
Instance-Optimal Geometric Algorithms

Peyman Afshani
Center for Massive Data

Algorithmics
University of Aarhus,

Aarhus, Denmark,
peyman@madalgo.au.dk

Jérémy Barbay
Depto de Ciencias de la

Computación,
Universidad de Chile,

Santiago, Chile,
jbarbay@dcc.uchile.cl

Timothy M. Chan
Cheriton School of
Computer Science,

University of Waterloo,
Waterloo, Canada,

tmchan@uwaterloo.ca

Abstract

We prove the existence of an algorithm A for com-
puting 2-d or 3-d convex hulls that is optimal for every
point set in the following sense: for every set S of n
points and for every algorithm A′ in a certain class A,
the maximum running time of A on input 〈s1, . . . , sn〉
is at most a constant factor times the maximum run-
ning time of A′ on 〈s1, . . . , sn〉, where the maximum is
taken over all permutations 〈s1, . . . , sn〉 of S. In fact,
we can establish a stronger property: for every S and
A′, the maximum running time of A is at most a con-
stant factor times the average running time of A′ over all
permutations of S. We call algorithms satisfying these
properties instance-optimal in the order-oblivious and
random-order setting. Such instance-optimal algorithms
simultaneously subsume output-sensitive algorithms and
distribution-dependent average-case algorithms, and all
algorithms that do not take advantage of the order of the
input or that assume the input is given in a random order.

The class A under consideration consists of all algo-
rithms in a decision tree model where the tests involve
only multilinear functions with a constant number of ar-
guments. To establish an instance-specific lower bound,
we deviate from traditional Ben–Or-style proofs and
adopt an interesting adversary argument. For 2-d convex
hulls, we prove that a version of the well known algorithm
by Kirkpatrick and Seidel (1986) or Chan, Snoeyink, and
Yap (1995) already attains this lower bound. For 3-d con-
vex hulls, we propose a new algorithm.

To demonstrate the potential of the concept, we further
obtain instance-optimal results for a few other standard
problems in computational geometry, such as maxima in
2-d and 3-d, orthogonal line segment intersection in 2-d,
finding bichromatic L∞-close pairs in 2-d, off-line or-
thogonal range searching in 2-d, off-line dominance re-
porting in 2-d and 3-d, off-line halfspace range reporting

in 2-d and 3-d, and off-line point location in 2-d.

1. Introduction

Instance optimality: our model(s). Standard worst-
case analysis of algorithms has often been criticized as
overly pessimistic. As a remedy, some researchers have
turned towards adaptive analysis where the cost of algo-
rithms is measured as a function of not just the input size
but other parameters that capture in some ways the in-
herent simplicity or difficulty of the input instance. For
example, for problems in computational geometry (the
primary domain of the present paper), parameters that
have been considered in the past include the output size
(leading to so-called output-sensitive algorithms) [46],
the spread of an input point set (the ratio of the max-
imum to the minimum pairwise distance) [38], various
measures of fatness of the input objects (e.g., ratio of cir-
cumradii to inradii) [48] or clutteredness of a collection
of objects [30], the number of reflex angles in an input
polygon, and so on.

The ultimate in adaptive algorithms is an instance-
optimal algorithm, i.e., an algorithm A whose cost is at
most a constant factor from the cost of any other algo-
rithm A′ running on the same input, for every input in-
stance. Unfortunately, for many problems, this require-
ment is too stringent. For example, consider the 2-d
convex hull problem, which has Θ(n log n) worst-case
complexity in the algebraic computation tree model: for
every input sequence of n points, one can easily de-
sign an algorithm A′ (with its code depending on the in-
put sequence) that runs in O(n) time on that particular
sequence, thus ruling out the existence of an instance-
optimal algorithm.1

1The length of the program for A′ may depend on n in this exam-
ple. If we relax the definition to permit the “constant factor” to grow
as a function of the program length of A′, then an instance-optimal al-

To get a more useful definition, we suggest a variant
of instance optimality where we ignore the order in which
the input elements are given, as formalized precisely be-
low:

Definition 1.1 Consider a problem where the input con-
sists of a sequence of n elements from a domain D. Con-
sider a class A of algorithms. A correct algorithm refers
to an algorithm that outputs a correct answer for every
possible sequence of elements in D.

For a set S of n elements in D, let TA(S) denote the
maximum running time of A on input σ over all n! possi-
ble permutations σ of S. Let OPT(S) denote the min-
imum of TA′(S) over all correct algorithms A′ ∈ A.
If A ∈ A is a correct algorithm such that TA(S) ≤
O(1) ·OPT(S) for every set S, then we sayA is instance-
optimal in the order-oblivious setting.

For many problems, the output is a function of the in-
put as a set rather than a sequence, and the above def-
inition is especially meaningful. In particular, for such
problems, instance-optimal algorithms are automatically
optimal output-sensitive algorithms; in fact, they are au-
tomatically optimal adaptive algorithms with respect to
any parameter that is independent of the input order, all
at the same time! This property is satisfied by simple pa-
rameters like the spread of an input point set S, or more
complicated quantities like the expected size fr(S) of the
convex hull of a random sample of size r from S [26].

For many algorithms (e.g., quickhull [52], to name
one), the running time is not affected so much by the or-
der in which the input points are given but by the input
point set itself. Combinatorial and computational geome-
ters more often associate “bad examples” with bad point
sets rather than bad point sequences. All this supports
the reasonableness and importance of the order-oblivious
form of instance optimality.

We can consider a still stronger variant of instance op-
timality:

Definition 1.2 For a set S of n elements in D, let
T avg
A (S) denote the average running time of A on input σ

over all n! possible permutations σ of S. Let OPTavg(S)
denote the minimum of T avg

A′ (S) over all correct algo-
rithms A′ ∈ A. If A ∈ A is a correct algorithm such
that TA(S) ≤ O(1) · OPTavg(S) for every set S, then we
say A is instance-optimal in the random-order setting.2

gorithm A exists for many problems such as sorting (or more generally
problems that admit linear-time verification). This follows from a trick
attributed to Levin [42], of enumerating and simulating all programs in
parallel under an appropriate schedule. To say that algorithms obtained
this way are impractical, however, would be an understatement.

2One can also consider other variations of the definition, e.g., re-
laxing the condition to T avg

A (S) ≤ O(1) · OPTavg(S), or replacing
expected running time over random permutations with analogous high-
probability statements.

Note that an instance-optimal algorithm in the above
sense is immediately also competitive against random-
ized (Las Vegas) algorithms A′, by the easy direction of
Yao’s principle. The above definition has extra appeal in
computational geometry, as it is common to see the de-
sign of randomized algorithms where the input elements
are initially permuted in random order [28].

Instance-optimal algorithms in the random-order set-
ting also imply optimal average-case algorithms where
we analyze the expected running time under the assump-
tion that the input elements are random and indepen-
dently chosen from a common given probability distribu-
tion. (To see this, just observe that the input sequence is
equally likely to be any permutation of S conditioned to
the event that the set of n input elements equals any fixed
set S.) An instance-optimal algorithm can deal with all
probability distributions at the same time! Instance opti-
mality also remedies a common complaint about average-
case analysis, that it does not provide information about
an algorithm’s performance on a specific input.

Convex hull: our main result. After making the case
for instance-optimal algorithms under our definitions, the
question remains: do such algorithms actually exist, or
are they “too good to be true”? Specifically, we turn
to one of the most fundamental and well known prob-
lems in computational geometry—computing the con-
vex hull of a set of n points. Many O(n log n)-time al-
gorithms in 2-d and 3-d have been proposed since the
1970s [31, 36, 52], which are worst-case optimal under
the algebraic computation tree model. Optimal output-
sensitive algorithms can solve the 2-d and 3-d problem in
O(n log h) time, where h is the output size. The first such
output-sensitive algorithm in 2-d was found by Kirk-
patrick and Seidel [46] in the 1980s and was later simpli-
fied by Chan, Snoeyink, and Yap [20] and independently
Wenger [55]; a different, simple, optimal output-sensitive
algorithm was discovered by Chan [15]. The first op-
timal output-sensitive algorithm in 3-d was obtained by
Clarkson and Shor [28] using randomization; another
version was described by Clarkson [26]. The first de-
terministic optimal output-sensitive algorithm in 3-d was
obtained by Chazelle and Matoušek [25] via derandom-
ization; the approach by Chan [15] can also be extended
to 3-d and yields a simpler optimal output-sensitive algo-
rithm. There are also average-case algorithms that run
in O(n) expected time for certain probability distribu-
tions [52], e.g., when the points are independent and uni-
formly distributed inside a circle or a constant-size poly-
gon in 2-d, or a ball or a constant-size polyhedron in 3-d.

The convex hull problem is in some ways an ideal can-
didate to consider in our models. It is not difficult to think
of examples of “easy” point sets and “hard” point sets
(see Figure 1(a,b)). It is not difficult to think of differ-

ent heuristics for pruning nonextreme points, which may
not necessarily improve worst-case complexity but may
help for many point sets encountered “in practice” (e.g.,
consider quickhull [52]). However, it is unclear whether
there is a single pruning strategy that works best on all
point sets.

In this paper, we show that there are indeed instance-
optimal algorithms for both the 2-d and 3-d convex hull
problem, in the order-oblivious or the stronger random-
order setting. Our algorithms thus subsume all the previ-
ous output-sensitive and average-case algorithms simul-
taneously, and are provably at least as good asymptoti-
cally as any other algorithm for every point set, so long
as input order is ignored.

Techniques. We believe that our techniques—for both
the upper-bound side (i.e., algorithms) and the lower-
bound side (i.e., proofs of their instance optimality)—are
as interesting as our results.

On the upper-bound side, we find that in the 2-d case, a
new algorithm is not necessary: a version of Kirkpatrick
and Seidel’s output-sensitive algorithm, or its simplifica-
tion by Chan, Snoeyink, and Yap, is instance-optimal in
the order-oblivious and random-order setting. We view
this as a plus: these algorithms are simple and practi-
cal to implement [12], and our analysis sheds new light
into their theoretical complexity. In particular, our re-
sult immediately implies that a version of Kirkpatrick
and Seidel’s algorithm runs in O(n) expected time for
points uniformly distributed inside a circle or a fixed-size
polygon—we were unaware of this fact before. (inter-
estingly, Kirkpatrick and Seidel’s paper is titled “The ul-
timate planar convex hull algorithm?”; our result gives a
positive answer to the title question in the order-oblivious
and random-order model.)

In 3-d we propose a new algorithm, as none
of the previous output-sensitive algorithms seem to
be instance-optimal (e.g., known 3-d generalizations
of the Kirkpatrick–Seidel algorithm have suboptimal
O(n log2 h) running time [20, 37], while a straightfor-
ward implementation of Chan’s algorithm [15] fails to be
instance-optimal even in 2-d). Our algorithm builds on
Chan’s technique [15] but requires additional ideas, no-
tably the use of partition trees [31, 49].

The lower-bound side requires more innovation. We
are aware of three existing techniques for proving worst-
case Ω(n log n) (or output-sensitive Ω(n log h)) lower
bounds in computational geometry: (i) information-
theoretical or counting arguments, (ii) topological argu-
ments, from early work by Yao [56] to Ben-Or’s theo-
rem [10], and (iii) Ramsey-theory-based arguments, by
Moran, Snir, and Manber [50]. Ben-Or’s approach is
perhaps the most powerful and works in the general al-
gebraic computation tree model, whereas Moran et al.’s

approach works for a decision tree model in which all
the test functions have a bounded number of arguments.
For an arbitrary input set S for the convex hull problem,
the naive information-theoretical argument gives only an
Ω(h log h) lower bound on OPT(S). On the other hand,
topological and Ramsey-theory approaches seem unable
to give any instance-specific lower bound at all (e.g.,
modifying the topological approach is already nontriv-
ial if we just want a lower bound for some integer in-
put set [57], let alone for every input set, whereas the
Ramsey-theory approach considers only input elements
that come from a cleverly designed subdomain).

We end up using a different lower bound technique
which is inspired by an adversary argument from a recent
work by Chan [18] on an unrelated problem (time–space
lower bounds for median finding). Chan [19] noted that
this approach can lead to another proof of the standard
Ω(n log n) lower bounds for many geometric problems
including convex hull; the proof is simple and works in
an algebraic decision tree model where the test functions
have at most constant degree and have at most a constant
number of arguments. We build on the idea further and
obtain an optimal lower bound for the convex hull prob-
lem for every input point set. The assumed model is more
restrictive: the class A of allowed algorithms consists of
those under a decision tree model in which the test func-
tions are multilinear and have at most a constant number
of arguments. Fortunately, most standard primitive op-
erations encountered in existing convex hull algorithms
satisfy the multilinearity condition (e.g., the standard de-
terminant test does). The final proof is quite nice, in our
opinion. Interestingly it involves partition trees, which
are more typically used in algorithms (as in our new 3-d
algorithm) rather than in lower-bound proofs.

So, what is OPT(S), i.e., what parameter truly cap-
tures the difficulty of a point set S, asymptotically, for
the convex hull problem? As it turns out, the bound has a
simple expression (to be revealed in Section 3) and shares
similarity with entropy bounds found in average-case
(also called “expected-case”) analysis of geometric data
structures where query points come from a given proba-
bility distribution—these entropy-based results have been
the subject of several recent papers [6, 7, 29, 35, 41].
However, lower bounds for expected-case data structures
cannot be applied to our problem because our problem
is off-line (lower bounds for on-line query problems usu-
ally assume that the query algorithms fit a “classification
tree” framework, but an off-line algorithm may compare
a query point not only with points from the data set but
also with other query points). Furthermore, although in
the off-line setting we can think of the query points as
coming from a discrete point probability distribution, the
distribution is not known in advance.3 Lastly, expected-

3Self-improving algorithms [4, 27] also cope with the issue of how to

(a) (b) (c) (d)

Figure 1. (a) A “harder” point set and (b) an “easier” point set for the upper hull problem. (c)
A point set with H(S) near log h and (d) an “easier” point set with H(S) near constant for the
maxima problem.

case data structures achieve speedup in querying but not
preprocessing.

Other results. Convex hull is just one problem for
which we are able to obtain instance optimality. We
show that our techniques can lead to instance-optimal
results for many other standard problems in computa-
tional geometry, in the order-oblivious or random-order
setting, including: (a) maxima in 2-d and 3-d, (b) re-
porting/counting intersection between horizontal and ver-
tical line segments in 2-d, (c) reporting/counting pairs
of L∞-distance at most 1 between a red point set and
a blue point set in 2-d, (d) off-line orthogonal range re-
porting/counting in 2-d, (e) off-line dominating reporting
in 2-d and 3-d, (f) off-line halfspace range reporting in
2-d and 3-d, and (g) off-line point location in 2-d. (We
are forced to put these results in Appendix A because of
space limitation.)

Optimal expected-case, entropy-based data structures
for the on-line version of (g) are known before [7, 41],
but not for (e,f)—for example, a recent SODA’09 paper
by Dujmović, Howat, and Morin [35] only obtained re-
sults for 2-d dominance counting, a special case of 2-d or-
thogonal range counting. Incidentally, as a consequence
of our ideas, we can also get new optimal expected-case
data structures for on-line 2-d general orthogonal range
counting and 2-d and 3-d halfspace range reporting.

Related work. Although Fagin et al. [39] first coined
the term “instance optimality” (when studying the prob-
lem about finding items with the k top aggregate scores in
a database in a certain model), the concept has appeared
before. For example, the well known “dynamic optimal-
ity conjecture” is about instance optimality concerning
algorithms for manipulating binary search trees (see [32]
for the latest in a series of papers). Demaine, López-

deal with unknown input probability distributions, but are not directly
comparable with our results, since in their setting each point can come
from a different distribution, so input order matters.

Ortiz, and Munro [34] studied the problem of comput-
ing the union or intersection of k sorted sets and gave
instance-optimal results for any k for union, and for con-
stant k for intersection, in the comparison model; see
Barbay and Chen [9] for an extension to a 2-d problem on
computing the convex hulls of k convex polygons. An-
other work about instance-optimal geometric algorithms
is by Baran and Demaine [8], who addressed an approx-
imation problem about computing the distance of a point
to a curve under a certain black-box model. Other than
these, there has not been much work on instance optimal-
ity in computational geometry, especially concerning the
classical problems under conventional models.

The concept of instance optimality resembles com-
petitive analysis of on-line algorithms. In fact, in the
on-line algorithms literature, our order-oblivious set-
ting of instance optimality is related to what Boyar and
Favrholdt called the relative worst order ratio [13], and
our random-order setting is related to Kenyon’s random
order ratio [43]. What makes instance optimality more
intriguing is that we are not bounding the objective func-
tion of an optimization problem but the cost of an algo-
rithm.

2. Warm-Up: 2-d Maxima

Before proving our main result on convex hull, we find
it useful to study a simpler problem: maxima in 2-d. For
two points p and q we say p dominates q if each coordi-
nate of p is greater than that the corresponding coordinate
of q. Given a set S of n points in Rd, a point p is maximal
if p ∈ S and p is not dominated by any other point in S.
For simplicity, we assume that the input is always nonde-
generate throughout the paper. The maxima problem is
to report all maximal points, say, from left to right.

For an alternative formulation, we can define the or-
thant at a point p to be the region of all points that are
dominated by p. In 2-d, the boundary of the union of the
orthants at all p ∈ S forms a staircase, and the maxima

problem is equivalent to computing the staircase of S.
This problem has a similar history as the convex hull

problem: many worst-case O(n log n)-time algorithms
are known, Kirpatrick and Seidel’s output-sensitive al-
gorithm runs in O(n log h) time for output size h, and
average-case algorithms with O(n) expected time have
been analyzed for various probability distributions [11,
26, 52]. The problem is simpler in the sense that direct
pairwise comparisons are sufficient. We therefore work
with the class A of algorithms in the comparison model
where we can access the input points only through com-
parisons of the coordinate of an input point with the cor-
responding coordinate of another input point. The num-
ber of comparisons made by an algorithm will act as a
lower bound on the running time.

We define a measure H(S) to represent the difficulty
of a point set S and prove that the optimal running time
OPT(S) is precisely Θ(n(H(S)+1)) for the 2-d maxima
problem in the order-oblivious and random-order setting.

Definition 2.1 Consider a partition Π of the input set S
into disjoint subsets S1, . . . , St. We say that Π is re-
spectful if each subset Sk is either a singleton or can
be enclosed by an axis-aligned box Bk whose interior
is completely below the staircase of S. Define H(Π) =∑t
k=1(|Sk|/n) log(n/|Sk|) and letH(S) to be the mini-

mum ofH(Π) over all respectful partitions Π of S.

Remark 2.2 Alternatively, we could further insist in the
definition that the bounding boxesBi are nonoverlapping
and cover precisely the staircase of S. However, this will
not matter, as it turns out that the two definitions yield
asymptotically the same quantity (this nonobvious fact is
a byproduct of our lower bound proof).
H(Π) is of course an entropy-like expression and is

similar to bounds used in expected-case geometric data
structures for the case of a discrete point probability dis-
tribution, although our definition itself is nonprobabilis-
tic. A measure proposed by Sen and Gupta [53] is identi-
cal toH(Πvert) in which Πvert is a partition of S obtained
by dividing the point set S by h vertical lines at the h
maximal points of S. Note that H(Πvert) is at most log h
(see Figure 1(c)) but can be much smaller; in turn, H(S)
can be much smaller thanH(Πvert) (see Figure 1(d)). The
complexity of the 1-d multiset sorting problem [51] also
has a similar expression, but there each input multiset in-
duces a unique partition and so the situation is even sim-
pler.

2.1. Upper bound

We use a slight variant of Kirkpatrick and Seidel’s
output-sensitive maxima algorithm [45] (in their original
algorithm, only points from Q` are pruned in line 4):

maxima(Q):
1. if |Q| = 1 then return Q
2. divide Q into the left and right halves Q` and Qr

by the median x-coordinate
3. discover the point q with the maximum y-coordinate

in Qr (computable in linear time)
4. prune all points in Q` and Qr that are dominated by q
5. return the concatenation of maxima(Q`) and

maxima(Qr)

We call maxima(S) to start. It is straightforward
to show that the algorithm runs in time O(n log h),
or O(n(H(Πvert) + 1)) time, as was done by Sen
and Gupta [53]. Upper-bounding the running time by
O(n(H(Π) + 1)) for an arbitrary respectful partition Π
of S requires a bit more finesse:

Theorem 2.3 The above 2-d maxima algorithm runs in
O(n(H(S) + 1)) time.

Proof: Consider the recursion tree of the algorithm and
let Xj denote the sublist of all maximal points of S dis-
covered during the first j recursion levels, in left-to-right
order. Let S(j) be the subset of S that survives recursion
level j, i.e., the set of points that have not been pruned
during the first j recursion levels and nj := |S(j)|. Ob-
serve that (i) there can be at most dn/2je points of S(j)

with x-coordinates between any two consecutive points
in Xj , and (ii) all points of S that are strictly below the
staircase of Xj have been pruned during levels 0, . . . , j
of the recursion. The running time is asymptotically
bounded by

∑logn
j=0 nj .

Let Π be any respectful partition of S. Look at a sub-
set Sk in Π. Let Bk be a box enclosing Sk whose interior
lies below the staircase of S. Fix a level j. Suppose the
upper-right corner of Bk has x-coordinate between two
consecutive points qi, qi+1 in Xj . By (ii), the only points
in Bk that can survive level j must have x-coordinates
between qi and qi+1. Thus, by (i), the number of points
in Sk that survive level j is at most min

{
|Sk|, dn/2je

}
.

Since the Sk’s cover the entire point set, with a double
summation we have

logn∑
j=0

nj ≤
∑
k

logn∑
j=0

min
{
|Sk|, dn/2je

}
≤

∑
k

O (|Sk| log(n/|Sk|) + |Sk|+ |Sk|/2 + |Sk|/4 + · · ·)

= O

(∑
k

|Sk|(log(n/|Sk|) + 1)

)
= O(n(H(Π) + 1)).

�

2.2. Lower bound

For the lower-bound side, we first provide an intuitive
justification for the bound nH(S) and point out the sub-
tlety in obtaining a rigorous proof. Intuitively, to cer-
tify that we have a correct answer, the algorithm must
gather evidence for each point p eliminated why it is not
a maximal point, by indicating at least one witness point
in S which dominates p. We can define a partition Π by
placing points with a common witness in the same sub-
set. It is easy to see that this partition Π is respectful.
The entropy bound nH(Π) roughly presents the number
of bits required to encode the partition Π, so in a vague
sense, nH(S) represents the length of the shortest “cer-
tificate” for S. Unfortunately, there could be many valid
certificates for a given input set S (due to possibly mul-
tiple choices of witnesses for each nonmaximal point).
If hypothetically all branches of an algorithm lead to a
common partition Π, then a straightforward information-
theoretic or counting argument would indeed prove the
lower bound. The problem is that each leaf of the deci-
sion tree may give rise to a different partition Π. In the
full version of this paper, we will show that despite the
aforementioned difficulty, it is possible to obtain a proof
of instance optimality via this approach, but the proof re-
quires a more sophisticated counting argument, and also
works with a different definition ofH(S). Moreover, it is
limited specifically to the 2-d maxima problem and does
not extend to 3-d maxima, let alone to nonorthgonal prob-
lems like convex hull.

In this subsection, we describe a different proof, which
generalizes to the other problems that we consider. The
proof is based on an interesting and simple adversary
argument. Here, we concentrate on the order-oblivious
setting. The proofs for the corresponding results in the
random-order setting will appear in the full version of the
paper.

Theorem 2.4 OPT(S) = Ω(n(H(S) + 1)) for the 2-d
maxima problem in the comparison model.

Proof: We prove that a specific respectful partition de-
scribed below not only asymptotically achieves the mini-
mum entropy among all the respectful partitions, but also
provides a lower bound for the running time of any com-
parison based algorithm that solves the 2-d maxima prob-
lem. The construction of the partition uses k-d trees [31]
to define a tree T of axis-aligned boxes, generated top-
down as follows: The root stores the entire plane. For
each node storing box B, if B is strictly below the stair-
case of S, or if B contains just one point of S, then
B is a leaf. Otherwise, if the node is at an odd (resp.
even) depth, divide B into two subboxes by the median
x-coordinate (resp. y-coordinate) among the points of S
inside B. The two subboxes are the children of B. Note

that each box at depth j of T contains at least bn/2jc
points of S.

Our claimed partition, denoted by Πkd-tree, is one
formed by the leaf boxes in this tree T (i.e., points in
the same leaf box are placed in the same subset). Clearly,
Πkd-tree is respectful. We will prove that for any correct
algorithm in A, there exists a permutation of S on which
the algorithm requires at least Ω(nH(Πkd-tree)) compar-
isons.

The adversary constructs a bad permutation for the in-
put by simulating the algorithm; each comparison made
by algorithm is resolved such that the algorithm is forced
many comparisons. During the simulation, we maintain
a box Bp in T for each point p. If Bp is a leaf, the algo-
rithm knows the exact location of p inside Bp. But if Bp
is an internal node, the only information the algorithm
knows about p is that p lies inside Bp. In other words,
p can be assigned any point in Bp without affecting the
outcome of the previous comparisons made.

For each boxB in T , let n(B) be the number of points
p with Bp contained in B. We maintain the invariant that
n(B) ≤ |S ∩ B|. If n(B) = |S ∩ B|, we say that B
is full. If Bp is a leaf we assign p to an arbitrary point in
S∩Bp that has previously not been assigned; we then call
p a fixed point. The invariant ensures that all the points
inside a leaf can be fixed.

Assume the algorithm asks for a comparison, say, of
the x-coordinates, between two points p and q. The main
case is when neither Bp nor Bq is a leaf. In this case, the
comparison is simulated in the following way:

1. If Bp (resp. Bq) is at even depth, we arbitrarily reset
Bp (resp. Bq) to one of its children that is not full.
Thus assume that Bp and Bq are both at odd depths.

W.l.o.g., suppose that the median x-coordinate of
Bp is less than the median x-coordinate of Bq . We
reset Bp to the left child B′p of Bp and Bq to the
right child B′q of Bq; if either B′p or B′q is full we
go to step 2. Now, the knowledge that p and q lie in
B′p and B′q allows us to deduce that p has a smaller
x-coordinate than q. Thus, the adversary declares to
the algorithm that x-coordinate of p is smaller than
that of q and continues with the rest of the simula-
tion.

2. An exceptional case occurs ifB′p is full (or similarly
B′q is full). Here, we reset Bp instead to the sibling
B′′p of B′p but the comparison is not necessarily re-
solved yet, so we go back to step 1.

Note that in both steps the invariant is maintained.
This is because both Bp and B′p cannot be full: we have
|S ∩Bp| = |S ∩B′p|+ |S ∩B′′p | and since Bp is assigned
to pwe have |S∩Bp| ≥ n(Bp) ≥ n(B′p)+n(B′′p)+1 im-
plies that either n(B′p) < |S ∩B′p| or n(B′′p) < |S ∩B′p|.

It remains to handle the case when Bp or Bq is a leaf.
Note that if bothBp andBq are leaves, then all the points
inside them are fixed and p and q are assigned to specific
points within Bp and Bq , meaning the comparison is al-
ready resolved. Otherwise, w.l.o.g., assume Bp is a leaf.
We follow step 1 except that now since p has been fixed,
we compare the actual x-coordinate of p to the median
x-coordinate of Bq , and reset only Bq .

We now prove a lower bound on the number of com-
parisons, T , that the algorithm makes. Let D be the
sum of the depth of Bp over all points p ∈ S. We
will lower bound T in terms of D. Each time we re-
set a box to one of its children in step 1 or 2, D incre-
ments; we say that an ordinary (resp. exceptional) incre-
ment occurs at the parent box if this is done in step 1
(resp. step 2). Each comparison generates only O(1) or-
dinary increments. To take exceptional increments into
account, we use a little amortization argument: At each
box B in T , the number of ordinary increments has to
reach at least b|S ∩B|/2c first, before exceptional incre-
ments can occur, and the number of exceptional incre-
ments is at most d|S ∩ B|/2e. Thus, the total number
of exceptional increments is asymptotically at most the
total number of ordinary increments, which is O(T). It
follows that D = O(T), i.e., T = Ω(D).

Thus, it remains to prove our lower bound for D. We
do this by showing that the algorithm cannot terminate if
there exists a box Bq which is not a leaf: Since Bp is not
a leaf it contains at least two points and is not completely
underneath the staircase of S. We can either move a non-
maximal point upward or a maximal point downward in-
sideBp and obtain a different input that is consistent with
the comparisons made but has a different set of maximal
points. The algorithm would be incorrect on this input: a
contradiction.

Thus, at the end of the simulation, each Bp has depth
Θ(log(n/|S ∩Bp|)). It follows that

T = Ω(D) = Ω

(∑
leafB

|S ∩B| log(n/|S ∩B|)

)
= Ω(nH(Πkd-tree)) = Ω(nH(S)).

�

Remark 2.5 The above proof is inspired by an adversary
argument by Chan [18] for a 1-d problem (the original
proof maintains a dyadic interval for each input point,
while the new proof maintains a box from a hierarchical
subdivision). The proof still holds for weaker versions
of the problem, e.g., where we can report the maxima in
any order, or we just want the number of maximal points
(or the parity of the number). The lower-bound proof
easily extends to any fixed dimension and can be easily
modified to allow comparisons of different coordinates of
any two points p = (x1, . . . , xd) and q = (x′1, . . . , x

′
d),

e.g., testing whether xi < x′j , or even xi < x′j + a for
any constant a. (For a still wider class of test functions,
see the next section.)

3 Convex Hull

We now turn to our main result on 2-d and 3-d convex
hull. It suffices to consider the problem of computing the
upper hull of an input point set S in Rd (d ∈ {2, 3}),
since the lower hull can be computed by running the up-
per hull algorithm on a reflection of S.

We work with the class A of algorithms in a multilin-
ear decision tree model where we can access the input
points only through tests of the form f(p1, . . . , pc) > 0
for a multilinear function f , over a constant number of
input points p1, . . . , pc. We recall the following standard
definition:

Definition 3.1 A function f : (Rd)c → R is multilinear
if the restriction of f is a linear function from Rd to R
when any c−1 of the c arguments are fixed. Equivalently,
f is multilinear if f((x11, . . . , x1d), . . . , (xc1, . . . , xcd))
is a multivariate polynomial function in which each
monomial has the form xi1j1 · · ·xikjk where i1, . . . , ik
are all distinct (i.e., we cannot multiply coordinates from
the same point).

Most of the 2-d and 3-d convex hull algorithms we
know of fit this framework. For example, it supports
the standard determinant test (for deciding whether p1

is above the line through p2, p3, or the plane through
p2, p3, p4), since the determinant is a multilinear func-
tion. For another example, in 2-d we can compare the
slope of the line through p1, p2 and the slope of the
line through p3, p4 by testing the sign of the function
(y2−y1)(x4−x3)−(x2−x1)(y4−y3), which is clearly
multilinear. (See Appendix .1, however, for situations
where non-multilinear test functions arise.)

We adopt the following modified definition of H(S)
(as before, it will not matter whether we insist that the
simplices ∆k below are nonoverlapping):

Definition 3.2 A partition Π of S is respectful if each
subset Sk in Π is either a singleton or can be enclosed
by a simplex ∆k whose interior is completely below the
upper hull of S. Define H(S) to be the minimum of
H(Π) :=

∑
k(|Sk|/n) log(n/|Sk|) over all respectful

partitions Π of S.

3.1. Lower bound

The lower-bound proof for convex hull builds on the
proof for maxima from Section 2.2 but is more involved,
because a k-d tree construction no longer suffices when

addressing nonorthogonal problems. However, known
tools in computational geometry provide an appropriate
analog:

Lemma 3.3 For every set Q of n points in Rd and 1 ≤
r ≤ n, we can partition Q into r subsets Q1, . . . , Qr
each of size Θ(n/r) and find r convex polyhedral cells
γ1, . . . , γr, each of size O(log r), such that Qi is con-
tained in γi, and each hyperplane intersects at most
O(r1−ε) cells. Here, ε > 0 is a constant that depends
only on d.

Proof: (Option 1) We can use Matoušek’s partition
theorem [49], which provides the best constant, namely,
ε = 1/d. Each cell γi is a simplex but the cells may over-
lap. (Note that our application requires that the subset
sizes are lower-bounded by Ω(n/r), which is guaranteed
by Matoušek’s construction.)

(Option 2) For d = 2 or 3, a more elementary so-
lution follows from the 4-sectioning or 8-sectioning the-
orem [36, 58]: for every n-point set Q in R2, there ex-
ist 2 lines that divide the plane into 4 regions each with
n/4 points; for every n-point set Q in R3, there exist
3 planes that divide space into 8 regions each with n/8
points. Since in R2 a line can intersect at most 3 of the
4 regions and in R3 a plane can intersect at most 7 of the
8 regions, a simple recursive application of the theorem
yields ε ≈ 1 − log4 3 for d = 2 and ε ≈ 1 − log8 7 for
d = 3. Each resulting cell γi may have O(log r) facets,
but the cells do not overlap. �

We need another fact, this time, a straightforward ge-
ometric property about multilinear functions:

Lemma 3.4 If f : (Rd)c → R is multilinear and has a
zero in γ1 × · · · × γc where each γi is a convex polytope
in Rd, then f has a zero (p1, . . . , pc) ∈ γ1×· · ·×γc such
that all but at most one point pi is a polytope’s vertex.

Proof: Let (p1, . . . , pc) ∈ γ1 × · · · × γc be a zero of
f . Suppose some pi does not lie on an edge of γi. If we
fix the other c − 1 points, the equation f = 0 becomes
a hyperplane, which intersects γi and thus must intersect
an edge of γi. We can move pi to such an intersection
point. Repeating this process, we may assume that every
pi lies on an edge uivi of γi. Represent the line segment
parametrically as {(1− ti)ui + tivi | 0 ≤ ti ≤ 1}.

Next, suppose that some two points pi and pj are
not vertices. If we fix the other c − 2 points and re-
strict pi and pj to lie on uivi and ujvj respectively, the
equation f = 0 becomes a multilinear function in two
parameters ti, tj ∈ [0, 1]. The equation has the form
atitj + a′ti + a′′tj + a′′′ = 0 and is a hyperbola, which
intersects [0, 1]2 and must thus intersect the boundary of
[0, 1]2. We can move pi and pj to correspond to such

a boundary intersection point. Then one of pi and pj is
now a vertex. This process can be repeated. �

We are now ready for the main proof. Again, we focus
on the order-oblivious setting and leave the random-order
setting to Appendix ??.

Theorem 3.5 OPT(S) = Ω(n(H(S) + 1)) for the upper
hull problem in the multilinear decision tree model.

Proof: We define a partition tree T as follows: Each
node v stores a pair (Q(v), γ(v)), where Q(v) is a subset
of S enclosed inside a convex polyhedral cell γ(v). For
each node v, let Γ(v) denote the intersection of γ(u) over
all ancestors u of v. The root stores (S,Rd). If Γ(v) is
strictly below the upper hull of S, or if |Q(v)| drops be-
low a constant, then v is a leaf. Otherwise, fix a parameter
r = b and partition Q(v) by Lemma 3.3 to get b subsets
Q1, . . . , Qb and cells γ1, . . . , γb. The pairs (Qi, γi) are
the children of v. For a node v at depth j of the tree T we
have |Q(v)| ≥ n/Θ(b)j and since Γ(v) is the intersection
of at most j convex polyhedra of size polylogarithmic in
b, it has O(j log b) = O(bj) facets.

Let Πpart-tree be the partition formed by the subsets
Q(v) at the leaves v in T . Let Π̃part-tree be a refine-
ment of this partition obtained as follows: for each leaf
v at depth j, we triangulate Γ(v) into (bj)O(1) simplices
and subpartition Q(v) by placing points of Q(v) from
the same simplex in the same subset; if |Q(v)| drops
below a constant, we subpartition Q(v) into singletons.
Note that the subpartitioning of Q(v) causes the entropy
to decrease by at most O((|Q(v)|/n) log(bj)O(1)) =
O((|Q(v)|/n) log log(n/|Q(v)|)) for a constant b. The
total decrease in entropy is thus o(H(Πpart-tree)). So
H(Π̃part-tree) = Θ(H(Πpart-tree)). Clearly, Π̃part-tree is re-
spectful.

The adversary constructs a bad permutation for the in-
put points as follows. During the simulation, we maintain
a node vp in T for each point p. If vp is a leaf, the algo-
rithm knows the exact location of p inside Γ(vp). But if
vp is an internal node, the only information the algorithm
knows about p is that p lies inside Γ(vp).

For each node v in T , let n(v) be the number of points
p with vp in the subtree rooted at v. We maintain that
n(v) ≤ |Q(v)|. If n(v) = |Q(v)|, we say that v is full.
If vp is a leaf, we fix p to an arbitrary unassigned point
in Q(vp). The invariant ensures that such an assignment
can always be made.

Suppose the simulation encounters a test
“f(p1, . . . , pc) > 0?”.

1. Consider a c-tuple (v′p1 , . . . , v
′
pc

) where v′pi
is a

child of vpi
. We say that the tuple is bad if f has

a zero in γ(v′p1)×· · ·×γ(v′pc
), and good otherwise.

We prove the existence of a good tuple by bound-
ing the the the number of bad tuples from above: If
we fix all but one point pi, the restriction of f can
have a zero in at most O(b1−ε) cells of the form
γ(v′pi

), by Lemma 3.3 and the multi-linearity of f .
There are O(bc−1 polylog b) choices of c − 1 ver-
tices of the cells of the form γ(v′p1), . . . , γ(v′pc

).
By Lemma 3.4, it follows that the number of
bad tuples is at most O(bc−1 polylog b · b1−ε) =
O(bc−ε polylog b). As the number of tuples is
Θ(bc), if b is a sufficiently large constant, then
we can guarantee that some tuple (v′p1 , . . . , v

′
pc

) is
good. We reset vpi to v′pi

for each i = 1, . . . , c.
Since the tuple is good, the sign of f is determined
and the comparison is resolved.

2. In the exceptional case when some v′pi
is full, we

reset vpi
instead to an arbitrary non-full child that is

not full, and go back to step 1.

The above description can be easily modified in the case
when some of the nodes vpi are leaves, i.e., when some
of the points pi are already fixed (we just have to lower c
by the number of fixed points).

Let T be the number of tests made. Let D be the
sum of the depth of vp over all points p ∈ S. The
rest of the argument is almost identical to one described
for 2-d maxima: The same amortization argument as
before (after adjustments of constant factors), proves
T = Ω(D). We observe that the algorithm cannot ter-
minate if there exists a box Bq which is not a leaf;
thus, at the end of the simulation, each node vp has
depth Θ(log(n/|Q(vp)|)). It follows that T = Ω(D) =
Ω(
∑

leaf v |Q(v)| log(n/|Q(v)|)) = Ω(nH(Πpart-tree)) =
Ω(nH(Π̃part-tree)) = Ω(nH(S)).

�

3.2. Upper bound

In 2-d, an O(n(H(S) + 1)) upper bound can be estab-
lished by using a version of Kirkpatrick and Seidel’s (or
Chan, Snoeyink, and Yap’s) convex hull algorithm. The
analysis is similar enough to that for 2-d maxima from
Section 2.2 and will be presented in the full version of
this paper. For the rest of this section we focus on the 3-d
case.

Unlike in 2-d, it is unclear if any of the known algo-
rithms can be modified for this purpose. For example, it
is already nontrivial how to get an O(nH(Πvert)) upper
bound for the specific partition Πvert where points under-
neath the same upper-hull facet are placed in the same
subset. Fortunately, informed by our lower-bound proof,
we discover a solution based on partition trees.

We need the following subroutine by Chan [15, 16],
which is obtained by applying a simple grouping trick in

conjunction with standard data structures (see also [14]).

Lemma 3.6 We can answer a sequence of r linear pro-
gramming queries over a given set of n halfspaces in R3

in total time O(n log r + r log n).

Our new upper hull algorithm is as follows:

1. Q← S
2. for j = 0, 1, . . . , dlog(δ log n)e do
3. partition Q by Lemma 3.3 to get rj := 22j

subsets
Q1, . . . , Qrj and cells γ1, . . . , γrj

4. for each i do
5. if γi is strictly below the upper hull of Q then

prune all points in Qi from Q
6. return the upper hull of the remaining set Q

Line 3 takes O(|Q| log rj) time by known algorithms
for Lemma 3.3 (either option) [49]. The test in line 5 re-
duces to deciding whether each vertex of γi is strictly be-
low the upper hull ofQ. This can be done (without know-
ing the upper hull beforehand) by answering a 3-d linear
programming query in the dual. Using Lemma 3.6, we
can perform lines 4–6 collectively in time O(|Q| log rj +
rj polylog rj log n); note that

∑
j rj = O(nδ), and so

the second term is negligible by choosing a constant
δ < 1. Line 6 is done by running any O(|Q| log |Q|)-
time algorithm; note that log |Q| = O(log rj) in the last
iteration.

Theorem 3.7 The above 3-d upper hull algorithm runs
in O(n(H(S) + 1)) time.

Proof: Let nj be the size of Q just after iteration j.
The total running time is asymptotically bounded by∑
j nj−1 log rj .
Let Π be any respectful partition of S. Look at a

subset Sk in Π. Let ∆k be a simplex enclosing Sk
whose interior lies below the upper hull of S. Fix
an iteration j. Consider the subsets Q1, . . . , Qrj and
cells γ1, . . . , γrj

at this iteration. If a cell γi is com-
petely inside ∆k, then all points inside γi are pruned.
Since O(r1−ε

j) cells γi intersect the boundary of ∆k,
the the number of points in Sk that remain in Q af-
ter iteration j is at most min

{
|Sk|, O(r1−ε

j · n/rj)
}

=
min

{
|Sk|, O(n/rεj)

}
. The Sk’s cover the entire point

set, so with a double summation we have∑
j

nj log rj+1 ≤
∑
k

∑
j

min
{
O(2j)|Sk|,

n

2Ω(ε2j)

}
= O(n(H(Π) + 1)).

�

Remark 3.8 Variants of the algorithm are possible. For
example, instead of recomputing the partition in line 3 at
each iteration from scratch, a better option is to build the
partitions hierarchically as a tree. Nodes are pruned as
the tree is generated level by level.

One minor technicality is that the above description of
the algorithm does not discuss the low-level test functions
involved. In Appendix .1, we explain how a modification
of the algorithm can indeed be implemented in the multi-
linear model.

The same approach works for 3-d maxima as well.
In the comparison model, the partitions can be con-
structed by a k-d tree construction, and linear program-
ming queries are replaced by queries to test whether a
point lies underneath the staircase, which can be done
via an analog of Lemma 3.6.

4 Discussion

Although we have argued for the order-oblivious form
of instance optimality, we are not denigrating adaptive al-
gorithms that exploit the order of the input. Indeed, for
some geometric applications, the input order may exhibit
some sort of locality of reference which can speed up al-
gorithms. There are various parameters that one can de-
fine to address this issue, but it is unclear how a unified
theory of instance optimality can be developed for order-
dependent algorithms for, say, the convex hull problem.

We do not claim that the algorithms described here
are the best in practice, because of possibly larger con-
stant factors (especially those that use Matoušek’s parti-
tion trees), although some variations of the ideas might
actually be useful. In some sense, our results can be in-
terpreted as a theoretical explanation for why heuristics
based on bounding boxes and BSP trees perform so well
(e.g., see [5] on experimental results for the red/blue seg-
ment intersection problem).

Note that specializations of our techniques to 1-d
also can easily lead to instance-optimal results for the
multiset-sorting problem and the problem of computing
the intersection of two (unsorted) sets. Adaptive algo-
rithms for similar 1-d problems (e.g., [51]) were studied
in settings different from ours.

Not all standard geometric problems admit nontriv-
ial instance-optimal results in the order-oblivious setting.
For example, computing the Voronoi diagram of n points
or the trapezoidal decomposition of n disjoint line seg-
ments, both having Θ(n) sizes, requires Ω(n log n) time
for every point set by the naive information-theoretical
argument. Computing the (L∞-)closest pair for a
monochromatic point set requires Ω(n log n) time for ev-
ery point set by our adversary lower-bound argument.

An open problem is to strengthen our lower bound
proofs to allow for a more general class of test functions

beyond multilinear functions, e.g., arbitrary fixed-degree
algebraic functions.

It remains to see how widely applicable the concept
of instance optimality is. To inspire further work, we
mention the following geometric problems for which we
currently are unable to obtain instance-optimal results:
(a) reporting all intersections between a set of disjoint
red (nonorthogona) line segments and a set of disjoint
blue line segments in 2-d; (b) computing the L2- or L∞-
closest pair between a set of red points and a set of blue
points in 2-d; (c) computing the diameter or the width of
a 2-d point set; (d) computing the lower envelope of a set
of (perhaps disjoint) line segments in 2-d.

Finally, we should mention that all our current results
concern at most logarithmic-factor improvements. Ob-
taining some form of instance-optimal results for prob-
lems with ω(n log n) worst-case complexity (e.g., off-
line triangular range searching, 3SUM-hard problems,
. . .) would be even more fascinating.

References

[1] P. Afshani and T. M. Chan. Optimal halfspace range
reporting in three dimensions. In Proc. 20th ACM-
SIAM Symposium on Discrete Algorithms, pages 180–
186, 2009.

[2] P. K. Agarwal and J. Erickson. Geometric range search-
ing and its relatives. In B. Chazelle, J. E. Goodman, and
R. Pollack, editors, Advances in Discrete and Compu-
tational Geometry, volume 223 of Contemporary Math-
ematics, pages 1–56. American Mathematical Society,
Providence, RI, 1999.

[3] P. K. Agarwal and J. Matoušek. Ray shooting and para-
metric search. SIAM Journal on Computing, 22(4):794–
806, 1993.

[4] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Self-
improving algorithms. In Proc. 17th ACM-SIAM Sympo-
sium on Discrete Algorithm, pages 261–270, 2006.

[5] D. S. Andrews, J. Snoeyink, J. Boritz, T. Chan, G. Den-
ham, J. Harrison, and C. Zhu. Further comparisons of al-
gorithms for geometric intersection problems. In In Proc.
6th International Symposium on Spatial Data Handling,
pages 709–724, 1994.

[6] S. Arya, T. Malamatos, and D. M. Mount. A simple
entropy-based algorithm for planar point location. ACM
Transactions on Algorithms, 3(2):17, 2007.

[7] S. Arya, T. Malamatos, D. M. Mount, and K. C. Wong.
Optimal expected-case planar point location. SIAM Jour-
nal on Computing, 37(2):584–610, 2007.

[8] I. Baran and E. D. Demaine. Optimal adaptive algorithms
for finding the nearest and farthest point on a parametric
black-box curve. International Journal of Computational
Geometry and Applications, 15(4):327–350, 2005.

[9] J. Barbay and E. Chen. Adaptive planar convex hull al-
gorithm for a set of convex hulls. In Proc. 20th Cana-
dian Conference on Computational Geometry, pages 47–
50, 2008.

[10] M. Ben-Or. Lower bounds for algebraic computation
trees. In Proc. 15th ACM Symposium on Theory of Com-
puting, pages 80–86, 1983.

[11] J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast lin-
ear expected-time algorithms for computing maxima and
convex hulls. In Proc. 1st ACM-SIAM Symposium on Dis-
crete Algorithms, pages 179–187, 1990.

[12] B. K. Bhattacharya and S. Sen. On a simple, practical,
optimal, output-sensitive randomized planar convex hull
algorithm. Journal of Algorithms, 25(1):177–193, 1997.

[13] J. Boyar and L. M. Favrholdt. The relative worst order
ratio for online algorithms. ACM Transactions on Algo-
rithms, 3(2):22, May 2007.

[14] T. M. Chan. Fixed-dimensional linear programming
queries made easy. In Proc. 12th ACM Symposium on
Computational Geometry, pages 284–290, 1996.

[15] T. M. Chan. Optimal output-sensitive convex hull algo-
rithms in two and three dimensions. Discrete and Compu-
tational Geometry, 16:361–368, 1996.

[16] T. M. Chan. Output-sensitive results on convex hulls, ex-
treme points, and r elated problems. Discrete and Com-
putational Geometry, 16:369–387, 1996.

[17] T. M. Chan. Random sampling, halfspace range report-
ing, and construction of (≤ k)-levels in three dimensions.
SIAM Journal on Computing, 30:561–575, 2000.

[18] T. M. Chan. Comparison-based time–space lower bounds
for selection. In Proc. 20th ACM-SIAM Symposium on
Discrete Algorithms, pages 140–149, 2009.

[19] T. M. Chan. Ω(n log n) lower bounds made easy. Note,
University of Waterloo, in preparation.

[20] T. M. Chan, J. Snoeyink, and C.-K. Yap. Primal dividing
and dual pruning: Output-sensitive construction of four-
dimensional polytopes and three-dimensional Voronoi di-
agrams. Discrete and Computational Geometry, 18:433–
454, 1997.

[21] B. Chazelle. A functional approach to data structures and
its use in multidi mensional searching. SIAM Journal on
Computing, 17(3):427–462, 1988.

[22] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete and Computational Geometry, 6:485–524,
1991.

[23] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas,
J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting
in polygons using geodesic triangulations. Algorithmica,
12(1):54–68, 1994.

[24] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of
geometric duality. BIT, 25(1):76–90, 1985.

[25] B. Chazelle and J. Matoušek. Derandomizing an output-
sensitive convex hull algorithm in three dimensions. Com-
putational Geometry: Theory and Applications, 5:27–32,
1995.

[26] K. L. Clarkson. More output-sensitive geometric algo-
rithms. In Proc. 35th IEEE Symposium on Foundations of
Computer Science, pages 695–702, 1994.

[27] K. L. Clarkson and C. Seshadhri. Self-improving algo-
rithms for Delaunay triangulations. In Proc. 24th ACM
Symposium on Computational Geometry, pages 148–155,
2008.

[28] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry, II. Discrete and
Computational Geometry, 4:387–421, 1989.

[29] S. Collette, V. Dujmović, J. Iacono, S. Langerman, and
P. Morin. Distribution-sensitive point location in con-
vex subdivisions. In Proc. 19th ACM-SIAM Symposium
on Discrete Algorithms, pages 912–921, 2008. See also
http://arxiv.org/abs/0901.1908.

[30] M. de Berg, M. Katz, A. F. van der Stappen, and
J. Vleugels. Realistic input models for geometric algo-
rithms. Algorithmica, 34:81–97, 2002.

[31] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 1997.

[32] E. D. Demaine, D. Harmon, J. Iacono, D. Kane, and
M. Pǎtraşcu. The geometry of binary search trees. In
Proc. 20th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 496–505, 2009.

[33] E. D. Demaine and A. López-Ortiz. A linear lower bound
on index size for text retrieval. Journal of Algorithms,
48(1):2–15, 2003.

[34] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive
set intersections, unions, and differences. In Proc. 11th
ACM-SIAM Symposium on Discrete Algorithms, pages
743–752, 2000.

[35] V. Dujmović, J. Howat, and P. Morin. Biased range trees.
In Proc. 20th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 486–495, 2009.

[36] H. Edelsbrunner. Algorithms in Combinatorial Geometry.
Springer-Verlag, 1987.

[37] H. Edelsbrunner and W. Shi. An O(n log2 h) time al-
gorithm for the three-dimensional convex hull problem.
SIAM Journal on Computing, 20(2):259–269, 1990.

[38] J. Erickson. Dense point sets have sparse Delaunay trian-
gulations. Discrete and Computational Geometry, 33:83–
115, 2005.

[39] R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-
tion algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[40] A. Golynski. Cell probe lower bounds for succinct data
structures. In Proc. 20th ACM-SIAM Symposium on Dis-
crete Algorithms, pages 625–634, 2009.

[41] J. Iacono. Expected asymptotically optimal planar point
location. Computational Geometry: Theory and Applica-
tions, 29:19–22, 2004.

[42] N. Jones. Computability and Complexity: From a Pro-
gramming Perspective. MIT Press, 1997.

[43] C. Kenyon. Best-fit bin-packing with random order. In
Proc. 7th ACM-SIAM Symposium on Discrete Algorithms,
pages 359–364, 1996.

[44] D. G. Kirkpatrick. Optimal search in planar subdivisions.
SIAM Journal on Computing, 12(1):28–35, 1983.

[45] D. G. Kirkpatrick and R. Seidel. Output-size sensitive al-
gorithms for finding maximal vectors. In Proc. 1st ACM
Symposium on Computational Geometry, pages 89–96,
1985.

[46] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SIAM Journal on Computing,
15(1):287–299, 1986.

[47] J. Matoušek. Derandomization in computational geom-
etry. In J.-R. Sack and J. Urrutia, editors, Handbook of
Computational Geometry, pages 559–595. Elsevier Sci-
ence Publishers B.V. North-Holland, Amsterdam, 2000.

[48] J. Matousek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl.
Fat triangles determine linearly many holes. SIAM Jour-
nal on Computing, 23(1):154–169, 1994.

[49] J. Matoušek. Efficient partition trees. Discrete and Com-
putational Geometry, 8(3):315–334, 1992.

[50] S. Moran, M. Snir, and U. Manber. Applications of Ram-
sey’s theorem to decision tree complexity. Journal of the
ACM, 32(4):938–949, 1985.

[51] J. I. Munro and P. M. Spira. Sorting and searching in
multisets. SIAM Journal on Computing, 5(1):1–8, 1976.

[52] F. P. Preparata and M. I. Shamos. Computational Geome-
try: An Introduction. Springer-Verlag, 1985.

[53] S. Sen and N. Gupta. Distribution-sensitive algorithms.
Nordic Journal on Computing, 6:194–211, 1999.

[54] J. Snoeyink. Point location. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry, chapter 30, pages 559–574. CRC Press
LLC, Boca Raton, FL, 1997.

[55] R. Wenger. Randomized quickhull. Algorithmica,
17:322–329, 1997.

[56] A. C.-C. Yao. A lower bound to finding convex hulls.
Journal of the ACM, 28:780–787, 1981.

[57] A. C.-C. Yao. Lower bounds for algebraic computation
trees with integer inputs. SIAM Journal on Computing,
20(4):655–668, 1991.

[58] F. F. Yao, D. P. Dobkin, H. Edelsbrunner, and M. S. Pater-
son. Partitioning space for range queries. SIAM Journal
on Computing, 18(2):371–384, 1989.

.1 On the multilinear model

Many commonly encountered test functions in geo-
metric algorithms are multilinear. For example, in 3-d,
the predicate ABOVE(p1, . . . , p4) which returns true iff
p1 is above the plane through p2, p3, p4, reduces to test-
ing signs of multilinear functions.

More generally, say that a function
f : (Rd)c → Rd is quasi-multilinear if
f(p1, . . . , pc) = (f1(p1, . . . , pc), . . . , fd(p1, . . . , pc))
where fi = hi(p1, . . . , pc)/g(p1, . . . , pc) in which
f1, . . . , fd, g : (Rd)c → R are multi-linear functions.
For example, in 3-d, the function PLANE(p1, . . . , p4)
which returns the dual of the plane through p1, . . . , p4,
or the function INTERSECT(p1, . . . , p4) which returns
the intersection of the dual planes of p1, . . . , p4, are
quasi-multilinear. We can get more quasi-multilinear
and multilinear functions by composition: e.g., if
f1, . . . , f4 : (R3)4 → R3 are quasi-multilinear, then
INTERSECT(f1(p1, . . . , p4), , . . . , f4(p13, . . . , p16)) is
quasi-multilinear in p1, . . . , p16, by expanding all the
determinants. More elaborately, a predicate such as

ABOVE(p17, p18, p19, INTERSECT(PLANE(p1, . . . , p4), PLANE(p5, . . . , p8), , . . . , PLANE(p13, . . . , p16)))

also reduces to multilinear tests. However, we may run
into problems if a point occurs more than once, e.g.,

ABOVE(p17, p18, p1, INTERSECT(PLANE(p1, . . . , p4), PLANE(p5, . . . , p8), . . . , PLANE(p13, . . . , p16))),

since expansion of the determinants may yield monomi-
als of the wrong type. In most 2-d algorithms, this kind of
tests does not arise. Unfortunately, they can occasionally
happen in our 3-d upper hull algorithm in Section 3.2.
We describe some modifications to the algorithm that can
avoid these problematic tests.

First, for the partition construction, it would be easier
to choose the second option in the proof of Lemma 3.3.
By perturbing the dividing planes, one can show the ex-
istence of 3 planes each passing through 3 input points,
where the 9 points are distinct, so that each of the re-
sulting 8 regions contains n/8 ± O(1) points. A brute-
force algorithm can find the 3 planes in polynomial time.
We can reduce the construction time by using the stan-
dard technique of ε-approximations [47] (at the expense
of a small change in the constant). It can be checked that
known constructions for ε-approximations fits in the mul-
tilinear model (it suffices to check the implementation of
the “subsystem oracle”). As a result, we can ensure that
the cells are all defined by planes that pass through 3 in-
put points, where no two planes share a common defin-
ing point. A vertex v of a cell is an intersection of 3 such
planes and is defined by a set of 9 distinct input points,
denoted DEF(v).

A problem occurs in testing whether a vertex v of a
cell γi lies below the upper hull, specifically, when we

try to compare v against a feature that share a common
defining point. For this reason, we weaken the test in
line 5: we prune only when each vertex v of γi lies strictly
below the upper hull of Q − DEF(v). It can be checked
that some version of Lemma 3.6 can support O(r) such
queries in the multilinear model, in O(n log r + rn1−α)
time for some α > 0.

Since the pruning condition is weaker, the analysis
needs more effort. We assume that the partition in line 3
is generated hierarchically in the following way: first we
find a partition of Q by Lemma 3.3 with √rj subsets Q′`
and cells γ′`; then for each subset Q′`, we find a partition
of Q′` again by Lemma 3.3 with √rj subsubsets Qi and
cells γi.

In the second paragraph of the proof of Theorem 3.7,
we proceed differently. Suppose a point p lies in the sub-
set Q′` and the subsubset Qi. Observe that if the corre-
sponding cells γ′` and γi are both completely inside ∆k,
then all points inside γi are pruned. This is because for
each vertex v of the cell γi, the defining points DEF(v) are
contained in Q′` ⊂ γ′` and so cannot appear on the upper
hull of Q; the vertex v lies strictly below the upper hull
ofQ, which coincides with the upper hull ofQ−DEF(v).

At most O(√rj1−ε) cells γ′` intersect the boundary
of ∆k. At most O(√rj ·

√
rj

1−ε) cells γi inter-
sect the boundary of ∆k. Hence, the number of
points in Sk that remain in Q after iteration j is at most
min

{
|Sk|, O(√rj1−ε · n/√rj +√rj ·

√
rj

1−ε · n/rj)
}

=

min
{
|Sk|, O(n/rε/2j)

}
. The rest of the proof is then the

same, after readjusting ε.

A Appendix 2: Other Applications

We can apply our techniques to obtain instance-
optimal algorithms for a number of geometric problems
in the order-oblivious and random-order setting:

1. Off-line halfspace range reporting in 2-d and 3-d:
given a set S of n points and halfspaces, report the
subset of points inside each halfspace. Algorithms
with Θ(n log n + K) running time [24, 17, 1] are
known for total output size K (the 3-d algorithm is
randomized).

2. Off-line dominance reporting in 2-d and 3-d: given
a set S of red/blue points, report the subset of red
points dominated by each blue point. The problem
has similar complexity as in item 1.

3. Orthogonal segment intersection in 2-d: given a
set S of n horizontal/vertical line segments, report
all intersections between the horizontal and vertical
segments, or count the number of such intersections.

The problem is known to have worst-case complex-
ity Θ(n log n+K) in the reporting version, for out-
put size K, and complexity Θ(n log n) in the count-
ing version [31, 52].

4. Bichromatic L∞-close pairs in 2-d: given a set S of
n red/blue points in 2-d, report all pairs (p, q) where
p is red, q is blue, and p and q have L∞-distance at
most 1, or count the number of such pairs. Standard
techniques in computational geometry [31, 52] yield
algorithms with the same complexity as in item 3.

5. Off-line orthogonal range searching in 2-d: given a
set S of n points and axis-aligned rectangles, report
the subset of points inside each rectangle, or count
the number of such points inside each rectangle. The
worst-case complexity is the same as in item 3.

6. Off-line point location in 2-d: given a set S of n
points and a planar connected polygonal subdivi-
sion of size O(n), report the face in the subdivi-
sion containing each point. Standard data struc-
tures [31, 52, 54] imply a worst-case running time
of Θ(n log n).

For each of the above problems, it is not difficult to
see that certain input sets are indeed “easier” than others,
e.g., if the horizontal segments and the vertical segments
respectively lie inside two bounding boxes that are dis-
joint, then the orthogonal segment intersection problem
can be solved in O(n) time.

Note that although some of the above problems may
be reducible to others in terms of worst-case complex-
ity, the reductions may not make sense in the instance-
optimality setting. For example, an instance-optimal al-
gorithm for a problem does not imply an instance-optimal
algorithm for a restriction of the problem in a subdomain,
because in the latter case, we are competing against algo-
rithms that have to be correct only for input from this
subdomain.

A.1 Reporting problems

Many of the problems listed above belong to the fol-
lowing common framework. Let R ⊂ Rd × Rd′

be a
relation for some constant dimensions d and d′. We say
that a red point p ∈ Rd and a blue point q ∈ Rd′

interact
if (p, q) ∈ R. We consider the reporting problem: given
a set S containing red points in Rd and blue points in Rd′

of total size n, report all K interacting red/blue pairs of
points in S. Note that by scanning the output pairs, we
can collect the subset of all blue points that interact with
each red point, in O(K) additional time.

We say that a red (resp. blue) cell γ is uninteresting
to S if every red (resp. blue) point in γ interacts with

exactly the same subset of blue (resp. red) points in S.
We redefineH(S) as follows:

Definition A.1 A partition Π of S is respectful if each
subset Sk in Π either is a singleton or is a monochromatic
subset of points that can be enclosed by a simplex ∆k that
is uninteresting to S. Define H(S) to be the minimum
of H(Π) :=

∑
k(|Sk|/n) log(n/|Sk|) over all respectful

partitions Π of S.

It is straightforward to modify the proofs
from Section 3.1 and Section ?? to show an
OPT(S),OPTavg(S) = Ω(n(H(S) + 1) + K) lower
bound for this problem: We now keep two partition trees,
one for each color. If Γ(v) is uninteresting to S, we make
v a leaf. At the end, if some red (resp. blue) node vp is
not a leaf, we can move p to some point inside Γ(vp) and
change the answer. (The Ω(K) term in the lower bound
is obvious, by the way.)

For the upper-bound side, we need three requirements
aboutR for some constant α > 0:

(A) There is a worst-case algorithm for the reporting
problem that runs in O(n log n+K) time.

(B) There is a data structure for the blue (resp. red)
points in S, with O(n log n) preprocessing time,
such that we can report all κ blue (resp. red) points
interacting with a query red (resp. blue) point in
O(n1−α + κ) time.

(C) There is a data structure for the blue (resp. red)
points in S, with O(n log n) preprocessing time,
such that we can test whether a query red (resp. blue)
simplex γ is uninteresting to S in O(n1−α) time.

Under these assumptions, it is straightforward to mod-
ify the algorithm from Section ?? to anO(n(H(S)+1)+
K)-time algorithm: In line 3, we partition the red points
of Q first. In line 5, if some red cell γi is uninteresting
to Q, then we find the subset Z of blue points interacting
with an arbitrary red point in γi, output all pairs between
the red points of Qi and the blue points of Z, and prune
the red points of Qi from Q. The test requires querying
the data structure in (C) (after triangulating γi); the sub-
set Z can be found by querying the data structure in (B).
The grouping technique by Chan [16] yields an analog
of Lemma 3.6 with running time O(n log r+ rn1−α) for
r queries of type (C), and O(n log r + rn1−α + κ) for
r queries of type (B) with total output size κ (since the
problems in (B) and (C) are “decomposable”). Before
moving to the next iteration, we redo lines 3–5, this time
partitioning the blue points of Q and pruning red points.
At the end, in line 6, we switch to the algorithm in (A).
The same analysis then goes through, by choosing a con-
stant δ < α.

Note that for orthogonal problems in the comparison
model, we can make all the cells (all the γ’s and ∆’s)
axis-aligned boxes, by reverting to a k-d tree construc-
tion.

We now check that the requirements are satisfied for
some specific reporting problems.

• Off-line halfspace range reporting in 2-d and 3-d:
It suffices to consider lower halfspaces in the in-
put. Color the given points red, and map the given
lower halfspaces to blue points by duality. The data
structure problem in (B) is just halfspace range re-
porting. The data structure problem in (C) is equiv-
alent to testing whether a query simplex intersects
a given set of hyperplanes (lines in 2-d or planes
in 3-d); this reduces to ray shooting (or segment
emptiness) queries in a hyperplane arrangement, for
which there are known results [3, 49]. Requirement
(A) is satisfied in 2-d and 3-d (the 3-d algorithm is
randomized).

• Off-line dominance reporting in 2-d and 3-d: The
data structure problem in (B) is just dominance re-
porting. The data structure problem in (C) is equiva-
lent to testing whether all the corners of a query box
are dominated by the same number of points from
a given point set. This reduces to orthogonal range
counting [2, 31, 52].

• Orthogonal segment intersection in 2-d: Map each
each horizontal line segment (x′, y)(x′′, y) to a red
point (x′, x′′, y) ∈ R3 and each vertical line seg-
ment (x, y′)(x, y′′) to a blue point (x, y′, y′′) ∈
R3. These mappings to R3 are bijective. The data
structure problem in (B) corresponds to reporting
the vertical segments from a given set that inter-
sect a query horizontal segment. The data struc-
ture problem in (C) is more complicated: for a
query box γ = [ξ1, ξ2] × [ξ3, ξ4] × [ξ5, ξ6], we
want to decide whether there exists a horizontal
segment (x′, y)(x′′, y) with (x′, x′′, y) ∈ γ that
intersects a given set of vertical segments. This
is equivalent to testing whether a query rectan-
gle [min{ξ1, ξ3},max{ξ2, ξ4}] × [ξ5, ξ6] intersects
a given set of vertical segments. Both data structure
problems reduce to orthogonal intersection search-
ing (which in turn reduces to orthogonal range
searching by lifting to a higher dimension, and thus
admits data structures with O(n log n) preprocess-
ing time and O(nε) query time). Clearly, the result-
ing algorithm works in the comparison model.

• Bichromatic L∞-close pairs in 2-d: The problem in
(B) corresponds to reporting all points of a given
point set that are inside a query square of side

length 2. The problem in (C) corresponds to decid-
ing, for a query box γ = [ξ1, ξ2]× [ξ3, ξ4], whether
[ξ1−1, ξ2+1]×[ξ3−1, ξ4+1] contains a point from
a given set. Both data structure problems reduce to
orthogonal range searching.

Note that here the resulting algorithm requires
slightly more general tests of the form mentioned in
Remark 2.5, which are allowed in the lower-bound
proof.

• Off-line orthogonal range reporting in 2-d: Color
the given points red, and map each rectangle with
corners (x1, y1), (x1, y2), (x2, y1), (x2, y2) to a blue
point (x1, x2, y1, y2) ∈ R4. The mapping to R4 is
bijective. The blue data structure problem in (B)
corresponds to reporting all points from a given set
that are inside a query rectangle. The red data struc-
ture problem in (B) corresponds to reporting all rect-
angles from a given set that contain a query point.

The red data structure problem in (C) corresponds
to deciding, for a query box γ = [ξ1, ξ2]× [ξ3, ξ4]×
[ξ5, ξ6]×[ξ7, ξ8], whether all rectangles with corners
(x1, y1), (x1, y2), (x2, y1), (x2, y2), (x1, x2, y1, y2) ∈
γ, contain the same number of points from a
given set. This is equivalent to testing whether
the rectangle [min{ξ1, ξ3},max{ξ2, ξ4}] ×
[min{ξ5, ξ7},max{ξ6, ξ8}] contains the
same number of points from a given set as
the rectangle [max{ξ1, ξ3},min{ξ2, ξ4}] ×
[max{ξ5, ξ7},min{ξ6, ξ8}].

The blue data structure problem in (C) corresponds
to deciding, for a query point γ = [ξ1, ξ2]× [ξ3, ξ4],
whether γ intersects any rectangle from a given set.

All these data structure problems reduce to orthogo-
nal range/intersection searching.

A.2 Counting problems

We can also consider counting problems where we
want the total number of interacting red/blue pairs. We
just need to change requirement (A) to the existence of
a counting algorithm that runs in O(n log n) time, and
requirement (B) to the existence of a similar counting
data structure without the O(κ)-term penalty. These re-
quirements are satisfied by orthogonal segment intersec-
tion counting, bichromatic L∞-close pairs, and off-line
orthogonal range counting. The same lower- and upper-
bound proofs yields Θ(n(H(S) + 1)).

If we want individual counts, i.e., the number of red
points that interact with each blue point, we need a further
assumption—that the data structure in (B) can operate in
the semigroup model [2]. (This assumption is true for

the specific problems mentioned in the preceding para-
graph.) This way, we can report all interacting red/blue
pairs as a disjoint union of bicliques Pi × Qi with to-
tal sizes

∑
i(|Pi| + |Qi|) bounded by O(n(H(S) + 1)),

without the O(K)-term penalty. We can keep a counter
for each blue point, scan through each biclique, and add
the number of red points in the biclique to the counter of
each blue point in the biclique, in total additional time
O(
∑
i(|Pi| + |Qi|)), which is absorbed in the overall

cost. We assume that the algorithm in requirement (A)
can produce individual counts but does not need to be the
semigroup model. At the end (line 6), we can add the
individual counts produced by this algorithm to the cor-
responding counters of each blue point.

A.3 Detection problems?

We can also consider detection problems where we
simply want to decide whether there exists an interact-
ing red/blue pair. Here, we redefine H(S) by redefining
“uninteresting”: a red (resp. blue) cell γ is now consid-
ered uninteresting to S if no red (resp. blue) point in γ
interacts with any blue (resp. red) points in S. We change
requirements (A) and (B) to the existence of counting al-
gorithms and data structures without the O(K) and O(κ)
terms.

The proof of the upper bound O(n(H(S) + 1)) is the
same, but the proof of the lower bound Ω(n(H(S) + 1))
only goes through for instances with a NO answer: at the
end, if some red (resp. blue) node vp is not a leaf, we can
move p to some point inside Γ(vp) and change the answer
from NO to YES.

YES instances are problematic, but this is not a weak-
ness of our technique but of the model: on every input
set S with a YES answer, OPT(S) is in fact O(n). To
see this, consider an input set S for which there exists
an interacting pair (p, q). An algorithm that is “hard-
wired” with the ranks of p and q in S with respect to, say,
the x-sorted order of S can first find p and q from their
ranks by linear-time selection, verify that p and q interact
in constant time, and return YES if true or run a brute-
force algorithm otherwise. Then on every permutation
of this particular set S, the algorithm always takes linear
time. Many problems admit Ω(n log n) worst-case lower
bounds even when restricted to YES instances, and for
such problems, instance optimality in the order-oblivious
setting is therefore not possible on all instances.

A.4 More off-line/on-line querying problems

We now study problems from another framework. Let
M be a mapping from points in Rd to “answers” in some
space; the answerM(q) of a point q ∈ Rd may or may

not have constant size depending on the context. We con-
sider the following off-line querying problem: given a set
S of n points in Rd, compute M(q) for every q ∈ S.
In addition, we consider the following on-line querying
problem: given a set S of n points in Rd, build a data
structure for S so that we can compute M(q) for any
query point q ∈ Rd, while trying to minimize the average
query cost over all q ∈ S.

We redefine H(S) by redefining “uninteresting”: a
cell γ is now considered uninteresting toM if every point
q in γ has the same answerM(q).

For the off-line problem, our lower-bound proof gives
Ω(n(H(S) + 1)) even ifM has been preprocessed in ad-
vance. For the on-line problem, the same proof shows
that running a sequence of n queries over some permuta-
tion of S requires Ω(n(H(S)+1)) time, even if the set S
(not the permutation) has been preprocessed in advance.
So, the average query time is Ω(H(S) + 1). (In contrast,
lower bounds for the on-line problem do not necessarily
translate to lower bounds for the off-line problem.)

For the upper-bound side, we need two requirements
aboutM for some constant α > 0 and some parameter
m describing the size ofM. We assume thatM has been
preprocessed in some data structure.

(A) Given q ∈ Rd, we can computeM(q) inO(logm+
κ) worst-case time for output size κ.

(C) Given a simplex γ, we can test whether γ is uninter-
esting toM in O(m1−α) time.

The algorithm this time is actually simpler, because
there is only one color. Instead of using a 22j

progres-
sion, we use a straightforward b-way recursion, for some
fixed parameter b (the resulting recursion tree mimics the
tree T from the lower-bound proof in Theorem 3.5, on
purpose):

off-line-queries(Q,Γ), where Q ⊂ Γ:
1. if |Q| drops below n/mδ then return answers directly
2. partition Q by Lemma 3.3 to get b subsets Q1, . . . , Qb

and cells γ1, . . . , γb
3. for each i do
4. if γi ∩ Γ is uninteresting toM then
5. computeM(q) for an arbitrary point

q ∈ γi ∩ Γ
6. outputM(q) for the points in Qi
7. else off-line-queries(Qi, γi ∩ Γ)

We call off-line-queries(S,Rd) to start. Line 1 takes
O(|Q| logm + κ) time for output size κ by switching to
the data structure for (A); note that each point inQ in this
case has participated in Ω(logm) levels of the recursion,
and we can account for the first term by charging each

point unit cost for every level it participates in. Line 2
takes O(|Q|) time for a constant b by known construc-
tions [49]. Line 4 takesO(m1−α polylogm) time (γi∩Γ
has O(polylogm) vertices), by (C); this cost is negli-
gible by choosing a sufficiently small constant δ < α,
since the recursion tree has O(mδ) nodes. Line 5 takes
O(logm+κ) time for output size κ, by (A); theO(logm)
term is again negligible.

For the on-line problem, we just build a data structure
corresponding to the recursion tree generated above, in
addition to the data structure for (A); the extra space is
O(mδ).

Theorem A.2 The above off-line querying algorithm
runs in O(n(H(S) + 1) + K) time for total output size
K. For the on-line querying problem, it produces a data
structure that has average query cost O(H(S) + 1 + κ)
for output size κ.

Proof: Let nj be number of points in S that survive
level j, i.e., participate in subsets Q at level j of the re-
cursion. The total running time for the off-line problem
is asymptotically bounded by

∑
j nj . Similarly, for the

on-line problem, the total query cost over all q ∈ S is
asymptotically bounded by

∑
j nj .

Let Π be any respectful partition of S. Look at a sub-
set Sk in Π. Let ∆k be a simplex enclosing Sk that is
contained inside one face of M . Fix a level j. Let Qi’s
and γi’s be the subsets Q and cells γ at level j. Each Qi
has size at most n/Θ(b)j . The number of γi’s that in-
tersect each side of ∆k is at most O(b1−ε)j . Thus, the
number of points in Sk that survive level j is at most
min

{
|Sk|, O(b1−ε)j · n/Θ(b)j

}
. Since the Sk’s cover

the entire point set, with a double summation we have,
for a sufficiently large constant b,∑

j

nj ≤
∑
k

∑
j

min
{
|Sk|, dn/Θ(b)εje

}
= O(n(H(Π) + 1)). �

For the on-line problem, the above approach works,
after straightforward modifications, for weighted point
sets S where we want to minimize the weighted aver-
age query cost. In principle, the approach works not only
for discrete point sets S but also for continuous proba-
bility distributions, since the query bound does not de-
pend on the size n of S explicitly and can be imagined
to approach infinity. “Average query cost” over a finite
set of query points now becomes “expected query cost”
over a query point distribution. (The preprocessing time
can also be made independent of n, under some compu-
tational assumptions about the distribution.)

Below, we briefly mention applications to some spe-
cific off-line/on-line querying problems.

• Off-line/on-line point location queries in 2-d: For
the off-line planar point location problem, the data
structure for requirement (A) only needs O(m) pre-
processing time and space [44, 22, 54]. The data
structure problem in (C) reduces to testing whether
a triangle is contained in a face of the subdivision;
this reduces to ray shooting (or segment emptiness)
queries in a polygonal subdivision, for which there
are known results [23]. The total running time is
O(n(H(S) + 1)), including preprocessing, if the
subdivision has size m = O(n). (For this problem,
output sizes can be ignored.)

For the on-line version, we immediately get optimal
O(H(S) + 1) average query cost, with an O(m)-
space data structure for a subdivision of sizem. This
on-line point location result is already known [6, 7,
29, 41] (some of these previous work even optimize
the constant factor in the query cost).

• On-line halfspace range reporting queries in 2-d and
3-d: Here, we map query lower halfspaces to points
by duality. The known data structure for (A) needs
O(m) space [24, 1]. The data structure for (C) is the
same as in Section A.1. We get optimal O(H(S) +
1 + κ) average query cost for output size κ, with an
O(m)-space data structure for a given point set of
size m in 2-d or 3-d. This result is new.

• On-line dominance reporting queries in 2-d and 3-d:
The story is similar to halfspace range reporting.

• On-line orthogonal range reporting/counting queries
in 2-d: Here, we map query rectangles to points
in 4-d as in Section A.1. The known data struc-
ture for (A) needs O(m logm) preprocessing time
and O(m) space [21]. The data structure for (C)
is the same as in Section A.1. We get optimal
O(H(S) + 1 + κ) average query cost for output
size κ, with an O(m)-space data structure for a
given point set of size m in 2-d. (For counting,
κ = O(1).) The resulting algorithm works in the
comparison model. This result is apparently new,
as it extends Dujmović, Howat, and Morin’s recent
result on 2-d dominance counting [35] and uninten-
tionally answers one of their main open problems
(and at the same time improves their space bound
from O(m logm) to O(m)).

