
Querying RDF Data from a Graph Database

Perspective

Renzo Angles and Claudio Gutierrez

Department of Computer Science, Universidad de Chile
{rangles,cgutierr}@dcc.uchile.cl

Abstract. This paper studies the RDF model from a database perspec-
tive. From this point of view it is compared with other database models,
particularly with graph database models, which are very close in motiva-
tions and use cases to RDF. We concentrate on query languages, analyze
current RDF trends, and propose the incorporation to RDF query lan-
guages of primitives which are not present today, based on the experience
and techniques of graph database research.

1 Introduction

The Resource Description Framework (RDF) can be viewed from at least two
perspectives: (1) From a logical perspective, as a minimal fragment of logic that
includes all relevant features needed as representation language for metadata, or
as the W3C recommendation [1] says: RDF is an assertional language intended to
be used to express propositions using precise formal vocabularies; and (2) From
a database perspective, as an extension of data models used in the database
community, in particular graph database models. The former point of view has
been an active area of research. This does not come as surprise knowing that
RDF emerged as a language to represent metadata on the Web, distilling the
experience of the community of knowledge representation and Web researchers
and developers [2]. The latter point of view has received less attention and will
be the focus of this paper. We will consider RDF as a data model in the database
tradition.

The term data model has been used in the database community with different
meanings and in diverse contexts. In this paper we will use it in two senses.
In a broad or abstract sense, a data model is a collection of conceptual tools
for describing the real-world entities to be modeled in the database and the
relationships among these entities [3]. In a strict or concrete sense, a data model,
as defined by Codd [4], is as a combination of three components: (a) a collection
of data structure types; (b) a collection of transformation operators and query
language and, (c) a collection of general integrity rules.

In the broad sense, RDF can be considered a data model: a collection of
conceptual tools for describing real-world entities, namely metadata on the Web.
But also in the strict sense of the term, RDF qualifies as well: Point (a) has been
more or less addressed at a basic level. One of the documents of the RDF suite [5]



speaks of graph data model meaning by this concept the data structure implicitly
defined by sets of triples. Although one can discuss the precise meaning of this
concept [6], the graph-like nature of RDF data is clear. Point (c), namely the
integrity constraints, is an open issue for RDF, especially when considering the
duality of RDF as an open world specification of distributed resources on the
Web versus RDF as data model for large single-source repositories with all the
issues of a standard database system. The topic of constraints is outside the
scope of this paper.

This paper concentrates on point (b), namely query languages. This is an
active area from a development and implementation point of view, and there is
a W3C Working Group addressing the issue of RDF data access, which has a
proposal of RDF query language directed mainly to access data on distributed
sources [7]. There are also works addressing foundational issues, e.g. [8–10]. Nev-
ertheless, the discussion about RDF as a full fledged strict database model and
the design and primitives of a query language for such a model is a topic less
developed, and probably one of the most needed if we want to take advantage
of all the potentialities of the RDF data model (e.g. query optimization, query
rewriting, views, update).

The consideration of RDF as database model puts forward the issue of devel-
oping coherently all its database features. In particular its query language should
address the kind of queries and problems of the application domains the abstract
data model is intended to represent. One of the motivations of this paper are
those application domains where interconnection at large scale and navigation
of a network is the main modeling theme. Examples of this are biology [11],
police-like applications [12], navigation in bibliographic databases, etc. To give
a flavor of the type of problems, consider queries like: “are suspects A and B re-
lated?”, submitted to a police database, or “what is the Erdős number of author
X”, submitted to (an RDF version of) DBLP. The first asks for “relevant” paths
connecting these resources in the (RDF) police database, and the second asks
simply for the length of the shortest path between the nodes representing Erdős
and X. Current proposals of RDF query languages [13, 14, 7] do not support1

queries like these. To address these type of problems, the notions and techniques
of graph databases can be very valuable. Graph databases are systems designed
to support storing and querying information in the form of graphs. They were
important, together with object-oriented databases, in the database research of
the nineties, and lost part of their appeal after the irruption of semi-structured
data models and XML. We claim that graph database models can be a sound
support for the design of an RDF database model, particularly for RDF query
languages.

Contributions. In this paper we study the RDF model from a database per-
spective, compare it with other abstract database models, focusing on query
languages and graph databases. We restrict in this paper to the logical level,

1 A language is said to support a feature if it provides facilities that make it convenient
(reasonable easy, safe and efficient) to use that feature [15].



i.e., avoid –when is possible– physical, implementation and indexing considera-
tions. In particular we:
- Compare the RDF model with classical abstract database models putting par-
ticular emphasis in graph database models.
- Study current RDF query languages with respect to their capabilities to support
graph-like queries and conclude that they give little or no support for them.
- Survey the notions, techniques and systems developed in the area of graph
database query languages, and its applicability to the RDF model.
- Propose primitives for RDF query languages based on the graph database ex-
perience.

Outline of the paper. Section 2 compares the RDF model with other database
models. Section 3 surveys graph database models and their query languages.
Section 4 presents a brief review of current RDF query languages and investi-
gates the support they give for querying graph-like data. Finally, in Section 5 we
propose a set of primitives to be incorporated into RDF query languages. Each
of them is carefully reviewed against experience of query language development
in graph databases.

2 Comparison of RDF with other abstract database

models

Beginning in the seventies numerous data models have been proposed, each of
them with their own concepts and terminology. Surveys and taxonomies of data
models are as manifold as data models themselves (see e.g. [3, 16, 17], [18]). Sev-
eral of these data models have features relevant for the RDF model. In this
section we compare the RDF model with the most important of them. A sum-
mary is presented in Table 1.

Physical models. They were the first ones to offer the possibility to organize large
collections of data. Among the most important ones are the hierarchical [19] and
network [20] models. These models lack good abstraction level and are very close
to physical implementations. The data-structuring is not flexible and not apt to
model non-traditional applications. For our discussion they do not much have
relevance.

Relational data model was introduced by Codd [21] to highlight the concept
of level of abstraction by introducing a clean separation between physical and
logical levels. Due to its simplicity of modeling it gained wide popularity among
developers and business applications. It is based on the simple mathematical no-
tion of relation, which together with its associated algebra and logic, made the
relational model a primary model for database research. In particular, its stan-
dard query and transformation language, SQL, became a paradigmatic language
for querying.



MODEL LEVEL DATA COMPLEX. CONNECTIVITY TYPE of DATA

Network physical simple high homogeneous

Relational logical simple low homogeneous

Semantic user simple/medium high homogeneous

Object-O logical/physical complex medium heterogeneous

XML logical medium medium heterogeneous

RDF logical medium high heterogeneous

Table 1. Summary of comparison among different database models. The parameters
are: abstraction level, complexity of the data items modeled, degree of connectivity
among the data and support to get this information, and finally, flexibility to store
different types of data.

Although an RDF specification can be logically viewed as a set of binary
relations, the differences with the relational model are manifold. Among the
most relevant ones are: the relational model was directed to simple record-type
data with a structure known in advance (airline reservations, accounting, etc.).
The schema is fixed and extensibility is a difficult task. Integration of different
schemas is not easy nor automatizable. The query language does not support
paths, neighborhoods and queries that address connectivity (an exception is
transitivity). There are no objects identifiers, but values.

Semantic models ([22]) have their origin in the necessity to provide more ex-
pressiveness and incorporate a richer set of semantics into the database from the
user point of view. They allow database designers to represent objects and their
relations in a natural and clear manner (similar to the way the user view an
application) by using high-level abstraction concepts such as aggregation, clas-
sification and instantiation, sub- and super-classing, attribute inheritance and
hierarchies [16]. A well-known example is the entity-relationship model [23]. It
has become a basis for the early stages of database design, but due to lack of
preciseness cannot replace models like relational or O-O.

For RDF database research, semantic models are relevant because they are
based on a graph-like structure which highlights the relations between the entities
to be modeled.

Object oriented data models ([24]) are based on the object-oriented programming
paradigm. Their objective is representing data as a collection of objects that are
organized in classes and have complex values and methods associated with them.
They are intended to model non-conventional database applications consisting
of complex objects systems with many semantically interrelated components as
in CAD/CAM, computer graphics or information retrieval.

Object-oriented database models have been related to Graph database ones
because the explicit or implicit graph structure in their definitions [25], [26], [27].
Nevertheless, there remain important differences rooted in the form that each of
them models the world. O-O models view the world as a set of objects having



certain state (data) and interacting among them by methods. On the contrary,
graph database models, and RDF in particular, model the world as a network
of relations. The emphasis in RDF is on the interconnection of the data, the
network of relations among the data and the properties of these relations. The
emphasis of O-O is on the objects, their values and methods. However, there are
proposals to apply O-O concepts to RDF [28].

Semistructured data models ([29–31]) are oriented to model semi-structured
data. Of all the most visible models in the literature, the semi-structured data
model is one of the closest in several points to RDF. Semi-structured models deal
with data whose structure is irregular, implicit and partial, and whose schema
is usually very large, contained within the data itself, and rapidly evolving [31].
One of the best representative is OEM [32]. It is a model based on objects, which
have unique identifiers, and values that can be simple types or object references.
There is a natural graph representation: objects are nodes, and values are labeled
arcs. The main differences with RDF are: the lightweight inferencing available,
the existence of blank nodes, the stronger typing system and the fact that labels
are also nodes in RDF.

Another representative is the XML model [33]. There are substantial differ-
ences between XML and RDF. First, RDF has a higher abstraction level; in fact
RDF is an application of XML to represent metadata. Structurally XML has a
ordered-tree-like structure against the graph structure of RDF. At the seman-
tic level, in XML the information about the data is part of the data (in other
words XML is self-describing); in contrast, RDF expresses explicitly the infor-
mation about the data using relations between entities. An important advantage
of RDF is its extensibility in both schema and instance level. See [34, 35] for a
major comparison of these models.

3 Graph database Models and their query languages

3.1 Graph database models

Graph database models appeared with the objective of modeling information
whose logical structure is a graph. In this sense, they are the closest to the
RDF model by the data type used. Among the first ones, we have the the Log-
ical Data Model [36, 37] and the Functional Data Model [38], which define an
implicit structure of labeled graphs. The Logical data model introduces basic,
composition, and collection nodes, all of which can be modeled in RDF. On the
other hand, in many semantic and object oriented data models the conceptual
representation of data is transparently graph-based. For example O2 [39] defines
basic, tuple-structured, and set-structured types (the first type is similar to an
RDF blank node and the remainder two can be modeled as relations in RDF);
GOOD [27] is oriented primarily to graphical user interfaces; OEM [32] addresses
the information exchange problem, and is oriented to express resources and re-
lations in a standard way (in agreement to the RDF philosophy); GDM [40]
defines instances and schema graphs with features similar to RDF (e.g. domain



and range of relations, typeOf properties). Models like G-BASE [41], Gram [42],
GraphDB [43] and GRAS [44] propose explicit graph data models.2. Besides
these models based on graphs, there are other approaches which use as for-
malization generalizations of the notion of graph, such as hypergraphs (e.g. see
GROOVI [25], the hypernode model [45, 46]) and hygraphs (e.g. see Hy+ [47]).
Note that strictly speaking, RDF graphs are ordered hypergraphs [6].

3.2 Graph query languages

There are several proposals of query languages for models that represent infor-
mation with a explicit or implicit graph structure. In this context, from now on
we assume that a graph database has n nodes and e edges.

Cruz et al. [48] propose the graphical query language G for querying data
represented as a labeled graph. It introduces the concept of graphical query,
which is based on a pattern graph that use regular expressions to represent
recursive queries. G evolved into a more powerful language called G+ [49] where
a query graph is the basic building block. Query graph nodes may be labeled
with variables and edges labeled with regular expressions. A simple query has
two elements, a query graph that specifies the class of patterns to search and a
summary graph that represent how to restructure the answer obtained by the
query graph.

GraphLog [50] is a query language for hypertext. It presents a extension of
G+ by adding negation and unifying the concept of a query graph. A query is now
only one graph pattern containing one distinguished edge (which corresponds to
the restructured edge of the summary graph in G+). The effect of the query is
to find all instances of the pattern that occur in the database graph and for each
one of them define a virtual link represented by the distinguished edge.

Gram [42] presents a query algebra where regular expressions over data types
are used to select walks (paths) in a graph. It uses a data model where walks are
the basic objects. A walk expression is a regular expression without union, whose
language contains only alternating sequences of node and edge types, starting
and ending with a node type. The query language is based on a hyperwalk
algebra with operations closed under the set of hyperwalks.

Gemis and Paredaens [51] present PaMal, a graphical model for describing
schemes and instances of object-databases and a graphical data manipulation
language based on pattern matching.

Güting [43] proposed an object-oriented data model and query language for
graph databases called GraphDB. A database in GraphDB is a collection of ob-
ject classes divided in: simple classes (simple objects that represent nodes), link
classes (links between nodes that represent edges) and path classes (represent-
ing several paths in the database). A query consists of several steps. Each step

2 Note that a direct applicability of a graph model to RDF is not possible due to the
particular RDF graph property where resources possibly can occur as edge labels as
as well as node labels. To solve this problem an intermediate model (e.g bipartite
graphs [6]) can be defined.



computes operations that specify argument subgraphs in the form of regular ex-
pressions over link class names that extend or restrict dynamically the database
graph.

Lorel [30] is a query language for semistructured data designed for the Object
Exchange Model (OEM) [32]. Lorel is a extension of OQL [52], extending its
characteristics to handling semistructured data.

Oriented to search the Web, Flesca and Grego [53] show to how use partially
ordered languages to define path queries to search databases and present results
on their computational complexity. In addition, a query language based on the
previous ideas was proposed in [54].

4 Current RDF query languages and their graph support

4.1 Brief overview of RDF query languages

Several languages for querying RDF data have been proposed and implemented,
some in the lines of traditional database query languages (e.g. SQL, OQL), oth-
ers based on logic and rule languages. Some of them are: RQL [9] is a typed
language for querying RDF repositories; SquishQL3 is a SQL-style query lan-
guage that permits simple graph navigation in RDF sources; RDQL [55] is an
implementation of SquishQL; RDFQL4 is a statement-based query language with
a SQL-style to perform queries, inference operations, and construction of views
on RDF structured data; TRIPLE [56] is a language that allow rule definition,
inference and transformation of RDF models; Notation 3 (N3) [57] provides a
text-based syntax for RDF; Versa5 is a graph-based language with some sup-
port for rules; SeRQL combinescharacteristics of languages like RQL, RDQL,

N-Triple, N3 plus some new features; RXPath6 is a query language based on
XPath; Good surveys are [13, 14].

W3C members that conform the RDF DAWG presented a Working Draft in
October 2004, which specifies a set of use cases, requirements, and objectives
for an RDF query language and data access protocol [58]. SPARQL [7] is an
RDF query language designed to meet such requirements and design objectives
mentioned previously. It defines a query language with a SQL-like style, where a
simple query is based on query patterns, and query processing consists of binding
of variables to generate pattern solutions (graph pattern matching). SPARQL is
still a work in progress.

4.2 Graph Properties in Current RDF Query Languages

To illustrate the problems of current RDF query languages in querying graph-
like properties, we chose seven query languages and seven graph properties one

3 http://ilrt.org/discovery/2001/02/squish/
4 http://www.intellidimension.com/
5 http://4suite.org/
6 http://rx4rdf.liminalzone.org/



PROPERTY RQL SeRQL RDQL Triple N3 Versa RxPath

Adjacent nodes ± ± ± ± ± ± ×
Adjacent edges ± ± ± ± × × ×
Degree of a node ± × × × × × ×
Path × × × × × × ±
Fixed-length Path ± ± ± ± ± × ±
Distance between two nodes × × × × × × ×
Diameter × × × × × × ×

Table 2. Support of some current RDF query languages for some example graph
properties (“±” indicates partial support and “×” no support).

would like to retrieve (see [59]). The summary of the results, presented in Table
2, are as follows. An RDF graph can be considered a directed graph. This di-
rection produces problems in languages that do not have a union operator when
retrieving neighborhoods, e.g. “all statements involving a given resource”. Some
query results violate the query language property of closure [14] by returning
results which are not in RDF format. There are two main problems concerning
paths: (a) most languages support only querying for patterns of paths which
are limited in length and form (the issue of edge direction blows up the size
of the query exponentially); (b) RxPath is able to retrieve only paths starting
from a fixed node and with some other restrictions. Aggregated functions like
COUNT, MIN, MAX applied to paths could be used to answer queries as for
the degree of a node, the distance between nodes, and the diameter of a graph.
None of these functions is systematically supported, even though, for example,
the original version of RQL has a COUNT function on the number of triples.

5 Graph primitives for RDF query languages

In this section we present desirable graph primitives of a query language for
the RDF data model, based on the experience of the graph database query
languages discussed in previous sections. We stress the graph-like features that
in our opinion are missing in today’s RDF query languages.

Before discussing the primitives in detail, let us enumerate desirables features
for an RDF query language. They are very much inspired by a similar wish-list
stated by Abiteboul [31] for semi-structured data. They are: Standard database-
style query primitives; Navigation in the style of semi-structured data or Web-
style browsing; Searching for patterns in an information-retrieval style; Temporal
queries, including versioning; Querying both the data and the schema in the same
query; Incorporating transparently the lightweight inferencing of RDF Schema
and relevant polynomial-time extensions; Sound theoretical foundation;

The following groups of primitives comprise features of graph query languages
(see Sec. 3), graph properties presented in section 4.2 and those found in the
DAWG Draft. We think they constitute a starting point of graph properties



PROPERTY G G+ GraphLog Gram GraphDB Lorel F-G

Adjacent nodes ± √ √ √ ± √ ±
Adjacent edges ± √ √ √ ± √ ±
Degree of a node × √ √ × ? × ×
Path

√ √ √ √ √ √ √

Fixed-length Path
√ √ √ √ √ √ √

Distance between two nodes × √ √ × ? × ×
Diameter × √ √ × ? × ×

Table 3. Support of some graph database query languages for the example graph
properties of Table 2 (“

√
” indicates support, “±” partial support, “×” no support,

and “?” indicates there is no information available).

that should be supported by an RDF query language. In each case we survey
the support that graph database languages gives them. As motivation, Table 3
shows the support graph query languages give to the properties in Table 2.

Paths and connectedness. One of the most fundamental graph problems is to
compute reachability information (use case 2.5 in DAWG Draft [58]). In fact,
many of the recursive queries that arise in relational databases and, more gener-
ally in data with graph structure, are in practice graph traversals characterized
by path problems. The importance of such queries is studied in several works [60–
63]. One of the challenges to incorporate such notion into a query language is its
computational complexity. Finding simple paths with desired properties in di-
rect graphs is very difficult, and essentially every nontrivial property gives rise to
an NP-complete problem [64]. Yannakakis [65] surveyed a set of paths problems
relevant to the database area including computing transitive closures, recursive
queries and the complexity of path searching. Extension of query languages for
solve graph traversal problems are surveyed in [66].

In what follows, we describe the support that the query languages of the
database models described in Section 3.1 give to path problems.

A initial implementation of G translate the graphical queries into C-Prolog
programs. Simple paths are traversed using certain non-Horn clause constructs
available in Prolog. Although, it does not support cycles or finding the shortest
path, it was a good approximation to a graph query language.

The evaluation of path queries in G+ is a two-stage process consisting of
a depth-first search of the graph database and use of a nondeterministic finite
state automaton to control the search. In addition path queries are a subset of
the class of linear chain queries and hence can be evaluated rapidly in parallel.
The evaluation algorithm can be shown to compute the identity query in O(e)
time and the transitive closure in O(ne) time. G+ was implemented in the
HyperG system providing primitive operators like depth-first search, shortest
path, transitive closure and connected components.

Motivated by the implementation of G+, Mendelzon and Wood [67] studied
the problem of finding all pair of nodes connected by a simple path such that



the concatenation of the labels along the path satisfies a regular expression.
Although the regular simple path problem is in general NP-complete, the paper
presents an algorithm that runs in polynomial time in the size of the graph when
some conditions fulfilled: the graph is acyclic, the regular expression is restricted
(according to the definition in the paper), or the graph complies with a cycle
constraint compatible with the regular expression. The evaluation algorithm uses
a deterministic finite automaton to traverse paths in the graph. They also prove
the intractability of certain types of simple paths in a particular class of direct
graphs and characterize a class of queries about regular simple paths which can
be evaluated in polynomial time. The analysis and implementation in this paper,
assume that the graph can be entirely stored in main memory.

The expressive power of GraphLog is characterized by establishing the equiv-
alence between GraphLog, stratified linear Datalog (a language of function-free
Horn clauses), non deterministic logarithmic space, and transitive closure. The
queries expressible in the language are exactly those that can be computed in
space logarithm in the size of the database.

To implement graph operations in GraphDB, efficient graph algorithms are
used. Shortest path and cycle both were implemented using the A* algorithm.
Moreover, nodes, paths and subgraphs are indexed using path classes and index
structures like B-Tree and LSD-Tree.

Lorel presents a SQL-style query language that support two types of path
expressions, simple path expressions, which allow to obtain the set of objects
reachable by following a sequence of labels starting from a named object in the
OEM graph and a more powerful syntax for path expressions, called general path
expressions based on wildcards and regular expressions. To outperform query
execution, the Lore DBMS [68] implements the query language Lore and uses
two kinds of indexes, a link (edge) index called Lindex, and a value index called
Vindex. A Lindex takes an object identifier and a label, and returns the object
identifiers of all parents via the specified label. A Vindex takes a label, operator,
and a value, and returns all atomic objects having an incoming edge with the
specific label and a value satisfying the specific operator and value. Vindexes
and Lindexes are implemented using B+ trees and linear hashing respectively.

In graph databases where the number of nodes is very large (e.g. the Web)
it is useful to subdivide the domain of evaluation by selecting subsets of the
domain on the base of some criteria. With this objective, Flesca and Greco [53]
introduce partially ordered regular languages based on some order on the nodes.
Such languages are an extension of regular languages where strings are partially
ordered, for example, two strings s1 and s2, such that s1 > s2, denote two paths
in the graph with the constraint that the path s1 should be preferred to the path
s2. In later work [54], they present an algebra for partially ordered relations, an
algorithm for the computation of path queries and show that computing an in-
stance of a graph query can be done in polynomial time. Also, they present a
SQL-like language that consider general paths and extended regular expressions,
and show how extended regular expressions can be used to search the Web. With
similar motivations, and in the context of RDF, Anyanwu and Sheth [69] intro-



duced a path operator ρ to address relevant relationships between entities called
semantic associations. Semantic associations are represented in a RDF graph as
sequences (i.e. edges, paths) between entities or more complex structures of se-
quences, and a notion of similarity between them is defined. The implementation
of the ρ-operator is evaluated on two strategies, first implementing a processing
layer in existing RDF data storage technologies and, second the use of a memory
resident graph representation of the RDF model along with the use of efficient
graph traversal algorithms (e.g. transitive closure and isomorphism of paths).

Pattern matching consists in determining if there exists a mapping (or isomor-
phism) between a graph pattern and a subgraph of a database graph (use cases
2.1, 2.12 and 2.13 in DAWG Draft [58]). Pattern matching deal with two prob-
lems, the graph isomorphism problem that has a unknown computational com-
plexity, and the subgraph isomorphism problem which is NP-complete. Pattern
matching has attracted a great deal of attention specially on data mining (see [70]
for a survey), update [51, 71], querying [48, 72, 50] and visualization [26]. Sasha et

al. [64] present a survey of pattern-matching based algorithms for fast searching
in trees and graphs.

PaMal use graph patterns to describes the part of the database instance that
are affected by a operation (addition and deletion of nodes and edges). In the
case of GraphDB, the subgraph problem is solved moving the conditions into
subsequent graph operations or other database access.

Aggregate functions are operations non related to the data model that permit
to summarize or operate on the query results (use cases 2.3, 2.4, 2.6, 2.8, 2.10,
2.11, 2.14 and 2.15 in DAWG Draft [58]). Such functions are oriented to deal
directly with the structure of the underlying graph, such as the degree of a node,
the diameter of the graph (or a set of nodes), the distance between nodes, etc.

With the purpose of performing computations on retrieved subgraphs prod-
uct of a query operation, G+ defines two types of summary operators: path
operators which summarize on the values of the attributes along paths and set
operators which summarize on the values of the attributes on a set of paths. The
set of such operators include sum, products, maximum and count.

GraphLog becomes more expressive that relational algebra and calculus with
aggregates, adding aggregate operators (e.g. MAX, SUM, etc.) and path sum-
marization. The implementation of GraphLog use algorithms discussed in [67].

Gram, consistent with its SQL-like syntax, defines two types of algebraic
operations: unary (projection, selection, renaming) and binary (join, concate-
nation, set operations) which are closed under the set of hyperwalks. PaMal
provides a reduce-operation to work with a special group of instances called re-
duced instances and programming constructs (loop, procedure and program).
Finally, GraphDB query language support further operations, e.g. for sorting,
grouping, and aggregate functions (e.g. Sum).

Neighborhoods. The notion of neighborhood is relevant for information having
a graph-like nature (use case 2.7 in DAWG Draft [58]). In these models, in-



formation (represented by nodes) closed (in the graph) is usually semantically
related . The primary notion is adjacency. Both node and edge adjacency in
RDF are important in various contexts. A more advanced notion of adjacency,
like the k-neighborhood of a node, is necessary in several contexts. The need of
1-neighborhood retrieval in an RDF Graph is argued in [73] and [74]. In the RDF
context, inference of new triples is relevant in Vertex and Edge adjacency queries.
To the best of our knowledge, the notion of neighborhood as primitive for query
languages has not been studied systematically in the database literature.

6 Conclusions

We considered RDF from the perspective of graph database modeling. We com-
pared it with other database models. We surveyed graph database models and
query languages in order to argue the convenience that the RDF community
incorporate database experience and technologies into further development of
the RDF model and query language design. In concrete, we propose that RDF
query language should incorporate graph database query language primitives.
Further work includes developing use cases, formalizing requirements and build-
ing benchmarks for queries using the graph-like structure of the model.

Acknowledgments. This research was supported by Millenium Nucleus, Cen-
ter for Web Research (P01-029-F), Chile. R. Angles was supported by Mecesup
project No. UCH0109. C. Gutierrez was partially supported by FONDECYT
No. 1030810.

References

1. Hayes, P.: RDF Semantics. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
(2004)

2. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax
Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ (1999)

3. Silberschatz, A., Korth, H.F., Sudarshan, S.: Data models. ACM Computing Surveys
28 (1996) 105-108

4. Codd, E.F.: Data Models in Database Management. In: Proc. of the workshop on
Data abstraction, databases and conceptual modeling, ACM Press (1980) 112-114

5. Klyne, G., Carroll, J.: Resource Description Framework (RDF) Concepts and Ab-
stract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (2004)

6. Hayes, J., Gutierrez, C.: Bipartite Graphs as Intermediate Model for RDF. In: Proc.
of the 3th ISWC Conference. Number 3298 in LNCS, Springer-Verlag (2004) 47-61

7. Prudhommeaux, E., Seaborne, A.: SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/ (2005)

8. Horrocks, I., Tessaris, S.: Querying the Semantic Web: A Formal Approach. In:
Proc. of the 13th ISWC. Number 2342 in LNCS, Springer-Verlag (2002) 177-191

9. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL:
A Declarative Query Language for RDF. In: Proc. of the 11th WWW conference,
ACM Press (2002) 592–603



10. Gutierrez, C., Hurtado, C., Mendelzon, O.: Foundations of Semantic Web
Databases. In: Proc. of the 23th ACM PODS. (2004)

11. Olken, F.: Tutorial on Graph Data Management for Biology. IEEE Computer So-
ciety Bioinformatics Conference (CSB) (2003)

12. Sheth, A., Aleman-Meza, B., Arpinar, I.B., Halaschek-Wiener, C., Ramakrishnan,
C., Bertram, C., Warke, Y., Avant, D., Arpinar, F.S., Anyanwu, K., Kochut, K.:
Semantic Association Identification and Knowledge Discovery for National Security
Applications. Journal of Database Management 16 (2005) 33–53

13. Magkanaraki, A., Karvounarakis, G., Anh, T.T., Christophides, V., Plexousakis,
D.: Ontology Storage and Querying. Tech. Report 308, ICS-FORTH - Hellas (2002)

14. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query
Languages. In: Proc. of the 3th ISWC conference. Number 3298 in LNCS, Springer-
Verlag (2004) 502

15. Stroustrup, B.: What Is Object-Oriented Programming? IEEE Softw. 5 (1988)
10–20

16. Navathe, S.B.: Evolution of data modeling for databases. Communications of the
ACM 35 (1992) 112–123

17. Beeri, C.: Data Models and Languages for Databases. In: Proc. of the 2nd ICDT.
Volume 326 of LNCS., Springer-Verlag (1988) 19–40

18. Kerschberg, L., Klug, A.C., Tsichritzis, D.: A Taxonomy of Data Models. In: Sys-
tems for Large Data Bases, North Holland and IFIP (1976) 43–64

19. Tsichritzis, D.C., Lochovsky, F.H.: Hierarchical Data-Base Management: A Survey.
ACM Comput. Surv. 8 (1976) 105–123

20. Taylor, R.W., Frank, R.L.: CODASYL Data-Base Management Systems. ACM
Comput. Surv. 8 (1976) 67–103

21. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM 26 (1983) 64–69

22. Peckham, J., Maryanski, F.J.: Semantic Data Models. ACM Computing Surveys
20 (1988) 153–189

23. Chen, P.P.: The Entity-relationship Model-toward a Unified View of Data. ACM
TODS 1 (1976) 9–36

24. Kim, W.: Object-Oriented Databases: Definition and Research Directions. IEEE
TKDE 2 (1990) 327–341

25. Levene, M., Poulovanssilis, A.: An Object-oriented Data Model Formalised through
Hypergraphs. DKE 6 (1991) 205–224

26. Andries, M., Gemis, M., Paredaens, J., Thyssens, I., Bussche, J.: Concepts for
Graph-Oriented Object Manipulation. In: 3rd EDBT Conference. Volume 580 of
LNCS., Springer-Verlag (1992) 21–38

27. Gyssens, M., Paredaens, J., Bussche, J., Gucht, D.: A Graph-Oriented Object
Database Model. IEEE TKDE 6 (1994) 572–586

28. Bassiliades, N., Vlahavas, I.P.: R-DEVICE: A Deductive RDF Rule Language. In:
Proc. of the 3th RuleML. (2004) 65–80

29. Buneman, P.: Semistructured Data. In: Proc. of the 16th PODS, ACM Press (1997)
117–121

30. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.: The Lorel Query
Language for Semistructured Data. Int. Journal on Digital Libraries 1 (1997) 68–88

31. Abiteboul, S.: Querying Semi-Structured Data. In: Proc. of the 6th Int. Conference
on Database Theory. Volume 1186 of LNCS., Springer-Verlag (1997) 1–18

32. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object Exchange across Het-
erogeneous Information Source. In: Proc. of the 11th ICDE, Taipei, Taiwan, IEEE
(1995) 251–260



33. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup
Language (XML) 1.0, W3C Recommendation 10 February 1998.
(http://www.w3.org/TR/1998/REC-xml-19980210)

34. Gil, Y., Ratnakar, V.: A Comparison of (Semantic) Markup Languages. In: Proc.
of the 15th FLAIRS Conference. (2002)

35. Arroyo, S., Ding, Y., Lara, R., Stollberg, M., Fensel, D.: Semantic Web Languages.
Strengths and Weakness. In: International Conference in Applied computing. (2004)

36. Kuper, G.M., Vardi, M.Y.: A New Approach to Database Logic. In: Proc. of the
3th ACM PODS, ACM Press (1984) 86–96

37. Kuper, G.M., Vardi, M.Y.: The Logical Data Model. ACM TODS 18 (1993) 379–
413

38. Shipman, D.W.: The Functional Data Model and the Data Language DAPLEX.
ACM TODS 6 (1981) 140–173

39. Lécluse, C., Richard, P., Vélez, F.: O2, an Object-Oriented Data Model. In: Proc.
of the 1988 ACM SIGMOD Intl. Conference on Management of Data, ACM Press
(1988) 424–433

40. Hidders, J.: Typing Graph-Manipulation Operations. In: Proc. of the 9th ICDT,
Springer-Verlag (2002) 394–409

41. Kunii, H.S.: DBMS with Graph Data Model for Knowledge Handling. In: Proc.
of the 1987 Fall Joint Computer Conference on Exploring technology: today and
tomorrow, IEEE (1987) 138–142

42. Amann, B., Scholl, M.: Gram: A Graph Data Model and Query Language. In:
European Conference on Hypertext Technology, ACM Press (1992) 201–211

43. Güting, R.H.: GraphDB: Modeling and Querying Graphs in Databases. In: Proc.
of 20th VLDB Conference, Morgan Kaufmann (1994) 297–308

44. Kiesel, N., Schurr, A., Westfechtel, B.: GRAS: A Graph-Oriented Software Engi-
neering Database System. In: IPSEN Book. (1996) 397–425

45. Levene, M., Poulovassilis, A.: The Hypernode Model and its Associated Query
Language. In: Proc. of the 5th Jerusalem IT Conference, IEEE (1990) 520–530

46. Poulovassilis, A., Levene, M.: A Nested-graph Model for the Representation and
Manipulation of Complex Objects. ACM Transactions on Information Systems 12
(1994) 35–68

47. Consens, M., Mendelzon, A.: Hy+: A Hygraph-based Query and Visualization
System. SIGMOD Rec. 22 (1993) 511–516

48. Cruz, I.F., Mendelzon, A.O.,Wood, P.T.: A Graphical Query Language Supporting
Recursion. SIGMOD Rec. 16 (1987) 323–330

49. Balmin, A., Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D., Wang,
T.: A System for Keyword Proximity Search on XML Databases. In: Proc. of 29th
VLDB Conference. (2003) 1069–1072

50. Consens, M.P., Mendelzon, A.O.: Expressing Structural Hypertext Queries in
Graphlog. In: Proc. of the 2th ACM Conf. on Hypertext, ACM Press (1989) 269–292

51. Gemis, M., Paredaens, J.: An Object-Oriented Pattern Matching Language. In:
Proc. 1th ISOTAS, Springer-Verlag (1993) 339–355

52. Alashqur, A.M., Su, S.Y.W., Lam, H.: OQL: A Query Language for Manipulat-
ing Object-oriented Databases. In: Proc. of the 15th VLDB Conference, Morgan
Kaufmann (1989) 433–442

53. Flesca, S., Greco, S.: Partially Ordered Regular Languages for Graph Queries. In:
Proceedings of the 26th ICALP. Volume 1644 of LNCS., Springer-Verlag (1999)

54. Flesca, S., Greco, S.: Querying Graph Databases. In: Proceedings of the 7th EDBT
Conference. Volume 1777 of LNCS., Springer-Verlag (2000) 510–524



55. Seaborne, A.: RDQL - A Query Language for RDF, W3C Member Submission 9
January 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

56. Sintek, M., Decker, S.: TRIPLE - A Query, Inference, and Transformation Lan-
guage for the Semantic Web. Proc. of the 1th ISWC (2002)

57. Berners-Lee, T.: Notation 3 - An RDF Language for the Semantic Web.
http://www.w3.org/DesignIssues/Notation3 (2001)

58. Clark, K.G.: RDF Data Access Use Cases and Requirements, W3C Working Draft.
http://www.w3.org/TR/rdf-dawg-uc/ (2004)

59. Angles, R., Gutierrez, C., Hayes, J.: RDF Query Languages Need Support for
Graph Properties. Technical Report TR/DCC-2004-3, Department of Computer
Science, University of Chile (2004)

60. Agrawal, R., Jagadish, H.V.: Algorithms for Searching Massive Graphs. IEEE
TKDE 6 (1994) 225–238

61. Agrawal, R., Jagadish, H.V.: Materialization and Incremental Update of Path In-
formation. In: Proc. of the 5th ICDE, IEEE Computer Society (1989) 374–383

62. Agrawal, R., Jagadish, H.V.: Efficient Search in Very Large Databases. In: Proc.
of the 14th VLDB Conference. (1988) 407–418

63. Guha, R.V., Lassila, O., Miller, E., Brickley, D.: Enabling Inferencing. The Query
Languages Workshop (1998)

64. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and Applications of Tree and
Graph Searching. In: Proc. of the 21th ACM PODS, ACM Press (2002) 39–52

65. Yannakakis, M.: Graph-theoretic Methods in Database Theory. In: Proc. of the
9th ACM PODS, ACM Press (1990) 230–242

66. Mannino, M.V., Shapiro, L.D.: Extensions to Query Languages for Graph Traversal
Problems. IEEE TKDE 2 (1990) 353–363

67. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
In: Proc. of the 15th VDLB Conference, Morgan Kaufmann (1989) 185–193

68. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A Database
Management System for Semistructured Data. SIGMOD Record 26 (1997) 54–66

69. Anyanwu, K., Sheth, A.: The ρ-operator: Enabling Querying for Semantic Associ-
ations on the Semantic Web. In: The 12th WWW Conference. (2003)

70. Washio, T., Motoda, H.: State of the Art of Graph-based Data Mining. SIGKDD
Explor. Newsl. 5 (2003) 59–68

71. Hidders, J., Paredaens, J.: GOAL, A Graph-Based Object and Association Lan-
guage. CISM - Advances in Database Systems 1993 (1993) 247–265

72. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: G+: Recursive Queries without Recur-
sion. In: Proc. of the 2th International Conference on Expert Database Systems,
Addison-Wesley (1989) 645–666

73. Sayers, C.: Node-centric RDF Graph Visualization. Technical Report HPL-2004-
60, HP Laboratories (2004)

74. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proc. of the 12th WWW
conference, ACM Press (2003) 700–709


