueProperty edges are important to
be able to query for the original name of the property holding between a given
subject and object.4 For identifying the relationship, we can simply use the state-
ment identifier. To represent a quadruple of the form (s, p, o, i), we must add the
triples (s, ps, i), (i, pv, o), (pv, :valueProperty, p), (ps, :statementProperty, p),
where pv and ps are fresh properties created from p. To represent n quadruples
of the form (s, p, o, i), with m unique values for p, we thus need 2(n+m) triples.
Note that for the translation to be query dominating, we must assume that
predicates such as :P39s and :P39v in Fig. 1c, as well as the reserved terms
:statementProperty and :valueProperty, do not appear in the input.

Singleton Properties Originally proposed by Nguyen et al. [18], the core idea
behind singleton properties is to create a property that is only used for a sin-
gle statement, which can then be used to annotate more information about the
statement. The idea is captured in Fig. 1e. To represent a quadruple of the
form (s, p, o, i), we must add the triples (s, i, o), (i, :singletonPropertyOf, p).
Thus to represent n quadruples, we need 2n triples, making this the most con-
cise scheme so far. To be query dominating, we must assume that the term
:singletonPropertyOf cannot appear as a statement identifier.

Named Graphs Unlike the previous three schemes, Named Graphs extends
the RDF triple model and considers sets of pairs of the form (G,n) where G is
an RDF graph and n is an IRI (or a blank node in some cases, or can even be
omitted for a default graph). We can flatten this representation by taking the
union over G × {n} for each such pair, resulting in quadruples. Thus we can
encode a quadruple (s, p, o, i) directly using N-Quads, as illustrated in Fig. 1f.
4 Referring to Fig. 1c, another option to save some triples might be to use the original
property :P39 (position held) instead of :P39s or :P39v, but this could be conceptually
ugly since, e.g., if we replaced :P39s, the resulting triple would be effectively stating
that (Abraham Lincoln,position held,[a statement identifier ]).



Table 2: Number of triples needed to model quads (n = 57, 088, 184, p = 1, 311)

Schema: sr (3n) nr (2(n+ p)) sp (2n) ng (n)

Tuples: 171,264,552 114,178,990 114,176,368 57,088,184

Other possibilities? Having introduced the most well-known options for reifi-
cation, one may ask if these are all the reasonable alternatives for representing
quadruples of the form (s, p, o, i) – where i functionally determines (s, p, o) – in
a manner compatible with the RDF standards. As demonstrated by singleton
properties, we can encode such quads into two triples, where i appears somewhere
in both triples, and where s, p and o each appear in one of the four remaining
positions, and where a reserved term is used to fill the last position. This gives
us 108 possible schemes5 that use two triples to represent a quad in a similar
manner to the singleton properties proposal. Just to take one example, we could
model such a quad in two triples as (i, r:subject, s), (i, p, o)—an abbreviated
form of standard reification. As before, we should assume that the properties p
and r:subject are distinct from qualifier properties. Likewise, if we are not so
concerned with conciseness and allow a third triple, the possibilities increase fur-
ther. To reiterate, our current goal is to evaluate existing, well-known proposals,
but we wish to mention that many other such possibilities do exist in theory.

5 SPARQL Querying Experiments

We have looked at four well-known approaches to annotate triples, in terms of
how they are formed, what assumptions they make, and how many triples they
require. In this section, we aim to see how these proposals work in practice,
particularly in the context of querying Wikidata. Experiments were run on an
Intel E5-2407 Quad-Core 2.2GHz machine with a standard SATA hard-drive and
32 GB of RAM. More details about the configuration of these experiments are
available from http://users.dcc.uchile.cl/~dhernand/wrdf/.

To start with, we took the RDF export of Wikidata from Erxleben et al. [8]
(2015-02-23), which was natively in an n-ary relation style format, and built the
equivalent data for all four datasets. The number of triples common to all formats
was 237.6 million. With respect to representing the quads, Table 2 provides a
breakdown of the number of output tuples for each model.

5 There are 3! possibilities for where i appears in the two triples: ss, pp, oo, sp, so,
po. For the latter three configurations, all four remaining slots are distinguished so
we have 4! ways to slot in the last four terms. For the former three configurations,
both triples are thus far identical, so we only have half the slots, making 4 × 3
permutations. Putting it all together, 3× 4! + 3× 4× 3 = 108.

http://users.dcc.uchile.cl/~dhernand/wrdf/
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Fig. 2: Growth in index sizes for first 400,000 statements

Loading data: We selected five RDF engines for experiments: 4store, Blaze-
Graph, GraphDB, Jena and Virtuoso. The first step was to load the four datasets
for the four models into each engine. We immediately started encountering prob-
lems with some of the engines. To quantify these issues, we created three collec-
tions of 100,000, 200,000, and 400,000 raw statements and converted them into
the four models.6 We then tried to load these twelve files into each engine. The
resulting growth in on-disk index sizes is illustrated in Figure 2 (measured from
the database directory), where we see that: (i) even though different models lead
to different triple counts, index sizes were often nearly identical: we believe that
since the entropy of the data is quite similar, compression manages to factor
out the redundant repetitions in the models; (ii) some of the indexes start with
some space allocated, where in fact for BlazeGraph, the initial allocation of disk
space (200MB) was not affected by the data loads; (iii) 4store and GraphDB
both ran into problems when loading singleton properties, where it seems the
indexing schemes used assume a low number of unique predicates.7 With respect
to point (iii), given that even small samples lead to blow-ups in index sizes, we
decided not to proceed with indexing the singleton properties dataset in 4store
or GraphDB. While later loading the full named graphs dataset, 4store slowed
to loading 24 triples/second; we thus also had to kill that index load.8

6 We do not report the times for full index builds since, due to time constraints, we
often ran these in parallel uncontrolled settings.

7 In the case of 4store, for example, in the database directory, two new files were
created for each predicate.

8 See https://groups.google.com/forum/#!topic/4store-support/uv8yHrb-ng4;
retr. 2015/07/11.

https://groups.google.com/forum/#!topic/4store-support/uv8yHrb-ng4


Benchmark queries: From two online lists of test-case SPARQL queries, we
selected a total of 14 benchmark queries.9 These are listed in Table 3; since we
need to create four versions of each query for each reification model, we use
an abstract quad syntax where necessary, which will be expanded in a model-
specific way such that the queries will return the same answers over each model.
An example of a quad in the abstract syntax and its four expansions is provided
in Table 4. In a similar manner, the 14 queries of Table 3 are used to generate
four equivalent query benchmarks for testing, making a total of 56 queries.

In terms of the queries themselves, they exhibit a variety of query features
and number/type of joins; some involve qualifier information while some do not.
Some of the queries are related; for example, Q1 and Q2 both ask for information
about US presidents, and Q4 and Q5 both ask about female mayors. Importantly,
Q4 and Q5 both require use of a SPARQL property path (:P31/:P279*), which
we cannot capture appropriately in the abstract syntax. In fact, these property
paths cannot be expressed in either the singleton properties model or the stan-
dard reification model; they can only be expressed in the n-ary relation model
(:P31s/:P31v/(:P279s/:P279v)*), and the named graph model (:P31/:P279*)
assuming the default graph can be set as the union of all graphs (since one cannot
do property paths across graphs in SPARQL, only within graphs).

Query results: For each engine and each model, we ran the queries sequentially
(Q1–14) five times on a cold index. Since the engines had varying degrees of
caching behaviour after the first run – which is not the focus of this paper – we
present times for the first “cold” run of each query.10 Since we aim to run 14×
4×5×5 = 1, 400 query executions, to keep the experiment duration manageable,
all engines were configured for a timeout of 60 seconds. Since different engines
interpret timeouts differently (e.g., connection timeouts, overall timeouts, etc.),
we considered any query taking longer than 60 seconds to run as a timeout. We
also briefly inspected results to see that they corresponded with equivalent runs,
ruling queries that returned truncated results as failed executions.11

The query times for all five engines and four models are reported in Figure 3,
where the y-axis is in log scale from 10 ms to 60,000 ms (the timeout) in all
cases for ease of comparison. Query times are not shown in cases where the
query could not be run (for example, the index could not be built as discussed
previously, or property-paths could not be specified for that model, or in the
case of 4store, certain query features were not supported), or where the query
failed (with a timeout, a partial result, or a server exception). We see that in
terms of engines, Virtuoso provides the most reliable/performant results across
all models. Jena failed to return answers for singleton properties, timing-out on
all queries (we expect some aspect of the query processing does not perform well

9 https://www.mediawiki.org/wiki/Wikibase/Indexing/SPARQL_Query_Examples
and http://wikidata.metaphacts.com/resource/Samples

10 Data for other runs are available from the web-page linked earlier.
11 The results for queries such as Q5, Q7 and Q14 may (validly) return different answers

for different executions due to use of LIMIT without an explicit order.

https://www.mediawiki.org/wiki/Wikibase/Indexing/SPARQL_Query_Examples
http://wikidata.metaphacts.com/resource/Samples


Table 3: Evaluation queries in abstract syntax
#Q1: US presidents and their wives

SELECT ?up ?w ?l ?wl WHERE { <:Q30 :P6 ?up _:i1> . <?up :P26 ?w ?i2> . OPTIONAL {
?up rs:label ?l . ?w rs:label ?wl . FILTER(lang(?l) = "en" && lang(?wl) = "en") } }

#Q2: US presidents and causes of death
SELECT ?h ?c ?hl ?cl WHERE { <?h :P39 :Q11696 ?i1> . <?h :P509 ?c ?i2> . OPTIONAL {
?h rs:label ?hl . ?c rs:label ?cl . FILTER(lang(?hl) = "en" && lang(?cl) = "en") } }

#Q3: People born before 1880 with no death date
SELECT ?h ?date WHERE { <?h :P31 :Q5 ?i1> . <?h :P569 ?dateS ?i2> . ?dateS :time ?date .
FILTER NOT EXISTS { ?h :P570s [ :P570v ?d ] . }
FILTER (datatype(?date) = xsd:date && ?date < "1880-01-01Z"^^xsd:date) } LIMIT 100

#Q4: Cities with female mayors ordered by population
SELECT DISTINCT ?city ?citylabel ?mayorlabel (MAX(?pop) AS ?max_pop) WHERE {
?city :P31/:P279* :Q515 . <?city :P6 ?mayor ?i1> . FILTER NOT EXISTS { ?i1 :P582q ?x }
<?mayor :P21 :Q6581072 _:i2> . <?city :P1082 ?pop _:i3> . ?pop :numericValue ?pop .
OPTIONAL { ?city rs:label ?citylabel . FILTER ( LANG(?citylabel) = "en" ) }
OPTIONAL { ?mayor rs:label ?mayorlabel . FILTER ( LANG(?mayorlabel) = "en" ) } }

GROUP BY ?city ?citylabel ?mayorlabel ORDER BY DESC(?max_pop) LIMIT 10

#Q5: Countries ordered by number of female city mayors
SELECT ?country ?label (COUNT(*) as ?count) WHERE { ?city :P31/:P279* :Q515 .
<?city :P6 ?mayor ?i1> . FILTER NOT EXISTS { ?i1 :P582q ?x }
<?mayor :P21 :Q6581072 ?i2> . <?city :P17 ?country ?i3> . ?pop :numericValue ?pop .
OPTIONAL { ?country rs:label ?label . FILTER ( LANG(?label) = "en" ) } }

GROUP BY ?country ?label ORDER BY DESC(?count) LIMIT 100

#Q6: US states ordered by number of neighbouring states
SELECT ?state ?label ?borders WHERE { { SELECT ?state (COUNT(?neigh) as ?borders)

WHERE { <?state :P31 :Q35657 ?i1> . <?neigh :P47 ?state _:i2> .
<?neigh :P31 :Q35657 ?i3 > . } GROUP BY ?state }

OPTIONAL { ?state rs:label ?label . FILTER(lang(?label) = "en") } } ORDER BY DESC(?borders)

#Q7: People whose birthday is “today”
SELECT DISTINCT ?entity ?year WHERE { <?entityS :P569 ?value ?i1> . ?value :time ?date .
?entityS rs:label ?entity . FILTER(lang(?entity)="en")
FILTER(date(?date)=month(now()) && date(?date)=day(now())) } LIMIT 10

#Q8: All property–value pairs for Douglas Adams
SELECT ?property ?value WHERE { <:Q42 ?property ?value ?i> }

#Q9: Populations of Berlin, ordered by least recent
SELECT ?pop ?time WHERE { <:Q64 wd:P1082 ?popS ?i> . ?popS :numericValue ?pop .
?i wd:P585q [ :time ?time ] . } ORDER BY (?time)

#Q10: Countries without an end-date
SELECT ?country ?countryName WHERE { <?country wd:P31 wd:Q3624078 ?i> .
FILTER NOT EXISTS { ?g :P582q ?endDate } ?country rdfs:label ?countryName .
FILTER(lang(?countryName)="en") }

#Q11: US Presidents and their terms, ordered by start-date
SELECT ?president ?start ?end WHERE { <:Q30 :P6 ?president ?i > .
?g :P580q [ :time ?start ] ; :P582q [ :time ?end ] . } ORDER BY (?start)

#Q12: All qualifier properties used with "head of government" property
SELECT DISTINCT ?q_p WHERE { <?s :P6 ?o ?i > . ?g ?q_p ?q_v . }

#Q13: Current countries ordered by most neighbours
SELECT ?countryName (COUNT (DISTINCT ?neighbor) AS ?neighbors) WHERE {
<?country :P31 :Q3624078 ?i1> . FILTER NOT EXISTS { ?i1 :P582 ?endDate }
?country rs:label ?countryName FILTER(lang(?countryName)="en") OPTIONAL {
<?country :P47 ?neighbor ?i2 > <?neighbor :P31 :Q3624078 ?i3> .
FILTER NOT EXISTS { ?i3 :P582q ?endDate2 } } }

GROUP BY(?countryName) ORDER BY DESC(?neighbors)

#Q14: People who have Wikidata accounts
SELECT ?person ?name ?uname WHERE { <?person :P553 wd:Q52 ?i > .
?i :P554q ?uname . ?person rs:label ?name . FILTER(LANG(?name) = "en") . } LIMIT 100



Table 4: Expansion of abstract syntax quad for getting US presidents
abstract syntax: <:Q30 :P6 ?up ?i> .

std. reification: ?i r:subject :Q30 ; r:predicate :P6 ; r:object ?up .
n-ary relations: :Q30 :P6s ?i . ?i :P6v ?up .
sing. properties: :Q30 ?i ?up . ?i1 r:singletonPropertyOf :P6 .
named graphs: GRAPH ?i { :Q30 :P6 ?up . }

assuming many unique predicates). We see that both BlazeGraph and GraphDB
managed to process most of the queries for the indexes we could build, but with
longer runtimes than Virtuoso. In general, 4store struggled with the benchmark
and returned few valid responses in the allotted time.

Returning to our focus in terms of comparing the four reification models,
Table 5 provides a summary of how the models ranked for each engine and
overall. For a given engine and query, we look at which model performed best,
counting the number of firsts, seconds, thirds, fourths, failures (fa) and cases
where the query could not be exectuted (ne); e.g., referring back to Figure 3,
we see that for Virtuoso, Q1, the fastest models in order were named graphs,
n-ary relations, singleton properties, and standard reification. Thus, in Table 5,
under Virtuoso, we add a one to named graphs in the 1st column, a one to n-ary
relations in the 2nd column, and so forth. Along these lines, for example, the
score of 4 for singleton-properties (sp) in the 1st column of Virtuoso means that
this model successfully returned results faster than all other models in 4 out of
the 14 cases. The total column then adds the positions for all engines; across all
five engines, we see that named graphs is the best supported (fastest in 17/70
cases), with standard reification and n-ary relations not far behind (fastest in
16/70 cases). All engines aside from Virtuoso seem to struggle with singleton
properties; presumably these engines make some (arguably naive) assumptions
that the number of unique predicates in the indexed data is low.

Although the first three RDF-level formats would typically require more joins
to be executed than named graphs, the joins in question are through the state-
ment identifier, which is highly selective; assuming “equivalent” query plans,
the increased joins are unlikely to overtly affect performance, particularly when
forming part of a more complex query. However, additional joins do complicate
query planning, where aspects of different data models may affect established
techniques for query optimisation differently. In general, we speculate that in
cases where a particular model was much slower for a particular query and en-
gine, that the engine in question selected a (comparatively) worse query plan.

6 Conclusions

In this paper, we have looked at four well-known reification models for RDF:
standard reification, n-ary relations, singleton properties and named graphs. We
were particularly interested in the goal of modelling Wikidata as RDF, such that



Table 5: Ranking of reification models per query response times

№ 4store BlazeGraph GraphDB Jena Virtuoso Total
sr nr sp ng sr nr sp ng sr nr sp ng sr nr sp ng sr nr sp ng sr nr sp ng

1st 3 2 0 0 2 6 0 3 2 2 0 7 7 2 0 3 2 4 4 4 16 16 4 17
2nd 1 2 0 0 3 1 2 4 2 5 0 4 0 6 0 5 2 5 1 6 8 19 3 19
3rd – – – – 3 3 1 2 7 4 0 0 2 2 0 3 3 3 2 3 15 12 3 8
4th – – – – 1 0 6 2 – – – – 0 0 0 0 4 2 4 1 5 2 10 3
fa 5 5 0 0 3 4 3 3 1 3 0 3 3 4 12 3 1 0 1 0 13 16 16 9
ne 5 5 14 14 2 0 2 0 2 0 14 0 2 0 2 0 2 0 2 0 13 5 34 14

it can be indexed and queried by existing SPARQL technologies. We sketched a
conceptual overview of a Wikidata schema based on quads/triples, thus reducing
the goal of modelling Wikidata to that of modelling quads in RDF (quads where
the fourth element functionally specifies the triple), and introduced the four
reification models in this context. We found that singleton-properties offered the
most concise representation on a triple level, but that n-ary predicates was the
only model with built-in support for SPARQL property paths. With respect to
experiments over five SPARQL engines – 4store, BlazeGraph, GraphDB, Jena
and Virtuoso – we found that the former four engines struggled with the high
number of unique predicates generated by singleton properties, and that 4store
likewise struggled with a high number of named graphs. Otherwise, in terms of
query performance, we found no clear winner between standard reification, n-ary
predicates and named graphs. We hope that these results may be insightful for
Wikidata developers – and other practitioners – who wish to select a practical
scheme for querying reified RDF data.
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Fig. 3: Query results for all five engines and four models (log scale)
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