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Abstract In this paper, we present a method to detect sta-
ble components on 3D meshes. A component is a salient
region on the mesh which contains discriminative local fea-
tures. Our goal is to represent a 3D mesh with a set of re-
gions, which we called key-components, that characterize
the represented object and therefore, they could be used for
effective matching and recognition. As key-components are
features in coarse scales, they are less sensitive to mesh de-
formations such as noise. In addition, the number of key-
components is low compared to other local representations
such as keypoints, allowing us to use them in efficient subse-
quent tasks. A desirable characteristic of a decomposition is
that the components should be repeatable regardless shape
transformations. We show in the experiments that the key-
components are repeatable and robust under several trans-
formations using the SHREC’2010 feature detection bench-
mark. In addition, we discover the connection between the
theory of saliency of visual parts from the cognitive science
and the results obtained with our technique.

Keywords 3D features · Mesh decomposition

1 Introduction

Three-dimensional information is becoming a useful re-
source in computer vision applications. An important as-
pect of this kind of information is that it can represent an
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object in a more approximated way than using other me-
dia. In addition, with the recent introduction of low-cost 3D
sensors such as Kinect, we can now have access to three-
dimensional information in real-world applications. Thus,
the integration of 3D data with visual information could
be used in order to improve the effectiveness of high-level
tasks.

It is clear that 3D data requires its own processing and
analysis methods. Similarly to images, there is a need for
basic tasks that provide a background for high-level tasks.
Obviously, many problems arise due to the lack of a reg-
ular topology in 3D representations. In addition, the possi-
ble transformations that may occur differ from those present
in images (for instance non-rigid transformation, topol-
ogy changes, tessellations, among others). Therefore, three-
dimensional data requires special attention as its related
problems are not trivial.

A basic and important task is to find interesting struc-
tures in representations such as 3D point clouds or meshes.
Many proposals have been presented to detect points of in-
terest (also called keypoints) on 3D data. Regarding meshes,
a keypoint is a point on the mesh with a local outstanding
structure. As such, the keypoints represent interesting in-
formation at fine scales and thus, they could be sensitive to
noise and other transformations. Therefore, it is required to
find larger and interesting structures to overcome the prob-
lems at fine scales.

In this paper, we propose an algorithm to detect features
at a coarse level on meshes. Our motivation is that larger
structures are more resilient to local changes, while allow-
ing us to reduce the amount of information to represent 3D
meshes in retrieval and recognition tasks. The idea is to de-
compose a 3D mesh in a set of components, which should
be consistently found in meshes regardless the applied trans-
formation. In addition, the number of components should be

mailto:isipiran@dcc.uchile.cl
mailto:bebustos@dcc.uchile.cl


I. Sipiran, B. Bustos

Fig. 1 Key-components
detected on 3D meshes using
our method

much less than the number of keypoints, so using the com-
ponents in subsequent tasks would be efficient.

We introduce the term key-component as a region on a
3D mesh where there are a lot of discriminative local fea-
tures (see Fig. 1). In such way, key-components correspond
to regions with high protrusion and they are therefore dis-
tinctive for the object. Additionally, the size of the salient
region is determined by a clustering algorithm used to find
agglomerations of keypoints in a sense of geodesic close-
ness. Moreover, key-components will be useful to the extent
that they are repeatable and robust against several transfor-
mations.

We believe that the detection of robust components is the
next step in the search of reliable local structures for many
tasks such as matching, retrieval, segmentation, and so on.
The use of finer local structures (keypoints) has also proven
to be effective for these application. Nevertheless, we are
still facing the problem of the robustness of local features
against perturbations. In our opinion, the components may
provide robustness against transformations and they allow
us to deal with some problems still present in the use of key-
points. On the other hand, we believe that the detection of
key-components is a challenging problem and its utility has
been shown recently in shape matching [23]. In our paper,
we present a method to detect key-components and present
enough evidence of their robustness.

Our method is inspired by the cognitive theory of
saliency of visual parts [11]. This theory studied the im-
portant role of object parts in high-level vision tasks. In ad-
dition, it exposed the characteristics of parts in order to be
considered as salient. To this respect, the theory formulated
the existence of three key aspects for parts: the relative size,
the protrusion and the strength of the boundary. We present
a procedure to detect salient parts or regions on 3D meshes
trying to cover the aforementioned aspects. More specif-
ically, our method selects regions with agglomerations of
keypoints as key-components, so they are expected to have
a high protrusion. Additionally, our results confirm the fact
that the size is important to define robust salient regions.

Our method differs from mesh segmentation methods
as it computes a non-complete decomposition of a mesh

while is aware of the local features present in the compo-
nents. Even more, if we would like to establish a compari-
son with image processing tasks, we would say that mesh
segmentation is related to image segmentation while our
method is more similar to image saliency detection [10]. In
other words, we are interested in detecting portions of the
mesh which are distinctive enough and robust and repeatable
against transformations rather than decomposing the whole
mesh.

The main contribution of this paper is three-fold. First,
we use a clustering algorithm in the mesh geodesic space
in order to determine clusters of keypoints. These clusters
are the starting point to compute the key-components. Sec-
ond, we introduce a region-growing algorithm which com-
putes a key-component from a cluster and extracts the cor-
responding region on the mesh. Finally, we show a com-
prehensive evaluation of our approach in different scenar-
ios. For the evaluation, we use a standard feature detection
benchmark which contains shapes with several transforma-
tions. Furthermore, we compare our method with a variation
of the MSER components detection technique [20] which
make use of the diffusion geometry to detect overlapping
components on meshes.

A preliminary version of our method has been presented
in a conference paper [28]. In this extended version, we im-
prove the presentation of our method, giving detailed ex-
planations for its implementation and maintaining it self-
contained. Furthermore, we made a comprehensive exper-
imentation regarding the parameters involved in the detec-
tion of key-components. We present a sensitivity analysis to
determine the best parameter configuration. Finally, we pro-
vide a comparison of our method with an existing method
and show that the key-components outperform the state of
the art.

The rest of the paper is organized as follows. Section 2
presents the related works regarding mesh decomposition
and local features. Section 3 describes the local features de-
tection and our algorithm for detecting the key-components.
Section 4 shows the evaluation and discussion of the ob-
tained results using the SHREC’10 feature detection and de-
scription benchmark. Also, we propose a variation of a state-
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of-the-art method in order to compare it with our method.
Finally, Sect. 5 concludes the paper.

2 Related work

Mesh decomposition is an important analysis tool with ap-
plications in computer vision and graphics. The idea is to
partition a given mesh in components or regions which can
be used in applications. Although there are a lot of ap-
proaches for mesh segmentation, we are interested in those
methods driven by local features. For a comprehensive study
about mesh segmentation techniques, we recommend the
survey by Shamir [24].

One of the earliest techniques for feature-driven mesh
decomposition was presented by Mortara et al. [22]. This
method decomposes a triangular mesh based on a charac-
terization of a vertex using its local curvature. It analyzes
the evolution of the curve formed by the intersection of the
mesh with a set of spheres with increasing radii. The number
of connected components of the curve and the local proper-
ties (curvature and length ratio) define a classification for
each vertex, which is used to group vertices with similar
features. Differently, Huang et al. [13] proposed to decom-
pose a shape based on a modal analysis. Taking the eigen-
decomposition of the Hessian of an energy function defined
on the mesh, it is possible to define the set of typical de-
formations of a mesh. Therefore, this method is able to esti-
mate the parts that tend to be rigid and subsequently segment
them.

Local features have also been used for mesh segmenta-
tion. Agathos et al. [1] propose a mesh segmentation method
based on points of interest. Given a mesh, the algorithm
computes a protrusion function for each vertex, which is de-
fined as the sum of geodesic distances to all vertex on the
mesh. Thus, a vertex is selected as point of interest if the
value of its protrusion function is greater than the mean of
geodesic distances between each pair of vertices. The points
of interest are grouped in order to avoid regions with many
points of interest. Each point of interest is used as seed for
computing the mesh segments. Similarly, Katz et al. [14]
computed a 3D embedding for a shape and subsequently,
the convex hull of the embedding was calculated. The ver-
tices of the convex hull were considered as keypoints, over
which the method computed a set of core components.

Also, Gal and Cohen-Or [9] proposed to represent a 3D
object as a set of salient geometric features. Their scheme
entirely relies on curvature information over the shape’s sur-
face. This method starts by computing the curvature on a
set of sampled points. Next, points are sorted according to
their curvature values. The algorithm takes points with high
curvature and performs a grouping of neighbor points un-
til a good quadratic fitting surface can be found that ap-

proximates better the neighborhood. Subsequently, a region-
growing algorithm clusters the mesh by adding points to the
initial segments according to an empirical measure which
involves area, curvature and similarity. The final clusters are
called salient geometric features which are used in shape
matching.

On the other hand, Hu and Hua [12] proposed to find
keypoints using the eigen-decomposition of the Laplace–
Beltrami operator of a shape. Each keypoint has a scale
which is used to define a local patch, so a mesh is repre-
sented as a set of local patches product of the keypoint-
based decomposition. After describing each local patch with
its Laplace–Beltrami spectrum, they are used in a matching
algorithm. On the other hand, Toldo et al. [32] applied a seg-
mentation based on local properties of the mesh, specifically
a shape index computed from the principal curvature values.
Each segment is described with a histogram of local proper-
ties. Finally, a bag of features approach is used for describe
the entire shape in order to be used in shape retrieval. Differ-
ently, Shapira et al. [25] performed a hierarchical segmenta-
tion using a shape diameter function (SDF). Subsequently,
each segment is described using several local features such
as a normalized histogram of SDF, shape distribution sig-
natures and conformal geometry signatures. The signatures
were used in matching and retrieval.

More recently, the decomposition of meshes from spec-
tral functions defined on the surface has been introduced.
The idea of these techniques is to take advantage of intrin-
sic information to define a function on vertices, edges or
faces. Subsequently, the defined function is used by a group-
ing algorithm which provides a segmentation. For instance,
the Heat Mapping approach [8] defines a vertex signature
which can be interpreted as the average temperature on the
surface by applying heat on a vertex. Then, a segmentation
process using the k-means algorithm is driven from points
with the highest value of heat affinity. Similarly, the Center-
Shift method [31] proposes the evaluation of the biharmonic
kernel in a point as a vertex function. Next, the algorithm
finds a set of termination points which are vertices with max-
imal weighted mean of the defined function evaluated in lo-
cal neighborhoods. Finally, a segment refinement is applied
to provide the final segmentation.

Likewise, Skraba et al. [29] proposed to assign to each
vertex its heat kernel signature evaluated in a fixed time.
With these values, the technique applies a persistence-based
clustering. This clustering considers to track regions associ-
ated with local maxima of the function. On the other hand,
Aubry et al. [2] computed an n-dimensional function for
each vertex. Each vertex was represented by its wave ker-
nel signature. Next, every descriptor from a training set of
shapes is collected in a large n-dimensional point cloud.
This points are clustered by a Gaussian mixture algorithm
where points in the same cluster correspond to the same
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mesh segment. This clusters are used for assigning a label
to each vertex of a new shape.

In the same direction, the extension of methods from im-
age processing and computer vision has been studied. For in-
stance, Digne et al. [6] extend the maximally stable extremal
regions (MSER) to shape decomposition. The method used
the concept of vertex-weighted component trees applied to
meshes. To accomplish this goal, it was necessary to use the
mean curvature as function defined over the mesh. Similarly,
Litman et al. [20] also used the MSER framework to detect
stable components on meshes. The authors proposed an ap-
proach based on diffusion geometry. The algorithm consid-
ers the shape as a graph and associates weights to vertices
and edges according to the evaluation of a local property
(the heat kernel) between vertices and edges. A very inter-
esting work that also uses concepts from image processing is
the Variational Mesh Decomposition [33]. It is based on the
well-studied Mumford–Shah functional which is common
in image segmentation literature. This technique proposes a
convex version of the functional which is applied on a face-
based multichannel function on the surface. The function is
defined from the eigenvectors of a Laplacian matrix defined
on dihedral angles for edges.

Saliency on meshes Previous approaches for detecting
saliency on 3D meshes are mainly focused on defining a
saliency function on surface points [15, 17, 18, 26]. Never-
theless, in these approaches, it is not clear the connection
between the point saliency and the determination of a re-
gion with boundary. In addition, there is no robustness eval-
uation of the proposed techniques against transformations.
This is important in order to guarantee effectiveness in fur-
ther processes and applications such as shape recognition
and retrieval. Our paper attempts to cover these two aspects
by presenting a technique that detects robust salient regions
and making an extensive evaluation.

3 Key-component detection

Our method consists of three steps: keypoint detection, clus-
tering in the geodesic space, and key-component extraction.
Our proposal is based on the detection of points of interest,
which can be effectively used for detecting stable compo-
nents on meshes. In the literature, there are many techniques
to detect keypoints, with different approaches and advan-
tages. In this work, we use the Harris 3D method [27], which
has proven to be effective and efficient in various scenar-
ios. In order to maintain the paper self-contained, we begin
our description with a brief introduction to the Harris 3D
method, and then we will describe how the keypoints are
used to detect the mesh components.

3.1 Keypoints detection

Given a 3D mesh, we need to find points of interest on it.
In general terms, an point of interest is a point on the mesh
surface with a neighborhood geometrically unusual. For in-
stance, many approaches link this definition with the cur-
vature measured on the vertices of the mesh. So, points on
nearly planar regions would not be considered as interesting.
A keypoint detection method is robust if it works according
with the previous criterion. However, it also needs to be in-
sensitive to noise, tessellations, and missing data (holes or
range data). The Harris 3D method is an extension of the
well-known operator in computer vision and it has proven
to be an alternative to cope with the aforementioned prob-
lems.

Briefly, the idea is to represent the neighborhood around a
vertex as an oriented image patch, and subsequently to apply
the Harris operator in an effective way. First, the algorithm
tries to find an adaptive neighborhood around a vertex using
an algorithm robust to geometric changes. Second, the orien-
tation of the local patch is found by applying PCA over the
local neighborhood. This step converts the oriented image
patch into a canonical representation invariant to orientation.
Third, a quadratic surface is fitted to the transformed local
patch. Fourth, the method computes the smoothed deriva-
tives of the fitted surface by convolving it with Gaussian
functions. Fifth, using the derivatives, the Harris response
is calculated using an autocorrelation function. Finally, the
responses are used to determine the final set of points of in-
terest selecting those vertices with the higher responses.

The Harris 3D method works around the responses com-
puted for each vertex. The Harris response characterizes
the protrusion of a vertex with respect to its neighborhood.
In addition, the use of Gaussian functions to compute the
derivatives decreases the effect of local changes in the over-
all computation. For example, Fig. 2 plots the Harris re-
sponse for some shapes. The selection of keypoints is based
on the Harris response.

There are several reasons to choose the Harris 3D
method:

– It is effective. Recent reports have shown high repeatabil-
ity values against several transformations [5, 7].

– It is efficient. An adequate implementation of this method
can process meshes with 50,000 vertices in a fraction of a
second.

– It is easy to implement. The method only requires simple
operations over local mesh patches.

3.2 Clustering in the geodesic space

Key-components are those regions on the mesh in which
there is a high concentration of local features. One way to
measure the concentration is using the geodesic distances
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Fig. 2 Harris 3D operator plotted as a saliency value for each vertex. Note how the high values are present in discriminative regions of the meshes

between the keypoints, and therefore grouping them accord-
ing to their closeness in terms of this kind of distance. Let
S = {s1, s2, . . . , sn} be the set of keypoints previously de-
tected, our goal is to find partitions Si ⊂ S, i = 1, . . . ,m

over the set of keypoints S in order to fulfill the following
properties:

1. dgeod(x, y) ≤ R, ∀x, y ∈ Si .
2. dgeod(x, y) ≥ T , ∀x ∈ Si and ∀y ∈ Sj , i �= j .
3. |Si | ≥ N,∀i.
4.

⋃m
i=1 Si ⊆ S.

Property 1 suggests that elements in a subset Si share
approximately the same location on the mesh (threshold R

controls the proximity permitted). Property 2 states that two
subsets Si and Sj cannot be very close to each other (thresh-
old T controls how far two subset should be). Property 3
establishes that each partition should contain a minimum
number of keypoints to be considered as a valid partition.
Property 4 considers a non-complete partitioning of the ini-
tial set S. Obviously, there may be keypoints which meet
the two first properties, but not the third. This is because
some points of interest could be isolated, and therefore they
would not belong to any partition. Moreover, isolated key-
points could have been selected due to noise. It is clear that,
in order to detect consistent components on meshes, we need
to discard isolated keypoints. Finally, property 5 defines a
disjoint partition of the set S.

In practice, we need to consider a clustering process re-
garding the geodesic distances between keypoints. In order
to accomplish this goal, our method computes a set P ∈R

2,
in which Euclidean distances between elements in P ap-
proximately preserve the geodesic distances between ele-
ments in S. That is, we need to find the set P such that

P = argmin
p1,...,pn

∑

i<j

(‖pi − pj‖ − dgeod(si , sj )
)

(1)

where each pi ∈R
2 corresponds to the keypoint si ∈ S.

This problem is commonly called Multidimensional
Scaling [3] and it is used to embed points in one space into

Fig. 3 Left: Shape with keypoints. Right: multidimensional scaling of
the keypoints

another (generally for better visualization). The optimiza-
tion problem in Eq. (1) is a minimum-distortion problem and
can be solved with an iterative method which takes a ran-
dom sampling in the destination space as starting set P . The
method used in this work was the SMACOF algorithm [3].
In addition, for approximating the geodesic distances, we
used the fast marching method [16]. Figure 3 shows the re-
sulting set of 2D points applied on a set of keypoints. Note
how the resulting points represent the distribution of key-
points on the mesh.

Next, we apply a clustering algorithm over the set P in
order to define the partitioning of S. We proposed a clus-
tering algorithm derived from Leow and Li [19] (see Algo-
rithm 1). The algorithm iterates over two steps: assignment
and update. The assignment step (lines 4–18) performs in
point-wise manner. Firstly, the distance to the closest cluster
is obtained. If the distance is greater than T (the inter-cluster
threshold), we create a new cluster (according to the prop-
erty 2). Otherwise, if the distance is not greater than R (the
intra-cluster threshold), the point p is inserted in the corre-
sponding cluster (according to property 1). After the assign-
ment step, each point belongs to a cluster. Subsequently, the
update step (lines 19–26) computes the new centroids for
clusters that meet the property 3. Otherwise, clusters with a
few points are removed, and their points are inserted back
in P to be further processed. Note that the algorithm could
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Algorithm 1 Adaptive clustering
Require: Set of points P

Require: Inter-cluster distance T

Require: Intra-cluster distance R

Require: Minimum number of elements per cluster N

Require: Number of iterations Iter
Ensure: Set of clusters C = {C1, . . . ,Cm}

1: Let C a set of clusters
2: C ← ∅
3: for j ← 1 to Iter do
4: for each p ∈ P do
5: if C = ∅ then
6: d = 2T

7: else
8: C∗ = arg minCi∈Cdist(p,Ci)

9: d = distance from p to C∗
10: end if
11: if d > T then
12: Cnew = {p}
13: C ← C ∪ Cnew

14: P ← P − {p}
15: else if d ≤ R then
16: C∗ ← C∗ ∪ {p}
17: P ← P − {p}
18: end if
19: end for
20: for i ← 1 to |C| do
21: if |C∗| ≥ N then
22: Update centroid for C∗
23: else
24: P ← P ∪ C∗
25: C ← C\{C∗}
26: end if
27: end for
28: end for
29: Return C

converge before the last iteration, however, we opt for using
a number of iterations as stop criterion. In all experiments
presented in Sect. 4, we set Iter = 10. This value was set
empirically from the observation that, on average, the clus-
tering algorithm converges in 6–8 iterations.

Figure 4 shows the groups of keypoints found using our
algorithm.

3.3 Key-component extraction

The starting point to extract mesh components is the set of
clusters previously computed. Each cluster will generate a
component comprising the region of the mesh where the
keypoints are located. Now, we need a criterion to decide
how large this region will be. In addition, the selected re-

Fig. 4 Left: Shape with cluster of keypoints. Right: multidimensional
scaling of the keypoints. Points represented as crosses do not belong to
any cluster

gion should be large enough to include all the keypoints in
the cluster.

We start by defining the geodesic center of each cluster.
The idea is to determine the point on the mesh which is the
center of the distribution of a cluster. This point could be
used as the center of the region to be extracted as compo-
nent. We can take advantage of the transformed set of points
P in order to accomplish this goal. The geodesic center of a
cluster is a point on the mesh whose mapped version in R

2 is
close to the centroid of the cluster of the transformed points.
To solve this, we choose the closer point to the centroid in
R

2 as the geodesic center. Note that the selected point is only
an approximation of the real geodesic center, as our method
is selecting a keypoint (finding the real geodesic center is
a hard task as we would have had to map every point on
the mesh into the 2D space, which is impossible in practical
terms). Formally, let Ci be the set of 2D points correspond-
ing to the set Si of keypoints. The geodesic center of Si is
defined as follows:

ĉi =
{
sj ∈ Si |cj = argmin

c∈Ci

∥
∥c − centroid(Ci)

∥
∥
}

(2)

where pj ∈R
2 corresponds to sj ∈ S.

Now, we need to define a size for the component. To do
that, our method computes the smallest sphere containing
every keypoint in a cluster. This is a classic problem in com-
putational geometry and it can be efficiently solved using
linear programming [21]. The output of this tasks is a pair
(oi, ri) representing the center and the radius of the sphere
enclosing the keypoint in the cluster Si .

Once the geodesic center ĉi and the sphere (oi, ri) have
been computed, we propose a region-growing algorithm on
the mesh. Our initial seed is the vertex ĉi and the constraint
for the growing step is imposed by the sphere. Algorithm 2
details this procedure. Briefly, the region-growing algorithm
starts from the geodesic center ĉi and inserts the neighbor
vertices into the queue. Each time a vertex is extracted from
the queue, the algorithm verifies if the vertex is a keypoint.
If so, the keypoint is deleted from the remaining set. The
algorithm finishes when the remaining set is empty, which
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Fig. 5 Key-components detected on shapes with several transformations. From left to right: null shape, isometry, microholes, local scale, noise,
topology, holes, sampling, and shot noise. Color are arbitrary

means that a component has been extracted and it contains
the complete set of input keypoints.

It is worth noting that we introduce a scaling factor σ > 1
for the radius ri (Algorithm 2, line 15). Thus, we ensure a
connectivity between the keypoints in Si . A value greater
than 1 would guarantee to find a connected component lying
inside the sphere with radius σ ×ri . That is, a suitable choice
for σ should be in the interval (1,2]. We avoid a value of one
in our choice because the patch containing the cluster of key-
points could contain more than one connected component.
Indeed, the larger the σ value, the higher the probability that
the extracted region is a connected component. On the other
hand, the σ value cannot be extremely large because it could
affect the characterization of the cluster of keypoints. In all
our experiments, we use σ = 1.5 which allow us to always
obtain one connected component in the extraction without
compromising the characterization of the keypoint clusters.

Figure 5 shows the components detected in several
shapes.

4 Experiments and results

In this section, we describe the dataset, the evaluation crite-
rion used to assess our method, and the experimental results.

4.1 Dataset

In order to evaluate the proposed method, we used the
SHREC’10 feature detection and description benchmark [5].
This dataset is composed by three shapes (null shapes) and
a set of shapes obtained by applying a set of transforma-
tions on the null shapes. Shapes have approximately 10,000
to 50,000 vertices and they were represented as triangu-
lar meshes. The set of transformations applied on the null
shapes are isometry, micro-holes and big holes, topology,
noise and shot noise, global and local scale, and downsam-
pling. Each transformation was applied in five levels, so the
total number of shapes in the dataset is 138.

In addition to the shapes, the dataset contains a ground
truth specifying the vertex-to-vertex correspondences be-
tween the transformed and the null shapes. Also, the models
were normalized so the surface area is 1. This facilitated the
configuration of the parameters of clustering.

Algorithm 2 Key-component extraction
Require: Vertex set V

Require: Geodesic center ĉi

Require: Cluster of keypoints Si

Require: Sphere (oi, ri)

Require: Scaling radius factor σ

Ensure: Vertex set VR

Ensure: Face set FR

1: Let VR be an empty vertex set
2: Let FR be an empty face set
3: Let waiting be the set of remaining keypoints
4: Let visited be a vertex queue
5: visited.enqueue(ĉi)

6: waiting ← Si

7: while waiting �= ∅ and visited �= ∅ do
8: v ← visited.dequeue()
9: if v is not marked then

10: VR ← VR ∪ {v}
11: Mark v

12: waiting ← waiting − {v}
13: for each w ∈ v.adjacentVertices() do
14: if w is not marked then
15: if ‖w − oi‖ < σ × ri then
16: visited.enqueue(w)

17: end if
18: end if
19: end for
20: FR ← FR ∪ v.adjacentFaces()
21: end if
22: end while
23: Unmark vertices
24: Return FV and FR

4.2 Evaluation criterion

To evaluate our approach, we use the methodology previ-
ously used in Litman et al. [20] to determine the repeata-
bility of a decomposition. Our goal is to determine if the
mesh components are consistent between a null shape and a
transformed shape. Given a null shape X and a transformed
mesh Y , the components are represented as X1, . . . ,Xn and
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Fig. 6 This plot shows the
average repeatability at overlap
0.8 for different parameter
configurations. Columns
represent region sizes: large
(left), medium (middle), and
small (right). Rows represent the
minimum number of keypoints
allowed in a cluster: N = 10
(top), N = 20 (middle), and
N = 30 (bottom). Each block
contains the repeatability for
five different number of
keypoints: three fixed
configurations (100, 200, and
300) and two depending on the
number of vertices (1 % and
1.5 %). Each block has the same
scale

Y1, . . . , Ym, respectively. Using the ground truth, we com-
pute the corresponding component to each component Yj in
X, which is denoted as X′

j . Then, the component repeatabil-
ity between X and Y is defined as

R(X,Y ) =
m∑

j=1

max
1≤i≤n

O
(
Xi,X

′
j

)
(3)

where the overlap between two components is defined as an
area ratio

O
(
Xi,X

′
j

) = A(Xi ∩ X′
j )

A(Xi ∪ X′
j )

. (4)

In addition, we define the repeatability in overlap o as the
percentage of components in the entire collection that have
overlap greater than o with their corresponding null shape.
Clearly, totally coincident components give a repeatability
of 1.

4.3 Effect of key ingredients

Our method relies on two aspects which are important in the
final resulting key-components. First, the number of key-
points could determine the protrusion of the regions and
therefore their distinctiveness. Second, the clustering param-
eters could reveal the importance of the size in the repeata-
bility of key-components. For these reasons, this section is
devoted to study the effect of these two aspects in order to
find a good parameter configuration.

Regarding the number of keypoints, we test five config-
urations: three with a fixed number of keypoints (100, 200,
and 300) and two with a number that depends on the number
of vertices (1 % and 1.5 %). Furthermore, we consider three
configurations for the clustering which correspond to small

(R = 0.05, T = 0.1), medium (R = 0.1, T = 0.2), and large
regions (R = 0.15, T = 0.3). In addition, we evaluate the
minimum number of keypoints needed for a key-component
(N = 10,20,30). It is worth mentioning that values for clus-
tering are empirical, mainly guided by the fact that meshes
are normalized to area one. Figure 6 shows a plot with the
results using all possible configuration as mentioned before.
This plot shows the repeatability at overlap 0.8 as an average
for every shape in the dataset (including transformations).

There are two aspects which deserve attention. First,
there is a notorious predominance for the use of 1 % of
the number of vertices as keypoints. This responds to the
need of balancing the trade-off between quality and quan-
tity of local features. In other words, much more keypoints
could contain noisy information, and therefore it could de-
grade the quality of key-components. In counterpart, much
less keypoints could not determine robust regions. This fol-
lows from the fact that regions are determined by groups
of keypoints and obviously less keypoints could not tend
to cluster. A particular case is shown for small regions and
many keypoints per region (R = 0.05, T = 0.1,N = 20 and
R = 0.05, T = 0.1,N = 30). In these cases, the use of few
keypoints (200 and 100, respectively) shows the best re-
peatability. We believe that these two configurations exhibit
a particular behavior because a few keypoints are grouped
in few small regions. As these small regions correspond to
the presence of many keypoints, they are distinctive and
hence repeatable (although below the repeatability of large
regions).

Second, the highest repeatability values correspond to
large regions. That is, large regions are more stable to trans-
formations and the probability that large key-components
come from perturbed features is low. Moreover, among the
different configurations for large regions, there is a trend re-
garding the expected number of keypoints per region. The
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Fig. 7 Overlap vs. repeatability plot for the KC-1 variant

greater the number of keypoints allowed to belong to a re-
gion, the greater the repeatability of the key-components.
This result encourages us to believe that key-components
can correspond to regions with high protrusion which are
distinctive and repeatable at the same time. This finding is
consistent with the theory of saliency of visual parts in terms
that key-components are distinctive. Furthermore, there is a
visible relation between robustness and repeatability, and the
relative size of regions.

To provide a closer look on the behavior of our algorithm
against transformations, we chose the three configurations
with the highest average repeatability at overlap 0.8 (in ad-
dition, we named each configuration to facilitate reading):

– KC-1: # keypoints = 1 % number of vertices, R = 0.15,
T = 0.3, N = 30.

– KC-2: # keypoints = 1 % number of vertices, R = 0.15,
T = 0.3, N = 20.

– KC-3: # keypoints = 1 % number of vertices, R = 0.1,
T = 0.2, N = 30.

Variant KC-1 determines large regions with a high num-
ber of keypoints. Figure 7 plots the repeatability of key-
components at several overlap values. Most transformations
(shot noise, scale, microholes, isometry, local scale, and
noise) obtained a high repeatability (greater than 80 %) at
overlap 0.8. Even more, four transformations (shot noise,
microholes, scale, and isometry) have a repeatability greater
than 90 %. This indicates that this variant is very ro-
bust for these transformations regardless the transformation
strength. Differently, topology, holes and sampling transfor-
mations obtained a repeatability below 80 %. With respect
to the topology transformation, we believe that large key-
components degrades the performance because they tend to
include the introduced topological noise while the region is
extracted. The larger the region, the more likely to merge
two parts of the mesh that are not connected in the origi-
nal mesh. In addition, our approach heavily depends on the

Table 1 Average overlap values for variant KC-1

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.94 0.95 0.85 0.93 0.94

Topology 0.75 0.70 0.84 0.77 0.74

Micro holes 0.93 0.95 0.95 0.95 0.93

Scale 0.95 0.95 0.92 0.93 0.95

Local scale 0.95 0.87 0.93 0.88 0.93

Sampling 0.62 0.38 0.09 0.02 0.00

Noise 0.92 0.91 0.93 0.94 0.86

Shot noise 0.93 0.95 0.96 0.96 0.94

Holes 0.78 0.69 0.77 0.86 0.79

Average 0.86 0.82 0.80 0.80 0.79

computation of geodesic distances which are distorted with
this transformation.

Also, a special case is the sampling transformation whose
repeatability value drops to zero. In effect, the down-
sampling of meshes is not well handled by our approach
due to the dependency of the number of vertices in the key-
point detection stage. In this case, the three variants use a
number of keypoints which depends on the number of ver-
tices (specifically 1 %). Obviously, when a shape is down-
sampled, the number of keypoints is also reduced. This fact
could affect the entire process of key-components extrac-
tion, which depends on the number of keypoints and the
distribution of them over the surface. In spite of this, we be-
lieve that the KC-1 variant of our technique is robust and it
provides distinctive and repeatable key-components.

As well, Table 1 presents the average overlap for each
transformations and its strengths. These results support
those obtained in Fig. 7. The same four transformations
with repeatability greater than 90 % in overlap 0.8 have high
overlap values in most of the strengths.

For the variant KC-2, Fig. 8 and Table 2 show the results.
The difference between KC-1 and KC-2 is minimal. More-
over, there are four transformations (microholes, scale, local
scale, and noise) where overlap values are very similar (see
Table 1 and Table 2).

With respect to the variant KC-3, almost all transforma-
tions present a drop in their repeatability values at overlap
0.8 with respect to the previous variants (see Fig. 9). Never-
theless, it is worth noting that the repeatability for the topol-
ogy transformation rose above 90 %. It also can be seen
in Table 3, where the overlap values for all the topology
strengths were improved with respect to KC-1 and KC-2.
We believe that this phenomenon correspond to the fact
that medium-size regions are more stable to the topologi-
cal noise. Furthermore, the overlap values for the highest
strengths in local scale and shot noise were also improved.
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Fig. 8 Overlap vs. repeatability plot for the KC-2 variant

Table 2 Average overlap values for variant KC-2

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.85 0.95 0.78 0.87 0.87

Topology 0.74 0.64 0.78 0.71 0.67

Micro holes 0.93 0.95 0.95 0.95 0.93

Scale 0.95 0.95 0.92 0.93 0.95

Local scale 0.95 0.87 0.93 0.88 0.87

Sampling 0.58 0.41 0.24 0.02 0.00

Noise 0.92 0.91 0.93 0.94 0.91

Shot noise 0.85 0.87 0.95 0.95 0.93

Holes 0.68 0.75 0.70 0.81 0.74

Average 0.83 0.81 0.80 0.78 0.76

Fig. 9 Overlap vs. repeatability plot for the KC-3 variant

In order to compare the three variants KC-1, KC-2 and
KC-3, Table 4 shows the winner configuration for each

Table 3 Average overlap values for variant KC-3

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.91 0.94 0.88 0.94 0.94

Topology 0.87 0.84 0.86 0.79 0.78

Micro holes 0.86 0.92 0.93 0.92 0.86

Scale 0.92 0.93 0.86 0.86 0.92

Local scale 0.95 0.87 0.87 0.91 0.94

Sampling 0.56 0.23 0.07 0.02 0.00

Noise 0.90 0.90 0.92 0.92 0.86

Shot noise 0.86 0.89 0.90 0.89 0.95

Holes 0.72 0.65 0.77 0.83 0.77

Average 0.84 0.80 0.79 0.79 0.78

Table 4 Comparison of the three evaluated variants: KC-1, KC-2, and
KC-3

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry KC-1 KC-1 KC-3 KC-3 KC-1

Topology KC-3 KC-3 KC-3 KC-3 KC-3

Micro holes KC-1 KC-1 KC-1 KC-1 KC-1

Scale KC-1 KC-1 KC-1 KC-1 KC-1

Local scale KC-1 KC-1 KC-1 KC-3 KC-3

Sampling KC-1 KC-2 KC-2 KC-1 KC-1

Noise KC-1 KC-1 KC-1 KC-1 KC-2

Shot noise KC-1 KC-1 KC-1 KC-1 KC-3

Holes KC-1 KC-2 KC-1 KC-1 KC-1

Average KC-1 KC-1 KC-1 KC-1 KC-1

transformation and their strengths in terms of overlap values.
There is a clear predominance of KC-1 in most of the trans-
formations, although KC-3 get the best results for topology
and the highest level of local scale. Nevertheless, we believe
that KC-1 is the best variant which confirms the robustness
and repeatability of large key-components.

4.4 Comparison with other methods

So far, there are no methods that explicitly detect regions
on 3D surfaces under the motivation of finding robust com-
ponents based on local keypoints. Nevertheless, one method
that has more to do with ours is that proposed by Litman et
al. [4, 20]. This method proposed to detect stable compo-
nents in deformable meshes using a diffusion geometry ap-
proach. The approach of Litman et al. decomposes a mesh
into a set of (possibly overlapping) components using an ap-
proach similar to the MSER detection in computer vision. In
addition, a component could be part of a larger component
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Fig. 10 The three stages of the
MSER key-components
detection. At left, components
detected with the approach of
Litman et al. In the middle, HKS
keypoints detected. At right,
final MSER key-components
detected

Fig. 11 MSER key-components detected on shapes with several transformations. From left to right: null shape, isometry, microholes, local scale,
noise, topology, holes, sampling, and shot noise. Colors are arbitrary

which entirely contains the first one. We propose a varia-
tion to detect key-components based on the components pro-
vided by the original method. We call this variant MSER
key-components.

The algorithm we implement is simple and it is described
as follows (Fig. 10 shows the three stages of our implemen-
tation):

– Detecting MSER’s. We use the original implementation
from Litman et al. [20] to detect a set of initial compo-
nents.

– Detecting keypoints. For each mesh, we computed key-
point based on the heat kernel of a vertex. Our implemen-
tation follows the method proposed by Sun et al. [30].
Briefly, we evaluated the heat kernel signature for a vertex
HKSt (x, x) in t = 0.1 × surface_area. Next, we selected
a vertex x as keypoint if HKSt (x, x) > HKSt (y, y),∀y ∈
N2(x), where N2(.) is the 2-ring neighborhood of a ver-
tex.

– Selecting the MSER key-components. We could have cho-
sen the set of components which contains the detected
keypoints. However, since components can overlap, we
need to apply one more constraint. In this case, we se-
lected the components with smaller area which cover the
entire set of keypoints. Figure 11 shows the MSER key-
components detected using the proposed variant.

We experimented with the original MSER components
and the results are shown in Fig. 12 and Table 5. Addi-

Fig. 12 Overlap vs. repeatability for the MSER method

tionally, Fig. 13 and Table 6 show the obtained results for
the MSER key-component method. Surprisingly, the vari-
ant obtained better results with respect to average overlap
and repeatability. Therefore, we now compare our proposed
method with the aforementioned variant. Note the improve-
ment in holes and sampling transformation of MSER key-
components with respect to our method. That is, while our
method obtained null repeatability at overlap 0.8, MSER
key-components obtained almost 0.6. Despite of the results
obtained for these two transformations, our method outper-
forms MSER key-components in the rest of transformations.
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Table 5 Average overlap values for the MSER approach

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.79 0.87 0.87 0.88 0.87

Topology 0.75 0.74 0.65 0.54 0.57

Micro holes 0.79 0.80 0.79 0.79 0.77

Scale 0.81 0.87 0.75 0.63 0.52

Local scale 0.75 0.72 0.74 0.65 0.56

Sampling 0.80 0.80 0.80 0.62 0.14

Noise 0.79 0.75 0.76 0.77 0.76

Shot noise 0.81 0.81 0.80 0.81 0.82

Holes 0.79 0.79 0.75 0.75 0.73

Average 0.79 0.79 0.77 0.71 0.64

Fig. 13 Overlap vs. repeatability for the MSER key-component
method

Moreover, this can also be seen if we compare our best con-
figuration and the MSER key-components with respect to
the overlap values (see Tables 1 and 6).

An aspect that also deserves attention is the need of
preprocessing in the MSER key-components. The original
method for detecting the initial components depends on the
definition of edge or vertex weights. These weights are com-
puted using diffusion geometry. This procedure requires to
compute a similarity matrix in a vertex-wise manner, and
subsequently compute an eigen-decomposition for that ma-
trix. The problem with this approach is that if we have large
models, the similarity matrix is very large and the eigen-
problem could be unmanageable. The method proposed by
Litman et al. suggested to simplify a model prior to the
components detection step. In contrast, our method does not
need that requirement and yet it is efficient. In this respect,
the main advantage of our method is that once the keypoints
have been detected, the subsequent tasks only work over
these reduced number of information. We believe that the

Table 6 Average overlap values for the MSER key-components ap-
proach

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.83 0.88 0.90 0.87 0.86

Topology 0.77 0.72 0.67 0.52 0.55

Micro holes 0.82 0.81 0.80 0.79 0.78

Scale 0.76 0.84 0.80 0.67 0.58

Local scale 0.77 0.72 0.71 0.64 0.58

Sampling 0.83 0.83 0.80 0.62 0.12

Noise 0.79 0.79 0.83 0.83 0.79

Shot noise 0.83 0.83 0.80 0.80 0.80

Holes 0.79 0.77 0.66 0.63 0.62

Average 0.80 0.80 0.78 0.71 0.63

fact of relying on the initial keypoint detection step allows
us to maintain the whole process efficient. This ability to
deal with large meshes can be useful in applications where
simplification is not an option since one could lose impor-
tant details.

5 Conclusions

We have presented a method to detect components on 3D
meshes, which contain a high concentration of local fea-
tures. The key-components are suitable for matching and
recognition tasks due to their high repeatability obtained
in our experiments using a standard benchmark. Interest-
ingly, the proposed method detects consistent components
under several transformations such as noise, local scale,
holes, and non-rigid transformations. In our opinion, key-
components represent an alternative to fine scale features.
On the one hand, we showed that key-components are stable
to local transformations. On the other hand, the number of
key-components is obviously much less than the number of
keypoints, so matching algorithms using local features could
benefit from our approach.

Also, our experiments showed evidence of the connec-
tion between our method and the theory of saliency of vi-
sual parts proposed in the cognitive science. First, key-
components correspond to regions with high protrusion
since they are found from agglomerations of robust and dis-
tinctive local features. Moreover, the proposed clustering is
responsible for ensuring that local features that belong to
some perturbation (noise, holes, etc.) are not considered in
the detection of salient regions. Second, there is an inti-
mate relationship between the size of the key-components
and the robustness against mesh transformations. Experi-
ments showed that large salient regions (each with a large
agglomeration of keypoints) are more repeatable. These two
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aspects are consistent with the aforementioned theory, so our
method can be thought of as a method embodying this the-
ory.
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