
Adaptive Intersection and t-Threshold Problems

Jérémy Barbay∗ Claire Kenyon∗

Abstract

Consider the problem of computing the intersection of

k sorted sets. In the comparison model, we prove a

new lower bound which depends on the non-deterministic

complexity of the instance, and implies that the algorithm

of Demaine, López-Ortiz and Munro [2] is usually optimal

in this “adaptive” sense. We extend the lower bound and

the algorithm to the t-Threshold Problem, which consists in

finding the elements which are in at least t of the k sets.

These problems are motivated by boolean queries in text

database systems.

1 Introduction

It is easy to compute in O(n) the intersection of two
sorted sets of size n, and this complexity is optimal in
the worst case. However, in some cases the intersection
might be much easier to compute, for example if all
elements of the first set are smaller than all elements
of the second set: then the intersection is empty, and
a single well-chosen comparison is sufficient to certify
it. One then wishes to design an “adaptive” algorithm,
which is faster when the instance is “easy”. This follows
the same general philosophy as the search for output-
sensitive algorithms in Computational Geometry, or for
adaptive sorting algorithms as in [4].

Adaptive algorithms for the intersection or the
union of k sorted sets were studied by Demaine, López-
Ortiz and Munro in the context of Internet information
queries and text database systems [2, 3]. If queries are
composed of words, and for each keyword a sorted set
of references to entries in the database is pre-computed,
then the set of data entries in the database matching
all the keywords of a query is the intersection of the
sorted sets corresponding to each keyword: this is
the application of the Intersection Problem to search
engines, as defined in [3]. The present work was
originally inspired by [2], where the authors propose
a measure of difficulty of instances of the Intersection
or Union problems based on the encoding size of the
proof of the output, and design ingenious algorithms
for these two problems; they prove that their algorithm
for computing the union of k sets is optimal in the

∗{jeremy,kenyon}@lri.fr, LRI, CNRS UMR 8623, Université
Paris-Sud, 91405 ORSAY Cedex, FRANCE.

adaptive sens, and that their algorithm for computing
the intersection has complexity at most O(k) times their
lower bound.

In this paper, we define a different, simpler and
perhaps more natural measure of difficulty for an
instance. Any (even non-deterministic) algorithm for
the Intersection Problem must certify that the output
is correct: first, it must certify that all the elements of
the output are indeed elements of all the sets; second, it
must certify that no element of the intersection has been
omitted by exhibiting some inequalities which imply
that there can be no other element in the intersection.
In the comparison model, the first goal is reached by
verifying (k − 1)#I equalities, and the second goal is
reached by verifying a certain set P of strict inequalities.
We define the difficulty of an instance as δ = #I +
minP #P , and, in Theorem 3.2, our main result in
this part of the paper, prove that any deterministic
or randomized algorithm for the Intersection Problem
must make at least Ω(δ

∑
i log(ni/δ)) comparisons

on instances with k sorted sets of sizes n1, . . . , nk

respectively, an intersection size #I and difficulty δ.
The proof of this lower bound is in 4 steps:

1. Reduction of the Intersection Problem to a set of
O(δ) instances of the Intersection Element Problem
in Theorem 3.2.

2. Definition of the distributions D− and D+ on
the Intersection Element Problem in Theorems 2.1
and 2.2.

3. Analysis of the decision tree of any algorithm on
D− and D+. (Lemma 2.3 is the keypoint.)

4. Use of the Yao-von Neumann Minimax principle
[7, 6] to deduce a lower bound on randomized
algorithms in Corollary 3.1.

We study first the Intersection Element Problem in
section 2, and then use it in section 3 to prove results
on the Intersection Problem. Then we observe in
Theorem 3.3 that the algorithm of [2] has complexity
O(kδ log(n/δ)), hence is optimal when maxi log ni =
O(mini log ni) and k = o(n). Along the way, in
Theorem 3.1 we provide a nice characterization of
certificates.



In the second part of the paper, we study a more
general problem, the t-Threshold Problem: given k
sorted sets, find the elements which are in at least t
of the k sets. We extend our lower bound to prove
in Theorem 4.2 a lower bound of Ω(δ

∑t
i=1 log(ni/δ))

for this problem if n1 ≥ . . . ≥ nk; we design an
algorithm for the t-Threshold Problem, which is an
appropriate generalization of the algorithm for the
Intersection Problem; we analyze it and prove in
Theorem 3.3 that its complexity is O(tδ log(k) log(n)).
We do not currently know whether this factor of log k
can be removed from the analysis. (Note that in the
applications mentioned in [2, 3], k is usually quite
small.)

We conclude with some perspectives and
suggestions of related questions.

2 The Intersection Element Problem

Definition 2.1. The insertion rank of an element x in
a set A is the rank of x in A ∪ {x}.
(Note that if x ∈ A then the insertion rank is just the
rank).

Definition 2.2. Given k sorted sets (A1, A2, . . . , Ak)
and an element x, the Intersection Element Problem
consists in deciding whether x ∈ A1 ∩A2 ∩ . . . ∩Ak.

The quantities (l, x, r) of the following theorems will be
useful for the reduction from the Intersection Problem.

Theorem 2.1. For any positive integers k,
n1,n2,. . .,nk, and any real numbers l < x < r,
there exists a distribution D+(l, x, r) on instances with
k sorted sets, where set Ai has size ni, and all the
elements of every set Ai are in (l, r), such that x is
in the intersection, and such that any deterministic
algorithm for the Intersection Element Problem for x
performs on average Ω(

∑
i log(ni)) comparisons.

Proof. The proof is a simple counting argument. Let us
define the following distribution D+(l, x, r), which will
also be useful in the lower bound for the Intersection
Problem.

• For each i, a rank pi is chosen uniformly at random
from {1, . . . , ni};
• Let Ai[pi] = x; all the other elements are in (l, r);

To certify that x is in the intersection, the algorithm
must find the rank of x in every Ai, so to each leaf of the
decision tree one can associate a k-tuple (p1, p2, . . . , pk);
the number of such k-tuples is

∏
i ni, and D+(l, x, r)

gives a uniform distribution over these k-tuples, which
immediately implies a lower bound of

∑
i log2 ni on the

expected performance of any deterministic algorithm. ut

Theorem 2.2. For any positive integers
k, n1, n2, . . . , nk, and any real numbers l < x < r,
there exists a distribution D−(l, x, r) on instances
with k sorted sets, where set Ai has size ni, and all
the elements of every set Ai are in the open interval
(l, r), such that x is not in the intersection, and such
that any deterministic algorithm for the Intersection
Element Problem for x performs on average at least
1
4

∑
i log4(ni)− k comparisons.

Remark that a simple adversary argument yields a
Ω(

∑
i log(ni)) lower bound in the worst case. This is in

fact the proof of Lemma 4.4 in [2].
Also remark that this is more difficult than

Theorem 2.1, since a leaf of the decision tree will certify
that x /∈ A1∩ . . .∩Ak simply by exhibiting a set Ai and
an index p such that Ai[p] < x < Ai[p + 1]; there are
only n such pairs (i, p), so the straightforward counting
argument would only yield a lower bound of log2 n. To
improve on that lower bound, one must argue that in
order to find the certificate (i, p), along the way the
algorithm must have determined the rank of x in many
other sets as well.

Proof. Consider the following distribution D−(l, x, r):

• For each i, a rank pi is chosen uniformly at random
from {1, . . . , ni};

• One set Ai is chosen at random to be Ai0 with
probability αi = log4 ni/

∑
` log4 n`;

• Define y = x + ε. Let Ai0 [pi0 ] = y, and for i 6= i0,
let Ai[pi] = x; all other elements are either in (l, x)
or in (y, r);

• Complete the sets so that the following property
holds. For each i < i′, let a ∈ Ai and a′ ∈ Ai′ . If a
and a′ are both less than x, then a < a′. Similarly,
if a and a′ are both greater than y, then a < a′.

In the rest of the proof we will note D− the
distribution D−(l, x, r).

Lemma 2.1. Let A be an algorithm for the Intersection
Element Problem in the comparison model. There exists
an algorithm B for the Intersection Element Problem on
D− which, instead of comparisons, performs queries of
the form “How does Ai[p] compares to x and y?”, with
four possible outcomes: Ai[p] < x, Ai[p] = x, Ai[p] = y
and Ai[p] > y; the number of queries performed by
algorithm B is at most twice the number of comparisons
performed by A.

Proof. We use the “little birdy principle” and assume
that B knows that the instance is drawn from D−.



Whenever A would compare Ai[p] to Ai′ [p′], B does two
queries instead: one for Ai[p], and one for Ai′ [p′]. The
results, together with the knowledge of D−, determine
what the outcome of the comparison Ai[p] : Ai′ [p′]
would have been:

• if i = i′ or if x or y is equal to Ai[p] or to Ai′ [p′],
this is obvious;

• if x and y separate Ai[p] from Ai′ [p′], use
transitivity;

• if Ai[p] and Ai′ [p′] are on the same side of x and y,
then Ai[p] < Ai′ [p′]⇔ i < i′. ut

Henceforth, we restrict ourselves to algorithms
which only do queries as described in Lemma 2.1. We fix
an arbitrary deterministic algorithm A. Let A′ denote
an algorithm which continues performing queries after A
ends and until the insertion ranks pi of x are determined
in all the sets.

For a random instance from D−, we define the
following random variables:

• Xi: the number of queries performed by A in Ai.

• Yi: the number of queries performed by A′ in Ai.

• ξi: the indicator variable which equals 1 if and
only if the insertion rank pi of x in Ai has been
determined by A.

The number of comparisons performed by A is
C =

∑
i Xi. Restricting ourselves to sets in which

the insertion rank has been determined, we can write
C ≥∑

i Xiξi =
∑

i Yiξi.

Pr{Yiξi ≥ ai} = Pr{Yi ≥ ai and ξi = 1}
= 1− Pr{Yi < ai or ξi = 0}
≥ 1− Pr{Yi < ai} − Pr{ξi = 0}
= Pr{ξi = 1} − Pr{Yi < ai}(2.1)

Lemma 2.2.

Pr{Yi < ai} ≤ 4ai/ni.

Proof. This is the usual decision tree lower bound: if
we consider the queries performed by A′ in set Ai, there
are at most 4ai leaves at depth less than ai, and since
the insertion rank of x in Ai is uniform, these leaves all
have the same probability and have total probability at
most 4ai/ni. ut

Then E(C) ≥
∑

i

E(Yiξi)

≥
∑

i

(log4 ni − 1) Pr {Yiξi ≥ (log4 ni − 1)}

≥
∑

i

(
log4 ni

(
Pr{ξi = 1} − 1

4

)
− 1

)

=
∑

i

log4 ni Pr{ξi = 1} − 1
4

∑

i

log4 ni − k,(2.2)

where the first inequality comes from the linearity
of expectation, the second from Markov’s inequality
applied to Yiξi, and the third one come from
Equation (2.1) and Lemma 2.2 with ai = (log4 ni)− 1.

Lemma 2.3. Given algorithm A, the probability
Pr{i0 = j} = αj and the positions p = (p1, p2, . . . , pk),
there exists a permutation σ of {1, 2, . . . , k} such that

Pr{ξi = 1|p} =
∑

j:σj≥σi

αj .

Proof. Given p = (p1, p2, . . . , pk) there are only k
instances I1, I2, . . . , Ik corresponding to the k possible
choices for i0. Algorithm A can only differentiate
between two such instances when it discovers that Ai[pi]
is y for one instance and x for the other instance. The
algorithm is finished as soon as it finds y, thus the
restriction of A to those instances gives the decision tree
in form of a branch (see Figure 1, where the decision tree
is drawn from left to right). Let σ denote the order in
which these instances are dealt with by A. Then ξi = 1
if and only if σi ≤ σi0 , and so

Pr{ξi = 1|p} =
∑

j

αj1I(σi ≤ σj) =
∑

j:σj≥σi

αj .ut

From Lemma 2.3 and the definition of αj (recall
that αj = log4 nj/

∑
l log4 nl), we obtain

log4 ni Pr{ξi = 1}
=

∑
p

log4 ni Pr{ξi = 1|p}Pr{p}

=
∑

p

∑

j:σj≥σi

log4 ni log4 nj
Pr{p}∑
l log4 nl

.

Summing over i to calculate the first term in
Equation (2.2), we get

∑

i

log4 ni Pr{ξi = 1}

=
∑

p

∑

i,j:σj≥σi

log4 nj log4 ni
Pr{p}∑
l log4 nl

=
∑

p

Pr{p}
∑

i,j:σj≥σi

log4 nj log4 ni∑
l log4 nl

.



= x

= y

< x > y = x

= y

= x

= y

A3[2] A2[5] Aσ1
[pσ1

] A1[6] A3[7] Aσ2
[pσ2

] A4[7] Aσk
[pσk

]

Figure 1: The decision tree of A restricted to the instances such that (p1, . . . , pk) is fixed.

In the sum, each term log4 nj log4 ni appears exactly
once, hence

∑

i,j:σj≥σi

log4 nj log4 ni =
1
2
((

∑

i

log4 ni)2 +
∑

i

log2
4 ni),

which is independent of p. Then we can conclude:

∑

i

log4 ni Pr{ξi = 1} ≥ 1
2

∑
p

(
∑

i log4 ni)
2 Pr{p}∑

l log4 nl

≥ 1
2

∑

i

log4 ni.

Plugging this into Equation (2.2), we obtain the
bound of Theorem 2.2. ut

Remark: We stated Theorem 2.1 and 2.2 for real
numbers. However, since we work in the comparison
model, instances over the reals could easily be replaced
by integer instances over a range of size

∑
i ni at most.

3 The Intersection Problem

3.1 Definition and basic properties

Definition 3.1. Given k sorted sets A1, A2, . . . , Ak

of sizes n1, . . . , nk summing to n, the Intersection
Problem consists in computing the intersection
I=A1∩A2∩ . . .∩Ak.

A non-deterministic algorithm would only need to
exhibit a certificate for the intersection. This is similar
to the notion of “proof” used in [2].

Definition 3.2. A certificate (I, P ) consists of:

1. a set I of k-tuples specifying the ranks of elements
of I, and

2. a set P of inequalities of the form Ai[p] < Ai′ [p′],
such that if all are satisfied then the intersection is
restricted to the elements given in I.

For instance, the k-tuple (p1, . . . , pk) means that
A1[p1] = A2[p2] = . . . = Ak[pk] belongs to I. And the
inequality A1[1] > A2[5] implies that no element of rank

strictly less than 6 in set A2 is in the intersection. One
instance can have many different certificates, with very
different sizes. For example, if A = {0}, B = {1, 3, 5, 7}
and C = {2, 4, 6, 8}, the intersection I is empty, and
a possible set of inequalities certifying it might consist
simply of one inequality A[1] < B[1], or it might be
much longer, for example the six inequalities B[1] <
C[1] < B[2] < C[2] < B[3] < C[4] < B[4].

Definition 3.3. The difficulty δ of an instance of the
Intersection Problem is the minimum value of #I+#P
over all certificates (I, P ) for the instance.

This is similar to the notion of disorder in [4], and
similar to but distinct from the notion of difficulty in
[2]. Our measure is essentially the non-deterministic
complexity of the instance, i.e. proving that the
intersection is I requires #P + (k− 1)#I comparisons:
(k−1)#I equalities to establish that the corresponding
elements belong to all the sets, and #P inequalities
to establish that there are no other elements in the
intersection.

One question immediately comes to mind: why did
we not pick simply the non-deterministic complexity,
#P +(k−1)#I, as our measure of difficulty? In fact, the
two parts of the certificate play a very different role, and
the core of the theorem is when the intersection is empty
– one lower bound, Ω(#I

∑
i log(ni/#I)), is relatively

easy, the other one, Ω(#P
∑

i log(ni/#P )), which is
relevant when the intersection is small or empty, is more
difficult. Our definition of difficulty simplifies notations
to combine both lower bounds into one.

We will prove a structural result, Theorem 3.1
below, establishing a correspondence between
intersection certificates and certain partitions of
the real line into intervals. For each certificate we can
partition (−∞,+∞) into intervals of elements not in
the intersection, and singletons consisting of elements
of the intersection. That theorem inspired us in the
design of the instances used in the proof of the lower
bound, and is also used in the analysis of the upper
bound.

Theorem 3.1. Consider an instance (A1, A2, . . . , Ak)
of the Intersection Problem with intersection I. There



exists a certificate (I, P ) with #I+#P ≤ d, if and only
if there exists a set of at most d + 1 intervals (Ij)0≤j≤d

such that:

• ⋃
j Ij ∪ I is a partition of (−∞,+∞), and

• for every Ij, there exists a set Aij such that
Aij
∩Ij=∅.

Proof. We first prove the “only if” direction. The
proof is by induction on d. If one of the sets, say
Ai0 , is empty, then the lemma holds with the partition
I0 = (−∞, +∞). This settles the base case d = 0. Let
d > 0 and assume that none of the sets Ai are empty.
Let a = max{A1[1], A2[1], . . . , Ak[1]}.

Consider the case where a = As[1] ∈ I. A new
proof P̃ for our instance can be defined by removing
any comparison between an element ≤ a and an element
≥ a. We define an interval Id = (−∞, a), with an
associated set Aid

= As; we now create a new instance
(A′1, A

′
2, . . . , A

′
k), such that for every i, A′i = {x ∈

Ai|x > a}.
Let I ′ be the “transcription” of I \ {a} on this

new instance (A′1, A
′
2, . . . , A

′
k), with the element ranks

updated appropriately. Let P ′ be the “transcription” of
P̃ on the instance (A′1, A

′
2, . . . , A

′
k), where the element

ranks are updated appropriately, and comparisons
involving elements ≤ a are removed. It is easy to check
that (I ′, P ′) is a certificate for (A′1, A

′
2, . . . , A

′
k), of size

at most d− 1 since #I ′ = #I − 1. Apply the induction
hypothesis to (A′1, . . . , A

′
k) to define (I ′j)0≤j≤d−1; let

Ij = I ′j \ (−∞, a] for j ≤ d − 1. Adjoining Id gives
a partition of (−∞,+∞) which satisfies the theorem
for (A1, . . . , Ak).

Now, consider the case where a = As[1] /∈ I.
Consider one particular instance of the problem. Of all
the inequalities in P , take the inequality Au[p] < Av[q]
such that the element Av[q] has smallest value. A new
proof P̃ for our instance can be defined by replacing
all inequalities involving Au[x], for every x ≤ p, by
“Au[x] < As[1]” (note that Av(q) ≤ As[1], otherwise
P would not rule out the possibility that A1[1] =
A2[1] = . . . = Ak[1] belongs to I). We define an interval
Id = (−∞, a), and an associated set Aid

= As; we now
create a new instance: A′i = Ai for every i 6= u and
A′u = Au[p + 1, . . . nu].

Let I ′ be the “transcription” of I on this new
instance (A′1, A

′
2, . . . , A

′
k), with the element ranks

updated appropriately. Let P ′ be the “transcription”
of P̃ on the instance (A′1, A

′
2, . . . , A

′
k), where the

inequalities involving an element which has been
removed disappear, and the element ranks are updated
appropriately. It is easy to check that (I ′, P ′) is a
certificate for (A′1, A

′
2, . . . , A

′
k), of size at most d − 1

since #P ′ ≤ #P−1. Apply the induction hypothesis to
(A′1, . . . , A

′
k) to define (I ′j)0≤j≤d−1; let Ij = I ′j \(−∞, a)

for j ≤ d − 1. Adjoining Id gives a partition of
(−∞, +∞) which satisfies the theorem for (A1, . . . , Ak).

We now prove the other direction. Consider a set
of intervals (Ij)0≤j≤d satisfying the conditions of the
theorem. Let a = sup Ij = inf Ij+1. If a ∈ I, just add
the corresponding k-tuple to I. If a /∈ I, let Aij [r] be
the smallest element of Aij

which is ≥ a, and Aij+1 [l]
be the largest element of Aij+1 which is ≤ a (note that
these elements cannot both be equal to a). Add the
comparison “Aij+1 [l] < Aij

[l]” to P . This defines (I, P ),
which has size d, and one can easily convince oneself that
it is a certificate. ut

3.2 A lower bound for Intersection Problem

Theorem 3.2. For any positive integers k, n1, . . . , nk,
and for any integers i0 and p0 such that i0 + p0 = δ,
there exists a distribution D over instances of difficulty
≤ δ on k sets of sizes n1, . . . , nk respectively, with
an intersection of size i0, such that any deterministic
algorithm for the Intersection Problem performs on
average Ω(δ

∑
i log(ni/δ)) comparisons.

Ai

D
−

D
−

D
−

D+D+D+

a1 a2 ai0 x1 x2 xq0

A2

A1

Ak

Figure 2: An instance (A1, . . . , Ak) of the intersection
problem, obtained by drawing from i0 distributions of
type D+ and q0 distributions of type D−.

Proof. Let q0 = bp0/2c. Let A0 = {a1, a2, . . . , ai0 ,
x1, . . . , xq0} and choose (zi) and (uj) such that a1 <
z1 < a2 < . . . zi0−1 < ai0 < zi0 , and zi0 < x1 <
u1 < . . . < xq0−1 < uq0−1 < xq0 . We define mi for
all i = 1, . . . , k as equal to bni/(i0 + q0)c.

Construct i0 instances of the Intersection Element
Problem for k sets of sizes m1, . . . ,mk, using
the distribution D+(l, x, r) defined in the proof
of Theorem 2.1: more precisely, use distribution
D+(−∞, a1, z1) to create sets A

(1)
1 , . . . , A

(1)
k which

all contain a1; distribution D+(z1, a2, z2) to create
sets A

(2)
1 , . . . , A

(2)
k , and so on till distribution

D+(zi0−1, ai0 , zi0) to create sets A
(i0)
1 , . . . , A

(i0)
k .



Construct q0 instances of the Intersection Element
Problem for k − 1 sets of size m1, . . . , mk, using
the distribution D−(l, x, r) defined in the proof
of Theorem 2.2: more precisely, use distribution
D−(zi0 , x1, u1) to create sets A

(i0+1)
1 , . . . , A

(i0+1)
k which

almost all contain x1, distribution D−(u1, x2, u2)
to create sets A

(i0+2)
1 , . . . , A

(i0+2)
k , and so on

till distribution D−(zq0−1, xq0 ,∞) to create sets
A

(i0+q0)
1 , . . . , A

(i0+q0)
k .

Let Aj = A
(1)
j ∪ . . . ∪ A

(i0+q0)
j . Complete each set

if necessary so that the size of each set Ai equals ni.
This creates a random instance A1, A2, . . . , Ak whose
intersection is I = {a1, a2, . . . , ai0}.
Lemma 3.1. The instance (A1, . . . , Ak) thus
constructed has difficulty at most δ.

Proof. We use Theorem 3.1. The intervals
(−∞, a1),(ai, ai+1), (ai0 , x1) (xj , xj+1) and (xq0 ,∞) all
have an empty intersection with A1. For each xj , there
is a set Aij which does not contain xj , hence a small
open interval around xj whose intersection with Aij is
empty. This defines i0 + q0 + 1 + q0 ≤ δ + 1 intervals
which satisfy the two conditions of Lemma 3.1, hence
the instance has difficulty at most δ. ut

Now, let A be an algorithm for the Intersection Problem.
Even if a “little birdy” tells A what the distribution
is, and that I ⊂ A0, A still has to solve i0 positive
instances and q0 negative instances of the Intersection
Element Problem to verify that the intersection is
exactly {a1, . . . , ai0}. So by Theorems 2.1 and 2.2, A
must perform on average at least Ω((i0 + q0)

∑
i log mi)

comparisons, hence the proof. ut

Applying the Yao-von Neumann principle [7, 6], we
finally obtain the following corollary.

Corollary 3.1. Consider instances of difficulty ≤ δ;
the complexity of any randomized algorithm for the
Intersection Problem is Ω(δ

∑
i log(ni/δ)).

Remark that the proof constructs instances whose
difficulty is either δ − 1 or δ, and can in fact easily be
modified to construct instances of difficulty exactly δ,
so that the Corollary in fact also holds for instances of
difficulty = δ.

3.3 An upper bound for Intersection Problem
We use the deterministic algorithm from [2], stated
in a slightly simplified form in Algorithm 2. This
algorithm relies on doubling search [1], which searches
for an element in a set left-to-right, doubling the size
of the interval covered at each step (see Algorithm 1).

Algorithm 1 Doubling search for x in set Ai

Let stepi ← 1
Let positioni ← 1
while positioni ≤ #Ai and Ai[positioni] < x do

stepi ← 2× stepi

positioni ← positioni + stepi

end while
output: “x has insertion rank in (positioni −
stepi, positioni]”

Algorithm 2 finds the elements of the intersection in
increasing order, that is, at any time, the element m
currently under consideration is a candidate element
of the intersection, and at that time the algorithm has
already found all the elements of the intersection which
are less than m. The value of m is updated when either
m is found to be in all the sets (hence belongs to the
intersection), or m is found not to be in some set Ai

(hence is not in the intersection). The sets which are
marked are all the sets in which m has been found so
far.

Theorem 3.3. Algorithm 2 computes the intersection
of any instance of difficulty δ in O(kδ log(n/δ))
comparisons.

The algorithm was first given by [2], and Theorem 3.3
can be obtained from Corollary 5.1 in [2] (by considering
n as an upper bound for each gs[i]). Here we give a
direct proof.

This upper bound matches the lower bound of
Theorem 3.2 when maxi log ni = O(mini log ni) and
k = o(n), so the algorithm is optimal in this case. This
result is then the best possible in the sense that the
upper bound is reached by a deterministic algorithm,
whereas the lower bound holds even for randomized
algorithms.

The upper bound could be greater than the lower
bound by a factor of O(k), for instance if n1 = Ω(2n2)
where n1 > n2 ≥ . . . ≥ nk. These are extremal
conditions, and we think the lower bound is not tight
for those instances.

Proof. Let us call the comparisons performed by the
algorithm doubling comparisons or binary comparisons,
depending on whether they are performed during a
doubling search or during a binary search. We focus on
doubling comparisons. Consider the intervals (Ij)j≤δ

obtained by applying Theorem 3.1 to an optimal proof.
Each set Ai can be partitioned by using as separators:

• the intersection elements (if any), and

• the intervals Ij associated with Ai (if any, see



Algorithm 2 Algorithm to compute the intersection
I = A1 ∩A2 ∩ . . . ∩Ak

Let M ← min{A1[n1], A2[n2], . . . , Ak[nk]}
Let m← max{A1[1], A2[1], . . . , Ak[1]}
Mark the set to which m belongs
Let ∀i stepi ← 1
while m ≤M do

Let Ai be the next non marked set in round robin
order
Perform one step of doubling search for m in Ai,
comparing m to some a ∈ Ai.
if a ≥ m then

Perform a binary search for m in the relevant
interval of Ai.
Reinitialize stepi ← 1
if m ∈ Ai then

Mark Ai

if all sets are marked then
I ← I ∪ {m}

end if
end if
if m ∈ I or m /∈ Ai then

Remove all marks
Let m← first element of Ai larger than m
Mark Ai

end if
end if

end while

Theorem 3.1; for each j there is an Ai such that
Ai ∩ Ij = ∅).

These separators divide Ai into parts, with gj the size
of the part ending in Ij , and g(i, x) the size of the part
ending at x ∈ I (see Figure 3).

During an execution of Algorithm 2, the successive
values of m form a non-decreasing sequence. Say that
a comparison is performed in phase j if it is done while
m has value in Ij , and in phase x if it is done while m
has value x ∈ I.

Lemma 3.2. During phase j let Ai be the set associated
to Ij (Ai = Aij in the notations of Theorem 3.1).
The algorithm performs at most log2 gj doubling
comparisons in set Ai.

Proof. During phase j, m has values in Ij , so we never
have m ∈ Ai, hence Ai is never marked. As the doubling
search step won’t be reset to 1 in Ai, the number of
doubling comparisons in set Ai is less than the logarithm
of the total number of elements of Ai which are scanned
during that period; that number is less than gj , hence
the lemma. ut

gj g(x, i)

Ai

A1

A2

Ak

Ij
x

Successive value of m during phase j of execution.

Figure 3: Analysis of the doubling comparisons of
Algorithm 2.

Doubling search in the k−1 sets is performed in round
robin order, so for each doubling comparison in Aj at
most one doubling comparison is performed in each
other set Al, and so the algorithm performs at most
(k−1)(log2 gj +1) doubling comparisons in total during
phase j.

Lemma 3.3. During phase x, the algorithm performs at
most

∑
i log2 g(i, x) doubling comparisons in all sets.

Proof. During phase x, m is fixed and equal to x. For
each set Ai, as the doubling search step won’t be reset
to 1 in Ai until we find m ∈ Ai, the number of doubling
comparisons in Ai is less than the logarithm of the total
number of elements of Ai which are scanned during that
phase; that number is less than g(i, x), hence the lemma.
ut

Using concavity of logarithms in the sum over all phases
j, we find that the number of doubling comparisons
in those phases is at most δ(k−1)(log2(

∑
j gj/δ)+1).

Similarly, using concavity of logarithms in the sum
over all phases x and sets Ai, we find that the
number of doubling comparisons in those phases
is at most k#I log2(

∑
x,i g(i, x)/k#I). Both these

numbers are in O(kδ log2(n/δ)), so the total number
of doubling comparisons performed by the algorithm is
in O(kδ log2(n/δ)).

From this upper bound on the total number of
doubling comparisons we can deduce an upper bound
on the total number of binary comparisons: in any
set, a binary search is preceded by a doubling search
in the interval defined by the doubling search. As the
binary search uses at most as many comparisons as the
doubling search which preceded it, binary comparisons
can be charged to doubling comparisons, hence the
theorem. ut



4 The t-Threshold Problem

Definition 4.1. Given k ordered sets A1, A2, . . . , Ak

of sizes n1, . . . , nk summing to n, the t−Threshold
Problem consists in computing the set of elements which
are present in at least t of the k sets:

Tt = {x : #{i ≤ k, x ∈ Ai} ≥ t}.
The k-Threshold Problem is the Intersection

Problem. Thus this section can be seen as an extension
of the work done on the Intersection Problem, and for
t = k Theorem 4.2 yields the bound of Theorem 3.2.

Observe that for the t-Threshold Problem when
t ≥ 2, a certificate for the result must access each
element of the output set at least once, hence the size of
the output is an obvious lower bound to the complexity
of any algorithm. On the other hand, the 1-Threshold
Problem is the Union Problem (compute the union of
all the sets), which has one significant difference from
the other t-Threshold Problems: one might be able to
compute the union implicitly without accessing all of
its elements: for example, if k = 2 and if the algorithms
checks that A1[#A1] < A2[1], then it knows that all
the elements are distinct and has an implicit knowledge
of the union (in that sense, the Union Problem can
be reduced to the 2-Threshold Problem). This was
exploited in [2], where an optimal adaptive algorithm
was designed for the Union Problem. Henceforth, we
will assume that t ≥ 2.

Definition 4.2. A certificate (Tt, P ) for the t-
Threshold Problem consists of

1. a set Tt of t-tuples, where the jth entry of the t-
tuple, for 1 ≤ j ≤ t, is a pair specifying a set ij
and a rank in that set, and

2. a set P of inequalities of the form “Ai[p] < Ai′ [p′]”
such that if all are satisfied then the tuples given
in Tt all correspond to distinct elements, and the
t-threshold set is restricted to the elements given in
Tt.

Thus, the t-tuple ((i1, p1), (i2, p2), . . . , (it, pt)) means
that Ai1 [p1] = Ai2 [p2] = . . . = Ait [pt] and so, that
element belongs to Tt. And the inequalities A1[1] >
A3[5] and A2[1] > A3[8], if t = k − 2, imply that no
element of A3 of rank less than 6 is in the t-threshold
set.

Definition 4.3. The difficulty δ of an instance of the
t−Threshold Problem is the minimum value of #Tt+#P
over all certificates (Tt, P ) for the instance.

We now present a structural result similar to
Theorem 3.1.

Theorem 4.1. Consider an instance (A1, A2, . . . , Ak)
of the t-Threshold Problem with result Tt. For each
certificate (Tt, P ) with #Tt + #P ≤ d there exist a set
of at most d + 1 intervals (Ij)0≤j≤d such that:

• ⋃
j(Ij) ∪ Tt is a partition of (−∞, +∞), and

• For every Ij, there exist k − t + 1 sets Aiq
j
, with

1 ≤ q ≤ k − t + 1, such that Aiq
j
∩ Ij = ∅.

Proof. The proof is by induction on d. If k− t+1 of the
sets are empty, then the Lemma holds with the partition
I0 = (−∞, +∞). This settles the base case d = 0. Let
d > 0 and assume that e ≤ k − t of the sets are empty.
Among all comparisons, take the one whose right hand
side is smallest. Let x be that right hand side. Let y be
the smallest element of Tt.

• If x < y then k− t+1 sets As must have x < As[1]
(to rule out the possibility that Ai1 [1] = . . . =
Ait [1] ∈ Tt); define Id = (−∞, x) and use induction
on A′i = Ai \ Id.

• If y < x then k− t+1 sets As must have y ≤ As[1]
(to rule out the possibility that Ai1 [1] = . . . =
Ait [1] ∈ Tt); define Id = (−∞, y) and use induction
on A′i = Ai \ Id. ut

4.1 A lower bound for t-Threshold Problem

Theorem 4.2. For any positive integers k, n1, . . . , nk,
and for any integers i0 and p0 such that i0 + p0 = δ,
there exists a distribution D over instances of difficulty
≤ δ on k sets and n1 ≥ n2 ≥ . . . ≥ nk elements with a
t-threshold set of size i0, such that any deterministic
algorithm for the t-Threshold Problem performs on
average Ω(δ

∑t
i=1 log(ni/δ)) comparisons.

Proof. We can limit ourselves to instances were k = t by
giving to the algorithm the indices of the k− t smallest
sets with the promise that they do not contain any
element of the t-threshold set. Then the lower bound of
Theorem 3.2 applies. ut

Applying the Yao-von Neumann principle again, we
finally obtain the following corollary.

Corollary 4.1. Consider instances of difficulty ≤ δ;
the complexity of any randomized algorithm for the t-
Threshold Problem is Ω(δ

∑t
i=1 log(ni/δ)).

4.2 An upper bound for t-Threshold Problem
Algorithm 3 finds the elements of Tt in increasing
order. At any time, the element m currently under
consideration is a candidate element of Tt; at that time



the algorithm has already found all the elements of Tt

which are less than m.
The sets which are colored green are the ones in

which m has been found so far; the sets which are
colored in red are the ones to which m is known not to
belong (By convention, if Ai is empty then Ai is colored
red and we can assume that +∞ is the corresponding
element in H). An element Ai[p] is in H if and only
if Ai is red, and Ai[p] is the smallest element of Ai

which is strictly larger than m (it is the smallest element
of Ai which could conceivably end up in Tt). H is
implemented by a heap.

The value of m is updated when m is either found
to be in t sets (hence belongs to Tt), or found not to
be in k − t + 1 sets (hence does not belong to Tt). At
that time, we must choose a new value for m. The
algorithm chooses this new value in such a way that
at any time, the number of white sets is at most t − 1.
This guarantees that no element of Tt will be overlooked,
hence the correctness of the algorithm.

Specialized to the case t = k, the green sets
correspond to the marked sets in the Intersection
algorithm; all the other sets are white, except when the
algorithm finds a set Ai which does not contain m, in
which case all green sets are recolored white and m is
immediately updated and replaced by the next larger
element of Ai. For t = k, Algorithm 3 is thus exactly
Algorithm 2.

Theorem 4.3. Algorithm 3 computes the t-threshold
set of any instance of difficulty δ in O(tδ log k log n)
comparisons.

Proof. Let us call the comparisons performed by the
algorithm

• doubling comparisons if they are performed during
a doubling search,

• binary comparisons if they are performed during a
binary search, and

• heap comparisons if they are performed during the
manipulation of H.

Consider the intervals (Ij)j≤δ obtained by applying
Theorem 4.1 to an optimal proof. During an execution
of Algorithm 3, the successive values of m form a
non-decreasing sequence. Say that a comparison is
performed in phase j it it is done while m has value
in Ij , and in phase x if it is done while m has value
x ∈ Tt

Lemma 4.1. During phase j let Ai be one of the
set associated to Ij (Ai = Aiq

j
in the notations of

Theorem 4.1). The algorithm performs at most log2 n
doubling comparisons in set Ai.

Proof. During phase j, the variable m has values which
belong to Ij . But Ij ∩ Ai = ∅, so during that time
we never have m ∈ Ai and Ai is never colored green;
if m is ever less than the element of Ai to which it is
compared, that initiates a binary search after which Ai

will be colored red and never examined again during
phase j, and so the number of doubling comparisons in
set Ai is less than log2 n. ut

Let Ai be the last set to become red during phase
j, among the k − t + 1 sets associated to Ij . When Ai

becomes red, phase j immediately terminates. While
Ai is white, since doubling search is performed in round
robin order among the white sets, and as there are
at most (t − 1) white sets at any time, the algorithm
performs at most (t − 1) doubling comparisons in
other sets for each doubling comparison in Ai. So, in
total, the algorithm performs at most t log2 n doubling
comparisons during phase j.

In any set, a doubling search is followed by a
binary search in the interval defined by the doubling
search. The binary search uses at most as many
comparisons as the doubling search which preceded
it, so binary comparisons can be charged to doubling
comparisons: the algorithm performs at most 2(t −
1) log2 n comparisons in total during phase j. Since
there are exactly δ such phases, the overall number of
comparisons during phases j is at most 2δ(t− 1) log2 n.
The analysis for phases x is similar.

It remains to analyze the heap comparisons,
between elements of H: first the heap H is constructed
with cost at most k log k comparisons. Then in the
while loop there are at most as many elements inserted
as there are iterations, so there are at most δt log2 n
insertions in total. As there are never more than k−t+1
red sets, H never contains more elements, and each
insertion cost at most log2(k − t + 1) comparisons. As
there cannot be more removal than insertions in the
heap, the number of heap comparisons is no more than
2tδ log(k − t + 1) log n, and adding this to the other
comparisons gives a bound of at most 2tδ(log(k − t +
1) + 1) log n. ut

5 Perspectives

Some obvious open problems include closing the gaps
between our lower and upper bounds. Many other
problems are also worth considering in this framework.

In the context of database queries, a natural variant
of the t-Threshold Problem is the following: Given a set
of k ordered sets, find the maximal value tmax for t such
that the t-Threshold Set is non empty, and return this
Threshold Set.

So far, in the applications each set Ai was



considered to be the set of database elements which
contain the ith word in the k-word query. However,
more sophisticated algorithms, given a query word w,
design a short list of all words which are variants of
w, then find a set Aw̃ for each variant w̃. Instead of
finding the intersection of all the sets, one is then faced
with a new problem, finding the intersection of unions
of sets. Of course if one has preprocessed, for each
word, the union of the sets corresponding to its variants,
then queries can be answered just by performing an
intersection. But precomputation has a cost in memory,
and in some applications, precomputing the unions cost
too much to be practical.

More generally, given k sorted sets and an element
x, one can construct a k-bit word such that xi = 1 if and
only if x ∈ Ai. Take a boolean function f : {0, 1}k → 1,
and consider the problem of finding all the elements
(or deciding whether there exist any element, in the
decision version of the problem) such that f(x) = 1.
When f(x1, . . . , xk) = x1 ∨ . . . ∨ xk, we get the Union
Problem. When f(x1, . . . , xk) = x1 ∧ . . . ∧ xk, we
get the Intersection Problem. When f(x1, . . . , xk) =
(x1 + . . . + xk ≥ t), we get the t-Threshold Problem.
Can anything be said about the problem for general f?

Acknowledgments: We would like to thank Julien Sebot
for introduction to the Fleming File Sharing System
project, which inspired this work. Also we thank Sophie
Laplante for interesting discussions and corrections.

References

[1] John L. Bentley, and Andrew C. Yao, An almost
Optimal Algorithm for Unbounded Searching. In
Information Processing Letters 5 1976, 82-87.

[2] Erik D. Demaine, Alejandro López-Ortiz, and
J. Ian Munro, Adaptive set intersections, unions,
and differences. In Proceedings of the 11th ACM-
SIAM Symposium on Discrete Algorithms (SODA),
2000, 743-752.

[3] Erik D. Demaine, Alejandro López-Ortiz, and
J. Ian Munro, Experiments on Adaptive Set
Intersections for Text Retrieval Systems. In
Proceedings of the 3rd Workshop on Algorithm
Engineering and Experiments, Lecture Notes in
Computer Science, 2001, 91-104.

[4] Vladimir Estivill-Castro, and Derick Wood, A Survey
of Adaptive Sorting Algorithms. ACM Computing
Surveys, 1992, 24(4):441–476.

[5] Donald E. Knuth, The Art of Computer Programming,
Vol 3, Sorting and Searching, Section 5.3. Addison-
Wesley, 1973.

[6] John von Neumann, and Oskar Morgenstern, Theory
of games and economic behavior, 1st ed. Princeton
University Press, 1944.

[7] Andrew C. Yao, Probabilistic computations: Toward
a unified measure of complexity, In Proceedings of the
18th IEEE Symposium on Foundations of Computer
Science (FOCS), 1977, 222-227.



Algorithm 3 Algorithm for the t-Threshold Problem
Let M ← tth largest element of the multi-set
{A1[n1], A2[n2], . . . , Ak[nk]}
Let H = {A1[1], A2[1], . . . , Ak[1]} (counted with
multiplicity).
Let m← tth element of H.
Color green all the sets Ai such that Ai[1] = m, and
remove all copies of m from H.
Color red all the sets Ai such that Ai[1] > m.
Color white all the sets Ai such that Ai[1] < m, and
remove Ai[1] from H.
while m ≤M do

if t sets are green or k − t + 1 sets are red then
if t sets are green then

Tt ← Tt ∪ {m}
end if
Take t− 1−#(white sets) of the green sets and
color them white.
For each remaining green set Ai, insert in H the
first element of Ai which is > m, and change the
color of Ai to red.
Let m← min H; change the color to green for all
the sets which have m as a representative in H,
and remove m from H.

end if
Let Ai be the next white set in round robin order.
Perform one step of doubling search for m in Ai,
comparing m to some a ∈ Ai.
if a ≥ m then

Perform a binary search for m in the relevant
interval of Ai.
Reinitialize doubling search step to 1 in Ai.
if m ∈ Ai then

Color Ai in green
else

Insert in H the first element of Ai which is
strictly larger than m, and color Ai in red

end if
end if

end while


