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optimal in the alternation analysis, but that there is a randomized algorithm which performs strictly
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4:2 J. BARBAY AND C. KENYON

1. Introduction

We consider search engines where queries are composed of several keywords, each

associated with a sorted array of references to entries in some database [Witten

et al. 1994, p. 136]. The answer to a conjunctive query is the intersection of the

sorted arrays corresponding to each keyword. Most search engines implement these

queries. The algorithms are in the comparison model, where comparisons are the

only operations permitted on references.

There is an extensive literature on the merging [Hwang and Lin 1972, 1971;

Christen 1978; Manacher 1979; de la Vega et al. 1998, 1993] or intersection

[Baeza-Yates 2004] of two sorted arrays. The two problems are similar, as both

require the algorithm to place each element in the context of the other elements.

In relational databases, the intersection of more than two arrays is computed by

intersecting the arrays two by two. The only optimization available in this context

consists in choosing the order in which these sets are intersected, and the literature

explores how to use statistics precomputed on the content of the database to choose

the best order; see Chaudhuri [1998] and the references therein.

Demaine et al. [2001] showed that a holistic algorithm, which considers the query

as a whole rather than as a decomposition of it in smaller two-by-two intersection

queries, is more efficient, both in theory and in practice.

In this article we present another theoretical analysis, called the alternation
analysis [Barbay and Kenyon 2002], based on the nondeterministic complexity of

the instance, and prove tight bounds on the randomized computational complexity

of the intersection. One intriguing fact of this analysis is that the lower bound applies

to randomized algorithms, whereas a deterministic algorithm is optimal. Does this

mean that no randomized algorithm can perform better than a deterministic one

on the intersection problem? To answer this question, we extend the alternation

analysis to the redundancy analysis [Barbay 2003], based on a measure of the

internal redundancy of the instance. This analysis permits to prove that for the

intersection problem, randomized algorithms perform better than deterministic ones

in terms of the number of comparisons.

The redundancy analysis also makes more natural assumptions on the instances:

The worst case in the alternation analysis is such that an element considered by the

algorithm is matched by almost all of the keywords, while in the redundancy analysis

the maximum number of keywords matching such an element is parameterized by

the measure of difficulty.

We define formally the intersection problem in Section 2, and sketch the alter-

nation analysis and its results in Section 3. We define the redundancy analysis and

study it in Section 4: We give and analyze a randomized algorithm in Section 4.1,

and prove that this algorithm is optimal in Section 4.2.

We answer the question of the usefulness of randomized algorithms for the

intersection problem in Section 5: No deterministic algorithm can be optimal in a

redundancy analysis, hence the superiority of randomized algorithms. We list in

Section 6 several perspectives of this work.

2. Definitions

We consider queries composed of several keywords, each associated to a sorted

array of references. The references can be, for instance, addresses of webpages,
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Alternation and Redundancy Analysis of the Intersection Problem 4:3

FIG. 1. An instance of the intersection problem: On the left is the array representation of the instance,

on the right is a representation which expresses in a better way the structure of the instance, where

the x-coordinate of each element is equal to its value.

the only requirement being a total order on them, that is, that all unequal pairs of

references can be ordered. To study the intersection problem, we consider any set

of two or more arrays, of elements from a totally ordered space, to form an instance.

To perform any complexity analysis on such instances, we need to define a measure

representing the size of the instance. We define for this the signature of an instance.

Definition 2.1. We consider U to be a totally ordered space. An instance is

composed of k sorted arrays A1, . . . , Ak of positive sizes n1, . . . , nk and composed

of elements from U. The signature of such an instance is (k, n1, . . . , nk). An instance

is “of signature at most” (k, n1, . . . , nk) if it can be completed by adding arrays and

elements to form an instance of signature exactly (k, n1, . . . , nk).

Example 2.2. Consider the instance of Figure 1, where the ordered space is the

set of positive integers: It has signature (7, 1, 4, 4, 4, 4, 4, 4).

Definition 2.3. The intersection of an instance is the set A1∩. . .∩Ak , composed

of the elements that are present in k distinct arrays.

Example 2.4. The intersection A ∩ B ∩ . . . ∩ G of the instance of Figure 1 is

empty, as no element is present in more than 4 arrays.

Any algorithm (even a nondeterministic one) computing the intersection must

prove the correctness of the output: First, it must certify that all elements of the

output are indeed elements of the k arrays; second, it must certify that no element

of the intersection has been omitted, by exhibiting some certificate that there can

be no other elements in the intersection than those output. We define the partition

certificate as such a proof.

Definition 2.5. A partition certificate is a partition (I j ) j≤δ of U into intervals

such that any singleton {x} corresponds to an element x of ∩i Ai , and each other

interval I has an empty intersection I ∩ Ai with at least one array Ai .

3. Alternation Analysis

Imagine a function which indicates for each element x ∈ U the name of an array

not containing x if x is not in the intersection, and “all” if x is in the intersection.

The minimal number of times such a function alternates names, for x scanning U

in increasing order, is just one less than the minimal size of a partition certificate

of the instance, which is called the alternation of the instance.

Definition 3.1. The alternation δ of an instance (A1, . . . , Ak) is the minimal

number of intervals forming a partition certificate of this instance.
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4:4 J. BARBAY AND C. KENYON

Example 3.2. The alternation of the instance in Figure 1 is δ = 3, as we can

see on the right representation that the partition (−∞, 9), [9, 10), [10, +∞) is a

partition certificate of size 3, and that none can be smaller.

The alternation of an instance I is also the complexity of the best nondeter-

ministic algorithm on I (plus 1), namely the nondeterministic complexity. This

nondeterministic complexity forms a weak lower bound on the complexity of any

randomized or deterministic algorithm solving I , and hence a natural measure of

the difficulty of the instance.

Indeed, among instances of same signature and alternation, it is possible to

prove a tight bound on the randomized complexity of the intersection problem:

By providing a difficult distribution of instances and using the minimax principle,

we prove a lower bound on the complexity of any randomized algorithm solving

the problem [Barbay and Kenyon 2002].

THEOREM 3.3 (ALTERNATION LOWER BOUND [BARBAY AND KENYON 2002]).

For any k≥2, 0<n1≤ · · · ≤nk, and δ∈{4, . . . , 4n1}, and for any randomized al-
gorithm AR for the intersection problem, there is an instance of signature
at most (k, n1, . . . , nk) and alternation at most δ, such that AR performs
�(δ

∑k
i=1 log(ni/δ)) comparisons on average on it.

PROOF. This is a simple application of Lemma 4.9 (stated and proved in

Section 4.2) and of the Yao-von Neumann principle [Neumann and Morgenstern

1944; Sion 1958; Yao 1977], described in the following.

—Lemma 4.9 gives a distribution for δ ∈ {4, . . . , 4n1} on instances of alternation

at most δ; and

—then the Yao-von Neumann principle permits to deduce from this distribution a

lower bound on the worst-case complexity of randomized algorithms.

On the other hand, a simple deterministic algorithm reaches this lower bound.

As the class of deterministic algorithms is contained in the class of randomized

algorithms, this proves that the bound is tight for randomized algorithms.

THEOREM 3.4 (ALTERNATION UPPER BOUND [BARBAY AND KENYON 2002]).

There is a deterministic algorithm which performs O(δ
∑k

i=1 log(ni/δ)) compar-
isons on any instance of signature (k, n1, . . . , nk) and alternation δ.

PROOF. The deterministic version of algorithm Rand Intersection (see

Section 4.1), where the choice of a random array is replaced by the choice of

the next array in a fixed order, performs O(δ
∑k

i=1 log(ni/δ)) comparisons on an

instance of signature (k, n1, . . . , nk) and of alternation δ. Its analysis is very similar

to the one of the randomized version given in the proof of Theorem 4.7.

Note that this algorithm is distinct from the algorithm presented previously

[Barbay and Kenyon 2002], where the algorithm was performing unbounded

searches in parallel in the arrays. Here the algorithm performs one unbounded

search at a time, which saves some comparisons in many cases, for any arbitrary

signature (k, n1, . . . , nk) (but not in the worst case).

The lower bound applies to any randomized algorithm, when a mere deterministic

algorithm is optimal. Does this mean that no randomized algorithms can do better
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than a deterministic one on the intersection problem? We refine the analysis to

answer this question.

4. Redundancy Analysis

By definition of the partition certificate, the following is noted.

—For each singleton {x} of the partition, any algorithm must find the position of x
in all arrays Ai , which takes k searches; and

—for each interval I j of the partition, any algorithm must find an array, or a set of

arrays, such that the intersection of I j with this array, or with the intersection of

these arrays, is empty.

The cost for finding such a set of arrays can vary, and depends on the choices

performed by the algorithm. In general, it requires fewer searches if there are many

possible answers. To take this into account, for each interval I j of the partition

certificate, we will count the number r j of arrays whose intersection with I j is

empty. The smaller is r j , the harder is the instance: 1/r j measures the contribution

of this interval to the difficulty of the instance.

Example 4.1. Consider for instance, the interval I j = [10, 11) in the instance

of Figure 1: We see that r j = 4 arrays have an empty intersection with it. A

randomized algorithm, choosing an array uniformly at random, has probability

r j/k to find an array which does not intersect I j , and will do so after at most �k/r j	
trials on average, even if it tries several times in the same array because it doesn’t

memorize which array it tried before. As the number of arrays k is fixed, the value

1/r j measures the difficulty of proving that no element of I j is in the intersection

of the instance.

We name the sum of these contributions the redundancy of the instance, and it

forms our new measure of difficulty.

Definition 4.2. Let A1, . . . , Ak be k sorted arrays, and let (I j ) j≤δ be a partition

certificate for this instance.

—The redundancy ρ(I ) of an interval or singleton I is defined as equal to 1 if I is

a singleton, and equal to 1/#{i, Ai ∩ I = ∅} otherwise.

—The redundancy ρ((I j ) j≤δ) of a partition certificate (I j ) j≤δ is the sum
∑

j ρ(I j )

of the redundancies of the intervals composing it.

—The redundancy ρ
(
(Ai )i≤k

)
of an instance of the intersection problem is the

minimal redundancy min{ρ (
(I j ) j≤δ

)
, ∀(I j ) j≤δ} of a partition certificate of the

instance.

Note that the redundancy is always well defined and finite: If I is not a singleton,

then by definition there is at least one array Ai whose intersection with I is empty,

hence #{i, Ai ∩ I = ∅} > 0.

Example 4.3. The partition certificate {(−∞, 9), [9, 10), [10, 11), [11, +∞)}
has redundancy at most 1/2+1/3+1/4+1/2 = 7/6 for the instance given Figure 1,

and no other partition certificate has a smaller redundancy, hence the instance has

redundancy 7/6.
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FIG. 2. A much more difficult variant of the instance of Figure 1: Only two elements changed,

namely F[4] and G[2] which were equal to 10 and are now equal to 9, but the redundancy is now

ρ = 1/2 + 1 + 1/6 + 1/2 = 2 + 1/6.

The main idea is that the redundancy analysis permits to measure the difficulty

of the instance in a finer way than the alternation analysis: For fixed k, n1, . . . , nk
and δ, several instances of signature (k, n1, . . . , nk) and alternation δ may present

various levels of difficulty, and the redundancy helps to distinguish between these.

Example 4.4. In the instance from Figure 1, the only way to prove the empti-

ness of the intersection is to compute the intersection of one of the arrays cho-

sen from {A, B, C, D} with one of the arrays chosen from {E, F, G}, because

9 ∈ A ∩ B ∩ C ∩ D and 10 ∈ E ∩ F ∩ G. For simplicity and without loss of

generality, suppose that the algorithm searches to intersect A with another array in

{B, C, D, E, F, G}, and consider the number of unbounded searches performed,

instead of the number of comparisons. The randomized algorithm looking for the

element of A in a random array from {B, C, D, E, F, G} performs on average only

2 searches, as the probability to find an array whose intersection is empty with A
is then 1/2.

On the other hand, consider the instance of Figure 2, a variant of the instance of

Figure 1, where element 9 is present in all the arrays but E . As the two instances

have the same signature and alternation, the alternation analysis yields the same

lower bound for both instances. But the randomized algorithm described before

now performs an average of k/2 searches, as opposed to 2 searches on the original

instance. This difference in difficulty between these very similar instances is not

expressed by a difference of alternation, but by a difference of redundancy: The

new instance has a redundancy of 1/2 + 1 + 1/6 + 1/2 = 2 + 1/6, which is larger

by one than the redundancy 7/6 of the original instance. This difference of one

corresponds to k more doubling searches for this simple instance. This difference

is used in Section 5 to create instances where a deterministic algorithm performs

O(k) times more searches and comparisons than a randomized algorithm.

4.1. RANDOMIZED ALGORITHM. For simplicity, we assume that all arrays con-

tain the element −∞ at position 0 and the element +∞ at position ni+1. Given

this convention, the intersection algorithm can ignore the sizes of the sets. This is

the case in particular for pipelined computations, where the sets are not completely

computed when the intersection starts, for instance, in parallel applications.

An unbounded search looks for an element x in a sorted array A of unknown size,

starting at position ini t . It returns a value p such that A[p − 1]<x≤A[p], called

the insertion rank of x in A. It can be performed combining the doubling search and

binary search algorithms [Barbay and Kenyon 2002; Demaine et al. 2001, 2000],

and is then of complexity 2�log2(p−init)	, or in a more complicated way [Bentley

and Yao 1976] to improve the complexity by a constant factor of less than 2.
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FIG. 3. The algorithm Rand Intersection: Given k nonempty sorted sets A1, . . . , Ak of sizes

n1, . . . , nk , the algorithm computes in variable result the intersection A1 ∩ . . . ∩ Ak . Note that the

only random instruction is the choice of array in inner loop.

Using unbounded rather than binary search is crucial to the complexity of the

intersection algorithm. Consider the task of searching d elements x1 ≤ x2 ≤ · · · ≤
xd in a sorted array of size n. It requires d log ni comparisons using binary search,

but less than 2d log(ni/d) comparisons using unbounded search. To see this, define

p j such that p0 = 0 and A[p j ] = x j ∀ j ∈ {1, . . . , d}: The j th doubling search

performs no more than 2 log(p j − p j−1) comparisons. By concavity of the log,

the sums
∑

j≤d 2 log(p j − p j−1) are no larger than 2d log(
∑

j≤d(p j − p j−1)/d).

The sum
∑

j≤d(p j − p j−1) is equal to pd − p0, which is smaller than the size n of the

array. Hence, the d doubling searches perform less than 2d log(ni/d) comparisons.

THEOREM 4.5. Algorithm Rand Intersection (see Figure 3) computes the inter-
section of the arrays given as input.

PROOF. Given k nonempty sorted arrays A1, . . . , Ak of sizes n1, . . . , nk , the

Rand Intersection algorithm (Figure 3) computes the intersection A1∩ . . . ∩Ak . The

algorithm is composed of two nested loops. The outer loop iterates through potential

elements of the intersection in variable m and in increasing order, and the inner

loop checks, for each value of m, whether it is in the intersection.

In each pass of the inner loop, the algorithm searches for m in one array As which

potentially contains it. The invariant of the inner loop is that, at the start of each

pass and for each array Ai , the pi denotes the first potential position for m in Ai :

Ai [pi − 1] < m. The variables #YES and #NO count how many arrays are known

to contain m, and are updated depending on the result of each search.

A new value for m is chosen every time we enter the outer loop, at which time the

current subproblem is to compute the intersection on the subarrays Ai [pi , . . . , ni ]

for all values of i . Any first element Ai [pi ] of a subarray could be a candidate, but

a better candidate is one which is larger than the last value of m: The algorithm

chooses As[ps], which is by definition larger than m. Then only one array As is

known to contain m, hence #YES ← 1, and no array is known not to contain it,

hence #NO ← 0. The algorithm terminates when all values of the current array have

been considered, and m has taken the last value +∞.
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4:8 J. BARBAY AND C. KENYON

We now analyze the complexity of algorithm Rand Intersection (Figure 3) as a

function of the redundancy ρ of the instance. To understand the intuition behind

the analysis, consider the following example.

Example 4.6. For a fixed interval I j , suppose that the algorithm receives six

arrays such that A1, A2, A3, and A4 contain many elements from I j but have none

in common, and such that A5 and A6 contain no elements from I j . Ignore all steps

of the algorithm where m takes values out of the interval I j : The interval defines a

phase of the algorithm. Suppose that m takes a value in I j at some point, for instance,

from A1. At each iteration of the external loop, the algorithm ignores the array from

which the current value of m was taken, chooses one between the four remaining

arrays, searches in the chosen one, and updates the value of m accordingly.

—With probability 3/5 the algorithm chooses the set A1, A2, A3, or A4 (depending

on which set the current value of m comes from) and potentially fails to terminate

the phase.

—With probability 2/5 the algorithm chooses A5 or A6, performs a search in it

(there might be elements left from intervals I1 ∪ . . . ∪ I j−1), and updates m to a

value from I j+1, which terminates the current phase.

We are interested in the number C j
i of searches performed in each array Ai

during this phase. As m takes a value outside of I j after a search in A5 or A6, both

C j
5 and C j

6 are random Boolean variables which depend only on the last choice of

the algorithm before changing phase: The expectation of C j
5 (respectively, C j

6 ) is

exactly the probability that A5 (respectively, A6) is picked, knowing that one of

those is picked, namely 1/2.

The algorithm can perform many searches in A1, A2, A3, and A4, so the variables

C j
1 , C j

2 , C j
3 , and C j

4 are random integer variables which depend on all the choices

of the algorithm but the last. The probability that A1 is chosen is null if m comes

from A1. Otherwise, it is less than the probability that A1 is chosen, knowing that m
doesn’t come from A1: Pr[A1 is chosen ] = Pr[A1 is chosen and m does not come

from A1] ≤ Pr[A1 is chosen |m does not come from A1]. Hence the probability that

A1 is chosen is less than 1/4.

C j
1 is increased each time A1 is chosen (probability a ≤ 1/5), is finalized as

soon as A5 or A6 is chosen (probability b = 2/5), and stays the same each time

another array is chosen (probability c ≥ 2/5). Ignore all the steps where C j
2 , C j

3 ,

or C j
4 are increased: Knowing that C j

2 , C j
3 , or C j

4 are not increased, the probability

that C j
1 is increased is a/(a + b) ≤ 1/3, and the probability that it is finalized is

b/(a + b) ≥ 2/3. Such a system will iterate at most 3/2 times on average, and

increment C j
1 each time but the last, that is, 3/2 − 1 = 1/2 times on average. The

same reasoning holds for A2, A3, and A4. Hence, in this example E(C j
i ) = 1/2 for

each set Ai , where 2 is the number of arrays which contain no elements from I j .

The proof of Theorem 4.7 argues similarly in the more general case.

THEOREM 4.7 (REDUNDANCY UPPER BOUND [BARBAY 2003]). Algorithm
Rand Intersection (Figure 3) performs on average O(ρ

∑k
i=1 log(ni/ρ)) compar-

isons on any instance of signature (k, n1, . . . , nk) and of redundancy ρ.
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PROOF. Let (I j ) j≤δ be a partition certificate of minimal redundancy ρ. Each

comparison performed by the algorithm is said to be performed in phase j if m ∈ I j

for some interval I j of the partition. Let C j
i be the number of searches performed

by the algorithm during phase j in array Ai , let Ci = ∑
j C j

i be the number of

searches performed by the algorithm in array Ai over the whole execution, and let

(r j ) j≤δ be such that r j is equal to 1 if I j is a singleton, and to #{i, Ai ∩ I j = ∅}
otherwise.

Let us consider a fixed phase j ∈ {1, . . . , δ}, and compute the average number

of searches E(C j
i ) performed in each array Ai during phase j . At each iteration of

the internal loop, the algorithm chooses an array in which m is not known to be.

As m always comes from one array, there are at most k − 1 of these arrays, hence

each array is chosen with probability at least 1/(k − 1). If the element m currently

considered is in the intersection, then each array Ai will be searched and C j
i is

equal to 1. In this case 1/r j is also equal to 1, so that C j
i =1/r j=E(C j

i ).

Suppose that m is not in the intersection, and that Ai ∩ I j is empty. Either Ai

is never chosen and C j
i = 0, or Ai is chosen and C j

i = 1, because the algorithm

will terminate the phase after searching in Ai . The probability that Ai is chosen is

at most the probability that it is chosen knowing that this is the last search of the

phase.

Pr[Ai is chosen] = Pr[Ai is chosen and last search]

≤ Pr[Ai is chosen| last search]

As the arrays are chosen uniformly, this probability is Pr{C j
i = 1} ≤ 1/r j , and

the average number of searches is at most E(C j
i ) = 1 ∗ Pr{C j

i = 1} ≤ 1/r j .

The interesting case is when m is not in the intersection but Ai ∩ I j �= ∅. At each

new search, one of three possibilities holds.

(1) C j
i is incremented by one because the search occurred in Ai , which occurs with

probability less than 1/(k − 1); or

(2) C j
i is fixed in a final way because an array was found whose intersection with

I j is empty, which occurs with probability r j/(k − 1); or

(3) C j
i is neither incremented nor fixed if another array was searched but its inter-

section with I j is not empty.

The combined probability of the first and second cases is 1/(k − 1) + r j/(k − 1).

Ignoring the third case where C j
i never changes, the conditional probability of the

first case is 1
k−1

/( 1
k−1

+ r j

k−1
). Hence, this system is equivalent to a system where

C j
i is incremented by one with probability at least 1/(1 + r j ), and fixed with the

remaining probability, at most r j/(1 + r j ). Such a system iterates at most (1+r j )/r j

times on average, and increments C j
i at each iteration but the last: The final value

of C j
i is at most (1 + r j )/r j − 1 = 1/r j .

Hence, the average number of searches performed in each array Ai during phase j
is E(C j

i ) ≤ 1/r j . Summing over all phases, this implies that the algorithm performs

on average E(Ci ) ≤ ∑
j 1/r j = ρ searches in each array Ai .

Let g�
i, j be the increment of pi due to the �th unbounded search in array Ai during

phase j . Notice that
∑

j,� g�
i, j ≤ ni . The algorithm performs at most 2 log(g�

i, j + 1)
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4:10 J. BARBAY AND C. KENYON

comparisons during the �th search of phase j in array Ai . So it performs at most

2
∑

j,� log(g�
i, j + 1) comparisons between m and an element of array Ai during

the whole execution. Because of the concavity of the function log(x + 1), this

is smaller than 2Ci log(
∑

j,� g�
i, j/Ci + 1), and because of the preceding remark

(
∑

j,� g�
i, j≤ni ), this is smaller than 2Ci log(ni/Ci + 1).

The functions fi (x) = 2x log(ni/x+1) are concave for x≤ni , so E( fi (Ci ))≤
fi (E(Ci )). As the average complexity of the algorithm in array Ai is E( f (Ci )),

and as E(Ci ) = ρ, on average the algorithm performs less than 2ρ log(ni/ρ + 1)

comparisons between m and an element in array Ai . Summing over i we get the

final result, which is O(ρ
∑

i log ni/ρ).

4.2. RANDOMIZED COMPLEXITY LOWER BOUND. We now prove that no ran-

domized algorithm can do asymptotically better in (k, n1, . . . , nk). The proof is

quite similar to the lower bound of the alternation analysis [Barbay and Kenyon

2002], and differs mostly in Lemma 4.8, which must be adapted to the redundancy.

Lemmas 4.8 and 4.9 are used to prove the alternation lower bound in Theorem 3.3

and to prove the redundancy lower bound in Theorem 4.10.

In Lemma 4.8 we prove an average lower bound on a distribution of instances

of alternation and redundancy of at most ρ = 4 and of intersection size at most 1.

We use this result in Lemma 4.9 to define a distribution on instances of alternation

and redundancy of at most ρ ∈ {4, 4n1} by combining p = θ (ρ) subinstances.

Applying the Yao-von Neumann principle [Neumann and Morgenstern 1944; Sion

1958; Yao 1977] in Theorem 4.10 gives us a lower bound of �(ρ
∑k

i=2 log(ni/ρ))

on the complexity of any randomized algorithm for the intersection problem.

Finally, in Lemma 4.11, we prove that any instance of signature (k, n1, . . . , nk)

has redundancyρ of at most 2n1+1, so that the redundancy analysis of Theorem 4.10

totally covers all instances for a given signature (k, n1, . . . , nk).

LEMMA 4.8. For any k ≥ 2, 0<n1≤ . . . ≤nk, there is a distribution on instances
of the intersection problem with signature at most (k, n1, . . . , nk), and with alterna-
tion and redundancy at most 4, such that any deterministic algorithm performs at
least (1/4)

∑k
i=2 log(2ni +1)+∑k

i=2 1/(2ni+1)− k +2 comparisons on average.

PROOF. Let C be the total number of comparisons performed by the algorithm,

and for each array Ai note that Fi = log2(2ni + 1) and F = ∑k
i=2 Fi .

Let us draw an index w ∈ {2, . . . , k} equal to i with probability Fi/F , and

(k − 1) positions (pi )i∈{2,...,k} such that ∀i each pi is chosen uniformly at random

in {1, . . . , ni }. Let P and N be two instances such that in both P and N , for any

1<i< j≤k, a∈A1, b, c∈Ai , and d, e∈A j , then b<Ai [pi ]<c and d<A j [p j ]<e im-

ply that b<d<a<c<e (see Figure 4); in P , Aw[pw] = A1[1]; in N Aw[pw]>A1[1];

and such that the elements at position pi in all other arrays than Aw are equal to

A1[1].

Let x = A1[1] be the first element of the first array. Define x-comparisons to

be the comparisons between any element and x . Because of the special relative

positions of the elements, a comparison between two elements b and d in any

array does not yield more information than the two comparisons between x and

b and between x and d: The positions of elements b and d relative to x permit

to deduce their order. Hence, any algorithm performing C comparisons between

arbitrary elements can be expressed as an algorithm performing no more than 2C
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Alternation and Redundancy Analysis of the Intersection Problem 4:11

FIG. 4. Distribution on (P, N ): Each element of value v is represented by a dot of x-coordinate v,

and large dots correspond to the element at position pi in each array Ai .

x-comparisons, and any lower bound L on the complexity of algorithms using

only x-comparisons is an L/2 lower bound on the complexity of algorithms using

comparisons between arbitrary elements.

The alternation of such instances is at most 4, and the redundancy of such in-

stances is no more than 3+1/(k−1), which is less than 4 by the following reasoning.

—The interval (−∞, A1[1]) is sufficient to certify that no element smaller than x
is in the intersection, and stands for a redundancy of at most 1.

—The interval (A1[n1], +∞, ) is sufficient to certify that no element larger than

A1[n1] is in the intersection, and stands for a redundancy of at most 1.

—The interval [A1[1], A1[n1]] is sufficient in N to complete the partition certificate,

and stands for a redundancy of at most 1.

—The singleton {x} and the interval (A1[1], A1[n1]] are sufficient in P to complete

the partition certificate, and stand for a redundancy of at most 1+1/(k − 1).

The only difference between instances P and N is the relative position of the element

Aw[pw] to the other elements composing the instance, as described in Figure 4.

Any algorithm computing the intersection of P has to find the (k − 1) positions

{p2, . . . , pk}. Any algorithm computing the intersection of N has to find w and the

associated position pw. Any algorithm distinguishing between P and N has to find

pw: We will prove that it needs an average of almost F/2 = (1/2)
∑k

i=2 log2(2ni+1)

x-comparisons to do so on a distribution corresponding to the uniform choice

between an instance N and an instance P .

Consider a deterministic algorithm using only x-comparisons to compute the

intersection. As the algorithm has not distinguished between P and N until finding

w, let Xi denote the number of x-comparisons performed in array Ai for both P or

N . Let Yi denote the number of x-comparisons performed in array Ai for N ; and

let ξi be the indicator variable, which equals 1 exactly if pi has been determined on

instance P . The number of comparisons performed is C = ∑k
i=2 Xi . Restricting

ourselves to arrays in which the position pi has been determined, we can write

C ≥ ∑k
i=2 Xiξi = ∑k

i=2 Yiξi .

Let us consider E(Yiξi ): The expectancy can be decomposed as a sum of prob-

abilities E(Yiξi ) = ∑
h Pr{Yiξi≥h}, and in particular E(Yiξi )≥

∑Fi
h=1 Pr{Yiξi≥h}.
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4:12 J. BARBAY AND C. KENYON

These terms can be decomposed using the property that Pr{a∨b} ≤ Pr{a}+ Pr{b}.
Pr{Yiξi ≥ h} = Pr{Yi ≥ h ∧ ξi = 1}

= 1 − Pr{Yi < h ∨ ξi = 0}
≥ 1 − Pr{Yi < h} − Pr{ξi = 0}
= Pr{ξi = 1} − Pr{Yi < h} (1)

The probability Pr{Yi < h} is bounded by the usual decision tree lower bound: If we

consider the binary x-comparisons performed in set Ai , there are at most 2h leaves

at depth less than h. Since the insertion rank of x in Ai is uniformly chosen, these

leaves have the same probability and have total probability of at most Pr{Yi < h} ≤
2h/(2ni + 1) = 2h−Fi . Those terms for h ∈ {1, . . . , Fi } form a geometric sequence

whose sum is equal to 2(1 − 2−Fi ), so E(Yiξi ) ≥ Fi Pr{ξi = 1} − 2(1 − 2−Fi ).

Then

E(C) ≥
k∑

i=2

E(Yiξi ) ≥
k∑

i=2

Fi Pr{ξi = 1} −
k∑

i=2

2(1 − 2−Fi )

≥
k∑

i=2

Fi Pr{ξi = 1} + 2

k∑
i=2

2−Fi − 2(k − 2). (2)

Let us fix p = (p2, . . . , pk). There are only k − 1 possible choices for w. The

algorithm can only differentiate between P and N when it finds w. Let σ denote

the order in which these instances are dealt with for p fixed. Then ξi = 1 if and

only if σi ≤ σw, and so Pr{ξi = 1|p} = ∑
j :σ j ≥σi

Fj/F .

Summing over p and then over i , we get an expression of the first term in Eq. (2).

Pr{ξi = 1} =
∑

p

Pr{ξi = 1|p} Pr{p} =
∑

p

∑
j :σ j ≥σi

Fj

F
Pr{p}

k∑
i=2

Fi Pr{ξi = 1} =
∑

p

k∑
i=2

∑
j :σ j ≥σi

Fi Fj

F
Pr{p} =

∑
p

Pr{p}
k∑

i=2

∑
j :σ j ≥σi

Fi Fj

F
.

In the sum, each term “Fi Fj ” appears exactly once, and(∑
i

Fi

)2

= 2
∑

i

∑
i≤ j

Fi Fj −
∑

i

Fi
2,

hence

k∑
i=2

∑
j :σ j ≥σi

Fi Fj = 1

2

⎛
⎝(

k∑
i=2

Fi

)2

+
k∑

i=2

Fi
2

⎞
⎠ ,

which is independent of p. Then we can conclude that

k∑
i=2

Fi Pr{ξi = 1} = 1

2

1

F

⎛
⎝(

k∑
i=2

Fi

)2

+
k∑

i=2

Fi
2

⎞
⎠ ∑

p

Pr{p} = 1

2

k∑
i=2

Fi .
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FIG. 5. p elementary instances unified to form a single large instance.

Plugging this into Eq. (2), we obtain a lower bound on the average number of

x-comparisons E(C) performed by any deterministic algorithm which performs

only x-comparisons, of (1/2)
∑k

i=2 Fi + 2
∑k

i=2 2−Fi − 2(k−2), which is equal to

(1/2)
∑k

i=2 log2(2ni+1)+2
∑k

i=2 1/(2ni+1)−2(k−2). This implies a lower bound

of (1/4)
∑k

i=2 log2(2ni+1) + ∑k
i=2 1/(2ni+1) − (k−2) on the average number of

comparisons performed by any deterministic algorithm, hence the result.

LEMMA 4.9. For any k ≥ 2, 0 < n1 ≤ · · · ≤nk and ρ∈{4, . . . , 4n1}, there is
a distribution on instances of the intersection problem of signature at most
(k, n1, . . . , nk), and of alternation and redundancy at most ρ, such that any de-
terministic algorithm performs on average �(ρ

∑k
i=1 log(ni/ρ)) comparisons.

PROOF. Let’s draw p=�ρ/4� pairs (Pj , N j ) j∈{1,...,p} of subinstances of signa-

ture (k, �n1/p�, . . . , �nk/p�) from the distribution of Lemma 4.8. As ρ ≤ 4n1,

p ≤ n1, and �n1/p� > 0, the sizes of all arrays are positive. Let’s choose uni-

formly at random each subinstance I j between the subinstance Pj whose intersec-

tion is a singleton and the subinstance N j whose intersection is empty. Further,

lets form a larger instance I by unifying arrays of same index from each subin-

stance, such that the elements from two different subinstances never interleave, as in

Figure 5.

This defines a distribution on instances of alternation and redundancy of at most

ρ (as 4p = 4�ρ/4� ≤ ρ), and of signature at most (k, n1, . . . , nk). Solving this

instance implies solving all the p subinstances. Lemma 4.8 gives a lower bound

of (1/4)
∑k

i=2 log(2ni/p + 1) +∑k
i=2 1/(2ni+1) − k+2 comparisons, on average,

for each of the p subproblems, hence a lower bound of

(p/4)

k∑
i=2

log(2ni/p + 1) + p

(
k∑

i=2

1/(2ni/p+1) − k+2

)
,

which is �(ρ
∑k

i=1 log(ni/ρ)).

THEOREM 4.10 (REDUNDANCY LOWER BOUND [BARBAY 2003]). For any
k ≥ 2, 0 < n1 ≤ . . . ≤nk, and ρ ∈ {4, . . . , 4n1}, and for any randomized al-
gorithm AR for the intersection problem, there is an instance of signature at
most (k, n1, . . . , nk), and of redundancy at most ρ, such that AR performs
�(ρ

∑k
i=1 log(ni/ρ)) comparisons on it, on average.

ACM Transactions on Algorithms, Vol. 4, No. 1, Article 4, Publication date: March 2008.



4:14 J. BARBAY AND C. KENYON

PROOF. The proof is identical to that of Theorem 3.3, as the instances generated

by the proof are of alternation equal to their redundancy. This is a simple application

of Lemma 4.9 and of the Yao-von Neumann principle [Neumann and Morgenstern

1944; Sion 1958; Yao 1977], which we show next.

—Lemma 4.9 gives a distribution for ρ ∈ {4, . . . , 4n1} on instances of redundancy

of at most ρ; and

—then the Yao-von Neumann principle permits to deduce from this distribution a

lower bound on the worst-case complexity of randomized algorithms.

This analysis is more precise than the lower bound previously presented [Barbay

and Kenyon 2002], where the additive term in −k was ignored, although it makes the

lower bound trivially negative for large values of the difficulty ρ. Here the additive

term is suppressed for mini ni ≥ 128, and the multiplicative factor between the

lower bound and upper bound is reduced to 16 instead of 64. This technique can

be applied to the alternation analysis of the intersection with the same result. Note

also that a multiplicative factor of 2 in the gap comes from the unbounded searches

in the algorithm, and can be reduced using a more complicated algorithm for the

unbounded search [Bentley and Yao 1976].

One could wonder how the lower bound evolves for redundancy values larger

than 4n1. The following result shows that no instance with such redundancy can

exist.

LEMMA 4.11. For any k ≥ 2 and 0<n1≤ · · · ≤nk, any instance of signature
(k, n1, . . . , nk) has redundancy ρ of at most 2n1+1.

PROOF. First observe that there is always a partition certificate of size 2n1 + 1,

then that the redundancy of any partition certificate is by definition smaller than the

size of the partition. Hence the result.

Note that this does not contradict the result from Lemma 4.9, which defines a

distribution of instances of redundancy of at most 4n1.

5. Comparisons Between the Analyses

The redundancy analysis is strictly finer than the alternation analysis: Some al-

gorithms optimal for the alternation analysis are not optimal anymore in the re-

dundancy analysis (Theorem 5.1), and any algorithm optimal in the redundancy

analysis is optimal in the alternation analysis (Theorem 5.2). So the Rand Intersec-

tion algorithm is theoretically better than its deterministic variant in the comparison

model, and the redundancy analysis permits a better analysis than the alternation

analysis.

THEOREM 5.1. For any k ≥ 2, 0<n1≤ · · · ≤nk, and ρ ∈ {4, . . . , 4n1}, and
for any deterministic algorithm for the intersection problem, there is an instance
of signature at most (k, n1, . . . , nk), and of redundancy at most ρ, such that this
algorithm performs �(kρ

∑
i log(ni/kρ)) comparisons on it.

PROOF. The proof uses the same decomposition as that of Theorem 4.10, but

uses an adversary argument to obtain a deterministic lower bound. Build δ = kρ/3

subinstances of signature (k, �n1/δ�, . . . , �nk/δ�) and of redundancy at most 3,

such that x = A1[1] is present in roughly half of the other arrays, as in Figure 6.
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FIG. 6. Element x is present in half of the arrays of the subinstance.

FIG. 7. The adversary performs several strategies in parallel, one for each subinstance.

On each subinstance, an adversary can force any deterministic algorithm to

perform a search in each of the arrays containing x , as well as in a sin-

gle array which does not contain x . Then the deterministic algorithm performs

(1/2)
∑k

i=2 log (ni/δ) comparisons for each subinstance see Figure 7. In total

over all subinstances, the adversary can force any deterministic algorithm to per-

form (δ/2)
∑k

i=2 log (ni/δ) comparisons, namely (kρ/4)
∑k

i=2 log (ni/kρ), which

is �(kρ
∑k

i=2 log (ni/kρ)).

As x log(n/x) is a function increasing with x , kρ
∑

i log(ni/kρ) is several times

larger than the lower bound ρ
∑

i log(ni/ρ), hence no deterministic algorithm can

be optimal in the redundancy analysis.

THEOREM 5.2. Any algorithm optimal in the redundancy analysis is optimal in
the alternation analysis.

PROOF. By definition of the redundancyρ and of the alternation δ of an instance,

ρ ≤ δ. So if an algorithm performs O(ρ
∑

log ni/ρ) comparisons, it also performs

O(δ
∑

log ni/δ) comparisons. Hence the result, as this is the lower bound in the

alternation analysis.

This proves also that the measure of difficulty of Demaine et al. [2000] is not

comparable with the measure of redundancy, as it is not comparable with the mea-

sure of alternation [Barbay and Kenyon 2003, Section 2.3]. This means that the
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two measures are complementary without being redundant in any way, as was so

for the alternation. All these measures describe the difficulty of the instance, which

can be seen from the following.

—The alternation [Barbay and Kenyon 2003, Section 2.3] describes the number of

key blocks of consecutive elements in the instance;

—the gap cost [Demaine et al. 2000] describes the repartition of the size of these

blocks; and

—the redundancy [Barbay 2003] describes the difficulty of finding each block.

However, only the gap cost and the redundancy matter because the alternation

analysis is reduced to the redundancy analysis.

6. Perspectives

The t-threshold set and opt-threshold set problems [Barbay and Kenyon 2003] are

natural generalizations of the intersection problem which could be useful in indexed

search engines. The redundancy seems to be important in the complexity of these

problems as well, but a proper measure is harder to define in this context. As similar

techniques are applied to solve queries on semistructured documents [Barbay 2004],

the redundancy could be useful in this domain as well, but the definition of the proper

measure of difficulty is even more evasive in this context.

Demaine et al. [2001] performed experimental measurements of the performance

of various deterministic algorithms for the intersection on their own data, using

some queries provided by Google. We performed similar measurements for the

deterministic and randomized version of our algorithm, using the same queries and a

larger set of data, also provided by Google. The results are quite disappointing, as the

randomized version of the algorithm does not perform better than the deterministic

one in terms of the number of comparisons or searches, and is much worse in terms

of runtime. The fact that the number of comparisons and of searches are roughly

the same indicates that most instances of this dataset either have redundancy close

to the alternation, because the elements searched are in many of the arrays, or are

so easy that both algorithms perform equally well on it. The fact that the runtime is

worse is probably linked to the performance of prediction heuristics in the hardware:

A deterministic algorithm is easier to predict than a randomized one. It would be

interesting to see if these negative results still hold for queries with more keywords

and on some datasets, such as those from relational databases, which can exhibit

more correlation between keywords.

While we restricted our definition of the intersection problem to sets of arrays and

analyzed it in the comparison model, it makes sense to consider other structures for

sorted sets, especially in the context of cached or swapped memory, or of succinct

encodings of dictionaries. Hierarchical memory [Frigo et al. 1999] seems promising

for this kind of application, and Bender et al. [2002] proposed a data structure

and a cache-oblivious algorithm to perform unbounded searches (implemented as

finger searches). Our algorithm can easily be adapted to this model, to perform

O(ρ
∑

(logB(ni/ρ) + log∗(ni/ρ))) I/O transfers at the level of cache-size B.

In most of the intersection algorithms, the interactions with each set are limited

to accessing an element, given its rank (select operator), and searching for the

insertion rank of an element in it (rank operator): These algorithms can be used
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with any set implementation which provides those operators. For instance, using

sorted arrays such as in this article, the select operator takes constant time while

the rank operator takes time logarithmic in the size of set. While the results of

this article are optimal in the comparison model, they are not necessarily optimal

in more general models: The computational complexity of the search operators

constitute a tradeoff with the size of encoding of the set. For instance, consider a set

of n elements from a universe of size m: Raman et al. [2002] proposed a succinct

encoding of fully indexable dictionaries using log
(m

n

) + o(m) bits to provide select
and rank operators in constant time. On the other side of the time/space tradeoff,

Beame and Fich [2002] proposed a more compact encoding, using O(n) words

of log m bits to provide select and rank operators in time O(
√

log n/ log log n).

Encoding the sets using any of these schemas would tremendously improve the

computational complexity of the intersection at a small cost in space, which could

result in much faster search engines.
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