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Abstract. This paper studies the RDF model from a database perspec-
tive. From this point of view it is compared with other database models,
particularly with graph database models, which are very close in motiva-
tions and use cases to RDF. We concentrate on query languages, analyze
current RDF trends, and propose the incorporation to RDF query lan-
guages of primitives which are not present today, based on the experience
and techniques of graph database research.

1 Introduction

The Resource Description Framework (RDF) can be viewed from at least two
perspectives: (1) From a logical perspective, as a minimal fragment of logic that
includes all relevant features needed as representation language for metadata,
or as the W3C recommendation [Hay04] says: RDF is an assertional language
intended to be used to express propositions using precise formal vocabularies;
and (2) From a database perspective, as an extension of data models used in the
database community, in particular graph database models. The former point of
view has been an active area of research. This does not come as surprise knowing
that RDF emerged as a language to represent metadata on the Web, distilling the
experience of the community of knowledge representation and Web researchers
and developers [LS99]. The latter point of view has received less attention and
will be the focus of this paper. We will consider RDF as a data model in the
database tradition.

The term data model has been used in the database community with different
meanings and in diverse contexts. In this paper we will use it in two senses.
In a broad or abstract sense, a data model is a collection of conceptual tools
for describing the real-world entities to be modeled in the database and the
relationships among these entities [SKS96]. In a strict or concrete sense, a data
model, as defined by Codd [Cod80], is as a combination of three components: (a)
a collection of data structure types; (b) a collection of transformation operators
and query language and, (c) a collection of general integrity rules.

In the broad sense, RDF can be considered a data model: a collection of con-
ceptual tools for describing real-world entities, namely metadata on the Web.
But also in the strict sense of the term, RDF qualifies as well: Point (a) has
been more o less addressed at a basic level. One of the documents of the RDF



suite [KC04] speaks of graph data model meaning by this concept the data struc-
ture implicitly defined by sets of triples. Although one can discuss the precise
meaning of this concept [HG04], the graph-like nature of RDF data is clear. Point
(c), namely the integrity constraints, is an open issue for RDF, especially when
considering the duality of RDF as an open world specification of distributed re-
sources on the Web versus RDF as data model for large single-source repositories
with all the issues of a standard database system. The topic of constraints is out
the scope of this paper.

This paper concentrates on point (b), namely query languages. This is an
active area from a development and implementation point of view, and there
is a W3C Working Group addressing the issue of RDF data access, which
has a proposal of RDF query language directed mainly to access data on dis-
tributed sources [PS04]. There are also works addressing foundational issues,
e.g. [HT02,KAC+02,GHO04]. Nevertheless, the discussion about RDF as a full
fledged strict database model and the the design and primitives of a query lan-
guage for such a model is a topic less developed, and probably one of the most
needed if we want to take advantage of all the potentialities of the RDF data
model (e.g. query optimization, query rewriting, views, update, etc.)

The consideration of RDF as database model puts forward the issue of de-
veloping coherently all its database features. In particular its query language
should address the kind of queries and problems of the application domains the
abstract data model is intended to represent. One of the motivations of this
paper are those application domains where interconnection at large scale and
navigation of a network is the main modeling theme. Examples of this are bi-
ology [Olk03], police-like applications [SAMA+05], navigation in bibliographic
databases, etc. To give a flavor of the type of problems, consider queries like:
“are suspects A and B related?”, submitted to a police database, or “what is
the Erdős number of author X”, submitted to (a RDF version of) DBLP. The
first asks for “relevant” paths connecting these resources in the (RDF) police
database, and the second asks simply for the length of the shortest path be-
tween the nodes representing Erdős and X. Current proposals of RDF query
languages [MKA+02,HBEV04,PS04] do not support1 queries like these. To ad-
dress these type of problems, the notions and techniques of graph databases can
be very valuable. Graph databases are systems designed to support storing and
querying information in the form of graphs. They were important, together with
object-oriented databases, in the database research of the nineties, and lost part
of their appeal after the irruption of semi-structured data models and XML. We
claim that graph database models can be a sound support for the design of a
RDF database model, particularly for RDF query languages.

Contributions. In this paper we study the RDF model from a database per-
spective, compare it with other abstract database models, focusing on query
languages and graph databases. We restrict in this paper to the logical level,

1 A language is said to support a feature if it provides facilities that make it convenient
(reasonable easy, safe and efficient) to use that feature [Str88].
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i.e., avoid –when is possible– physical, implementation and indexing considera-
tions. In particular we:

– Compare the RDF model with classical abstract database models putting
particular emphasis in graph database models.

– Study current RDF query languages with respect to their capabilities to
support graph-like queries and conclude that they give little or no support
for them.

– Survey the notions, techniques and systems developed in the area of graph
database query languages, and its applicability to the RDF model.

– Propose primitives for RDF query languages based on the graph database
experience.

Outline of the paper. Section 2 reviews the motivations and goals of the RDF
model and compares it with other database models; Section 3 surveys graph
database models and their query languages. Section 4 review current RDF query
languages and investigates the support they give for querying graph-like data.
Finally, in Section 5 we propose a set of primitives to be incorporated into RDF
query languages. Each of them is carefully reviewed against experience of query
language development in graph databases.

2 RDF as abstract data model

2.1 Motivations, goals and domains of application.

For the sake of completeness, we briefly recall here the motivations of the de-
signers of RDF, as described in [KC04]: ( related models. 1) Web metadata,
i.e. to provide information about Web resources and the systems that use them
(e.g. content rating, capability descriptions, privacy preferences, etc.); (2) Ap-
plications that require open rather than constrained information models (e.g.
scheduling activities, describing organizational processes, annotation of Web re-
sources, etc.); (3) To do for machine processable information (application data)
what the World Wide Web has done for hypertext: to allow data to be pro-
cessed outside the particular environment in which it was created, in a fashion
that can work at Internet scale; (4) Interworking among applications: combining
data from several applications to arrive at new information; (5) Automated pro-
cessing of Web information by software agents: the Web is moving from having
just human-readable information to being a world-wide network of cooperating
processes. RDF provides a world-wide lingua franca for these processes.

In the same document [KC04] it is stated that the design of RDF is intended
to meet the following goals: having a simple data model; having formal seman-
tics and provable inference; using an extensible URI-based vocabulary; using an
XML-based syntax; supporting use of XML schema datatypes; allowing anyone
to make statements about any resource.

Currently, it is difficult to say which will be the niches of RDF. Although not
mentioned in the official documents, the RDF model has impact on other types
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of applications as well. Many of these use RDF as a flexible and extensible data
model with good support for highly interconnected data. Good examples are the
Gene Ontology2, the Open Directory3 and the Wordnet Viewer4.

2.2 Comparison of RDF with other abstract database models

Beginning in the seventies numerous data models have been proposed, each of
them with their own concepts and terminology. Surveys and taxonomies of data
models are as manifold as data models themselves (see e.g. [SKS96,Nav92,Bee88],
[KKT76]). Several of these data models have features relevant for the RDF
model. In this section we compare the RDF model with the most important
of them. A summary is presented in Table 1.

Physical models. They were the first ones to offer the possibility to organize large
collections of data. Among the most important ones are the hierarchical [TL76]
and network [TF76] models. These models lack good abstraction level and are
very close to physical implementations. The data-structuring is not flexible and
not apt to model non-traditional applications. For our discussion they do not
much have relevance.

Relational data model was introduced by Codd [Cod83] to highlight the concept
of level of abstraction by introducing a clean separation between physical and
logical levels. Due to its simplicity of modeling it gained wide popularity among
developers and business applications. It is based on the simple mathematical no-
tion of relation, which together with its associated algebra and logic, made the
relational model a primary model for database research. In particular, its stan-
dard query and transformation language, SQL, became a paradigmatic language
for querying.

Although an RDF specification can be logically viewed as a set of binary
relations, the differences with the relational model are manifold. Among the
most relevant ones are: the relational model was directed to simple record-type
data with a structure known in advance (airline reservations, accounting, etc.).
The schema is fixed and extensibility is a difficult task. Integration of different
schemas is not easy nor automatizable. The query language does not support
paths, neighborhoods and queries that address connectivity (an exception is
transitivity). There are no objects identifiers, but values.

Semantic models ([PM88]) have their origin in the necessity to provide more
expressiveness and incorporate a richer set of semantics into the database from
the user point of view. They allow database designers to represent objects and
their relations in a natural and clear manner (similar to the way the user view an

2 http://www.geneontology.org
3 http://rdf.dmoz.org
4 http://www.openhealth.org/RDDL/wnbrowse
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MODEL LEVEL DATA COMPLEX. CONNECTIVITY TYPE of DATA

Network physical simple high homogeneous

Relational logical simple low homogeneous

Semantic user simple/medium high homogeneous

Object-O logical/physical complex medium heterogeneous

XML logical medium medium heterogeneous

RDF logical medium high heterogeneous

Table 1: Summary of comparison among different database models. The
parameters are: abstraction level, complexity of the data items modeled,
degree of connectivity among the data and support to get this information,
and finally, flexibility to store different types of data.

application) by using high-level abstraction concepts such as aggregation, classifi-
cation and instantiation, sub- and super-classing, attribute inheritance and hier-
archies [Nav92]. A well-known example is the entity-relationship model [Che76].
It has become a basis for the early stages of database design, but due to lack of
preciseness cannot replace models like relational or O-O.

For RDF database research, semantic models are relevant because they are
based on a graph-like structure which highlights the relations between the entities
to be modeled.

Object oriented data models ([Kim90]) are based on the object-oriented program-
ming paradigm. Their objective is representing data as a collection of objects
that are organized in classes and have complex values and methods associated
with them. They are intended to model non-conventional database applications
consisting of complex objects systems with many semantically interrelated com-
ponents as in CAD/CAM, computer graphics or information retrieval.

Object-oriented database models have been related to Graph database ones
because the explicit or implicit graph structure in their definitions [LP91], [AGP+92],
[GPdBG90]. Nevertheless, there remain important differences rooted in the form
that each of them models the world. O-O models view the world as a set of ob-
jects having certain state (data) and interacting among them by methods. On
the contrary, graph database models, and RDF in particular, model the world
as a network of relations. The emphasis in RDF is on the interconnection of
the data, the network of relations among the data and the properties of these
relations. The emphasis of O-O is on the objects, their values and methods.
However, there are proposals to apply O-O concepts to RDF [BV04].

Semistructured data models ([Bun97,AQM+97,Abi97]) are oriented to model
semi-structured data. Of all the most visible models in the literature, the semi-
structured data model is one of the closest in several points to RDF. Semi-
structured models deal with data whose structure is irregular, implicit and par-
tial, and whose schema is usually very large, contained within the data itself,
and rapidly evolving [Abi97]. One of the best representative is OEM [PGMW95].
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It is a model based on objects, which have unique identifiers, and values that
can be simple types or object references. There is a natural graph representa-
tion: objects are nodes, and values are labeled arcs. The main differences with
RDF are: the lightweight inferencing available, the existence of blank nodes, the
stronger typing system and the fact that labels are also nodes in RDF.

Another representative is the XML model [BPSM]. There are substantial
differences between XML and RDF. First, RDF has a higher abstraction level; in
fact RDF is an application of XML to represent metadata. Structurally XML has
a ordered-tree-like structure against the graph structure of RDF. At the semantic
level, in XML the information about the data is part of the data (in other words
XML is self-describing); in contrast, RDF expresses explicitly the information
about the data using relations between entities. An important advantage of RDF
is its extensibility in both schema and instance level. See [GR02,ADL+04] for a
major comparison of these models.

3 Graph database Models and their query languages

3.1 Graph database models

Graph database models appeared with the objective of modeling information
whose logical structure is a graph. In this sense, they are the closest to the
RDF model by the data type used. Among the first ones, we have the the Log-
ical Data Model [KV84,KV93] and the Functional Data Model [Shi81], which
define an implicit structure of labeled graphs. The Logical data model intro-
duces basic, composition, and collection nodes, all of which can be modeled in
RDF. On the other hand, in many semantic and object oriented data models
the conceptual representation of data is transparently graph-based. For exam-
ple O2 [LRV88] defines basic, tuple-structured, and set-structured types (the
first type is similar to RDF blank node and the remainder two can be mod-
eled as relations in RDF); GOOD [GPdBG90] is oriented primarily to graphi-
cal user interfaces; OEM [PGMW95] addresses the information exchange prob-
lem, and is oriented to express resources and relations in a standard way (in
agreement to the RDF philosophy); GDM [Hid02] defines instances and schema
graphs with features similar to RDF (e.g. domain and range of relations, typeOf
properties). Models like G-BASE [Kun87], Gram [AS92], GraphDB [G9̈4] and
GRAS [KSW96] propose explicit graph data models.5. Besides these models
based on graphs, there are other approaches which use as formalization general-
izations of the notion of graph, such as hypergraphs (e.g. see GROOVI [LP91],
the hypernode model [LP90,PL94]) and hygraphs (e.g. see Hy+ [CM93]). Note
that strictly speaking, RDF graphs are ordered hypergraphs [HG04]. As was
mentioned above, an important component of these data models is the query

5 Note that a direct applicability of a graph model to RDF is not possible due to the
particular RDF graph property where resources possibly can occur as edge labels as
as well as node labels. To solve this problem an intermediate model (e.g bipartite
graphs [HG04]) can be defined.
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language, which differs widely from one to another, and whose design is very
challenging. We survey them in the next section.

3.2 Graph query languages

There are several proposals of query languages for models that represent infor-
mation with a explicit or implicit graph structure. In this context, from now on
we assume that a graph database has n nodes and e edges.

Cruz et al. [CMW87] propose the graphical query language G for querying
data represented as a labeled graph. It introduces the concept of graphical query,
which is based on a pattern graph that use regular expressions to represent
recursive queries. G evolved into a more powerful language called G+ [BHK+03]
where a query graph is the basic building block. Query graph nodes may be
labeled with variables and edges labeled with regular expressions. A simple query
has two elements, a query graph that specifies the class of patterns to search and
a summary graph that represent how to restructure the answer obtained by the
query graph.

GraphLog [CM89] is a query language for hypertext. It presents a extension of
G+ by adding negation and unifying the concept of a query graph. A query is now
only one graph pattern containing one distinguished edge (which corresponds to
the restructured edge of the summary graph in G+). The effect of the query is
to find all instances of the pattern that occur in the database graph and for each
one of them define a virtual link represented by the distinguished edge.

Gram [AS92] presents a query algebra where regular expressions over data
types are used to select walks (paths) in a graph. It uses a data model where
walks are the basic objects. A walk expression is a regular expression without
union, whose language contains only alternating sequences of node and edge
types, starting and ending with a node type. The query language is based on a
hyperwalk algebra with operations closed under the set of hyperwalks.

Gemis and Paredaens [GP93] present PaMal, a graphical model for describing
schemes and instances of object-databases and a graphical data manipulation
language based on pattern matching.

Güting [G9̈4] proposed an object-oriented data model and query language
for graph databases called GraphDB. A database in GraphDB is a collection of
object classes divided in: simple classes (simple objects that represent nodes),
link classes (links between nodes that represent edges) and path classes (repre-
senting several paths in the database). A query consists of several steps. Each
step computes operations that specify argument subgraphs in the form of reg-
ular expressions over link class names that extend or restrict dynamically the
database graph.

Lorel [AQM+97] is a query language for semistructured data designed for the
Object Exchange Model (OEM) [PGMW95]. Lorel is a extension of OQL [ASL89],
extending its characteristics to handling semistructured data.

Oriented to search the Web, Flesca and Grego [FG99] extend regular expres-
sions and regular grammars by introducing partial orders on strings and produc-
tion rules, respectively to support graph queries. They show to how use partially
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ordered languages to define path queries to search databases and present results
on their computational complexity. In addition, a query language based on the
previous ideas was proposed in [FG00].

4 Current RDF query languages and their graph support

In this section we present the current state of RDF query languages. First, for
the sake of completeness, we briefly review current proposals, and the activity
of the W3C Working Group on Data Access. Then we test the most relevant of
these languages against simple queries which have graph-like flavor to show the
degree of support for querying in the graph databases style.

4.1 Overview of RDF query languages

RDF Query Languages. Several languages for querying RDF data have been
proposed and implemented, some in the lines of traditional database query lan-
guages (e.g. SQL, OQL), others based on logic and rule languages. Good surveys
are [MKA+02,HBEV04].

RQL [KAC+02] is a typed language for querying RDF repositories. It is de-
fined by a set of basic queries and iterators, which can be used to build new ones
through functional decomposition, with a OQL style. SquishQL6 is a SQL-style
query language that permits simple graph navigation in RDF sources. It uses
patterns and filter expressions to construct queries and use a subgraph match-
ing mechanism to execute the query. RDQL [Sea04] is an implementation of
SquishQL for Jena [WSKR03] models. RDFQL7 is a statement-based query lan-
guage with a SQL-style to perform queries, inference operations, and construc-
tion of views on RDF structured data. RDFQL is capable to infer new statements
from existing ones by using user-defined inference rules. TRIPLE [SD02] is a
language based on F-logic [KL89], allowing rule definition, inference and trans-
formation of RDF models under several semantics. The core language is based
on Horn logic syntactically extended to support RDF primitives (namespaces,
resources, and statements). Notation 3 (N3) [BL01] provides a text-based syntax
for RDF, allowing to define rules (stored with the data) that can be used for the
purpose of querying. Versa8 is a graph-based language with some support for
rules. Its main features include traversal arcs, processing of node contents and
general expression evaluation. SeRQL is the RDF query language developed as
part of the Sesame system9. It combines characteristics of languages like RQL,
RDQL, N-Triple, N3 plus some new features. SeRQL presents support for graph
transformation, RDF schema, expressive path expression syntax, optional path

6 http://ilrt.org/discovery/2001/02/squish/
7 http://www.intellidimension.com/default.rsp?topic=/pages/rdfgateway/

reference/db/default.rsp
8 http://4suite.org/
9 http://www.openrdf.org/
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matching, and composition of queries. RXPath10 is a query language based on
XPath, that allows addressing parts of a RDF model with a syntax identical to
XPath. Turtle11 is a text syntax for RDF that extends carefully the test case
format of N-Triples [Bec01], taking the most useful and appropriate features
from Notation 3.

RDF Data Access Working Group (DAWG) – SPARQL. W3C members that
conform the RDF DAWG presented a Working Draft in October 2004, which
specifies a set of use cases, requirements, and objectives for a RDF query lan-
guage and data access protocol [Cla04]. The use cases are directed to applica-
tion areas of RDF, like personal and business information management, resource
publishing, transportation, software development, social networks, and seman-
tic web. The technical requirements can be grouped into data model support
(limited datatype support, extensible value testing), evaluation of graphs (RDF
graph pattern matching conjunction/disjunction, variable binding results), con-
struction of output (subgraph results, local queries), and output management
(optional match, result limits, streaming results). The design objectives are
human-friendly syntax, data integration and aggregation, test of non-existence
of triples, bandwidth-efficient protocol for a collection of result, literal search,
express yes-no queries directly and addressable query results.

SPARQL [PS04] is a RDF query language designed to meet the requirements
and design objectives mentioned previously. It defines a query language with
a SQL-like style, where a simple query is based on query patterns, and query
processing consists of binding of variables to generate pattern solutions (graph
pattern matching). SPARQL supports multiple matches (multiple selected vari-
ables), constraining values in the form of Boolean-valued expressions, optional
matching that permits blank results, nested patterns (e.g. simple conjunction),
execution against real or virtual graphs, results construction, and standard op-
erations (which are a subset of the operations defined in XQuery and XPath).
SPARQL is still a work in progress.

4.2 Graph Properties in Current RDF Query Languages

To illustrate the problems of current RDF query languages in querying graph-
like properties, we chose seven of them, six already considered in the recent
survey [HBEV04], and RxPath, and test them against a subset of the well-known
Museum example (see Figure 1), which –despite its small size– proved well able
to illustrate our point. To simplify, we did not consider the issue of support for
subclass or subproperty semantics.

The results are as follows. An RDF graph can be considered a directed graph.
This direction produces problems when retrieving neighborhoods for languages
that do not have a union operator (see queries 1 and 2 below). Some query
results violate the query language property of closure [HBEV04] by returning

10 http://rx4rdf.liminalzone.org/
11 http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/
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Fig. 1: The subset of the Museum database [KAC+02] used for our tests

results which are not in RDF format. There are two main problems concerning
paths: (a) most languages support only querying for patterns of paths which are
limited in length and form (the issue of edge direction blows up the size of the
query exponentially, see below query 4 and 5); (b) RxPath is able to retrieve only
paths starting from a fixed node and with some other restrictions. Aggregated
functions like COUNT, MIN, MAX applied to paths could be used to answer
queries as for the degree of a node, the distance between nodes, and the diameter
of a graph. None of these functions is systematically supported, even though, for
example, the original version of RQL has a COUNT function on the number of
triples. Next we present the details of each query. Table 2 summarizes the results
(implementation details can be found in [AGH04]).

1. Adjacent nodes: “All resources adjacent to the resource Guernica”. Expected
result: Painting, www.museum.es, "oil on canvas", picasso.html. Not all lan-
guages support this feature. The problem is that this query can only be
expressed as a union of two queries: one for outgoing edges from Guernica,
another for ingoing edges. Some languages do not support the union opera-
tor.

2. Adjacent edges: “All predicates of statements involving Guernica”. Expected
result: technique, exhibited, type, paints. The problems faced are similar
to the previous case. Note that here we probably would like to differentiate
schema predicates from data predicates.

3. Degree of a node: “Number of predicates involving Guernica”. Expected re-
sult: 4. Same problems as above plus the fact that most languages do not
support aggregation at this level. SeRQL for example returns the number,
but not as part of the answer.

4. Path: “Find paths between picasso.html and www.museum.es”. Expected re-
sults: There are several, for example, picasso.html–paints–guernica.jpg–
exhibited–www.museum.es, and picasso.html–type–Painter–paints–Painting–
subClassOf–Artifact–exhibited–Museum–type–www.museum.es.
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PROPERTY RQL SeRQL RDQL Triple N3 Versa RxPath

Adjacent nodes ± ± ± ± ± ± ×
Adjacent edges ± ± ± ± × × ×
Degree of a node ± × × × × × ×
Path × × × × × × ±
Fixed-length Path ± ± ± ± ± × ±
Distance between two nodes × × × × × × ×
Diameter × × × × × × ×

Table 2: Support of some current RDF query languages for some example
queries (”±” indicates partial support and ”×” no support).

None of the languages studied support arbitrary paths like the ones needed
for this case. Note that it must be considered whether paths via the schema
are regarded as relevant.

5. Fixed-length paths. “Find all paths of length 2 between Pablo and guernica.jpg.”
Expected result: Pablo–fname–picasso.html–paints–guernica.jpg. Supported
partially by several languages, using a union of all possibles patterns of paths
(direction of edges) of length 2 between the initial and final resources. Note
that for paths of length n there are at least 2n such path patterns.

6. Distance between two resources: (length of shortest path) “How far is pi-

casso.html from www.museum.es?” Expected result: 2. Not supported by any
language.

7. Diameter of a graph: “Diameter of the museum graph”. Expected result: 5.
Not supported. It is based on distance and paths.

5 Graph primitives for RDF query languages

In this section we present desirable graph primitives of a query language for
the RDF data model, based on the experience of the graph database query
languages discussed in previous sections. We stress the graph-like features that
in our opinion are missing in today’s RDF query languages.

Before discussing the primitives in detail, let us enumerate desirables features
for a RDF query language. They are very much inspired by a similar wish-list
stated by Abiteboul [Abi97] for semi-structured data. They are:

– Standard database-style query primitives.
– Navigation in the style of semi-structured data or Web-style browsing.
– Searching for patterns in an information-retrieval style.
– Temporal queries, including versioning.
– Querying both the data and the schema in the same query.
– Incorporating transparently the lightweight inferencing of RDF Schema and

relevant polynomial-time extensions.
– Sound theoretical foundation.
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PROPERTY G G+ GraphLog Gram GraphDB Lorel F-G

Adjacent nodes ± √ √ √ ± √ ±
Adjacent edges ± √ √ √ ± √ ±
Degree of a node × √ √ × ? × ×
Path

√ √ √ √ √ √ √
Fixed-length Path

√ √ √ √ √ √ √
Distance between two nodes × √ √ × ? × ×
Diameter × √ √ × ? × ×

Table 3: Support of some graph database query languages for the example
queries of Table 2 (

√
indicates support, ”±” partial support, ”×” no support,

and ? indicates there is no information available).

The following groups of primitives comprise features revised in the survey
and the ones presented in the test examples we think should be supported by an
RDF query language. In each case we survey the support that graph database
languages gives them. See also Table 3 for examples of support for some queries
by these languages (compare to Table 2).

Paths and connectedness. One of the most fundamental graph problems is to
compute reachability information (use case 2.5 in DAWG Draft [Cla04]). In fact,
many of the recursive queries that arise in practice in relational databases and,
more generally in data with graph structure, are in practice graph traversals
characterized by path problems. The importance of such queries is studied in
several works [AJ94,AJ89,AJ88,RLMB98]. One of the challenges to incorporate
such notion into a query language is its computational complexity. Finding sim-
ple paths with desired properties in direct graphs is very difficult, and essentially
every nontrivial property gives rise to an NP-complete problem [SWG02]. Yan-
nakakis [Yan90] surveyed a set of paths problems relevant to the database area
including computing transitive closures, recursive queries and the complexity of
path searching. Extension of query languages for solve graph traversal problems
are surveyed in [MS90].

In what follows, we describe the support that the query languages of the
database models described in Section 3.1 give to path problems.

A initial implementation of G translate the graphical queries into C-Prolog
programs. Simple paths are traversed using certain non-Horn clause constructs
available in Prolog. Although, it does not support cycles or finding the shortest
path, it was a good approximation to a graph query language.

The evaluation of path queries in G+ is a two-stage process consisting of
a depth-first search of the graph database and use of a nondeterministic finite
state automaton to control the search. In addition path queries are a subset of
the class of linear chain queries and hence can be evaluated rapidly in parallel.
The evaluation algorithm can be shown to compute the identity query in O(e)
time and the transitive closure in O(ne) time. G+ was implemented in the
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HyperG system providing primitive operators like depth-first search, shortest
path, transitive closure and connected components.

Motivated by the implementation of G+, Mendelzon and Wood [MW89] stud-
ied the problem of finding all pair of nodes connected by a simple path such that
the concatenation of the labels along the path satisfies a regular expression. Al-
though the regular simple path problem is in general NP-complete, the paper
presents an algorithm that runs in polynomial time in the size of the graph when
some conditions fulfilled: the graph is acyclic, the regular expression is restricted
(according to the definition in the paper), or the graph complies with a cycle
constraint compatible with the regular expression. The evaluation algorithm uses
a deterministic finite automaton to traverse paths in the graph. They also prove
the intractability of certain types of simple paths in a particular class of direct
graphs and characterize a class of queries about regular simple paths which can
be evaluated in polynomial time. The analysis and implementation in this paper,
assume that the graph can be entirely stored in main memory.

The expressive power of GraphLog is characterized by establishing the equiv-
alence between GraphLog, stratified linear Datalog (a language of function-free
Horn clauses), non deterministic logarithmic space, and transitive closure. The
queries expressible in the language are exactly those that can be computed in
space logarithm in the size of the database.

To implement graph operations in GraphDB, efficient graph algorithms are
used. Shortest path and cycle both were implemented using the A* algorithm.
Moreover, nodes, paths and subgraphs are indexed using path classes and index
structures like B-Tree and LSD-Tree.

Lorel presents a SQL-style query language that support two types of path
expressions, simple path expressions, which allow to obtain the set of objects
reachable by following a sequence of labels starting from a named object in the
OEM graph and a more powerful syntax for path expressions, called general
path expressions based on wildcards and regular expressions. To outperform
query execution, the Lore DBMS [MAG+97] implements the query language
Lore and uses two kinds of indexes, a link (edge) index called Lindex, and a
value index called Vindex. A Lindex takes an object identifier and a label, and
returns the object identifiers of all parents via the specified label. A Vindex
takes a label, operator, and a value, and returns all atomic objects having an
incoming edge with the specific label and a value satisfying the specific operator
and value. Vindexes and Lindexes are implemented using B+ trees and linear
hashing respectively.

In graph databases where the number of nodes is very large (e.g. the Web)
it is useful to subdivide the domain of evaluation by selecting subsets of the do-
main on the base of some criteria. With this objective, Flesca and Greco [FG99]
introduce partially ordered regular languages based on some order on the nodes.
Such languages are an extension of regular languages where strings are partially
ordered, for example, two strings s1 and s2, such that s1 > s2, denote two paths
in the graph with the constraint that the path s1 should be preferred to the path
s2. In later work [FG00], they present an algebra for partially ordered relations,
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an algorithm for the computation of path queries and show that computing an
instance of a graph query can be done in polynomial time. Also, they present a
SQL-like language that consider general paths and extended regular expressions,
and show how extended regular expressions can be used to search the Web. With
similar motivations, and in the context of RDF, Anyanwu and Sheth [AS03] in-
troduced a path operator ρ to address relevant relationships between entities
called semantic associations. Semantic associations are represented in a RDF
graph as sequences (i.e. edges, paths) between entities or more complex struc-
tures of sequences, and a notion of similarity between them is defined.

Pattern matching consists in determining if there exists a mapping (or isomor-
phism) between a graph pattern and a subgraph of a database graph (use cases
2.1, 2.12 and 2.13 in DAWG Draft [Cla04]). Pattern matching deal with two
problems, the graph isomorphism problem that has a unknown computational
complexity, and the subgraph isomorphism problem which is NP-complete. Pat-
tern matching has attracted a great deal of attention specially on data mining
(see [WM03] for a survey), update [GP93,HP93], querying [CMW87,CMW89,CM89]
and visualization [AGP+92]. Sasha et al. [SWG02] present a survey of pattern-
matching based algorithms for fast searching in trees and graphs.

PaMal use graph patterns to describes the part of the database instance that
are affected by a operation (addition and deletion of nodes and edges). In the
case of GraphDB, the subgraph problem is solved moving the conditions into
subsequent graph operations or other database access.

Aggregate functions are operations non related to the data model that permit
to summarize or operate on the query results (use cases 2.3, 2.4, 2.6, 2.8, 2.10,
2.11, 2.14 and 2.15 in DAWG Draft [Cla04]). Such functions are oriented to deal
directly with the structure of the underlying graph, such as the degree of a node,
the diameter of the graph (or a set of nodes), the distance between nodes, etc.

With the purpose of performing computations on retrieved subgraphs prod-
uct of a query operation, G+ defines two types of summary operators: path
operators which summarize on the values of the attributes along paths and set
operators which summarize on the values of the attributes on a set of paths. The
set of such operators include sum, products, maximum and count.

GraphLog becomes more expressive that relational algebra and calculus with
aggregates, adding aggregate operators (e.g. MAX, SUM, etc.) and path summa-
rization. The implementation of GraphLog use algorithms discussed in [MW89].

Gram, consistent with its SQL-like syntax, defines two types of algebraic
operations: unary (projection, selection, renaming) and binary (join, concate-
nation, set operations) which are closed under the set of hyperwalks. PaMal
provides a reduce-operation to work with a special group of instances called re-
duced instances and programming constructs (loop, procedure and program).
Finally, GraphDB query language support further operations, e.g. for sorting,
grouping, and aggregate functions (e.g. Sum).
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Neighborhoods. The notion of neighborhood is relevant for information having
a graph-like nature (use case 2.7 in DAWG Draft [Cla04]). In these models,
information (represented by nodes) closed (in the graph) is usually semantically
related . The primary notion is adjacency. Both node and edge adjacency in
RDF are important in various contexts. A more advanced notion of adjacency,
like the k-neighborhood of a node, is necessary in several contexts. The need of
1-neighborhood retrieval in a RDF Graph is argued in [Say04] and [GMM03].
In the RDF context, inference of new triples is relevant in Vertex and Edge
adjacency queries. To the best of our knowledge, the notion of neighborhood as
primitive for query languages has not been studied systematically in the database
literature.

6 Conclusions

We considered RDF from the perspective of graph database modeling. We com-
pared it with other database models. We surveyed graph database models and
query languages in order to argue the convenience that the RDF community
incorporate database experience and technologies into further development of
the RFD model and query language design. In concrete, we propose that RDF
query language should incorporate graph database query language primitives.
Further work includes developing use cases, formalizing requirements and build-
ing benchmarks for queries using the graph-like structure of the model.
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