
Consistent Answers from Integrated Data

Sources

Leopoldo Bertossi?1, Jan Chomicki2

Alvaro Cortés3, and Claudio Gutiérrez4

1 Carleton University, School of Computer Science, Ottawa, Canada.
bertossi@scs.carleton.ca

2 University at Buffalo, Dept. of Computer Science and Engineering.
chomicki@cse.buffalo.edu

3 Pontificia Universidad Catolica de Chile, Departamento de Ciencia de
Computacion, Santiago, Chile. acortes@ing.puc.cl

4 Universidad de Chile, Center for Web Research, Departamento de Ciencias de la
Computación, Santiago, Chile. cgutierr@dcc.uchile.cl

Abstract. When data sources are integrated into a single global system,
inconsistencies wrt global integrity constraints are likely to occur. In this
paper, the notion of consistent answer to a global query in the context of
the local-as-view approach to data integration is characterized. Further-
more, a methodology for generating query plans for retrieving consistent
answer to global queries is introduced. For this purpose, an extension of
the inverse-rules algorithm for deriving query plans for answering first-
order queries is presented.

1 Introduction

In last few years, due the increasing number of information sources that are avail-
able and may interact, the subject of data integration has been widely studied
from different points of view. Topics like mediated schemas, query containment,
answering queries using views, etc., have been considered in this context. How-
ever, the important issue of consistency of data derived from the integration
process and query answering has attracted less attention .

A data integration system provides a uniform interface to several informa-
tion sources. This interface, referred as global schema or mediated schema, is a
context-dependent set of virtual relations used to formulate queries to the inte-
grated system. When the user queries the system in terms of the global schema,
a query processor or a mediator is in charge of rewriting the global query into a
query plan that will eventually access the underlying information sources.

In order to perform this query rewriting, the processor needs a mapping
between the mediated schema and the information sources. Two paradigms have
been proposed to provide this mapping. One of them, called the Local-as-View
(LAV) approach [15], considers each information source as a view defined in

? Contact author

terms of relations in the global schema. The Global-as-View (GAV) approach,
considers each global predicate as a view defined in terms of the source relations
[20, 21].

In this paper we concentrate on the LAV approach. This scenario is more
flexible than GAV for adding new data sources into a global system. Actually,
preexisting data sources in the system do not need to be considered when a new
source is introduced. In consequence, inconsistencies are more likely to occur.
Furthermore, from the point of view of studying the logical issues around con-
sistency of data, the LAV paradigm seem to be more challenging than the GAV.
The latter is closer to the classical problem of consistency of views defined over
relational databases.

In the context of the LAV approach, several algorithms have been proposed
to rewrite a global query into a query plan that accesses the data source relations
to answer the original query [13]. Some of them assume that certain integrity
constraints (ICs) hold at the global level, and they use the ICs in the query
plan generation. In [12], a rewriting algorithm that uses functional and inclusion
dependencies in the mediated schema is proposed. In [8], another algorithm for
query plan generation that uses functional and full dependencies is introduced.
This algorithm may take a global query written in Datalog as an input. In [10],
a deductive, resolution based approach to data integration is presented. It may
also use global integrity constraints in the deductive derivation of the query plan.
Actually, there are situations where, without assuming that certain global ICs
hold, no query plan can be generated [13].

However, it is not obvious that certain desirable, global ICs will hold at the
global level. After all, the data is in the sources, the global relations are virtual
and there may be no consistency checking mechanism at the global level. Fur-
thermore, and particularly in the LAV approach, it is not clear what it means for
the global system to be consistent, because we do not have a global instance. Ac-
tually, given a set of data sources, there may be several potential global instances
that (re)produce the data sources as views according to the view definitions.

A global system consists of a global schema and a collection of materialized
data sources that are described as views over the global schema. In this con-
text, it is quite natural to pose queries at the global level, expecting to retrieve
those answers that are consistent wrt a given set of global ICs, because, as we
mentioned before, global ICs may be easily violated due to the lack of a global
maintenance mechanism. As the following example shows, each data source, with
its own, independent maintenance mechanism, can be consistent, but inconsis-
tencies may arise when the sources are integrated.

Example 1. Consider the global relation R(X,Y) and two source relations {V1(a,
b), V1(c, d)} and {V2(a, c), V2(d, e)} described by the view definitions:

V1(X,Y)← R(X,Y) V2(X,Y)← R(X,Y).

Then, the global functional dependency (FD) R : X → Y is violated, but not
V1 : X → Y , V2 : X → Y . ¤

In this paper we will address the problem of posing queries to a possibly
inconsistent global system, but retrieving as answers only those tuples that are
consistent wrt the global ICs. In [3], the problem of characterizing and computing
consistent query answers from a single, inconsistent relational database instance
was addressed. In this case, the database instance r is considered inconsistent
when it does not satisfy a given set of ICs. Intuitively speaking, an answer to
a query is considered to be consistent in r if it is an answer to the query in
every possible repair of the original instance, where a repair is a new instance
that satisfies the ICs and differs from r by a minimal set of tuples under set
inclusion.

Example 2. (example 1 continued) If we pose to the global system the query
Q : Ans(X,Y)← R(X,Y), we obtain the answers {Ans(a, b), Ans(c, d), Ans(a, c),
Ans(d, e)}. However, only the tuples Ans(c, d), Ans(d, e) should be returned as
consistent answers. ¤

The computational mechanism proposed in [3] consists of rewriting the given
query into a new query that, posed to the original, inconsistent database, gets
as (normal) answers the consistent answers to the original query.

In this paper, we formally define the notion of a consistent answer to a query
posed to a global system. This notion is an adapatation of the notion proposed in
[3] and used in [4, 6, 11]. We also consider the problem of constructing algorithms
for computing consistent answers from such a global system.

If we want to derive query plans for retrieving, hopefully all and only, an-
swers to a global query that are consistent wrt the desired, global ICs, we may
try to use the approach in [3], rewriting the global query into a new query, and
then pose the new query to the global system. The problem is that the rewrit-
ten query may not be handled by any of the existing query plan generation
algorithms, e.g. [10, 15, 12], due to the presence of negation. In consequence, we
need mechanisms for generating query plan that can be applied to rewritten
queries. For this purpose, we extend the “inverse rules” algorithm from [8] to
recursion-free Datalog¬ queries with built-in predicates, because this is the kind
of rewritten queries we obtain. In this paper we restrict ourselves to the case of
“open” sources [9], the most common scenario.

2 Preliminaries

2.1 Global schemas and view definitions

A global schema R is modeled by a finite set of relations {R1, R2, ..., Rn} and a
possibly infinite domain D. With these relation symbols and the elements of D
treated as constants, a first-order language L(R) can be defined. This language
can be extended with new defined predicates and built-ins.

A view, denoted by a new global predicate V, is defined by means of an L(R)-
formula of the form ϕV : V (t̄)← body(ϕV), where t̄ is a tuple containing variables

and/or constants, and body(ϕV) is a conjunction of R-atoms. In consequence,
we are considering views defined by conjunctive queries [1].

A database instance D over schema R can be considered as a first-order
structure with domain D, where the extensions (sets of tuples) of the relations
Ri are finite (The extensions of built-in predicates may be infinite but fixed.).
An integrity constraint is a first-order sentence ψ written in the language L(R).
The instance D satisfies ψ, denoted D |= ψ, if ψ is true in D.

Given a database instance D over schema R, and a view definition ϕV ,
ϕV (D) denotes the extension of V obtained by applying the definition ϕV to D.
If the view already has an extension v (given by the contents of a data source),
it is possible that v is incomplete and stores only some of the tuples that satisfy
the definition of V applied to D. In this case, we say the view extension v is
open wrt D [2, 9]. Most mechanisms for deriving query plans are based on open
sources [15, 8, 18].

Following [9], we say that a source S is a pair < ϕ, v >, where ϕ is the
view definition, and v is an extension v for ϕ. A global system G (called a source
collection in [9]), is a finite set of sources. The schemaR of the global system can
be read from the bodies of the view definitions. It consists of the relation names
that do not have a definition in the global system. The underlying domain D for
R contains all the constants appearing in view extension vi’s in the sources.

When we talk about consistency in databases wrt a set of ICs we think of
instances satisfying ICs. However, in a global system for data integration there
is not such a global instance, at least not explicitly. Instead, a global system G

defines a set of legal global instances.

Definition 1. [9] Given an open global system G, the set of legal global instances
is Linst(G) = {D instance over R | vi ⊆ ϕi(D)}, where vi is the extension in
the source Si of the view defined by ϕi, ϕi(D) is the set of tuples obtained by
applying the view definition ϕi to instance D. ¤

The inverse-rule algorithm [8] for generating query plans under the LAV
approach assumes that sources are open and each source relation V has a
source description that defines it as a view of the global schema: V (X̄) ←
P1(X̄1), . . . , Pn(X̄n). Then, for j = 1, . . . n, Pj(X̄

′

j)← V (X̄) is an inverse rule

for Pj . The tuple X̄j is transformed to obtain the tuple X̄ ′j as follows: if X is a

constant or is a variable in X̄, then X is unchanged in X̄ ′j . Otherwise, X is one

of the variables Xi appearing in the body of the definition of V , but not in X̄.
In this case, X is replaced by a Skolem function term fS,i(X̄) in X̄ ′j . We denote

the set of inverse rules of the collection V of source descriptions in G by V−1.
Given a Datalog query Q and a set of conjunctive source descriptions in

G, the construction of the query plan is as follows. All the rules from Q that
contain global relations that cannot be defined (directly or indirectly) in terms
of the global relations appearing the source descriptions are deleted. To the
resulting query, denoted as Q−, the rules in V−1 are added; and the query so
obtained is denoted by (Q−,V−1). Notice that the global predicates can be seen
as EDB predicates in the rules for Q. However, they become IDB predicates in

(Q−,V−1), because they appear in the heads of the rules in V−1. In consequence,
the query plan is given essentially in terms of the source predicates.

3 Global Systems and Consistency

We assume from here on that we have a fixed set of global first- order integrity
constraints IC on a given global schema. We also assume that the set of ICs is
consistent as a set of logical sentences. Furthermore, we will also assume that the
set IC is general, in the sense that there is no ground literal L in the language
of the global schema such that IC |= L. The ICs used in database praxis are
always general.

We need a precise definition of consistency of a global system that captures
the intuitive notion of consistency related to the definitions of the sources and
the data stored in the sources.

Definition 2. Given a global system, G, a minimal global instance of G is an
instance D ∈ Linst(G) that is minimal wrt set inclusion, i.e. there is no other
instance in Linst(G) that is a proper subset of D (as a set of atoms). We denote
by mininst(G) the set of minimal legal global instances of G wrt set inclusion.

Definition 3. A global system G is consistent wrt to a set of global integrity
constraints, IC, if every minimal legal global instance of G satisfies IC: for all
D ∈ mininst(G), D |= IC. ¤

Example 3. Consider G = {S1, S2}, with

S1 = 〈V1(X,Y)← P (X,Z) ∧Q(Z, Y), {V1(a, b)}〉

S2 = 〈V2(X,Y)← P (X,Y), {V2(a, c)}〉.

In this case, the elements of mininst(G) are of the form Dz = {P (a, z), Q(z, b),
P (a, c)} for some z ∈ D. The global FD P (X,Y): X → Y is violated exactly
in those minimal legal instances Dz for which z 6= c. Thus, the global system is
inconsistent. ¤

A global system G could be inconsistent in the sense of not satisfying the
given set of ICs, but still be possible or realizable in the sense that Linst(G) 6= ∅.

Definition 4. (a) The ground tuple ā is a minimal answer to a query Q posed
to a global system G if for every minimal instance D ∈ mininst(G), ā ∈ Q(D),
where Q(D) is the answer set for Q in D.
(b) We denote by MinimalG(Q) the set of minimal answers to query Q in G. ¤

The minimal answers contain the certain answers [2]. For monotone queries
[1], the notions of minimal and certain answers coincide. Nevertheless, in example
3 the query Ans(X,Y)← ¬P (X,Y) has (b, a) as a minimal answer, but (b, a) is
not a certain answer, because there are legal instances that contain P (b, a). Later
on our queries will be allowed to contain negation. Since consistent answers have

been defined relative to minimal global instances, for us the relevant notion of
answer is that of minimal answer. Notice that this assumption is like imposing
a form of closed-world assumption on the global instances associated with the
local sources.

Given a database instance D, we denote by Σ(D) the set of ground formulas
{P (ā) | P ∈ R and D |= P (ā)}.

Definition 5. [3] (a) Let D,D′ be database instances over the same schema and
domain. The distance, ∆(D,D′), between D and D′ is the symmetric difference:

∆(D,D′) = (Σ(D) \Σ(D′)) ∪ (Σ(D′) \Σ(D)).

(b) For database instances D,D′, D′′, we define D′ ≤D D′′ if ∆(D,D′) ⊆
∆(D,D′′), i.e., if the distance between D and D′ is less than or equal to the
distance between D and D′′. ¤

Definition 6. (based on [3]) Let G be a global system and IC a set of global
ICs. A repair of G wrt IC is a global database instance D′, i.e. an instance over
global schema R, such that:
(a) D′ |= IC and
(b) D′ is ≤D-minimal for some D ∈ mininst(G). ¤

We can see that a repair of a global system is a global database instance that
minimally differs from a minimal legal global database instance. If G is consistent
(definition 3), then the repairs are exactly the elements in mininst(G).

Example 4. Consider the global system G4 = {S1, S2}, with

S1 = 〈V1(X)← R(X,Y), {V1(a)}〉,

S2 = 〈V2(X)← R(X,Y), {V2(a)}〉,

and the global FD R(X,Y): X → Y . In this case, D = {R(a, b1), R(a, b2)} ∈
Linst(G4), but D 6|= IC. However, D /∈ mininst(G4). Actually, the elements
in mininst(G4) are of the form {R(a, b)}, for some b in the global database
domain. The elements in mininst(G4) coincide with the repairs. Notice that G4

is a consistent global system. ¤

Notice that in this definition of repair we are not requiring that a repair
respects the property of the sources of being open, i.e. that the extension of
each view in the repair contain the corresponding view extension in the source.
Thus, it may be the case that a repair – still a global instance – does not belong
to Linst(G). If we do not allow this, a global system might not be repairable.
The notion of repair will be used as an auxiliary concept to define the notion of
consistent answer.

Example 5. Consider the global system G5 = {S1, S2}, with

S1 = 〈V1(X,Y)← R(X,Y), {V1(a, b1)}〉,

S2 = 〈V2(X,Y)← R(X,Y), {V2(a, b2)}〉,

and the FD R(X,Y) : X → Y . The only element in mininst(G5) is D0 =
{R(a, b1), R(a, b2)}, that does not satisfy IC. The global system is inconsistent.
The only repairs are the global instances that minimally differ from D0 and
satisfy the FD, namely D1

0 = {R(a, b1)} and D
2
0 = {R(a, b2)}. Notice that they

do not belong to Linst(G5). ¤

Definition 7. (a) Given a global system G, a set of global integrity constraints
IC, and a global first-order query Q(X̄), we say that a (ground) tuple t̄ is a
consistent answer to Q wrt IC, denoted by G |=c Q[t̄], iff for every repair D of
G, D |= Q(t̄).
(b) We denote by ConsisG(Q) the set of consistent answers to query Q in G. ¤

Example 6. (example 5 continued) For the query Q1(X) : ∃Y R(X,Y), a is a
consistent answer, i.e. G5 |=c ∃Y R(X,Y)[a]. On the other hand, the query
Q2(X,Y) : R(X,Y), does not have any consistent answer. ¤

Proposition 1. Given an open global system G, a set of global integrity con-
straints IC such that IC 6|= L for every ground literal L, and a global query Q:

(a) Every consistent answer is a minimal answer.
(b) If G is consistent wrt IC, then every minimal answer is consistent. ¤

4 Computing Consistent Answers

After having given a semantic definition of consistent answer to a global query
from a global system, we concentrate on the computational problem of consistent
query answering (CQA). For this purpose, in [3], but in the case of a single
relational database, the operator T ω was introduced. It does the following: Given
a first-order query Q(X̄), a modified query Tω(Q(X̄)) is computed. The new
query Tω(Q(X̄)) is posed to the original database, and the returned answers are
consistent in the semantic sense.

We consider universal first-order integrity constraints expressed in the so-
called “standard format” [3]: ∀(

∨m
i=1 li(x̄i) ∨ ϕ), where li is a database literal

and ϕ is a formula containing built-in predicates only.
The new query Tω(ϕ(x̄)) is computed by iterating an operator T which

transforms an arbitrary query by appending the corresponding residue to each
database literal appearing in the query, until a fixed point is reached. The residue
of a database literal forces the local satisfaction of the ICs for the tuples satisfying
the literal. Residues can be obtained by resolution between the table and the
ICs. The methodology based on the T operator is applicable to queries that are
conjunctions of literals. In the rest of this paper we will concentrate on this case.

In the context of integration of open data sources under the LAV approach,
we now present an algorithm to compute consistent answers to queries that are
conjunctions of literals wrt global universal integrity constraints, IC.

Algorithm: Input: a conjunctive global query Q. Output: a query plan to
obtain consistent answers to Q.

1. Rewrite Q(X̄) into the first-order query Tω(Q(X̄)) using IC.
2. Using a standard methodology [1, 16], transform T ω(Q(X̄)) into a recursion-

free Datalog¬ program Π(Tω(Q)), possibly containing built-ins.
3. Find a query plan, Plan(Π(Tω(Q))) to answer Π(Tω(Q)) seen as a query

to the global system.
4. Evaluate the query plan on the view extensions of G to compute a set of

answers.

Program Π(Tω(Q)) may contain negation. There are currently no mechanisms
to obtain query plans for global queries containing negation (although some
heuristics are sketched in [10]). On the positive side, the generated Datalog¬

program does not contain recursion.

Example 7. Consider the global system G8 = {S1, S2}, with

S1 = 〈V1(X,Y)← R(X,Y), {V1(a, b)}〉

S2 = 〈V2(X,Y)← R(X,Y), {V2(a, c), V2(c, d)}〉,

the FD R(X,Y): X → Y , and the global query Q(X,Y): R(X,Y).
Here, the only element in mininst(G8) is D0 = {R(a, b), R(a, c), R(c, d)}. The

only minimal instance violates FD through the tuples [a, b], [a, c]. In consequence,
the global system G8 is inconsistent. It has two repairs, D1

0 = {R(a, b), R(c, d)}
and D2

0 = {R(a, c), R(c, d)}. The only consistent answer to the query is the tuple
[c, d].

We now apply the Algorithm for CQA. First of all, we need the FD expressed
in a first-order language, it becomes ∀XY Z(R1(X,Y) ∧ R1(X,Z)→ Y = Z).
At step 1. the query has to be rewritten. We obtain

Tω(Q(X̄)): R(X,Y) ∧ ¬∃Z(R(X,Z) ∧ Z 6= Y). (1)

This query can also be translated into the following Datalog¬ programΠ(Tω(Q)):

Ans(X,Y)← R(X,Y), not S(X,Y)

S(X,Y)← R(X,Z), Y 6= Z.

We need a query plan to answer this query program containing negation. ¤

We present an extension of the algorithm in [8], considering negation, but no
recursion.

Given a recursion-free Datalog¬ query Q in terms of global and defined re-
lations, the extended inverse rules algorithm works analogously to the one pre-
sented in [8], except that in the case a rule in Q contains a negated literal in the
body, say S(x̄)← . . . , L1(x̄),¬G(x̄), Ln(x̄),, it is checked if G can be eventu-
ally evaluated in terms of the global relations appearing in the source descriptions
(because those are the global relations that can be eventually evaluated using
the inverse rules). If this is not the case, then that goal is eliminated, obtaining

the modified rule S(x̄) ← . . . , L1(x̄), Ln(x̄), We show the methodology by
means of an example1.

Example 8. Consider the global system G9 = {S1, S2} with

S1 = 〈V1(X,Z)← R1(X,Y), R2(Y,Z), {V1(a, b)}〉

S2 = 〈V2(X,Y)← R3(X,Y), {V2(c, d)}〉.

The global query Q is:

Ans(X,Z)← R1(X,Y), R2(Y,Z), not R4(X,Y)

R4(X,Y)← R3(X,Y), not R5(X,Y) (2)

R7(X)← R1(X,Y), R6(X,Y). (3)

The inverses rules V−1 are obtained from the source descriptions:

R1(X, f1(X,Z))← V1(X,Z)

R2(f1(X,Z), Z)← V1(X,Z)

R3(X,Y)← V2(X,Y).

To compute a query plan for Q, we first need Q−:

Ans(X,Z)← R1(X,Y), R2(Y,Z), not R4(X,Y)

R4(X,Y)← R3(X,Y).

The literal not R5(X,Y) was eliminated from rule (2) because it does not appear
in any source description. For the same reason (the literal R6(X,Y) does not
appear in any source description), rule (3) was eliminated. Then, the query plan
(Q−, V −1) is:

Ans(X,Z)← R1(X,Y), R2(Y,Z), not R4(X,Y)

R4(X,Y)← R3(X,Y)

R1(X, f1(X,Z))← V1(X,Z)

R2(f1(X,Z), Z)← V1(X,Z)

R3(X,Y)← V2(X,Y).

Finally, the query plan can be evaluated in a bottom-up manner to retrieve
Ans(a, b) as final answer for the global query Q. ¤

It is possible to prove (see [5] for details) that the generated plan can be
finitely evaluated in a bottom-up manner, that the query plan is maximally
contained in the query (for that, proof-trees presented in [19] are extended to
recursion free Datalog¬ programs). Actually, the notion of maximally contain-
ment can be made relative to minimal global instances only. This allows us to
obtain the following results about the Algorithm.

1 It should be easy to extend this methodology to stratified Datalog¬ queries, but we
do not need this extension here.

Theorem 1. Given an open global system G, IC a set of general ICs, and a
recursion free Datalog¬ query Q with built-ins, the plan Plan(Q) obtained with
the extended inverse rules algorithm retrieves exactly MinimalG(Q). ¤

Example 9. Applying the extended inverse rules methodology to Example 7, we
obtain the following query plan Plan(Π(T ω(Q))):

Ans′(X,Y)← R(X,Y), not S(X,Y)

S(X,Y)← R(X,Z), Y 6= Z

R(X,Y)← V1(X,Y)

R(X,Y)← V2(X,Y).

This query plan can be evaluated on the view extensions in G8 to obtain the
answer Ans′(c, d). This answer is consistent: G8 |=c R(X,Y)[c, d]. Notice that
the original query (1) could be evaluated instead of the program using SQL2,
defining first R as a view that is the union of V1 and V2. ¤

Proposition 2. Given an open global system G, IC a set of general ICs, the
consistent answers to a conjunctive global query Q correspond to Minimal(T ω(Q)).
Furthermore, if Tω(Q) is monotone, then its certain answers [2] are the consis-
tent answers to Q. ¤

Theorem 2. Given an open global system G, IC a set of general ICs, and a
conjuntive global query Q, Plan(Π(T ω(Q)) retrieves exactly ConsisG(Q). ¤

5 Conclusions

We have concentrated on open sources. In the future, it would interesting to
extend the semantic and algorithm work presented in this paper to consider
open, closed and clopen sources on the global system. The work in [9] introduces
an interesting framework to deal with this kind of global system that can be
explored further, particularly in presence of global integrity constraints.

The methodology we have presented here is based on the methodology pre-
sented in [3]. In consequence, it applies to a limited class of queries and con-
straints. Other approaches to consistent query answering based on logic pro-
grams with stable model semantics were presented in [4, 6, 11]. They can handle
general first-order queries in the context of a single relational database. It would
be interesting to see how the methodology presented there could be integrated
with the methodology presented in this paper to consistently answer queries
posed to global integrated systems under the LAV approach. Consistency issues
under the GAV approach are treated in [14].

Acknowledgments: Work supported by FONDECYT Grant 1000593, NSF
Grant INT-9901877/CONICYT Grant 1998-02-083, NSF Grant IIS-0119186,
Carleton University Start-Up Grant 9364-01, NSERC Grant 250279-02, Nucleus
Millenium for Web Research (Mideplan, Grant P01-029-F). We are grateful to
Alberto Mendelzon for stimulating and useful conversations.

References

1. Abiteboul, S.; Hull, R. and Vianu, V. Foundations of Databases. Addison-Wesley,
1995.

2. Abiteboul, A. and Duschka, O. Complexity of Answering Queries Using Materialized
Views. In Proc. 9th Annual ACM Symp. on the Theory of Computing, ACM Press,
1998, pp. 254-263.

3. Arenas, M.; Bertossi, L. and Chomicki, J. Consistent Query Answers in Inconsistent
Databases. In Proc. ACM Symposium on Principles of Database Systems (ACM
PODS’99), ACM Press, 1999, pp. 68–79.

4. Arenas, M.; Bertossi, L. and Chomicki, J. Specifying and Querying Database Re-
pairs using Logic Programs with Exceptions. In Flexible Query Answering Systems.
Recent Developments. H.L. arsen, J. Kacprzyk, S. Zadrozny, H. Christiansen (eds.),
Springer, 2000, pp. 27–41.

5. Bertossi, L.; Chomicki, J.; Cortes, A. and Gutierrez, C. Consistent
Answers from Integrated Data Sources. Extended version. May 2002.
http://www.scs.carleton.ca/∼bertossi/papers/paperleo14.ps

6. Barcelo, P. and Bertossi, L. Repairing Databases with Annotated Predicate Logic.
In Proc. Ninth International Workshop on Non-Monotonic Reasoning (NMR’2002).
Special session on Changing and Integrating Information: From Theory to Practice.
S. Benferhat and E. Giunchiglia (eds.), Morgan Kaufmann Publishers, 2002, pp.
160 – 170.

7. Cali, A.; Calvanese, D.; De Giacomo, G. and Lenzerini, M. Data integration under
Integrity Constraints. In Proc. of the 14th Conf. on Advanced Information Systems
Engineering (CAiSE 2002), 2002. To appear.

8. Duschka, O.; Genesereth, M. and Levy, A. Recursive Query Plans for Data Inte-
gration. Journal of Logic Programming, 2000, 43(1):49-73.

9. Grahne, G. and Mendelzon, A. Tableau Techniques for Quering Information Sources
through Global Schemas. In Proc. of the Int. Conf. on Database Theory (ICDT’99),
Springer LNCS1540, 1999, pp. 332-347.

10. Grant, J. and Minker, M. A Logic-based Approach to Data Integration. Theory
and Practice of Logic Programming journal. To appear.

11. Greco, G.; Greco, S. and Zumpano, E. A Logic Programming Approach to the
Integration, Repairing and Querying of Inconsistent Databases. In Proc. 17th Inter-
national Conference on Logic Programming (ICLP’01), Ph. Codognet (ed.), LNCS
2237, Springer, 2001, pp. 348–364.

12. Gryz, J. Query Rewriting Using Views in the Presence of Functional and Inclusion
Dependencies. Information Systems, 1999, 24(7):597–612.

13. Halevy, A. Answering Queries using Views: A Survey. VLDB Journal. To appear.
14. Lembo, D.; Lenzerini, M. and Rosati, R. Source Inconsistency and Incomplete-

ness in Data Integration. In Proc. Knowledge Representation meet Databases
(KRDB’02), 2002.

15. Levy, A.; Rajaraman, A. and Ordille, J. Quering Heterogeneous Information
Sources using Source-Descriptions. In Proceedings of the 22nd International Con-
ference on Very Large Databases (VLDB’96), Morgan Kaufmann Publishing Co.,
1996, pp. 251–262.

16. Lloyd, J. Foundations of Logic Programming. Springer, 1987.
17. Millstein, T.; Levy, A. and Friedman, M. Query Containment for data Integra-

tion Systems. In Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’00), 2000, pp.

18. Pottinger, R. and Levy, A. A Scalable Algorithm for Answering Queries Using
Views. In Proceedings of the 26th VLDB Conference, 2000, pp.

19. Ramakrishnan, R.; Sagiv, Y.; Ullman, J.D. and Vardi, M.Y. Proof-tree Transfor-
mation Theorems and their Applications. In Proceedings ACM SIGACT-SIGMOD-
SIGART Symposium on Princ. of DBS,1989, pp. 172–181.

20. Ullman, J. Information Integration using Logical Views. In Proc. of the Int. Conf.
on Database Theory (ICDT’97), Springer LNCS1186, 1997, pp. 19–40.

21. Ullman, J.D. Information Integration Using Logical Views. Theoretical Computer
Science, 2000, 239(2):189-210.

