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Abstract

The metric space model abstracts many proximity or sintylgsroblems, where the most frequently considered
primitives are range arkinearest neighbor search, leaving out simailarity join, an extremely important primitive.
In fact, despite the great attention that this primitive rexived in traditional and even multidimensional databas
little has been done for general metric databases.

We solve two variants of the similarity join problem: (tBnge joins Given two sets of objects and a distance
thresholdr, find all the object pairs (one from each set) at distance &t m@nd (2)k-closest pair joins Find the
k closest object pairs (one from each set). For this sake, wisala new metric index, coinddst of Twin Clusters
(LTC), which indexes both sets jointly, instead of the nat@approach of indexing one or both sets independently.
Finally, we show how to use the LTC in order to solve classiaabe queries. Our results show significant speedups
over the basic quadratic-time naive alternative for both j@riants, and that the LTC is competitive with the orig-
inal list of clusterswhen solving range queries. Furthermore, we show that @lnique has a great potential for
improvements.
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1. Introduction

Proximityor similarity searchings the problem of, given a data set and a similarity criterfording the elements
from the set that are close to a given query. This is a natutahsion of the classical problem of exact searching. It
has a vast number of applications. Some examples are:

e Non-traditional databasesNew so-calledmultimediadata types such as images, audio and video cannot be
meaningfully queried in the classical sense. In multimegtiplications, all the queries ask for objesisilar
to a given one, whereas comparison for exact equality is rag In fact, no application will be interested in
finding an audio segment exactly equal to a given one, or iiewtg an image pixelwise equal to the query
image (as the probability that two ftBrent images are pixelwise equal is negligible unless theydaital
copies of the same source). Some example applications ageimudio or video databases, face recognition,
fingerprint matching, voice recognition, medical datasaaad so on.

o Text retrieval.Huge text databases with low quality control have emerdeel\(feb being the most prominent
example), and typing, spelling or OCR (optical characteogaition) errors are commonplace in both the text
and the queries. Documents containing a misspelled wondal@nger retrievable by a correctly written query
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or vice versa. Thus, many text search engines aim to find tesdgqges containing close variants of the query
words. There exist several models of similarity among wdwasiants of the “edit distance” [29, 39]) which
capture very well those kinds of errors. Another relatedliapfion is spelling checkers, where we look for
close variants of a misspelled word in a dictionary.

¢ Information retrieval. Although not considered as a multimedia data type, unstradttext retrieval poses
problems similar to multimedia retrieval. This is becausdual documents are in general not structured to
easily provide the desired information. Although text dmeunts may be searched for strings that are present or
not, in many cases it is more useful to search them for semesticepts of interest. The problem is basically
solved by retrieving documents similar to a given query Bl5where the query can be a small set of words
or even another document. Some similarity approaches aedlan mapping a document to a vector of real
values, so that each dimension is a vocabulary word and kearece of the word to the document (computed
using some formula) is the coordinate of the document albagdimension. Similarity functions are then
defined on that space. Notice, however, that as the vocatedarbe arbitrarily large, the dimensionality of this
space is usually very high (thousands of coordinates).

e Computational biologyDNA and protein sequences are basic objects of study in miglebiology. They can
be modeled as strings (symbol sequences), and in this cagelnwdogical quests translate into finding local or
global similarities between such sequences in order tactibtanologous regions that permit predicting func-
tionality, structure or evolutionary distance. An exactehds unlikely to occur because of measurement errors,
minor differences in genetic streams with similar functionality, emdlution. The measure of similarity used
is related to the probability of mutations such as revermsffseces of the sequences and other rearrangements
(global similarity), or variants of edit distance (locatéiarity).

e There are many other applications, suchrachine learning and classificatipwhere a new element must
be classified according to its closest existing elemiamige quantization and compressjavhere only some
vectors can be represented and those that cannot must be @edleeir closest representable pofotction
prediction where we want to search for the most similar behavior of &tion in the past so as to predict its
probable future behavior; and so on.

All those applications have some common characteristigstuced under thmetric space mod¢l3, 26, 46, 51].
There is a univers& of objects and a nonnegativéistance function d X x X — R* U {0} defined among them.
Objects inX do not necessarily have coordinates (for instance, stangsmages). The distance function gives us a
dissimilarity criterion to compare objects from the datsharhus, the smaller the distance between two objects, the
more “similar” they are. This distance satisfies the follogvproperties that maké&( d) a metric space

VXxyeX, Xx£y=d(x,y)>0 strict positiveness,
VXxyeX, d(x,y) = d(y, X) symmetry,
VxeX, d(x,x) =0 reflexivity,
¥ XxYy,z€ X, d(x,2) < d(x.y) + d(y,2 triangle inequality.

These properties hold for many reasonable similarity fiomst

Typically, we have a finitelatabaseor datasetU c X, which is a subset of the universe of objects and can be
preprocessed to build andex Later, given a new object € X, a proximity query consists in retrieving objects from
U relevant tog. There are two basic proximity queries or primitives:

Rangequery (g,r): Retrieve all the elements hiwhich are within distancetoq. Thatis, §,r) = {x € U,d(x,q) < r}.

k-Nearest neighbor query NNk(q): Retrieve thék elements fronU closest tay. Thatis,NNk(q) such tha¥’x € NNk(q),
y € U\ NN(a), d(a, x) < d(q, y), andINN(q)| = k.

Given the databasB, these similarity queries can be trivially answered by @ening |U| distance evaluations.
However, as the distance is assumed to be expensive to cerftpumk, for instance, in comparing two fingerprints),
it is customary to define the complexity of the search as timebar of distance evaluations performed, disregarding
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other components such as CPU time for side computations\ard/© time. Thus, the ultimate goal is to structure
the database so as to compute many fewer distances whengspheiximity queries.

Naturally, we can consider other proximity operations. &ctf in this paper we focus on ttsgmilarity join
primitive; that is, given two datasets, finding pairs of atgg(one from each set) satisfying some similarity predicat
If both datasets coincide, we talk about Himilarity self join To illustrate this concept, let us consider a headhunting
recruitment agency. On the one hand, the agency has a datasstimes and profiles of many people looking for a
job. On the other hand, the agency has a dataset of job prsfileght by several companies looking for employees.
What the agency has to do is to fiatl the person-company pairs which share a similar profgémilarity joins have
other applications such as data mining, data cleaning atedmtagration, to name a few. Despite the great attention
that this primitive has received in traditional and eventidirhensional databases [9, 30, 6, 28] little has been done
for general metric databases [19, 20].

In this work, we start by considering a variant of similaijioyn, therange joir’: Given two datasets, B ¢ X
and a distance threshotd> 0, find all the object pairs at distance at mostFormally, given two finite datasets
A={a,...,aa}andB = {b,..., bg}, the range joirA > B is the set of pairs

Asy B={(a,b), ac A be B,d(a,b) <r}. 1)

The range join essentially translates into solving severafje queries, where queries come from one set and
objects relevant for each query come from the other. Thuafwaal approach to compufes<, B consists in indexing
one set and later solving range queries for each elementtfierother. Moreover, following this approach we can
also try indexing both sets independently in order to spegethe whole process. Instead, we propositiex both
sets jointlywhich, to the best of our knowledge, is the first attempt foitg this simple idea. For this sake, based on
Chavez and Navarrolsst of clustergLC) [12], we devise a new metric index, coinkst of twin clustergLTC).

Next, we show how to use the LTC in order to compute anotheargrthek-closest pair join Given two
datasetA andB, find thek closest object pairs. Formally, tikeclosest pair joinA s« B is ak-element set of pairs
where for all pairsg,b) € As B, a € A, b € B and for all pairsg,v) € (Ax B)\ (A= B)), u e A, v e B, then
d(a, b) < d(u, V). In case of ties we choose akyelement set of pairs that satisfies the condition.

Finally, we show how to use the LTC in order to solve basic eaggeries for objectq € X retrieving relevant
objects from AU B). That is, use the LTC not only as an index to solve similgoigs but also as an index to solve
the basic similarity primitives.

Afterwards we carry out an experimental evaluation of th€ lapproach in order to verify that both similarity join
variants significantly improve upon the basic quadratitetinaive alternative, and also that the LTC is competitive
with the classical LC when solving range queries. Furtheemae show that our technique has a great potential for
improvements.

This paper is organized as follows. In the next section wéevevelated work both in the list of clusters and
similarity joins. Then, in Section 3 we describe the LTC hissic operations and its construction; and in Section 4,
how to use it in order to compute range joiks;losest pair joins, and general range queries. Experaheggults are
shown in Section 5. Finally, in Section 6 we draw our conduosiand future work directions. An early version of
this work appeared in [43].

2. Related work

2.1. List of clusters

Let us briefly recall what a list of clusters [12] is. The LCitpthe space into zones. Each zone has a cersted
stores both its radiup and the buckel of internal objects, that is, the objects inside the zone.

We start by initializing the sefE of external objects tdJ. Then, we take a centere E and a radiusp, whose
value depends on whether the number of objects in the busKieteid or not. Thecenter ballof (c, rp) is defined
as €, rp) = {xe X, d(c,x) < rp}. Thus, the bucket of internal objects is defined as= E n (c, rp) and the seE is
updated tcE «— E \ |. Next, the process is repeated recursively in&déThe construction process returns a list of
triples (C, rp, I) (center, radius, bucket), as shown in Fig. 1(a).

3Even though other authors have named this operation sityijain, we have called it range join tofiiérentiate it from the other join variant,
thek-closest pair join.
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(a) Alist of cluster. (b) Arecursive list of clusters.

Figure 1: In (a), the clusters obtained when the centerstarsen in this orderc;, ¢; andcs, and the resulting list of clusters. In (b), a recursive
list of cluster.

This data structure is asymmetric, because the first cehtesen has preference over the next ones in case of
overlapping balls (see Fig. 1(a)). All the elements instue ball of the first centerc{ in the figure) are stored in
the first bucketl(; in the figure), despite that they may also lie inside buckésibsequent centersy(andcs in the
figure). In [12], the authors consider many alternativegted both the zone radii and the next center in the list. They
have experimentally shown that the best performance igaetiwhen the zone has a fixed number of elementg, so
is the covering radius af (that is, the distance fromtowards the furthest element in its zone), and the next cénte
selected as the element maximizing the sum of distancesitersepreviously chosen. The brute force algorithm for
constructing the list take@(nz/m , wheremis the size of each zone.

For a range queryg(r) the list is visited zone by zone. We first compute the distanemq to the center, and
reportcif d(g, c) < r. Then, ifd(qg, c) — rp < r we exhaustively search the internal buckeBecause of the asymmetry
of the structurek (the rest of the list) is processed onlyrfif — d(g, ¢) < r. The search cost has a form closeXm®)
for somea € (0.5,1) [12].

Recently, M. Mamede proposed trezursive list of cluster6RLC) [33], which can be seen as a dynamic version
of the LC. The RLC is composed by clusters of fixed radius, somimber of objects of each cluster caffeti In
fact, it can be experimentally verified that first clusters eery densely populated, whereas last ones often contain
only the center. The RLC’s construction algorithm is vempitar to the LC’s. Each RLC node is a triple, ¢, 1)
(center, fixed radius, bucket). Once we select thd sédtobjects for the current node, we continue adding nodes to
the RLC by processing the rest of the objects. Theedénce comes from the following key fact. If the size of the
internal bucket is big enough, say, greater than some smaditantm, we recursively build a RLC for the elements
of I. Fig. 1(b) shows a RLC. This algorithm takégnlog, n) distance computations to construct a RLGhafbjects
for someg € (1, 2), which is better than the one for LC. The search algoritasito be slightly modified to support
the fact that the buckétcan be a set of at mostelements, or a RLC itself. Experimental results show th@RhC'’s
search performance slightly improves upon the LC's in umilly distributed vector spaces RP, for D < 12.

2.2. Similarity joins

Given two datasets, B c X, the naive approach to compute the similarity jofks, B or Ay B uses|Al-|B|
distances computations between all the pairs of objects.i3lusually called thélested Loop

In the case of multidimensional vector spa®s, an important subclass of metric spaces, there are some al-
ternatives [9, 30, 6, 28]. In [9], the authors solve rangagdn R? or R® by indexing both datase#s and B with
two R-trees [23], and then traverse both indices simultaskydo find the set of pairs of objects matching each other.
In [30], the authors used the hash-join idea to computealgains (that is, for low dimension vector spaces). The idea
consists in performing the similarity join computation at phases. In the first phase, both datasets are partitioned
into buckets with similar spatial decomposition (howeweach object can be mapped into multiple buckets), and in
the second phase, the buckets are joined in order to prodacaitcome. The buckets are built by using a variant of
the R-tree calledeeded treewhich is studied in detail in [31]. In [6], the authors presthe EGO-joinstrategy. It
divides the space with angrid, a lattice of hypercubes whose edges haveesiaad uses dierent methodologies to
traverse the grid. They show results for dimensibns 16. In [28], the authors give th@rid-join and theEGO-join,
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whose performances are at least one order of magnitude trettethat of EGO-join in low dimension spaces. How-
ever, none of these alternatives is suitable for metricepaas they use coordinate information that is not necéssari
available in general metric spaces.

In metric spaces, a natural approach to solve this problersists in indexing one or both sets independently (by
using any from the plethora of metric indices [3, 4, 7, 8, 10, 12, 14, 15, 17, 21, 27, 36, 37, 38, 40, 41, 44, 47,
48, 49, 50], most of them compiled in [13, 26, 46, 51]), anchtkelving range queries for all the involved elements
over the indexed sets. In fact, this is the strategy propwsgk®], where the authors use tBeindex[18] in order to
solve similarity self joins. Later, they present thie-index an extension of the D-index, and study its application to
similarity self joins [20].

With respect to th&-closest pair join, in the case of multidimensional vecfmaces, there are some approaches
that rely on the coordinate information to compute appratad results [32, 1, 2]. However, as far as we know, there
is no previous attempt to compute the jdin< B in the metric space context.

Finally, in [42], the authors give subquadratic algorithtmsonstruct thek-nearest neighbor graph of a dét
which can be seen as a variant of self similar join where wk foothe k-nearest neighbors of each objectlin

3. List of twin clusters

The basic idea of our proposal to solve the similarity joinkgem is to index the datasefsandB jointly in a
single data structure. This is because we want to combirectsbfrom diferent sets, and not to perform distance
computations between objects of the same set.

We have devised tHest of twin clustergLTC), a new metric index specially focused on the simiigein problem.

As the name suggests, the LTC is based on Chavez and Nal&strof clusterg12)]. In spite of their experimental
results, we have chosen to use clusters with fixed radiuse tat, had we used the option of fixed size clusters, we
would have obtained clusters of veryléirent radii, especially in the case when the dataset sifiies donsiderably.

Essentially, our data structure considers two lists of laygring clusters, which we call twin clusters (see Fig. 2(a)
Each cluster is a triple (centerfective radius, internal bucket). Following the LC idea, veavénchosen that every
object being a center is not included in its twin bucket. Sbewsolving range queries, most of the relevant objects
would belong to the twin cluster of the object we are queryorg We have also considered additional structures in
order to speed up the whole process. The LTC's data strisctuee

1. Two lists of twin cluster€€A andCB. Cluster centers ofA (resp.CB) belong to dataseA (resp.B) and objects
in its inner buckets belong to datag:(resp.A).

2. A matrixD with the distances computed from all the centers from datasevards all the centers from dataget

3. Four arraysiAmaxdAmin dBmaxanddBminstoring the cluster identifier and the maximum or minimum dis
tance for each object from a dataset towards all the clustetecs from the other dataset.

“~_____--" d(c],b) =dBmin[ b].distance
(a) The twin clusters. (b) Solving the cluster centet,.

Figure 2: In (a), the twin clusters overlap each other. Ins)ng the stored distances to solving the cluster cahter

We compute both similarity join variants by solving rangedes for objects from one dataset retrieving relevant
objects from the other. In Section 3.1, we show how to solvgeaqueries using the LTC’s structures. Next, in
Section 3.2, we give the LTC construction algorithm. Fromwvram, r denotes the similarity join radius, amithe
radius used to index both datas@tandB jointly with the LTC.
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3.1. Solving range queries with the LTC index

We have to solve range queries for three kinds of objettster centersregular objectsthe ones indexed in any
internal bucket; andon-indexed objectshe ones which are neither cluster centers nor regular. ones

To understand the concept of non-indexed objects, we hatakéointo account that when constructing the LTC
not all the objects get inside any of the twin clusters. Thibecause the LTC construction finishes when one of the
datasets gets empty, as will be explained in Section 3.2 albthe objects remaining in the other dataset turn into
the set ofnon-indexed objectsThese objects are not fully indexed in the LTC. In fact, wéyatore the distances
from them towards the closest and furthest centers. (Latenise these distances in order to try to avoid further
computation when solving similarity joins and range quejie

3.1.1. Solving cluster centers

Let (. R,. I}) denote thd-th cluster ofCA, andc, thec,'s twin center. After constructing the LTC, each cen-
ter ¢, € A has been compared with all the objebts B stored both inside its own internal buckétand inside the
buckets of following centers. So, if the similarity join fad is lower than or equal to the LTC construction radius
(thatis, ifr < R), in order to solve the range query fdy; we need to verify whether the following objects are relévan
(1) its twin center, (2) objects inside their own internatket, and (3) objects in the buckets of previous clusters.

Otherwise, as > R, we would need to review not only regular objects but alsastelucenters odll the clusters
in the listCA to finish the range query fa,.

When reviewing the previous clusters, we can avoid somamhstcomputations using the LTC and the triangle in-
equality, see Fig. 2(b) We have to check the previous disifte R, 1)), j < i, only if |D[c}, cb] D[c., cib]l <R, +r;
else, the clustercg R, ) is not relevant ford,. Inside a relevant cluster, we can still use the trianglejuradity to
avoid a direct comparison. Given an objbdn the buckety, if [D[cl, ¢[] — D[c}, ¢, ]| — dBmir{b].distance> r, thenb
is not relevant. Fig. 3 depicts the algorithm.

rqCenter (Integeri, Radiusr)
If D[ch, c] < r_Then Report (¢, ;) // twin center
For each b € I}, Do // own cluster

If dBmir{b]. dlstance< r Then Report (c,, b)
For each (ca, Ra Ia) € CA <« 1toi—1Do// previous clusters

I ID[cL, c,] — D[c,. ¢l < RL+r Then

For each b € 1] Do // internal bucket
I |D[ch, ¢] — D[c;. ¢ ]| — dBmir{b].distance< r anp d(c}, b) < r
Then Report (c, b)

© N o oA~ wWDNPR

Figure 3: Range query for cluster centers.

3.1.2. Solving regular objects

Assume that we are solving the range query for aregular bhjed. Using the arrag Amin we determine which
cluster C',RD Il )the objectbelongsto. So, we vern‘y[fb|s relevant. Let¢,, R, | )beci 's twin cluster. Due to the
LTC construction algorithm, it is likely that many objectdevant toa belong to the twin internal buckél; thus, we
check the objects withif,. Next, we check other clusters)(R., Ia) in CA, and their respective twin centers. When
r < R, it is enough to check regular objects of previous clustassq{uster centers are necessarily further than
otherwise, we would also need to check the cluster centers.

We use|D[ca, ] - dAmlr[a] distancéto lower bound the distance betwearamdca So, we can lower bound
the distance betwea]andcb (the twin center ob;) with |D[ca, ] - dAm|r[a] distancg— D[ca, cb] by using the
generalized triangle inequality. Moreover, if we still nee computel(a, cb) we use this computation to (hopefully)
improve the lower bound of the distance betweemdc). Finally, we check whether the current lower bound allows
us to neglect thg-th cluster, that is, we only visit it if the bound is lower thar equal toR} + r; else, it does not
contain relevant elements. The algorithm is depicted in &ig

6



rqRegular (Objecta, Radiusr)

1. (c,.d1) < dAmir{a] // obtaining the centes} and the distance
2. Ifdy <r Then Report (a, cb) // we checkcl, its twin cluster is €, R,, 1)
3. Oy« D[c'a, cb] // dz is the distance between twin centers
4. For each b € I}, Do // checking the twin bucket
5. d; « dBmlr{b] distanceds « d; + dz + d3
6. If ds < r Then Report (a, b)
7. ElseIf 2 maxd;, dz, d3} — ds < r anp d(a, b) < r Then Report(a, b)
// checking other clusters; has not changed
8. Foreach(ca,Rala)eCA, je<1to|CA, | #iDo _
9. dz «— D[ch, ¢ ], Ib « [dz — dyf, d3 « D[ck, ¢]] // cb is c}’s twin center

10. If b — d3 < r Then //first, we check:'

11. ds < d(a, cb) lb « maxlb, ds — d3|} // and updatéb if we can
12. If dy <r Then Report (a, cb)

13. Iflb < Ra + r Then // next, we check objects in buckk:;t

14. For each b e I Do

15. If Ib — dBmirb].distance< r anp d(a, b) < r Then Report(a, b)

Figure 4: Range query for regular objects.

In the pseudocode of Fig. 4 we do not care whether the cluspeivious or not, so when> RrgRegular does
not change.

3.1.3. Solving non-indexed objects

We need to check all the clusters@ and their twin centers. As in the previous algorithms, we diseances
between centers, distances to the closest and furthestrcantd the triangle inequality to lower bound distances,
avoiding direct comparisons if we can. Fig. 5 depicts the@ddgm when non-indexed objects come from dataset
where we only use the arragg\maxanddAmin If they come from datasé&® we use arraydBmaxanddBmin and
the situation is symmetric. When> R rgNonlndexedA/B does not change.

rgNonlndexedA (Objecta, Radiusr)

L (¢ d™") — dAmirfa], (X d™®) «— dAmaxa]

2. For each (c, Ry, 13) € CADo// checking all the clusters

3. di < D[Ca, ", dz « D[Ca, ], Ib « max(|d; — d™|, |d, — d™)
4. d; « D[ca, Cp] // Cp iS twin center ofc,

5. IfIb — ds < r Then //first, we checkc,

6. ds < d(a, ¢p), Ib « maxlb, |d, — d3|} // and updatéb if we can
7. If dq < r Then Report (a, cp)

8. If Ib < Ry +r Then // the cluster could be relevant

9. For each b € I, Do // next, we check the buckét

10. d; « dBmirb].distance

11. Ib; « 2maxd, ds, d™" — d; — dg — d™in

12. by, « 2 maxd,, ds, d™@ — d, — d3 — d™aX

13. If maxlbi,1bs} < r anp d(a, b) < r Then Report(a, b)

Figure 5: Range query for non-indexed objects.



3.2. Construction of the list of twin clusters

We have assumed that the construction of the LTC index igpieddent of the radiusof the similarity join. Let
R be the nominal radius of each cluster in the LTC. The LTC aquoiesibn process is as follows.

We start by initializing both lists of clustef3A andCB to empty, and for each objeate A we initializedAla] to
zero. We use the arral/Ato choose cluster centers for the LTC (from the second toatstecluster).

Next, we choose the first centeg from the dataset A at random and we add to its internal bukkatl the
elementd € B such thatd(c,, b) < R Then, we use the elemegyj € 1; which minimizes the distance @ as the
center of thecy's twin cluster, we remove, from |, and add to its internal buckéf all the elements € A such
thatd(a, ¢,) < R. (Fig. 2(a) illustrates the concept of twin clusters.) Fibrew objects iPA we increase theil Avalues
by d(cy, @), that is, we update their sum of distances to centeB i©@nce we process the datasAtandB we add
the clusters &, max.e, {d(Ca, D)}, 1) and €y, Maxe, {d(a, Cv)}, Ib) (center, &ective radius, bucket) into the lisGA
andCB, respectively. Both centerg andcy,, and elements inserted into the buckigtandl, are removed from the
datasets\ andB. From now on, we use the element maximizadWyas the new center,, but we continue using the
objectcy € |5 which minimizes the distance ty as the center of they’s twin cluster. We continue the process until
one of the datasets gets empty.

During the process, we compute the distance to the closdduathest cluster center for all the objects. For this
sake, we progressively update arraysmin dAmaxdBminandd Bmaxwith the minimum and maximum distances
known up to then. Note that for a regular objact A (respb € B), arraydAmin(resp.dBmin) stores its respective
centerc, € B (resp.c, € A) and the distance from the object to that center.

Note also that we have to store and maintain the maliix order to filter out elements when actually performing
similarity joins and range queries. As these distances@arpated during the LTC construction process, we can reuse
them to fill this matrix.

At the end, we only keep the maximum distances to clusteecgiof non-indexed elements. Thus, if they come
from datasefA (resp. B), we discard the whole arrayBmax(resp. dAmay, and the distances for cluster centers
and regular objects frodAmax(resp. dBmay. We do this in the auxiliary triplewonindexedlabel set array).

If the dataseB gets empty, themonindexed— (“A’, A, dAmay, discarding arraydBmax otherwise, we discard
arraydAmax sononindexed— (“B”, B,dBmay. Fig. 6 depicts the construction algorithm.

According to the analysis performed in [12], the cost of ¢arging the LTC isO((max|A, |B[})?/p*), wherep*
is the expected bucket size.

4, Using the LTC index

As there is an underlying symmetry in the join computation,agsume, without loss of generality, that we are
computing range queries for elementsAnand|A| > |B|. (Otherwise, we swap the datasets.) In Section 4.1, we
give the LTC-join algorithm for computing range joilss<, B. Next, in Section 4.2, we computeclosest pair
joins A > B by simulating them as range joins with decreasing radiuglfyi, in Section 4.3, we show how to solve
basic range queries using the LTC. These three sectionmaghat given the datase#sandB, and a radiu®, we
have previously computed the LTC index by callingC(A, B, R).

4.1. Computing the range join

Given a threshold we actually compute the range jofe< B, by traversing both list€A andCB. For cluster
centers (fromCA) we callrqCenter, and for regular objects (from buckets @B) we callrqRegular. Finally, as
all the matching pairs considering non-indexed objectshatg/et reported, by using the auxiliary tripdenindexed
we determine which dataset non-indexed objects come frochfa all of those objects we calfNonlndexedA or
rgNonlndexedB, accordingly. The algorithm is depicted in Fig. 7.

4.2. Computing the k-closest pair join

The basic idea is to compute tkeclosest pair joinA = B as if it were a range join with decreasing radius. For
this sake, we need an additionaklemenpriority queueheapto store triples of the form (object, object, distance)
sorted increasingly by the third component. We initialiea pwith k triples (vuLL, NULL, 00).
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LTC (DatasetA, DataseB, RadiusR)
1. CA« 0,CB« 0//the lists of twin clusters
2. Foreachae ADo

3. dAla] « 0// sum of distances to centerskn
// (closest and furthest centerB) distance)
4. dAmir{a] « (nuLL, o0),dAmaxa] < (nuLL, 0)

5. For eachbe BDo

// (closest and furthest centerAqg distance)
6 dBmifb] « (nuLL, o), dBmaxb] « (nuLt, 0)
7. Whilemin(A|, |B|) > 0 Do
8. Ca « argmaxa{dA}, A — A\ {ca}
9. Cp < NULL, Qcc < 00, lg 0, 1p < 0
10. For each b € BDo

11. dep < d(Ca, b)

12. Ifdep < RThen

13. la < laU{(b,dcp)}, B« B\ {b}

14, If dep < dec Thendee < dep, Cp < b

15. If dcp < dBmir[b].distancel hen dBmir[b] « (ca, dcp)
16. If dcp > dBmaxb].distancel' hen dBmaxb] « (ca, dcp)
17. la « la\ {(Co, dcc)} // removing centec, from bucketl,
18. For each ae ADo

19. dac < d(a, cp)

20. Ifdac < RThenlp « I, U {(a, dac)l, A — A\ {8}

21. ElsedAla] « dAa] + dac

22. If dac < dAmira].distancel hen dAmir{a] « (Cp, dac)
23. If dyc > dAmaxa].distanceT hen dAmaxa] « (Cp, dac)

24. CA «— CAU {(Ca, maXer, {d(Ca, D)}, 12)} // (center, &ective radius, bucket)
25. CB « CBU {(cn, maxer, {d(a, cv)}, Iv)} // (center, &ective radius, bucket)
// we only conserve théXmaxarray for non-indexed objects
26. If |Al > 0 Then nonindexed— (“A", A,dAmay
27. Elsenonindexed— (“B”, B,dBmay
28. For each c, € centers(CA), ¢y, € centers(CB) Do D[c,, Cy] < d(Ca, Cp)
// distancesl(c,, ¢p) have already been computed, so we can reuse them
29. Return (CA CB, D, dAmin dBmin nonindexel

Figure 6: LTC construction algorithm.

rangeJoin (Radiusr)

1. Foreachc,beCAI €CB i« 1to|CA Do

2 rqCenter(i, r) // solving the center

3. For each a e IL Do rqgRegular(a,r) // solving regular objects
4. (label set array) <« nonindexed

5. Iflabel="A" Then For each a € setDo rgNonlndexedA(a,r)

6. ElseFor each b e setDo rgNonlndexedB(b,r)

Figure 7: Using the LTC for computing range joins.

Before computing the range queries, we need to reduce thmehsesdius. To do so, we populate the priority
gueueheapwith all the distances stored thAminanddBmin Each time we find a pairia(b) of objects which are
closer than the furthest pair imeap(that is, lower tharheapmax().distance), we drop the furthest pair and insert
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the triple @, b, d(a, b)). If it is necessary, that is, when the maximum distancesskin heapis greater than the LTC
construction radiu®, we continue the reduction of the search radius by usingigtarttes irD. Note that all thek
candidate pairs stored hmeapwere found for free in terms of distance computations.

After this preprocessing, we start computing the rangeigsdor objects inA. Special care must be taken to
avoid repeating pairs with the ones already preseihigimp A simple alternative is fixing the initial search radius
asauxR « heapmax().distance+ ¢ (with anye > 0) —that is, slightly larger than the furthest pair we cuthgn
have inheap— and then emptyindpeap Next, we re-initializeheapwith K triples (uLt, nuLL, auxR. Note that
this alternative only requires CPU time but no distance aataijions. In the pseudo-code we use this alternative for
readability, however in the actual implementation we usgfser alternative which is mordfieient.

We start by solving the range queries for cluster centersggusie radiuieapmax().distance. Once again, each
time we find a pair of objects(b) closer tharheapmax().distance, we modifjieapby extracting its maximum and
then inserting the triplea( b, d(a, b)). Therefore, we are solving a range query with decreasidgis. We continue
with the computation for regular objects and finally for nadexed ones. When the computation finishes pstores
thek pairs of the result. Fig. 8 depicts the algorithm. As clustemters usually require less work to compute their
range queries than regular or non-indexed objects, stattiek-closest pair join computation with them should help
to reduce the search radius fast.

Note that, after reviewing all distances stored in the LTi@ei, it is possible that the current join radius could
be greater than the indexing radius. In this case, we haveotteps the cluster centers and regular objects using the
variants developed for this particular purpose.

4.3. Solving range queries with the LTC

The listsCA andCB can be seen as a classical list of clusters for the datBsmtsl A, respectively. So, we derive
a range query algorithm based on the LTC, which traverselststsimultaneously. Note that, in this case, we cannot
directly use the LC range query stop criterion (that is, wttenquery ball is fully contained by the current bucket).
Instead, we add boolean variables to control whether itég@sgary to search the lists.

Also, using distances in matr we compute lower and upper bounds on the distances betwegunény and the
centers. To do that, during the computation, we maintaindets of distanceBA and DB which store the distances
computed from the query to centers of li§€88 andCB, respectively. Therefore, using all the computed distance
stored inDB, the distanceal(g, c,) is lower bounded by Mag d(q,c,))<oeild(a, Cb) — D[Ca, Co]l}. Likewise, it is upper
bounded by miR, d(q,c,))e0s{d(a, cb) + D[Ca, Co]}. Symmetrically, we upper and lower bound the distati@gcy,). So,
we modify the LC range query algorithm according to theseniisu

Finally, we need to check the non-indexed objects. For thkesonce again we use the triplenindexed
(label set array). So, for the (hon-indexed) objects storedsetwe can compute the lower bounds of the distances
from them towards the query by using arraAminor dBminaccording to which dataset they came from (that is,
according tdabel). Also, we usearray in order to improve the lower bound. Recall thatray stores either arrays
dAmaxor dBmax depending oabel. Fig. 9 depicts the algorithm.

5. Experimental evaluation

We have selected four pairs of real-world datasets fronetkirds of metric spaces, namely, face images, strings
and documents (the two latter are of interest of InformaRetrieval applications [5]). The results on these datasets
are representative of other metric spaces and datasetsweddsted. A detailed description of the datasets follows.

Face images:a set of 1,016 (761-dimensional) feature vectors from asgataf face images. Any quadratic form can
be used as a distance, so we have chosen Euclidean distaheesamplest meaningful alternative.

The whole set has four face images from 254 people, thus we dhgided it into two subsets: one of them
with three face images per person (FACES762 for short, lsecialnas 762 face images) and the other with the
fourth one (FACES254 for short).

“4For instance, in order to avoid the constatit is enough to replace the< sign for “<” in line 1 of auxiliary procedureheckMax (Fig. 8).
Although this modification works well with continuous distzs, it fails to discard enough values in the discrete case.
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kClosestPair Join (Integerk)
1. PriorityQueueheap< 0 // sorted by increasing distance (third component)
2. Fori« 1tokDoheapinsert(nuLL, NULL, o0)
// using distances idAmin dBmin andD to reduce the search radius
3. For each a € A Do (cy, dist) «— dAmira], checkMax(heap a, ¢y, dist)
4. For each b € BDo (cg, dist) «— dBmirb], checkMax(heap c,, b, disf)
5. If heapmax().distance> R Then
6. For each ¢, e CAc) € CB, i,j « 1to|CA Do
7 checkMax(heapci, c;, D[Ch, c;])
8. auxR« heapmax().distancer ¢ // fixing the initial search radius
9. heap«< 0,For i« 1tokDoheapinsert(nuLL, NuLL, aUXR) // resettingheap
10. For each cial «— CA i« 1to|CA Do// reviewing centers
11. foundSet— rgCenter (i, heapmax().distance)
12 For each (b, dist) € foundSeDo checkMax(heap c,, b, disf)
13. For each I[‘J < CB, i «— 1to|CB| Do// reviewing regular objects
14. For each a€ I} Do
15. foundSet— rqgRegular(a, heapmax().distance)
16. For each (b, dist) e foundSeDo checkMax(heap a, b, disf)
17. (label set array) « nonindexed/ reviewing non-indexed objects
18. If label="A" Then For each a € setDo
19. foundSet— rgNonlndexedA (a, heapmax().distance)
20. For each (b, dist) € foundSeDo checkMax(heap a, b, dist)
21. ElseFor each b € setDo
22. foundSet— rgNonlndexedB(b, heapmax().distance)
23. For each (a, dist) € foundSeDo checkMax(heap a, b, dist)

checkMax (PriorityQueuéheap Objecta, Objectb, Distancedist)
1. If dist< heapmax().distancel hen
2. heapextractM ax(), heapinsert(a, b, dist) // reducing search radius

Figure 8: Using the LTC for computingclosest pair joins.

Strings: a dictionary of words, where the distance is #uit distancd29], that is, the minimum number of character
insertions, deletions and replacements needed to makeriwgssequal. This distance is useful in text retrieval
to cope with spelling, typing and optical character rectignierrors.

For this metric space we have considered two pairs of datasstubset of 69,069 English words with a subset
of 89,061 Spanish words and the same subset of English watldawubset of 494,048 vocabulary terms from
a collection of documents.

Documents a set of 2,957 documents, each of them of approximately 50®Kgined by splitting the original 1,265
documents from the TREC-3 collection [24], so that sub-deents obtained from the same original document
have an overlap of about 50%. We synthesize the vectorssepiiag the sub-documents by using the program
machinery provided in th®etric Spaces Libraryhttp://sisap.org/?f=1ibrary) [22]. As usual, we use
thecosine distanc@l5] to compare two documents.

We divide the dataset in two subsets, one of them with 1,846ments (DOCS1846 for short), and the other
with 1,111 documents (DOCS1111 for short).

As we mentioned previously, we work with two particular damity joins: range joinsA >, B andk-closest pair
joins A=y B. In the join experiments, we built the index using all theemlt§ considered for each dataset. All our
results are averaged over 10 index constructions usifigreint permutations of the datasets. In the range query
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rangeQuery (Objectq, Radiusr)

1. StOfn < FALSE, StO[B < FALSE

2. For each (Cy, Ry, 13) € CA (Cp, Ry, Ip) € CB, 1« 1t0|CA Do

3. If stop anD Stops Then Break

4. IbA «— maxc, d(q.c,)<oe{ld(a, Co) — D[Ca, C]|} // lower boundingd(q, ca)
5. UbA < min, d(g.c,))eeid(a, cv) + D[Ca, Co]} // upper boundingl(q, ca)
6. IbB « maxc, d(q.c.)epalld(a, Ca) — D[Ca, C]l} // lower boundingl(q, c,)
7. ubB < Min(, d(g.c.)epatd(a, Ca) + D[Ca, Co]} // upper boundingl(q, c,)
8. If stop = FaLsk anD IDA < Ry +r Then

9. dga« d(g, ca), DA — DA U {(cy, dga)}, ubA« dga

10. If dga<r Then Report c,

11. Ifdga< Ry +r Then

12. For each b € 1, Do If d(g,b) <r Then Report b

13. If stops = FaLsk anp IbB < R, +r Then

14. dgb < d(qg, cp), DB « DB U {(cp, dgb)}, ubB« dgb

15, If dgb<r Then Report cy

16. Ifdgb< R, +r Then

17. For each ac I, Do If d(g,a) <r Then Report a

18. If ubA< R; —r Then stop « TrUE

19. If ubB< R, —r Then stops « TRUE

20. (label setarray) « nonindexed

21. For each o € setDo // reviewing non-indexed objects

22. Ib « 0// we try to lower boundl(q, o) with the distances stored DA andDB
23. If label=“A" Then

24. (e, d™") — dAmir{o], (¢ d™) « array[o]

25. If (', dgb) € DB Then Ib < maxlb, [dgb— d™"|}

26. If (cr'®, dgb) € DB Then Ib « maxlb, |[dgb— d™9}

27. Else

28. (chin dMM) « dBmir{o], (cM'X d™®) « array[0o]

29. If (<", dga) € DA Then Ib «— maxlb, |[dga— d™"|}

30. If (cI'® dga) € DA Then Ib « maxlb, |dga— d™®}

31. If (Ib <r) anp d(g, 0) < r Then Report o

Figure 9: Using the LTC for computing range queries.

experiments, we built the index with 90% of the objects fromthbdatasets, so we use the remain 10% for the range
gueries, and we report the average computed over all thageegu

5.1. LTC construction

We start the experimental evaluation by verifying that thetaf constructing the LTC-index for each pair of
datasets is similar to the one needed to index the largesetatdth a basic LC. We have tested several values for the
construction radiuR. For face images, we show construction results when indexith radiiR 0.38, 0.40, 0.60, and
0.80; for strings, radii 3 to 6; and for documents, radii 0380, and 0.60. Fig. 10 shows the results.

From now on, the join and range query costs do not include aseaf building the LTC and LC indices, as we
consider that they would be amortized among many compugbbsimilarity joins and range queries.

5.2. Range joins

In these experiments we have used the following paramekensthe face images, we have considered thresh-
olds that retrieve on average 1, 5, or 10 relevant images FAGES762 per range query, when queries came from
FACES254. This corresponds to radiequal to 02702, 03567, and (B768, respectively. For the strings, we have
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Construction Costs for FACES762 and FACES254 feature vectors
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Figure 10: Constructing the LTC varying the building radifer the face image datasets (a), Spanish and English wéiEs (b), the English
dictionary and the vocabulary (c), and documents (d).

used radir equal to 1, 2, and 3, as the edit distance is discrete. In the etween dictionaries this retrieves 0.05,
1.5, and 26 Spanish words per English word on average, riégggcln the joins between the English dictionary and
the vocabulary this retrieves 7.9, 137, and 1,593 vocaptdams per English word on average, respectively. For the
documents space, we have used thresholds retrieving oage/@r 3, or 30 relevant documents from DOCS1846 per
range query, when we make queries from DOCS1111. So, thewafuadiir for the document space ar8, 0265,

and 038, respectively.

If we have one dataset indexed, we can trivially obtain thelarity join A > B by executing a range query with
thresholdr for each element from the other dataset. Because our joexirgdbased on the LC, we also show the
results obtained with this simple join algorithm having a halt for one dataset. We have called this join algorithm
LC-range join. Furthermore, if we have both datasets indeaéthough we could apply the same trivial solution
(that is, ignoring one of the indices), we can avoid moreadlise calculations by using all the information we have
from both indices. In order to compare our proposal with aanexle of this kind of algorithm, we have considered
indexing both datasets using a LC and then applying a joiardlgn that uses all the information from both indices
to improve the join cost. We have named it as LC2-range jaid,iis depicted in Fig. 11.

Because we need to fix the construction radius before bgilthie LC and LTC indices, in each case we have
considered dferent radii and we have chosen the one which obtains thediastgst for each alternative. We have
tested several cases where the construction ré&lisigreater than or equal to the largest join radiused inA s« B.

We have also included a brief test in order to evaluate thiepeance when the join radius is greater than the indexing
one, thatis, when > R.
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rangeJoinL C2 (List L4, List L,, Radiusr)

1. For each (ci,rg, ) € L1 Do

2 For each (cj, rg;, I¢;) € L2 Do

3 dec < d(Ci, Cj), ds = dec + Iy + g

4 If dec < 1 Then Report (ci, ¢;)

5. If 2maxdcc, I, I'e;} — ds < 1 Then // generalized triangle inequality
6 For eachy € I¢; Do// d(cj, y) is stored inL

7 If |dec — d(cj, )| < r Then // checkingy with the centec;

8 dy < d(c,y), If dy < r Then Report (c;, )

9 For each x € I, Do // d(ci, X) is stored inL, checking pairsx, y)

10. ds « dec + d(ci, X) + d(cj, y)

11. Ib « 2 maxdec, d(ci, X), d(c;j, y)} — ds

12. If dy were calculated hen Ib <« maxlb, |dy, — d(ci, X)[}
13. Iflb <r anp d(X y) <r Then Report (X,y)

14. For each x € I, Do // we check allx € I, with the centec;
15. If |dec — d(ci, X)| < 1 anp d(X, Cj) < 1 Then Report (X, ¢;)
16. Ifdec+ 1 +1 <r¢; Then

17. Break // stop searchinge(, rg, Ig) onL;

Figure 11: LC2-range join for two Lists of Clusters.

Fig. 12 illustrates the performance of the LTC-range joingidering the dferent radii in all the pairs of datasets.
We have shown the number of object pairs retrieved.

As it can be noticed, the best result is obtained when théingjlradiusR is the closest to the greatest value of
considered in each case. The LC2-range join has a similavil@hbut in the case of LC-range join, the best radius
can vary a little; in fact, for the range join between bothtidigaries, it is 4, and for documents, it is 0.60.

Fig. 13 depicts a comparison among the three range joinitigus (without construction costs) for the four pairs
of datasets, using the best value of the building raBexperimentally determined for each range join algorithm.
Once again, we have shown the number of object pairs rettidde can observe that the LTC-range join algorithm
largely outperforms the other range join algorithms coaisid in three of the pairs of datasets used. For the range join
between the English dictionary and the vocabulary, LC-egom and LC2-range join beat us, despite the LTC-range
join’s significant improvement over the Nested Loop join littaresholds used.

We suspect that this non-intuitive behavior showing thatdimplest algorithm, LC-range join, outperforms our
LTC-range join between the vocabulary and the Englishaetry can be explained by taking into account the number
of non-indexed objects. In this case 39% of the vocabulargdeare not indexed, while in the others, where the LTC-
range join is the best method, the percentage of non-indelxjedts is lower. For instance, in the experiment of face
images, only 2% of the faces are not indexed; in the expetimieSpanish and English dictionaries non-indexed
words represent 23% of the dataset, and for documents thergage of non-indexed documents is 20%.

Also, we have split the join cost in three parts (for centeggular objects and non-indexed objects) in order to
illustrate this non-intuitive result. The values are shawiTable 1. As can be seen, in a favorable case, like face
images, most of the work is performed among regular objdatstead, in the join between the vocabulary and the
English dictionary, most of the work is performed when saivhon-Indexed objects.

Fig. 14 depicts a brief comparison among the three rangegjgiorithms (without construction costs) when the
join radius is greater than the indexing one, that is, whenR. In the plots we show results for the face images
and the document datasets. Once again, we have shown theenafrdbject pairs retrieved. As it is expected, we
observe a performance degradation in our LTC-based ramgéjtich is also seen both in LC-join and LC2-join),
yet it remains as the best range join alternative.

Finally, Table 2 gives the performance ratios of distanammatations for the four pairs of datasets. The values
are computed according to this formulg2-T-range ion. 1 54,

join
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Figure 12: Comparison among thefdrent radii considered for the LTC index construction, far face image datasets (a), Spanish and English
dictionaries (b), the English dictionary and the vocabul@), and documents (d). Note the logscales.

5.3. k-Closest pair join

In this case, we can only compare the performance of the LA%&dk-closest pair joirA >y B with the LTC-
range join, as we do not have any other alternative for mgpréces. (As far as we know, there is no previous attempt
to solve this variant.) Fig. 15 shows the results when natrigethe 10, 100 and 1,000 closest pairs for the four pair
of datasets. As it can be seen, the performance ofAtkg B is similar to the one of the equivalent range join. This
reveals that the strategy used to reduce the search radiuatep fectively. It is interesting to note that theclosest
pair join performance in the string space is slightly bettten the range join one. This is because the edit distance is
discrete and there are thousands of word pairs at distan8e,the heap df candidate pairs is promptly filled with
pairs at distance 1 and subsequent range queries use radius 0

5.4. Range queries

We have computed range queries using the same join radiiobib®e5.2. That is, in the face image space we have
used radiir equal to 02702, 03567, and (B768, retrieving 0.7, 4.5 and 9.1 images, respectively.tk@istrings we
have used radii equal to 1, 2, and 3, recovering 2, 25, and 229 words from batfli€h and Spanish dictionaries;
and 7, 161, and 2,025 words from the English dictionary aedsttabulary, respectively. For the documents space,
we have used radii.25, 0265, and (B8, retrieving 3, 5, and 47 documents, respectively. Thesalis were averaged
over the whole subsets of queries (that is, 10% of the unidrotif datasets).

The plots of Fig. 16 show a comparison of the LTC-based rangeycalgorithm with respect to (i) index the union
of both datasets with a single LC, and (ii) index each datagthta LC. Alternative (i) implies adding a new index
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Figure 13: Comparison among all the range join algorithmssiotered, using in each case the best value experimentaigrndined for the
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documents (d). Note the logscales.
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Table 1: Fraction of the total join cost performed by centezgular objects and non-indexed objects.

(a) Join between face image datasets.

r=02702| r =0.3567| r = 0.3768
centers 1.8% 1.8% 1.8%
regular objects 83.9% 84.0% 84.0%
non-Indexed objects 14.3% 14.2% 14.2%

(b) Join between the English dictionary and the vocabulary.

r=1 r=2 r=3

centers 0.3% | 0.7% | 1.4%
regular objects | 27.8% | 29.6% | 30.8%
non-Indexed object$ 71.9% | 69.7% | 67.8%

Join Costs for FACES762 and FACES254 feature vectors

Number of elements retrieved

(c) The vocabulary and the English dictionary
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Figure 15: Comparison between tkelosest pair join and the equivalent range join. For facagendatabases (a) Spanish and English dictionar-
ies (b), the English dictionary and the vocabulary (c), aocuegnents (d). Note the logscales.

in order to support range queries, while alternative (iigdgiivalent to our approach, in the sense that it reuses the
indices in order to cope with similarity joins and the classimilarity primitive.

In the comparison, our LTC-based range query algorithm slygmed performance when compared with the basic
LC approach. This can be explained when we consider that eve store information in the LTC-index than in
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Table 2: Performance ratio of the LTC-range join for the ¢hdatabases in all the thresholds used with respect to tee joih methods.

(a) Join between face image databases.

Threshold| LC-range join| LC2-range join| Nested Loop
0.2702 38% 38% 47%
0.3567 44% 44% 47%
0.3768 45% 45% 47%

(b) Join between Spanish and English dictionaries.
Threshold| LC-range join| LC2-range join| Nested Loop
1 -11% 12% 89%

2 19% 39% 88%
3 45% 55% 87%

(c) Join between the English dictionary and th

e vocabulary.

Threshold| LC-range join| LC2-range join| Nested Loop
1 -159% -62% 67%
2 -124% -76% 51%
3 -94% -69% 38%
(d) Join between the DOCS1846 and DOCS1111.
Threshold| LC-range join| LC2-range join| Nested Loop
0.25 80% 75% 88%
0.265 80% 74% 88%
0.38 74% 67% 84%

the basic LC. In fact, the matrix of distances between cerabows us to fectively reduce the number of distance
computation performed in three cases. With respect to theestants, it can be seen that it is systematically better to
have a single LC indexing the union of the datasets than twind€xing each dataset independently. Finally, only in
the face image spaces (see Fig. 16(a)) using a single L@ llgiifaster than our LTC-based range queries.

6. Conclusions

In this work we have shown a new approach for computing shitjlfpoins between two datasets which consists in
indexing both datasets jointly. For this sake, we have pgeg@ new metric index, coindidt of twin clustergLTC).

We have experimentally verified that the cost of constrggtive LTC index is similar to that of constructing a single
LC in order to index the larger dataset.

Based on the LTC index we have solved two kinds of similamiyng: (1)range joins A=, B: Given distance
threshold, find all the object pairs (one from each set) at distance atmand (2)k-closest pair joins A< B: Find
thek closest object pairs (one from each set). The results ofxthergnental evaluation of the range join not only
show significant speedups over the basic quadratic-tinve i@étiernative but also over other two range join algorithms
LC-range join and LC2-range join, for three of the pairs dizdats considered.

With respect to thé&-closest pair join, the results of the experimental evadumeshow that it is ratherf&cient, as
it requires a work similar to the one performed by the eqertfange join over the LTC index. This resembles the
performance of range-optimiglnearest neighbor search algorithms [25].

Finally, we have shown that the LTC-based range query alguaris competitive with, and in some cases better
than, the LC search algorithm.

Our new LTC index stands out as a practical afictient data structure to solve two particular cases of shityla
joins, such a®\ =, BandA >« B, and as an index to speed up classical range queries. Thedf Becused for pairs
of databases in any metric space and therefore it has a wide af applications.
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Distance evaluations

Distance evaluations
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Figure 16: Computing range queries over the LTC varyingusdior the face image datasets (a), Spanish and Englisbrdicies (b), the English
dictionary and the vocabulary (c), and documents (d).

Several lines of future work on similarity joins indices aaldorithms remain open:

The similarity self join: although in this case there is nagen to build a LTC index, we plan to create another
variant of LC specially designed for this kind of join.

Optimization of LTC by evaluating internal distances: ahstouction time of the LTC index and when we
evaluate the similarity join, we do not calculate any disebetween elements from the same database. But,
we have to analyze if we can improve the join costs if we calieusome internal distances in order to obtain
better lower bounds of external distances (that is, digsbetween elements from both databases).

The center selection: the best way to choose the twin cefitene center is choosing the nearest object in
the other database, yet we could study other ways to selestva@nter from the last twin center in order to
represent the real dataset clustering by using the minimumrber of cluster centers as possible. Furthermore,
we suspect that by choosing better centers we will be ablgtdfisantly reduce the memory needed for the
matrix of distances among centers.

Different kinds of joins: we are developing algorithms to soleepkinds of similarity joins over the LTC index
or its variants. For instance, computing tk@earest neighbors for each object in one dataset andviatyie
relevant objects from the other.

There are cases where we could be interested in computigg rareries on either datagebr B but not both,
so we also plan to develop strategies to solve this kind ajeajueries.
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e When using clusters of fixed radius, we experimentally oles#rat the first clusters are much more populated
than the following ones. Moreover, we can also include theysof dynamic LTCs. Therefore, we have also
considered developing a version of the LTC similar to Manséstecursive list of clusterf33].

¢ Since in some cases many non-indexed objects exist, anthiss the performance of the LTC-range join, we
have also considered researching on alternatives to malnag®en-indexed objects.

e Developing parallel variants for the LTC index is anothdeiesting line of research, aiming at reducing the
computation time (there are already some parallel vergmmsther metric indices [16, 34, 35]).
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