
Chapter 1

On the Semantics of SPARQL

Marcelo Arenas, Claudio Gutierrez, Jorge Pérez

Abstract The Resource Description Framework (RDF) is the standard data model

for representing information about World Wide Web resources. Jointly with its re-

lease as Recommendation of the W3C, the natural problem of querying RDF data

was raised. In the last years, the language SPARQL has become the standard query

language for RDF and, in fact, a W3C Recommendation since January 2008. In this

chapter, we give a detailed description of the semantics of SPARQL. We start by

focusing on the definition of a formal semantics for the core part of SPARQL, and

then move to the definition for the entire language, including all the features in the

specification of SPARQL by the W3C such as blank nodes in graph patterns and bag

semantics for solutions.

1.1 Introduction

The Resource Description Framework (RDF) is a data model for representing infor-

mation about World Wide Web resources. Jointly with its release in 1998 as Rec-

ommendation of the W3C, the natural problem of querying RDF data was raised.

Since then, several designs and implementations of RDF query languages have been

proposed. In 2004, the RDF Data Access Working Group, part of the W3C Seman-

tic Web Activity, released a first public working draft of a query language for RDF,
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called SPARQL [15].1 Since then, SPARQL has been rapidly adopted as the stan-

dard for querying Semantic Web data. In January 2008, SPARQL became a W3C

Recommendation.

RDF is a directed labeled graph data format and, thus, SPARQL is essentially

a graph-matching query language. SPARQL queries are composed by three parts.

The pattern matching part, which includes several interesting features of pattern

matching of graphs, like optional parts, union of patterns, nesting, filtering values

of possible matchings, and the possibility of choosing the data source to be matched

by a pattern. The solution modifiers, which once the output of the pattern has been

computed (in the form of a table of values of variables), allow to modify these

values applying classical operators like projection, distinct, order and limit. Finally,

the output of a SPARQL query can be of different types: yes/no queries, selections

of values of the variables which match the patterns, construction of new RDF data

from these values, and descriptions of resources.

The definition of a formal semantics for SPARQL has played a key role in the

standardization process of this query language. Although taken one by one the fea-

tures of SPARQL are intuitive and simple to describe and understand, it turns out

that the combination of them makes SPARQL into a complex language. Reach-

ing a consensus in the W3C standardization process about a formal semantics for

SPARQL was not an easy task. The initial efforts to define SPARQL were driven by

use cases, mostly by specifying the expected output for particular example queries.

In fact, the interpretations of examples and the exact outcomes of cases not covered

in the initial drafts of the SPARQL specification, were a matter of long discussions in

the W3C mailing lists. In [11], the authors presented one of the first formalizations

of a semantics for a fragment of the language. Currently, the official specification of

SPARQL [15], endorsed by the W3C, formalizes a semantics based on [11].

A formalization of a semantics for SPARQL is beneficial for several reasons, in-

cluding to serve as a tool to identify and derive relations among the constructors that

stay hidden in the use cases, to identify redundant and contradicting notions, to drive

and help the implementation of query engines, and to study the complexity, expres-

siveness, and further natural database questions like rewriting and optimization. In

this chapter, we present a streamlined version of the core fragment of SPARQL with

precise algebraic syntax and a formal compositional semantics based on [11, 12, 13].

One of the delicate issues in the definition of a semantics for SPARQL is the

treatment of optional matching and incomplete answers. The idea behind optional

matching is to allow information to be added if the information is available in the

data source, instead of just failing to give an answer whenever some part of the pat-

tern does not match. This feature of optional matching is crucial in Semantic Web

applications, and more specifically in RDF data management, where it is assumed

that every application have only partial knowledge about the resources being man-

aged. The semantics of SPARQL is formalized by using partial mappings between

variables in the patterns and actual values in the RDF graph being queried. This

formalization allows one to deal with partial answers in a clean way, and is based

1 The name SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query

Language.
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on the extension of some classical relational algebra operators to work over sets of

partial mappings.

The rest of the chapter is organized as follows. In Section 1.2 we describe the

official syntax of SPARQL proposed by the W3C. In Section 1.3 we introduce an

algebraic syntax for the language and compare it with the official syntax. In Sec-

tion 1.4 we formalize the semantics of SPARQL. We begin formalizing a set seman-

tics for the language without considering blank nodes in patterns. We then extend

the semantics to consider blank nodes and we provide a bag semantics for SPARQL.

In Section 1.5 we review some of the results in the literature about the complex-

ity of evaluating SPARQL graph patterns. Section 1.6 describes some related work

about the formalization of a semantics for SPARQL. Concluding remarks are in

Section 1.7.

1.2 The W3C Syntax of SPARQL

The RDF query language SPARQL was adopted as a W3C Recommendation on

January 15, 2008. Its syntax and semantics is specified in [15]. SPARQL is a lan-

guage designed to query data in the form of sets of triples, namely RDF graphs (see

Section 1.3 for a formal definition of the notion of RDF graph). The basic engine of

the language is a pattern matching facility, which uses some graph pattern matching

functionalities (sets of triples can be viewed also as graphs). The overall structure

of the language –from a syntactic point of view– resembles SQL with its three main

blocks (as shown in Fig. 1.1):

• A WHERE clause, which is composed of a graph pattern. Informally speaking,

this clause is given by a pattern that corresponds to an RDF graph where some

resources have been replaced by variables. But not only that, more complex ex-

pressions (patterns) are also allowed, which are formed by using some algebraic

operators. This pattern is used as a filter of the values of the dataset to be returned.

• A FROM clause, which specifies the sources or datasets to be queried.

• A SELECT clause, which specifies the final form in which the results are returned

to the user. SPARQL, in contrast to SQL, allows several forms of returning the

data: a table using SELECT, a graph using DESCRIBE or CONSTRUCT, or a

TRUE/FALSE answer using ASK.

In what follows, we explain in more detail each component of the language. Of

course, for ultimate details the reader should consult [15].



4 Marcelo Arenas, Claudio Gutierrez, Jorge Pérez

Fig. 1.1 The general form of a SPARQL query.

1.2.1 Basic definitions

There are several basic concepts used in the definition of the syntax of SPARQL,

many of which are taken from the RDF specification with some minor modifications.

For the sake of completeness, we review them here.

An IRI (Internationalized Resource Identifier [5]) is an identifier of resources,

which essentially extends the syntax of URIs to a much wider repertoire of char-

acters for internationalization purposes. For denoting resources, SPARQL uses IRIs

instead of the URIs of RDF. A literal is used to identify values such as numbers and

dates by means of a lexical representation. Anything represented by a literal could

also be represented by a IRI, but it is often more convenient or intuitive to use lit-

erals. All literals have a lexical form that is a Unicode string. There are two types

of literals: plain and typed. A plain literal is a string combined with an optional

language tag. This may be used for plain text in a natural language. A typed literal

is a string combined with a datatype IRI.
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1.2.2 Basic structures

In order to present the language, we follow the grammar given in Fig. 1.2 that spec-

ifies the basic structure of the SPARQL Query Grammar [15]. 2

Query ::= Prologue ( SelectQuery | ConstructQuery |

DescribeQuery | AskQuery )

SelectQuery ::= "SELECT" ( "DISTINCT" | "REDUCED" )?

( Var+ | "*" )

DatasetClause* WhereClause SolutionModifier

ConstructQuery ::= "CONSTRUCT" ConstructTemplate

DatasetClause* WhereClause

SolutionModifier

DescribeQuery ::= "DESCRIBE" ( VarOrIRIref+ | "*" )

DatasetClause* WhereClause?

SolutionModifier

AskQuery ::= "ASK" DatasetClause* WhereClause

DatasetClause ::= "FROM" ( DefaultGraphClause |

NamedGraphClause )

WhereClause ::= "WHERE"? GroupGP

GroupGP ::= "{" TB? ((GPNotTr | Filter) "."? TB?)* "}"

GPNotTr ::= OptionalGP | GroupOrUnionGP | GraphGP

OptionalGP ::= "OPTIONAL" GroupGP

GraphGP ::= "GRAPH" VarOrIRIref GroupGP

GroupOrUnionGP ::= GroupGP ( "UNION" GroupGP )*
Filter ::= "FILTER" Constraint

SolutionModifier ::= OrderClause? LimitOffsetClauses?

Fig. 1.2 A fragment of the SPARQL Query Grammar [15].

As shown in Fig. 1.2, a SPARQL Query is given by a Prologue followed by

any of the four types of SPARQL queries: SelectQuery, ConstructQuery,

DescribeQuery or AskQuery. The Prologue contains the declaration of

variables, namespaces, and abbreviations to be used in the query. The SELECT

clause in a SelectQuery selects a group of variables, or all of them using –as

in SQL– the wildcard *. In this type of queries, one can eliminate duplicate so-

lutions using DISTINCT. In a ConstructQuery, the CONSTRUCT form, and

more specifically the ConstructTemplate form, is used to constructs an RDF

graph using the obtained solutions. In a DescribeQuery, the DESCRIBE form

2 http://www.w3.org/TR/rdf-sparql-query/#grammar
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is not normative (only informative). It is intended to describe the specified variables

or IRIs, i.e., it returns all the triples in the dataset involving these resources. In an

AskQuery, the ASK form has no parameters but the dataset to be queried and a

WHERE clause. It returns TRUE if the solution set is not empty, and FALSE other-

wise.

In a SPARQL query, the DatasetClause allows to specify one graph (the

DefaultGraphClause) or a set of named graphs, i.e., a set of pairs of identi-

fiers and graphs, which are the data sources to be used when computing the answer

to the query. Moreover, the WHERE clause is used to indicate how the information

from the data sources is to be filtered, and it can be considered the central compo-

nent of the query language. It specifies the pattern to be matched against the data

sources. In particular, it includes sets of triples with some of the IRIs or blank ele-

ments replaced by variables, called “triple blocks” (TB in the grammar), an operator

for collecting triples and blocks (denoted by {A . B}, and with no fixed arity),

an operator UNION for specifying alternatives, an operator OPTIONAL to provide

optional matchings, and an operator FILTER that allows filtering results of patterns

under certain basic constraints.

Example 1.1. Consider the following query: “Give the name and the mailbox of

each person who has a mailbox with domain .cl”. This query can be expressed in

SPARQL as follows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX ex: <http://example.com/ns#>

SELECT ?name ?mbox

FROM <myDataSource.rdf>

WHERE {

?x foaf:name ?name .

?x foaf:mbox ?mbox .

?mbox ex:domain ".cl"

}

The first two lines in this example form the Prologue of the query, which speci-

fies the namespaces to be used. In this case, one is the well-known FOAF ontology,

and the other one is an example namespace. The keywords foaf and ex are abbre-

viations for the namespaces, which are used in the body of the query.

The SELECT keyword indicates that the query returns a table with two columns,

corresponding to the values obtained from the matching of the variables ?name and

?mbox against the graph pointed to in the FROM clause (myDataSource.rdf),

and according to the pattern described in the WHERE clause. It should be noticed

that a string starting with the symbol ? denotes a variables in SPARQL.

In the above query, the WHERE clause is composed by a pattern with three triples:

?x foaf:name ?name, ?x foaf:mbox ?mbox and ?mbox ex:domain

".cl", where .cl is a literal. This pattern indicates that one is looking for the

elements ?x, ?name and ?mbox in the RDF graph myDataSource.rdf such

that the foaf:name of ?x is ?name, the foaf:mbox of ?x is ?mbox and the

ex:domain of ?mbox is .cl. Thus, an expression of the form {A . B} in
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SPARQL denotes the conjunction of A and B, as this expression holds if both A

and B holds. ¤

1.2.3 More complex queries

SPARQL allows to write more complex queries than the ones presented in the previ-

ous section. The syntax of these queries becomes slightly involved and, in particular,

two important issues are the use of the OPTIONAL and of the FILTER operator. We

discuss these issues in this section.

Example 1.2 (Querying optional values). Consider the following query: “Give the

name and the mailbox, if it is provided, of each person in the FOAF file of Bob”.

This query can be expressed in SPARQL as follows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

FROM <http://example.org/foaf/bobFoaf>

WHERE {

?x foaf:name ?name .

OPTIONAL { ?x foaf:mbox ?mbox }

}

In this case, the WHERE clause is composed by the conjunction of two patterns, the

triple pattern ?x foaf:name ?name and the optional pattern:

OPTIONAL { ?x foaf:mbox ?mbox },

which in turn includes the triple pattern ?x foaf:mbox ?mbox. The WHERE

clause indicates that one is looking for the elements ?name and ?mbox in the RDF

graph http://example.org/foaf/bobFoaf such that the foaf:name of

?x is ?name and the foaf:mbox of ?x is ?mbox, if ?x has a foaf:mbox. In

the case where ?x does not have a mailbox, the variable ?mbox is not instantiated

and, thus, the corresponding tuple in the answer table only has a value in the attribute

?name. ¤

As shown in the previous example, the keyword OPTIONAL in the W3C SPARQL

syntax works as a unary operator. In the following example, we show a query where

this operator has to be used in conjunction with the notion of named graph.

Example 1.3 (Querying different data sources). Consider the following query: “For

every person known by Alice and Bob, give the nicknames by which are known

by Alice and Bob”. We note that in this case the query must be posed against two

different data sets, the FOAF data of Bob and of Alice. Moreover, it could be the

case that Bob and Alice know different nicknames for a person, or that Bob knows a

nickname for a person which is not known by Alice, or vice verse. Hence, to express

the query in SPARQL, we need to use named graphs and the OPTIONAL operator:
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PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX data: <http://example.org/foaf/>

SELECT ?nickA ?nickB

FROM NAMED <http://example.org/foaf/aliceFoaf>

FROM NAMED <http://example.org/foaf/bobFoaf>

WHERE

{

GRAPH data:bobFoaf { ?x foaf:knows ?comm .

OPTIONAL { ?comm foaf:nick ?nickB } } .

GRAPH data:aliceFoaf { ?y foaf:knows ?comm .

OPTIONAL { ?comm foaf:nick ?nickA } }

}

Notice that in the WHERE clause, the operator GRAPH is used to specify over which

dataset the pattern enclosed in braces should be matched. Also, notice the use of

the OPTIONAL operator to avoid loosing information for people that only has a

registered nickname in the FOAF data of either Alice of Bob. ¤

It is important to notice that nesting of optional patterns is allowed in the official

specification of SPARQL [15]. Unfortunately, the rules that define this nesting are

rather involved (see rules 20-23 in [15]).

As mentioned above, the operator FILTER is another interesting and complex

feature of SPARQL. More specifically, SPARQL filters restrict the solutions of a

graph pattern match according to a given expression, which includes several func-

tions and operators that are defined over the elements of the RDF graphs and the

variables of SPARQL queries. A subset of these functions and operators are taken

from XQuery and XPath (see [15] for further details). Among them, one of the

most useful is the unary operator bound(?x), which checks if the variable ?x is

bounded in the answer (this turns out to be really useful in combination with the

OPTIONAL operator [1]). The functions isIRI, isBlank and isLiteral play

similar roles. As expected, the Boolean connectives OR, AND and NOT (denoted

by logical-or, logical-and and !, respectively) have also been included, as

well as some functionalities for checking equality and order. The following example

shows one of these features.

Example 1.4 (Filtering values). Consider the following query: “Give the list of peo-

ple for whom Alice knows at least two nicknames”. This query can be expressed by

the following SPARQL query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?y

FROM <http://example.org/foaf/aliceFoaf>

WHERE

{

?x foaf:knows ?y .

?y foaf:nick ?nick1 .

?y foaf:nick ?nick2 .

FILTER (?nick1 != ?nick2) }

}



1 On the Semantics of SPARQL 9

The filter expression FILTER (?nick1 != ?nick2) is used to check that the

nicknames ?nick1 and ?nick2 of ?y are distinct. Thus, this expression is used

to ensure that Alice knows at least two distinct nicknames for ?y. ¤

We conclude this section by pointing out that one important aspect of SPARQL is

the scope of the FILTER operator, which is a source of difficulties in the current

specification of SPARQL (see [1]).

1.2.4 Final remarks

We conclude this section by providing a list of some important syntactic features

of SPARQL, which are widely used in practice (for a complete list see the official

specification of SPARQL [15]).

• A literal in SPARQL is a string (enclosed in either double quotes or single

quotes), with either an optional language tag (introduced by @) or an optional

datatype IRI or prefixed name (introduced by ˆˆ).

• Variables are prefixed by either "?" or "$", and these two symbols are not

considered to be part of the variable name. Furthermore, variables in SPARQL

queries have global scope; the use of a given variable name anywhere in a query

identifies the same variable.

• There is syntactic sugar for expressing namespaces. As we pointed out, in general

it is more convenient to declare them in the Prologue of the query, but this is

not mandatory. For example, these three expressions represent the same query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE { <http://example.org/book/book1> dc:title ?title }

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX : <http://example.org/book/>

SELECT $title

WHERE { :book1 dc:title $title }

BASE <http://example.org/book/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT $title

WHERE { <book1> dc:title ?title }

The clause BASE is used to indicate the base IRI for a query. In the last exam-

ple, this base IRI is http://example.org/book/ and, thus, the element

book1 in the query refers to this namespace.

• SPARQL allows a simplified notation for sets of triple patterns with a common

subject; the symbol ; can be used to express that a set of pairs is associated with

a particular subject, thus writing the subject only one. For example, the following

sequence of triples:
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?x foaf:name ?name .

?x foaf:mbox ?mbox .

is the same in SPARQL as:

?x foaf:name ?name ;

foaf:mbox ?mbox .

1.3 An Algebraic Syntax for SPARQL

In this section, we present the algebraic formalization of the core fragment of

SPARQL proposed in [11, 12, 13], and show that it is equivalent in expressive power

to the core fragment of SPARQL. Thus, this formalization is used in this chapter to

give a formal semantics to SPARQL, as well as to study some fundamental proper-

ties of this language.

We start by introducing the necessary notions about RDF (for details on the for-

malization of RDF see [7]). Assume that there are pairwise disjoint infinite sets

I, B, and L (IRIs [5], Blank nodes, and Literals, respectively). A triple (s, p,o) ∈
(I ∪B)× I × (I ∪B∪ L) is called an RDF triple. In this tuple, s is the subject, p

the predicate and o the object. We denote the union I ∪B∪L by T (RDF Terms).

Assume additionally the existence of an infinite set V of variables disjoint from the

above sets.

Definition 1.1 (RDF Graph). An RDF graph [10] is a set of RDF triples. If G is an

RDF graph, then term(G) is the set of elements of T appearing in the triples of G,

and blank(G) is the set of blank nodes appearing in G (blank(G) = term(G)∩B).¤

SPARQL queries are evaluated against an RDF dataset [15], that is, a set of RDF

graphs in which every graph is identified by an IRI, except for a distinguished graph

in the set called the default graph. Formally, an RDF dataset is a set:

D = {G0,〈u1,G1〉, . . . ,〈un,Gn〉}

where G0, . . . ,Gn are RDF graphs, u1, . . . ,un are distinct IRIs, and n ≥ 0. In the

dataset, G0 is the default graph, and the pairs 〈ui,Gi〉 are named graphs, with ui

being the name of Gi. We assume that every dataset D is equipped with a func-

tion dD such that dD (u) = G if 〈u,G〉 ∈ D and dD (u) = /0 otherwise. Additionally,

name(D) stands for the set of IRIs that are names of graphs in D , and term(D)
and blank(D) stand for the set of terms and blank nodes appearing in the graphs

of D , respectively. For the sake of simplicity, and without loss of generality, we

assume that the graphs in a dataset have disjoint sets of blank nodes, i.e. for i 6= j,

blank(Gi)∩blank(G j) = /0.

As we have seen in the previous section, the official syntax of SPARQL [15]

considers operators GRAPH, OPTIONAL, UNION, FILTER and conjunction via a

point symbol (.). The syntax also considers { } to group patterns, and some im-

plicit rules of precedence and association. For example, the point symbol (.) has
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precedence over OPTIONAL, and OPTIONAL is left associative. In order to avoid

ambiguities in the parsing, in this section we present the syntax of SPARQL graph

patterns in a more traditional algebraic formalism, using binary operators AND (.),

UNION (UNION), OPT (OPTIONAL), FILTER (FILTER), and GRAPH (GRAPH).

We fully parenthesize expressions making explicit the precedence and association

of operators.

To define the algebraic syntax of SPARQL, we need to introduce the notions

of triple pattern and basic graph pattern. A triple pattern is a tuple t ∈ (I ∪ L∪
V )× (I ∪V )× (I ∪L∪V ), and a basic graph pattern is a finite set of triple patterns.

Notice that a triple pattern is essentially an RDF triple with some positions replaced

by variables. Also notice that in our definitions of triple and basic graph pattern,

we are not considering blank nodes. We make this simplification here to focus on

the pattern matching part of the language. In Section 1.4.1, we discuss how these

definitions should be extended to deal with blank nodes in basic graph patterns.

We use basic graph patterns as the base case for the syntax of SPARQL graph

pattern expressions. A SPARQL graph pattern expression is defined recursively as

follows:

1. A basic graph pattern is a graph pattern.

2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2), and

(P1 UNION P2) are graph patterns (conjunction graph pattern, optional graph

pattern, and union graph pattern, respectively).

3. If P is a graph pattern and X ∈ I ∪V , then (X GRAPH P) is a graph pattern.

4. If P is a graph pattern and R is a SPARQL built-in condition, then the expression

(P FILTER R) is a graph pattern (a filter graph pattern).

A SPARQL built-in condition is constructed using elements of the set I ∪ L ∪V

and constants, logical connectives (¬, ∧, ∨), ordering symbols (<, ≤, ≥, >), the

equality symbol (=), unary predicates like bound, isBlank, and isIRI, plus other

features (see [15] for a complete list). In this chapter, we restrict to the fragment of

SPARQL where a built-in condition is a Boolean combination of terms constructed

by using = and bound, that is:

1. If ?X ,?Y ∈ V and c ∈ I ∪L, then bound(?X), ?X = c and ?X =?Y are (atomic)

built-in conditions.

2. If R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2) are

built-in conditions.

Let P be a SPARQL graph pattern. In the rest of this chapter, we use var(P) to

denote the set of variables occurring in P. In particular, if P is a basic graph pattern,

then var(P) denotes the set of variables occurring in the triple patterns that form P.

Similarly, for a built-in condition R, we use var(R) to denote the set of variables

occurring in R.

We conclude the definition of the algebraic framework by describing the formal

syntax of the SELECT query result form. A SELECT SPARQL query is simply a

tuple (W,P), where P is a SPARQL graph pattern expressions and W is a set of

variables such that W ⊆ var(P).
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1.3.1 Translating SPARQL into the algebraic formalism

In this section, we show that every SPARQL query can be translated into the alge-

braic terminology introduced above. But before providing the procedure that per-

forms this translation, we show how the examples of Section 1.2 can be written in

the algebraic formalism.

Example 1.5. First, consider the query “Give the name and the mailbox of each

person who has a mailbox with domain .cl” from Example 1.1. The following

algebraic expression represents this query (when evaluated over the RDF graph

myDataSource.rdf):

({?name, ?mbox},

((?x, http://xmlns.com/foaf/0.1/name, ?name) AND

(?x, http://xmlns.com/foaf/0.1/mbox, ?mbox) AND

(?mbox, http://example.com/ns#domain, ".cl")))

Second, consider the query “Give the name and the mailbox, if it is provided, of

each person in the FOAF file of Bob”, which was considered in Example 1.2. The

following algebraic expression represents this query (when evaluated over the graph

http://example.org/foaf/bobFoaf):

({?name, ?mbox},

((?x, http://xmlns.com/foaf/0.1/name, ?name) OPT

(?x, http://xmlns.com/foaf/0.1/mbox, ?mbox)))

Third, consider the query: “For every person known by Alice and Bob, give the

nicknames by which are known by Alice and Bob” from Example 1.3. This query

can be expressed as follows in the algebraic formalism:

({?nickA, ?nickB},

((http://example.org/foaf/bobFoaf GRAPH

((?x, http://xmlns.com/foaf/0.1/knows, ?comm) OPT

(?comm, http://xmlns.com/foaf/0.1/nick, ?nickB))) AND

(http://example.org/foaf/aliceFoaf GRAPH

((?y, http://xmlns.com/foaf/0.1/knows, ?comm) OPT

(?comm, http://xmlns.com/foaf/0.1/nick, ?nickA)))))

Finally, consider the query: “Give the list of people for whom Alice knows at least

two nicknames” from Example 1.4. The following expression represents this query

(when evaluated over the graph http://example.org/foaf/aliceFoaf):

({?y},

(((?x, http://xmlns.com/foaf/0.1/knows, ?y) AND

(?y, http://xmlns.com/foaf/0.1/nick, ?nick1) AND

(?y, http://xmlns.com/foaf/0.1/nick, ?nick2))

FILTER (?nick1 != ?nick2)))

¤
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In Algorithm 1, we show a transformation function T of patterns in the SPARQL

syntax into the algebraic formalism presented in this section. For the sake of read-

ability, we assume that the translation of Triple Blocks (TB) is given (this translation

is straightforward, but tedious due to the multiple representations of triples allowed

in the SPARQL syntax).

Algorithm 1 Transformation T of SPARQL pattern syntax into algebraic syntax

1: // Input: a SPARQL graph pattern GroupGP

2: // Output: an algebraic expression E = T (GroupGP)
3: E ← /0; FS ← /0

4: for each syntactic form f in GroupGP do

5: if f is TB then E ← (E AND T (TB))
6: if f is OPTIONAL GroupGP1 then E ← (E OPT T (GroupGP1))
7: if f is GroupGP1 UNION · · · UNION GroupGPn then

8: if n > 1 then E ′ ← (T (GroupGP1) UNION · · · UNION T (GroupGPn))
9: else E ′ ← T (GroupGP1)

10: E ← (E AND E ′)
11: if f is GRAPH VarOrIRIref GroupGP1 then

12: E ← (E AND (VarOrIRIref GRAPH T (GroupGP1)))
13: if f is FILTER constraint then FS ← (FS∧constraint)
14: end for

15: if FS 6= /0 then E ← (E FILTER FS)

For example, consider the following pattern written according to the official
SPARQL syntax:

{

?x :age ?y

FILTER (?y > 30)

?x :knows ?z .

?z :home_country ?c

FILTER (?c = "Chile")

OPTIONAL { ?z :phone ?p }

}

Following the grammar of SPARQL given in Fig. 1.2 the above pattern is parsed

as a single GroupGP that contains the syntactic forms TB, Filter, TB, Filter,

and OptionalGP in that order. This final OptionalGP syntactic form contains

a GroupGP with a single TB syntactic form.

The translation function in Algorithm 1 starts with E = {} and FS = {}. Then

we consider all the syntactic forms in the pattern to obtain:

E =

( (

(

{} AND T (TB1)
)

AND T (TB2)

)

OPT T (GroupGP1)

)

FS =
(

(?Y > 30) ∧ ?C = Chile
)

,

where TB1 is ?x :age ?y, TB2 is ?x :knows ?z . ?z :home_country ?c, and

GroupGP1 is { ?z :phone ?p }. The translations T (TB1) and T (TB2) are sim-

ply {(?X , :age,?Y )} and {(?X , :knows,?Z),(?Z, :home country,?C)}, respectively.
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To compute T (GroupGP1) the algorithm proceeds recursively and gives as output

the pattern:

E ′ =
(

{} AND {(?Z, :phone,?P)}
)

.

Finally the pattern in the algebraic syntax is:

[ ( (

(

{} AND {(?X , :age,?Y )}
)

AND {(?X , :knows,?Z),(?Z, :home country,?C)}

)

OPT
(

{} AND {(?Z, :phone,?P)}
)

)

FILTER
(

(?Y > 30) ∧ ?C = Chile
)

]

.

1.4 Semantics of SPARQL

To define the semantics of SPARQL graph pattern expressions, we use the algebraic

representation of SPARQL introduced in the previous section.

We start by introducing some terminology. A mapping µ from V to T is a partial

function µ : V → T . The domain of µ , denoted by dom(µ), is the subset of V where

µ is defined. The empty mapping µ /0 is a mapping such that dom(µ /0) = /0 (i.e.

µ /0 = /0). Given a triple pattern t and a mapping µ such that var(t) ⊆ dom(µ), µ(t)
is the triple obtained by replacing the variables in t according to µ . Similarly, given

a basic graph pattern P and a mapping µ such that var(P) ⊆ dom(µ), we have that

µ(P) =
⋃

t∈P{µ(t)}, i.e. µ(P) is the set of triples obtained by replacing the variables

in the triples of P according to µ .

We can now define the semantics for basic graph patterns as a function J·KG that

given a basic graph pattern P returns a set of mappings.

Definition 1.2. Let G be an RDF graph, and P a basic graph pattern. The evaluation

of P over G, denoted by JPKG, is defined as the set of mappings

JPKG = {µ : V → T | dom(µ) = var(P) and µ(P) ⊆ G}.

¤

Notice that for every RDF graph G, it holds that J{}KG = {µ /0}, i.e. the evaluation

of an empty basic graph pattern against any graph results in the set containing only

the empty mapping. For every basic graph pattern P 6= {}, we have that JPK /0 = /0.

To define the semantics of more complex patterns, we need to introduce some

more notions. Two mappings µ1 and µ2 are compatible when for all x ∈ dom(µ1)∩
dom(µ2), it is the case that µ1(x) = µ2(x), i.e. when µ1 ∪ µ2 is also a mapping.

Intuitively, µ1 and µ2 are compatible if µ1 can be extended with µ2 to obtain a new
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mapping, and vice versa. Note that two mappings with disjoint domains are always

compatible and that the empty mapping µ /0 is compatible with every other mapping.

Let Ω1 and Ω2 be sets of mappings. We define the join of, the union of and the

difference between Ω1 and Ω2 as:

Ω1 ⋊⋉ Ω2 = {µ1 ∪µ2 | µ1 ∈ Ω1,µ2 ∈ Ω2 and µ1,µ2 are compatible mappings},

Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | for all µ ′ ∈ Ω2, µ and µ ′ are not compatible}.

Based on the previous operators, we define the left outer-join as:

Ω1 Ω2 = (Ω1 ⋊⋉ Ω2)∪ (Ω1 r Ω2).

Intuitively, Ω1 ⋊⋉ Ω2 is the set of mappings that result from extending mappings in

Ω1 with their compatible mappings in Ω2, and Ω1 r Ω2 is the set of mappings in

Ω1 that cannot be extended with any mapping in Ω2. The operation Ω1 ∪Ω2 is the

usual set theoretical union. A mapping µ is in Ω1 Ω2 if it is the extension of a

mapping of Ω1 with a compatible mapping of Ω2, or if it belongs to Ω1 and can-

not be extended with any mapping of Ω2. These operations resemble the relational

algebra operations but over sets of mappings (partial functions).

We are ready to define the semantics of SPARQL graph pattern expressions as a

function J ·KD
G which given a dataset D and a (target) graph G in D , takes a pattern

expression and returns a set of mappings. For the sake of readability, the semantics

of filter expressions is presented in a separate definition.

Definition 1.3. Let D be an RDF dataset and G an RDF graph in D . The evaluation

of a graph pattern P over G in the dataset D , denoted by J ·KD
G , is defined recursively

as follows:

1. if P is a basic graph pattern, then JPKD
G = JPKG.

2. if P is (P1 AND P2), then JPKD
G = JP1K

D
G ⋊⋉ JP2K

D
G .

3. if P is (P1 OPT P2), then JPKD
G = JP1K

D
G JP2K

D
G .

4. if P is (P1 UNION P2), then JPKD
G = JP1K

D
G ∪ JP2K

D
G .

5. if P is (X GRAPH P1), then:

• if X ∈ I, then JPKD
G = JP1K

D

dD (X),

• if X ∈V , then

JPKD
G =

⋃

v∈name(D)

(

JP1K
D

dD (v) ⋊⋉ {µX→v}

)

,

where µX→v is a mapping such that dom(µ) = {X} and µ(X) = v.

Given a dataset D with default graph G0, and a SPARQL pattern P, we say that the

evaluation of P over dataset D , denoted by JPKD , is simply JPKD
G0

. ¤

The idea behind the OPT operator is to allow for optional matching of patterns.

Consider pattern expression (P1 OPT P2) and let µ1 be a mapping in JP1K
D
G . If there
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exists a mapping µ2 ∈ JP2K
D
G such that µ1 and µ2 are compatible, then µ1 ∪ µ2 be-

longs to J(P1 OPT P2)K
D
G . But if no such a mapping µ2 exists, then µ1 belongs to

J(P1 OPT P2)K
D
G . Thus, operator OPT allows information to be added to a mapping

µ if the information is available, instead of just rejecting µ whenever some part of

the pattern does not match. This feature of optional matching is crucial in Semantic

Web applications, and more specifically in RDF data management, where it is as-

sumed that every application has only partial knowledge about the resources being

managed.

The operator GRAPH is used to change the target RDF graph over which a pat-

tern is being evaluated. An expression of the form (X GRAPH P), with X an IRI

and P a graph pattern, is used to change the target RDF graph to the one which

name is X , and then to continue evaluating P over that RDF graph. The expres-

sion (X GRAPH P), with X a variable, is used to evaluate the pattern P over all the

named RDF graphs in a dataset D , and its result is the union of all these evaluations.

Notice that before taking the union, for every v ∈ name(D), the set of mappings ob-

tained by evaluating pattern P over dD (v) is joined with a mapping that assigns to

variable X the value v. It should also be noticed that GRAPH is the only operator

that can change the target RDF graph. Thus, if a pattern P does not contain any

GRAPH expression, then the entire pattern is evaluated over a single RDF graph

(the default graph of the RDF dataset). Therefore, if P is a SPARQL graph pattern

expression that does not contain any GRAPH sub-expression, we simply write JPKG

to denote the set JPKD
G . We use this notation in the following section when studying

the complexity of evaluating graph pattern expressions.

The semantics of filter expressions goes as follows. Given a mapping µ and a

built-in condition R, we define a notion of satisfaction of R by µ , denoted by µ |= R,

in a three valued logic (with values true, false and error}). For an atomic built-

in condition of the form ?X = c, if ?X /∈ dom(µ) the evaluation results in error;

else, the evaluation results in true if µ(?X) = c and results in false otherwise.

Similarly, for an atomic built-in condition of the form ?X =?Y , if ?X /∈ dom(µ) or

?Y /∈ dom(µ) the evaluation results in error; else, the evaluation results in true

if µ(?X) = µ(?Y ) and results in false otherwise. For the case of bound(?X), the

evaluation results in true if ?X ∈ dom(µ), and in false otherwise. For non-atomic

constraints, the evaluation is defined as usual in a three valued logic:

R1 R2 R1 ∧R2 R1 ∨R2

true true true true

true error error true

true false false true

error true error true

error error error error

error false false error

false true false true

false error false error

false false false false

R1 ¬R1

true false

error error

false true

.

Then µ |= R if and only if the evaluation of R against µ results in true.
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Definition 1.4. Given an RDF dataset D , an RDF graph G in D , and a filter ex-

pression (P FILTER R), we have that J(P FILTER R)KD
G = {µ ∈ JPKD

G | µ |= R}.
¤

Several algebraic properties of graph patterns are proved in [11]. A simple prop-

erty is that AND and UNION are associative and commutative. This permits us

to avoid parenthesis when writing sequences of AND operators or UNION oper-

ators. This is consistent with the definitions of Group Graph Pattern and Union

Graph Pattern in [15]. To simplify the notation, when considering basic graph pat-

terns composed by a single triple pattern {t}, we do not write the braces enclosing

t. For example, for the pattern (({t1} UNION {t2}) OPT {t3}), we simply write

((t1 UNION t2) OPT t3). The following lemma shows that the base case for the syn-

tax and semantics of SPARQL can also be defined in terms of triple patterns (instead

of sets of triple patterns), as the semantics of basic graph patterns can be obtained

by using the AND operator between triple patterns.

Lemma 1.1. Let {t1, t2, . . . , tn} be a basic graph pattern, where n≥ 1. Then for every

dataset D , it holds that:

J{t1, t2, . . . , tn}K
D = J(t1 AND t2 AND · · · AND tn)K

D .

To formally define the semantics of SELECT SPARQL queries, we need the follow-

ing notion. Given a mapping µ : V → T and a set of variables W ⊆V , the restriction

of µ to W , denoted by µ|W , is a mapping such that dom(µ|W ) = dom(µ)∩W and

µ|W (?X) = µ(?X) for every ?X ∈ dom(µ)∩W .

Definition 1.5. Given a SELECT query (W,P), the evaluation of (W,P) in a dataset

D is the set of mappings J(W,P)KD = {µ|W | µ ∈ JPKD}. ¤

In the rest of this chapter, we usually represent sets of mappings as tables where each

row represents a mapping in the set. We label every row with the name of a mapping,

and every column with the name of a variable. If a mapping is not defined for some

variable, then we simply leave empty the corresponding position. For instance, the

table:

?X ?Y ?Z ?V ?W

µ1 : a b

µ2 : c d

µ3 : e

represents the set of mappings Ω = {µ1,µ2,µ3}, where:

dom(µ1) = {?X ,?Y}, µ1(?X) = a, and µ1(?Y ) = b,

dom(µ2) = {?Y,?W}, µ2(?Y ) = c, and µ2(?W ) = d,

dom(µ3) = {?Z}, and µ3(?Z) = e.

We sometimes write {{?X → a,?Y → b},{?Y → c,?W → d},{?Z → e}} for a set

of mappings as the one above.
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Example 1.6. Consider an RDF graph G storing information about professors in a

university:

G = { (B1, name, paul), (B1, phone, 777-3426),

(B2, name, john), (B2, email, john@acd.edu),

(B3, name, george), (B3, webPage, www.george.edu),

(B4, name, ringo), (B4, email, ringo@acd.edu),

(B4, webPage, www.starr.edu), (B4, phone, 888-4537) }

Let D be an RDF dataset with G as its default graph and with no named graphs.

The following are graph pattern expressions and their evaluations over D . Since the

graph patterns do not use the GRAPH operator, we denote their evaluation by J·KG.

- P1 = ((?A, email, ?E) OPT (?A, webPage, ?W )). Then

JP1KG =
?A ?E ?W

µ1 : B2 john@acd.edu

µ2 : B4 ringo@acd.edu www.starr.edu

- P2 = (((?A, name, ?N) OPT (?A, email, ?E)) OPT (?A, webPage, ?W )). Then

JP2KG =

?A ?N ?E ?W

µ1 : B1 paul

µ2 : B2 john john@acd.edu

µ3 : B3 george www.george.edu

µ4 : B4 ringo ringo@acd.edu www.starr.edu

- P3 = ((?A, name, ?N) OPT ((?A, email, ?E) OPT (?A, webPage, ?W ))). Then

JP3KG =

?A ?N ?E ?W

µ1 : B1 paul

µ2 : B2 john john@acd.edu

µ3 : B3 george

µ4 : B4 ringo ringo@acd.edu www.starr.edu

Notice the difference between JP2KG and JP3KG. These two examples show that

J((A OPT B) OPT C)KG 6= J(A OPT (B OPT C))KG in general.

- P4 = ((?A, name, ?N) AND ((?A, email, ?E) UNION (?A, webPage, ?W ))).
Then

JP4KG =

?A ?N ?E ?W

µ1 : B2 john john@acd.edu

µ2 : B3 george www.george.edu

µ3 : B4 ringo ringo@acd.edu

µ4 : B4 ringo www.starr.edu

- P5 = (((?A, name, ?N) OPT (?A, phone, ?P)) FILTER (?N = paul)). Then

JP5KG =
?A ?N ?P

µ1 : B1 paul 777-3426

- P6 = (((?A, name, ?N) OPT (?A, phone, ?P)) FILTER (¬bound(?P))). Then
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JP6KG =
?A ?N ?P

µ1 : B2 john

µ2 : B3 george

¤

The following example shows the evaluation of patterns that use operator GRAPH.

Example 1.7. Let G be the graph in Example 1.6 and consider the following RDF

graph H:

H = { (R1, name, mick), (R1, email, mj@acd.edu),

(R2, name, keith), (R2, email, keith@acd.edu) }

Let D = { /0,〈tb,G〉,〈trs,H〉} be an RDF dataset with empty default graph. The fol-

lowing are graph pattern expressions and their evaluations over D .

- P7 = ( trs GRAPH (?A, name, ?N)). Then

JP7K
D =

?A ?N

µ1 : R1 mick

µ2 : R2 keith

- P8 = (?G GRAPH {(?A, name, ?N),(?A, email, ?E)}). Then

JP8K
D =

?G ?A ?N ?E

µ1 : tb B2 john john@acd.edu

µ2 : tb B4 ringo ringo@acd.edu

µ3 : trs R1 mick mj@acd.edu

µ4 : trs R2 keith keith@acd.edu

¤

Finally, the following example shows the evaluation of a SELECT pattern.

Example 1.8. Let D be the dataset in Example 1.7 and consider the pattern P8 in

that example. Then the evaluation of the SELECT query ({?G,?N,?E},P8) over D

is the following set of mappings:

J({?G,?N,?E},P8)K
D =

?G ?N ?E

µ1 : tb john john@acd.edu

µ2 : tb ringo ringo@acd.edu

µ3 : trs mick mj@acd.edu

µ4 : trs keith keith@acd.edu

¤
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1.4.1 Blank nodes in graph patterns

The official specification of SPARQL [15] allows basic graph patterns to have blank

nodes in their triple patterns. Blank nodes in graph patterns are essentially defined

as variables whose values cannot be retrieved by a query. In what follows, we extend

the definitions of the previous sections to consider graph patterns with blank nodes.

We extend the definition of triple patterns to be tuples in the set (T ∪V )× (I ∪
V )× (T ∪V ), that is, triple patterns are now allowed to have blank nodes as compo-

nents. Similarly, we extend the definition of basic graph patterns. Also for a triple

pattern t and a basic graph pattern P, we define blank(t) and blank(P) as the sets of

blank nodes appearing in t and P, respectively.

Definition 1.6. Let G be an RDF graph and P a basic graph pattern with blank nodes.

Then the evaluation of P over G, denoted by JPKG, is defined as the set of all map-

pings µ such that:

• dom(µ) = var(P),
• and there exists a substitution θ : blank(P) → term(G) such that µ(θ(P)) ⊆ G,

where θ(P) is the basic graph pattern that results from replacing the blank nodes of

P according to θ . ¤

This definition extends the definition of the semantics of a basic graph pattern P not

mentioning blanks nodes, as by using the substitution θ : /0 → term(G), we obtain

the same set of mappings as in Definition 1.2 for pattern P (since θ(P) = P).

Now, given a dataset D and a general graph pattern P constructed from basic

graph patterns possibly with blank nodes, the evaluation of P over D is defined as

in the previous section but with Definition 1.6 as the base case.

Example 1.9. Let G be the RDF graph in Example 1.6, and consider the basic graph

pattern P = {(X , name, ?N),(X , email, ?E)}, where X is a blank node. Notice that,

if we use a substitution θ : blank(P)→ term(G) such that θ(X) = B2, and a mapping

µ = {?N →john, ?E → john@acd.edu}, then we have that µ(θ(P)) ⊆ G. Thus, µ
is in the evaluation of P over G. In fact, the evaluation of P over G is the set of

mappings:

JPKG =
?N ?E

µ1 : john john@acd.edu

µ2 : ringo ringo@acd.edu

¤

1.4.2 Bag semantics of SPARQL

A bag Ω of mappings is a set of mappings in which every mapping is annotated with

a positive integer that represents its cardinality in Ω . We denote the cardinality of
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the mapping µ in the bag Ω by cardΩ (µ) (or simply card(µ) when Ω is understood

from the context). If µ /∈ Ω , then cardΩ (µ) = 0.

In Section 1.4, we consider operations between sets of mappings. Those opera-

tions can be extended to bags by, roughly speaking, making the operations not to

discard duplicates. Formally, if Ω1, Ω2 are bags of mappings, then:

for µ ∈ Ω1 ⋊⋉ Ω2, cardΩ1⋊⋉Ω2
(µ) = ∑

µ=µ1∪µ2

cardΩ1
(µ1) · cardΩ2

(µ2),

for µ ∈ Ω1 ∪Ω2, cardΩ1∪Ω2
(µ) = cardΩ1

(µ)+ cardΩ2
(µ),

for µ ∈ Ω1 r Ω2, cardΩ1rΩ2
(µ) = cardΩ1

(µ).

The bag semantics of basic graph patterns that contain blank nodes is formalized

in the following definition. This formalization is used as the base case for the bag

semantics of SPARQL graph patterns.

Definition 1.7. Consider a basic graph pattern P (possibly with blank nodes) and an

RDF graph G. The cardinality of the mapping µ ∈ JPKG is defined as the number of

distinct substitutions θ : blank(P) → term(G) such that µ(θ(P)) ⊆ G, i.e.

cardJPKG
(µ) = |{θ : blank(P) → term(G) | µ(θ(P)) ⊆ G}|.

¤

For a basic graph pattern P without blank nodes, every solution µ ∈ JPKG has cardi-

nality 1, as in this case the only possible substitution is θ : /0 → term(G).
Given a dataset D and a general graph pattern P constructed from basic graph

patterns possibly with blank nodes, we define the bag semantics of P over D simply

as in Definition 1.3, but applying bag operators and considering the semantics of

basic graph patterns as in Definition 1.7.

We define now the bag semantics of SPARQL SELECT queries. Informally,

when considering bag semantics, to evaluate a SELECT query q = (W,P), we sim-

ply take the projection of the evaluation of P over W but without discarding dupli-

cates. Formally, given a SPARQL SELECT query (W,P) and a mapping µ in the

evaluation of (W,P) over a dataset D , we define the cardinality of µ in JPKD as:

cardJ(W,P)KD (µ) = ∑
ν∈JPKD : ν|W

=µ

cardJPKD (ν).

Example 1.10. Consider the RDF graph:

G = {(Alice, knows, Bob),(Alice, knows, Peter),(Bob, knows, Peter)},

and the basic graph pattern P = {(?X , knows, B)} with B a blank node. Now

consider the mapping µ1 = {?X → Alice}, and the substitutions θ1 and θ2 from

blank(P) to term(G) such that θ1(B) = Bob and θ2(B) = Peter. Then it holds that

µ1(θ1(P)) ⊆ G and that µ1(θ2(P)) ⊆ G. Thus, we have that µ1 is in JPKG and that

the cardinality of µ1 is 2. If we consider the mapping µ2 = {?X → Bob}, then we

have that µ2 is also in JPKG and that the cardinality of µ2 is 1. ¤
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Example 1.11. As an example of the evaluation of a SELECT query under bag se-

mantics, consider the dataset D and the pattern P8 of Example 1.7, and the SELECT

query ({?G},P8). Then the evaluation of ({?G},P8) over D is composed by the

mappings µ1 = {?G → tb} and µ2 = {?G → trs}, both with cardinality 2. ¤

1.5 On the Complexity of the Evaluation Problem

A fundamental issue in every query language is the complexity of query evaluation

and, in particular, what is the influence of each component of the language in this

complexity.

In this section, we study the complexity of the evaluation of SPARQL graph pat-

terns, reviewing some of the results in the literature regarding this problem. The

first study about the complexity of SPARQL was published in [11], and some re-

finements of the complexity results of [11] were presented in [13, 17]. We present

here a study of the complexity that follows [11], considering fragments of SPARQL

graph patterns built incrementally, and presenting complexity results for each such

fragment.

In this section, we focus on the core fragment of SPARQL and, thus, we impose

the following restrictions to graph patterns and to the evaluation process. First, we

will be mainly focused on the evaluation of SPARQL patterns, that is, we do not con-

sider SELECT queries, and we restrict to the evaluation over a single RDF graph,

that is, we do not consider the GRAPH operator. Second, we assume that graph pat-

terns do not contain blank nodes. And third, we focus on the set semantics of graph

patterns, that is, we do not consider the cardinality of mappings when evaluating

SPARQL patterns. It would be interesting to investigate whether the complexity re-

sults that we present in this section can be extended to the bag-semantics case. We

left this study for future work.

As is customary when studying the complexity of the evaluation problem for a

query language [18], we consider its associated decision problem. We denote this

problem by EVALUATION and we define it as follows:

INPUT : An RDF graph G, a graph pattern P, and a mapping µ .

QUESTION : Is µ ∈ JPKG?

It is important to recall that we are assuming that P in the above definition does

not contain blank nodes, and that JPKG is the set-based evaluation of P over the

RDF graph G. Also notice that the evaluation problem that we study considers the

mapping as part of the input. That is, we study the complexity by measuring how

difficult it is to verify whether a given mapping is a solution for a pattern evalu-

ated over an RDF graph. This is the standard decision problem considered when

studying the complexity of a query language [18], as opposed to the computation

problem of actually listing the set of solutions (finding all the mappings). To focus

on the associated decision problem allows us to obtain a fine grained analysis of
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the complexity of the evaluation problem, classifying the complexity for different

fragments of SPARQL in terms of standard complexity classes. Also notice that the

pattern P and the graph G are both inputs in the definition of EVALUATION. Thus,

we study the combined complexity of the query language [18].

We start this study by considering the fragment consisting of graph pattern

expressions constructed by using only AND and FILTER operators. This simple

fragment is interesting as it does not use the two most complicated operators in

SPARQL, namely UNION and OPT. Given an RDF graph G, a graph pattern P in

this fragment and a mapping µ , it is possible to efficiently check whether µ ∈ JPKG

by using the following simple algorithm [11]. First, for each triple t in P, verify

whether µ(t) ∈ G. If this is not the case, then return false. Otherwise, by using a

bottom-up approach, verify whether the expression generated by instantiating the

variables in P according to µ satisfies the FILTER conditions in P. If this is the

case, then return true, else return false.

Theorem 1.1 ([11]). EVALUATION can be solved in time O(|P| · |G|) for graph pat-

tern expressions constructed by using only AND and FILTER operators.

We continue this study by adding the UNION operator to the AND-FILTER frag-

ment. It is important to notice that the inclusion of UNION in SPARQL is one of

the most controversial issues in the definition of this language. The following the-

orem proved in [11], shows that the inclusion of the UNION operator makes the

evaluation problem for SPARQL considerably harder.

Theorem 1.2 ([11]). EVALUATION is NP-complete for graph pattern expressions

constructed by using only AND, FILTER and UNION operators.

It is straightforward to prove that EVALUATION is in NP for the case of graph

pattern expressions constructed by using only AND, UNION and FILTER operators.

The NP-hardness proof presented in [11] relies on a reduction from the satisfiability

problem for propositional formulas in CNF (SAT-CNF). An instance of SAT-CNF

is a propositional formula ϕ of the form C1 ∧·· ·∧Cn, where each Ci (i ∈ [1,n]) is a

clause, that is, a disjunction of propositional variables and negations of propositional

variables. Then the problem is to verify whether there exists a truth assignment

satisfying ϕ . It is well known that SAT-CNF is NP-complete [6]. In the encoding

presented in [11], the authors use a fixed RDF graph D and a fixed mapping µ . Then

they show how to encode a SAT-CNF formula by using SPARQL variables to encode

literals (propositional variables and negations of propositional variables), AND and

UNION to encode ∧ and ∨, respectively, and FILTER restrictions to ensure that if

a truth assignment assigns value true to a literal ℓ, then it must assign value false to

the negation of ℓ (and vice versa).

We now consider the OPT operator, which is the most involved operator in graph

pattern expressions and, definitively, the most difficult to define. The following theo-

rem proved in [11] shows that when considering all the operators in SPARQL graph

patterns, the evaluation problem becomes considerably harder.

Theorem 1.3 ([11]). EVALUATION is PSPACE-complete.
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The membership in PSPACE is given by Algorithm 2. Given a mapping µ , a

pattern P, and an RDF graph G, the algorithm verifies whether µ ∈ JPKG. In the

procedure, we use pos(P,G) to denote the set of mappings ν such that dom(ν) ⊆
var(P) and for every variable ?X ∈ dom(ν), it holds that ν(?X) is a value in term(G).

Algorithm 2 Eval(µ : mapping, P: graph pattern, G: RDF graph)

1: case:

2: P is a triple pattern t:

3: if dom(µ) = var(t) and µ(t) ∈ G then return true

4: return false

5: P is a pattern of the form (P1 FILTER R):
6: if Eval(µ , P1, G) = true and µ |= R then return true

7: return false

8: P is a pattern of the form (P1 UNION P2):
9: if Eval(µ , P1, G) = true or Eval(µ , P2, G) = true then return true

10: return false

11: P is a pattern of the form (P1 AND P2):
12: for each pair of mappings µ1 ∈ pos(P1,G) and µ2 ∈ pos(P2,G)
13: if Eval(µ1, P1, G) = true and Eval(µ2, P2, G) = true and µ = µ1 ∪µ2 then return true

14: return false

15: P is a pattern of the form (P1 OPT P2):
16: if Eval(µ , (P1 AND P2), G) = true then return true

17: if Eval(µ , P1, G) = true then

18: for each mapping µ ′ ∈ pos(P2,G)
19: if Eval(µ ′, P2, G) = true and µ is compatible with µ ′ then return false

20: return true

21: return false

It is easy to see that the procedure is correct (it is essentially applying the def-

inition of the set-semantics of the SPARQL operators). Given that the size needed

to store the name of a variable in var(P) is O(log |P|) and the size needed to store

an element of G is O(log |G|), we obtain that the size of a mapping in pos(P,G) is

O(|P| · (log |P|+ log |G|)). Thus, given that the depth of the tree of recursive calls

to Eval is O(|P|), we have that procedure Eval can be implemented by using a

polynomial amount of space.

To prove the PSPACE-hardness of EVALUATION, the authors show in [11] how

to reduce in polynomial time the quantified boolean formula problem (QBF) to

EVALUATION. An instance of QBF is a quantified propositional formula ϕ of the

form:

∀x1∃y1∀x2∃y2 · · ·∀xm∃ym ψ,

where ψ is a quantifier-free formula of the form C1 ∧ ·· · ∧Cn, with each Ci (i ∈
{1, . . . ,n}) being a clause, that is, a disjunction of propositional variables and nega-

tions of propositional variables. Then the problem is to verify whether ϕ is valid. It

is known that QBF is PSPACE-complete [6]. In the encoding presented in [11], the

authors use a fixed RDF graph G and a fixed mapping µ . Then they encode formula
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ϕ with a pattern Pϕ that uses nested OPT operators to encode the quantifier alter-

nation of ϕ , and a graph pattern not mentioning the optional operator to encode the

satisfiability of formula ψ .

When verifying whether µ ∈ JPKG, it is natural to assume that the size of P is

considerably smaller than the size of G. This assumption is very common when

studying the complexity of a query language. In fact, it is named data complexity

in the database literature [18], and it is defined as the complexity of the evaluation

problem for a fixed query. More precisely, for the case of SPARQL, given a graph

pattern expression P, the evaluation problem for P, denoted by EVALUATION(P),
has as input an RDF graph G and a mapping µ , and the problem is to verify whether

µ ∈ JPKG. The following result shows that the data-complexity of the evaluation

problem for SPARQL patterns is in LOGSPACE.

Theorem 1.4. EVALUATION(P) is in LOGSPACE for every graph pattern expres-

sion P.

To see why the above theorem holds, consider Algorithm 2. The space needed to

store a mapping in pos(P,G) is O(|P| · (log |P|+ log |G|)), and this bound becomes

O(log |G|) when P is considered to be fixed. Thus, given that the depth of the three

of recursive calls to Eval is a fixed constant if P is considered to be fixed, we obtain

that Eval can be implemented by using logarithmic space in this case.

1.6 Related Work

Most of the material presented in this chapter comes from [11]. At the time when

[11] was published, there were two main proposals for the semantics of SPARQL

graph pattern expressions. The first was an operational semantics, consisting es-

sentially in the execution of a depth-first traversal of parse trees of graph pat-

tern expressions, and the use of intermediate results to avoid some computations.

At that time, this approach was followed by ARQ [2] (a language developed by

HPLabs), and by the W3C when evaluating graph pattern expressions containing

nested optionals [16]. For instance, the computation of the mappings satisfying

(A OPT (B OPT C)) was done by first computing the mappings that match A, then

checking which of these mappings match B, and for those that match B checking

whether they also match C [16]. The second approach, compositional in spirit and

the one advocated in [11], extended classical conjunctive query evaluation [7], and

was based on a bottom up evaluation of parse trees of graph pattern expressions,

borrowing notions of relational algebra evaluation [4, 8] plus some additional fea-

tures. Currently, the official specification of SPARQL [15], endorsed by the W3C,

formalizes a semantics based on [11], that we also follow in this chapter.

Since the beginning of the SPARQL standardization process by the W3C there

have been efforts to formalize the semantics of the language. In [4], Cyganiak

presents a relational model of SPARQL. The author uses modified versions of the

standard relational algebra operators (join, left outer join, projection, selection, etc.)
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to model SPARQL SELECT clauses. The central idea in [4] is to make a corre-

spondence between SPARQL queries and relational algebra queries over a single

relation Triple(subject, predicate, object), that stores RDF graphs in the form of

triples. In [4], the author discusses some drawbacks of using classical relational al-

gebra operators to define the semantics of SPARQL, and identifies cases in which

his formalization does not match the SPARQL official specification. Additionally,

a translation system between SPARQL and SQL is outlined in [4]. The system ex-

tensively uses COALESCE and IS NULL/IS NOT NULL operators to accurately

resemble some SPARQL features. With different motivations, but similar philoso-

phy, Harris et al. presents in [8] an implementation of a simple fragment of SPARQL

in a relational database engine (they use relational algebra operators similar to the

ones used in [4]).

As noted in [4], the treatment of null values is the major problem encountered

when trying to specify the semantics of SPARQL by means of standard relational

algebra. Since mappings must be modeled as relational tuples, null values need to

be used to model unbounded variables. Zaniolo introduces in [19] an algebra to

deal with null values in relational databases. The author interprets null values as

standing for “no information”, as opposed with the more complex “unknown” and

“nonexistent” interpretations [9]. In [19], a relation with null values is defined as a

set of tuples of not necessarily the same arity, which possibly contain null values

in some of their components. The author then defines operators over those relations

with nulls that generalize the standard relational algebra operators. The treatment

of null values in [19] matches the treatment of unbounded variables in SPARQL.

Thus, the operators over sets of mappings introduced in Section 1.3 can be easily

modeled within the framework of [19]. Although the formalization in [19] can be

used to define the semantics of SPARQL, we follow a simplified approach formal-

izing only what is strictly necessary in the SPARQL context, and thus simplifying

the subsequent study of the language.

DeBruin et al. [3] study the semantics of the conjunctive fragment of SPARQL

(graph patterns using only the AND operator, plus the SELECT clause) from a log-

ical point of view. This semantics slightly differs from the definition in [15] on the

issue of blank nodes. In their approach, blanks play the role of “non-distinguished”

variables, that is, variables that are not presented in the answer.

In [14], Polleres studies the problem of translating SPARQL queries into Datalog

queries. Based on [11], the author proposes three different semantics: (1) bravely-

joining, (2) cautiously-joining, and (3) strictly-joining semantics. These seman-

tics are obtained by strengthening the notion of compatible mappings, and thus,

strengthening the conditions under which unbound variables are joined. Strictly-

joining semantics essentially resembles the inner-join condition of SQL, allowing

a simple translation into Datalog. Bravely-joining semantics coincides with the se-

mantics presented in Section 1.4. To translate the bravely-joining semantics into

Datalog, a special predicate BOUND(·) is needed to test whether a variable is

bounded to a non-null value. As a result, the translation generates a program with

disjunctions in the bodies of the rules that extensively uses ¬BOUND(·). The pro-

gram is then transformed into Datalog by using standard techniques [14].
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1.7 Conclusions

The query language SPARQL has been in the process of standardization since 2004.

In this process, the semantics of the language has played a key role. A formalization

of a semantics is beneficial on several grounds: help in identifying relationships

among the constructors that stay hidden in the use cases, identify redundant and

contradicting notions, study the expressiveness and complexity of the language, help

in optimizing the evaluation of queries, etc. In this chapter, we have provided such a

formal semantics for SPARQL, and we have reviewed some results concerning the

complexity of evaluating SPARQL graph patterns.
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