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Abstract. This paper presents a minimalist program for RDF, by show-
ing how one can do without several predicates and keywords of the RDF
Schema vocabulary, obtaining a simpler language which preserves the
original semantics. This approach is beneficial in at least two directions:
(a) To have a simple abstract fragment of RDFS easy to formalize and
to reason about, which captures the essence of RDFS; (b) To obtain al-
gorithmic properties of deduction and optimizations that are relevant for
particular fragments. Among our results are: the identification of a sim-
ple fragment of RDFS; the proof that it encompasses the main features
of RDFS; a formal semantics and a deductive system for it; sound and
complete deductive systems for their sub-fragments; and an O(n log n)
complexity bound for ground entailment in this fragment.

1 Introduction

The Resource Description Framework (RDF) is the W3C standard for represent-
ing information in the Web [17]. The motivation behind the development of RDF
by the W3C was, as Tim Berners-Lee pointed out for the Semantic Web, to have
a common and minimal language to enable to map large quantities of existing
data onto it so that the data can be analyzed in ways never dreamed of by its
creators [2]. If one would like to bring to reality this vision, the processing of
RDF data at big scale must be viable. The very future of RDF data deployment
and their use will depend critically on the complexity of processing it.

Efficient processing of any kind of data relies on a compromise between two
parameters, namely, the size of the data and the expressiveness of the language
describing it. As we already pointed out, in the RDF case the size of the data
to be processed will be enormous, as examples like Wordnet [12], FOAF [3] and
Gene Ontology [19] show. Hence, a program to make RDF processing scalable
has to consider necessarily the issue of the expressiveness of RDF. Due to the
well known fact that the complexity of entailment using RDF data in its full
expressiveness is an untractable problem [7,8,4], such a program amounts es-
sentially to look for fragments of RDF with good behavior w.r.t. complexity of
processing. This is the broad goal of the present paper.

The full specification of RDF (that is, including RDFS vocabulary) and their
fragments has not yet been studied in detail. Its description is given in [16] and its
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semantics is defined in [15]. The first observation that arises when dealing with
RDFS vocabulary is the difficulty to work with it. An example of this fact is that
even the rules of deduction presented in the official RDF Semantics specification
are not complete [10,8]. A second empirical observation is that several parts of
the RDFS vocabulary have been depreciated, and practice shows that there are
others that are hardly used or not being used at all. This makes it very hard for
developers to build and optimize sound implementations and algorithms, and
for theoreticians to work on this specification.

In order to illustrate the above issues, let us consider two well known RDFS
specifications: WordNet [12] and Friend of a Friend (FOAF) [3]. Both schemas
use only a proper subset of the RDFS vocabulary. FOAF schema has no blank
nodes. Additionally, there is a point about the real need of explicitly declaring
classes via rdfs:Class: In both specifications the triples where rdfs:Class
occurs are redundant (i.e. can be deduced from the rest of the data). Something
similar happens with terms defined as properties (rdf:Property). Why use all
the weight of the full RDFS specification in these cases? Another example where
these type of issues will arise, is the SPARQL query language specification [11],
which currently does not support RDFS entailment. There is wide agreement
that more expressive vocabularies must be treated orthogonally to the rest of
the SPARQL features. In practice, each query will use just a small fragment
of the RDFS vocabulary. For reasoning and optimization purposes, it would
be useful to have a sound and complete theory of each such fragment which
preserves the semantics of RDFS.

Among the most important directions of a program to develop solutions to
the above mentioned problems are:

– To identify a fragment which encompasses the essential features of RDF,
which preserves the original semantics, be easy to formalize and can serve
to prove results about its properties.

– To study in detail the semantics of different fragments of RDF, and give
sound and complete deductive system for each of them.

– To study the complexity of entailment for the vocabulary in general and
in these fragments in particular, and to develop algorithms for testing
entailment.

As for the first point, in this paper we identify a fragment of RDFS that
covers the crucial vocabulary of RDFS, prove that it preserves the original RDF
semantics, and avoids vocabulary and axiomatic information that only serves
to reason about the structure of the language itself and not about the data it
describes. We lift this structural information into the semantics of the language,
hiding them from developers and users.

Regarding the second point, we study thoroughly all fragments of the core
fragment showing that they retain the original RDFS semantics. We then study
the lattice of the theories induced by these fragments, developing minimal sound
and complete proof systems for them. We also calculate what are the min-
imal sub-theories that should be considered when reasoning with restricted
vocabulary.
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Finally, regarding the point of complexity of entailment, there are two main
aspects of RDF to consider: the built-in vocabulary and the notion of blank
nodes. For the complexity of entailment considering blank nodes, good (polyno-
mial) cases can be derived from well known databases and constraint–satisfaction
results [4,9,5]. These cases consider special forms of interaction between blank
nodes that are very common in practice. On this regard, we prove that there is
a notion of normalized proof for RDFS entailment which permits to treat the
issue of blank nodes entailment in a way orthogonal to the treatment of RDFS
vocabulary. Using this notion, results for blank nodes can be composed modu-
larly with particular results for ground RDFS fragments, that is, not considering
blank nodes semantics.

For the the ground case, from a database point of view, even current known
bounds seems totally impractical. For example, the naive approach would use
closure, and estimates for the size of the closure are high: we show that in the
fragment presented, it is quadratic. Nevertheless, this bound is still impractical
from a database point of view. On these lines, we prove that entailment can be
done in time O(n log n) in the worst case, where n is the size of the source data.

The paper is organized as follows. Section 2 presents standard RDF and its
semantics and discusses the vocabulary design to conclude with a proposal of
core fragment, called ρdf. Section 3 studies the ρdf fragment. Section 4 presents
the lattice of minimal fragments of ρdf and their deductive systems. Section 5
studies complexity of entailment in the ρdf fragment. Finally, Section 6 presents
the conclusion.

2 RDF Semantics

Assume there are pairwise disjoint infinite sets U (RDF URI references), B
(Blank nodes), and L (Literals). Through the paper we assume U, B, and L fixed,
and for simplicity we will denote unions of these sets simply concatenating their
names. A tuple (s, p, o) ∈ UBL×U×UBL is called an RDF triple. In this tuple,
s is the subject, p the predicate, and o the object. Note that –following recent
developments [6,11]– we are omitting the old restriction stating that literals
cannot be in subject position.

Definition 1. An RDF graph (or simply a graph) is a set of RDF triples. A sub-
graph is a subset of a graph. The universe of a graph G, denoted by universe(G)
is the set of elements in UBL that occur in the triples of G. The vocabulary of
G, denoted by voc(G) is the set universe(G) ∩ UL. A graph is ground if it has
no blank nodes. In general we will use uppercase letters N, X, Y, . . . to denote
blank nodes.

In what follows we will need some technical notions. A map is a function μ :
UBL → UBL preserving URIs and literals, i.e., μ(u) = u for all u ∈ UL.
Given a graph G, we define μ(G) as the set of all (μ(s), μ(p), μ(o)) such that
(s, p, o) ∈ G. We will overload the meaning of map and speak of a map μ from
G1 to G2, and write μ : G1 → G2, if the map μ is such that μ(G1) is a subgraph
of G2.
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2.1 Interpretations

The normative semantics for RDF graphs given in [15], and the mathematical
formalization in [10] follows standard classical treatment in logic with the no-
tions of model, interpretation, entailment, and so on. In those works the RDFS
theory is built incrementally from Simple, to RDF, to RDFS interpretations (or
structures) and models for graphs. We present here a single notion of interpre-
tation which summarizes Simple, RDF, and RDFS interpretations in one step,
and which will be used later to define the semantics of our fragment.

Definition 2. An interpretation over a vocabulary V is a tuple

I = (Res, Prop, Class, Ext, CExt, Lit, Int)

such that: (1) Res is a nonempty set of resources, called the domain or universe
of I; (2) Prop is a set of property names (not necessarily disjoint from Res); (3)
Class ⊆ Res is a distinguished subset of Res identifying if a resource denotes
a class of resources; (4) Ext : Prop → 2Res×Res, a mapping that assigns an
extension to each property name; (5) CExt : Class → 2Res a mapping that
assigns a set of resources to every resource denoting a class; (6) Lit ⊆ Res the
set of literal values, Lit contains all plain literals in L ∩ V ; (7) Int : UL ∩ V →
Res ∪ Prop, the interpretation mapping, a mapping that assigns a resource or
a property name to each element of UL in V , and such that Int is the identity
for plain literals and assigns an element in Res to elements in L.

In [15,10] the notion entailment is defined using the idea of satisfaction of a graph
under certain interpretation. Intuitively a ground triple (s, p, o) in an RDF graph
G will be true under the interpretation I if p is interpreted as a property name,
s and o are interpreted as resources, and the interpretation of the pair (s, o)
belongs to the extension of the property assigned to p.

In RDF, blank nodes work as existential variables. Intuitively the triple (X, p, o)
with X ∈ B would be true under I if there exists a resource s such that (s, p, o) is
true under I. When interpreting blank nodes, an arbitrary resource can be chosen,
taking into account that the same blank node must always be interpreted as the
same resource. To formally deal with blank nodes, extensions of the interpretation
map Int are used in the following way. Let A : B → Res be a function from blank
nodes to resources; we denote IntA the extension of Int to domain B defined by
IntA(X) = A(X) when X ∈ B. The function A captures the idea of existentiality.

The formal definition of model and entailment for RDFS in [15,10] relies on
a set of semantics restrictions imposed to interpretations in order to model the
vocabulary, and the a priori satisfaction of a set of axiomatic triples. We refer
the reader to Appendix A for a complete formal definition of the semantics of
RDFS using the notion of interpretation defined here.

2.2 RDFS Vocabulary

The RDF specification includes a set of reserved words, the RDFS vocabulary
(RDF Schema [16]) designed to describe relationships between resources as well
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as to describe properties like attributes of resources (traditional attribute-value
pairs). Table 1 (Appendix A) shows the full RDFS vocabulary as it appears
in [15], and (in brackets) the shortcuts that we will use in this paper. This
vocabulary has a special interpretation (see Definition 6 in Appendix A).

Roughly speaking, this vocabulary can be divided conceptually in the follow-
ing groups:

(a) a set of properties rdfs:subPropertyOf [sp], rdfs:subClassOf [sc], rdfs:domain
[dom], rdfs:range [range] and rdf:type [type].

(b) a set of classes, rdfs: Resource, rdfs:Class, rdf:Property, rdf:XMLLiteral,
rdfs:Literal, rdfs:Datatype.

(c) Other functionalities, like a system of classes and properties to describe lists:
rdfs:Container, rdfs:ContainerMembershipProperty, rdfs:member, rdf:List, rdf:Alt,
rdf:Bag, rdf:Seq, rdf:first, rdf:rest, rdf:nil, rdf: 1, rdf: 2, . . . , and a systems for
doing reification: a class rdf:Statement together with properties rdf:subject,
rdf:predicate, rdf:object.

(d) Utility vocabulary, like rdfs:seeAlso, rdfs:isDefinedBy, rdfs:comment, rdf:value,
rdfs:label.

The groups in (b), (c) and (d) have a very light semantics, essentially de-
scribing its internal function in the ontological design of the system of classes
of RDFS. Their semantics is defined by “axiomatic triples” [15]which are rela-
tionships among these reserved words. Note that all axiomatic triples are “struc-
tural”, in the sense that do not refer to external data, but talk about themselves.
Much of this semantics correspond to what in standard languages is captured
via typing. From a theoretical and practical point of view it is inconvenient to
expose it to users of the language because it makes the language more difficult
to understand and use, and for the criteria of simplicity in the design of the
language.

On the contrary, the group (a) is formed by predicates whose intended mean-
ing is non-trivial and is designed to relate individual pieces of data external to
the vocabulary of the language. Their semantics is defined by rules which involve
variables (to be instantiated by real data). For example, rdfs:subClassOf[sc] is
a binary property reflexive and transitive; when combined with rdf:type[type]
specify that the type of an individual (a class) can be lifted to that of a su-
perclass. This group (a) forms the core of the RDF language developers use, as
practice is showing.

For all the above considerations, it is that group (a) forms a natural fragment
of RDFS to be studied in depth. Section 3 is devoted to study this fragment,
and our results will show that there are theoretical reasons that support the
convenience of this choice.

3 The ρdf Fragment of RDFS

Define ρdf (read rho-df, the ρ from restricted rdf) to be the following subset of
the RDFS vocabulary:

ρdf = {sp, sc, type, dom, range}.
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Definition 3. Let G be a graph over ρdf. An interpretation I is a model of G
under ρdf, denoted I |=ρdf G, iff I is an interpretation over ρdf ∪ universe(G)
that satisfies the following conditions:

1. Simple:

(a) there exists a function A : B → Res such that for each (s, p, o) ∈ G, Int(p) ∈
Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)), where IntA is the extension of
Int using A.

2. Subproperty:

(a) Ext(Int(sp)) is transitive and reflexive over Prop

(b) if (x, y) ∈ Ext(Int(sp)) then x, y ∈ Prop and Ext(x) ⊆ Ext(y)

3. Subclass:

(a) Ext(Int(sc)) is transitive and reflexive over Class

(b) if (x, y) ∈ Ext(Int(sc)) then x, y ∈ Class and CExt(x) ⊆ CExt(y)

4. Typing I:

(a) x ∈ CExt(y) ⇔ (x, y) ∈ Ext(Int(type))
(b) if (x, y) ∈ Ext(Int(dom)) and (u, v) ∈ Ext(x) then u ∈ CExt(y)
(c) if (x, y) ∈ Ext(Int(range)) and (u, v) ∈ Ext(x) then v ∈ CExt(y)

5. Typing II:

(a) For each e ∈ ρdf, Int(e) ∈ Prop.
(b) if (x, y) ∈ Ext(Int(dom)) then x ∈ Prop and y ∈ Class.
(c) if (x, y) ∈ Ext(Int(range)) then x ∈ Prop and y ∈ Class.
(d) if (x, y) ∈ Ext(Int(type)) then y ∈ Class.

We define G entails H under ρdf, denoted G |=ρdf H, iff every model under ρdf
of G is also a model under ρdf of H.

Note that in ρdf–models we do not impose the a priori satisfaction of any ax-
iomatic triple. Indeed, ρdf–models does not satisfy any of the RDF/S axiomatic
triples in [15,10], because all of them mention RDFS vocabulary outside ρdf. This
is also the reason for the inclusion of conditions 5 in ρdf models that capture
the semantics restrictions imposed syntactically by the RDF/S axiomatic triples
(dom, dom, prop), (dom, range, class), (range, dom, prop), (range, range, class),
and (type, range, class), and the fact that every element in ρdf must be inter-
preted as a property.

The next theorem shows that this definition retains the original semantics for
the ρdf vocabulary:

Theorem 1. Let |= be the RDFS entailment defined in [15,10], and let G and
H be RDF graphs that do not mention RDFS vocabulary outside ρdf. Then

G |= H iff G |=ρdf H.
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The issue of reflexivity. There are still some details to be refined in the the-
ory of ρdf. Note that, although in ρdf–models we do not impose the a priori
satisfaction of any triple, there are triples that are entailed by all graphs, for ex-
ample the triples (sp, sp, sp), (sc, sp, sc), (type, sp, type), (dom, sp, dom), and
(range, sp, range). These triples are true under every ρdf model due to the fact
that sp must be interpreted as a reflexive relation. Also, because blank nodes
work as existential variables, the triples above with the subject or the object
replaced by any blank node, are also true in every ρdf–model. The good news
is that these are the only triples in the ρdf fragment that are satisfied by every
model:

Proposition 1. Let t be an RDF triple such that |=ρdf t. Then, either t ∈
{(sp, sp, sp), (sc, sp, sc), (type, sp, type), (dom, sp, dom), (range, sp, range)},
or t is obtained from these triples replacing the subject or object by a blank
node.

This is part of a more general phenomena, namely the presence of reflexivity for
sp and sc. We will show that reflexivity for sp and sc is orthogonal with the
rest of the semantics.

Definition 4 (Semantics without reflexivity of sp and sc). An interpre-
tation I is a reflexive–relaxed model under ρdf of a graph G, written I |=nrx

ρdf G,
iff I is a ρdf model that does not necessarily satisfy the restrictions stating that
Ext(Int(sp)) and Ext(Int(sc)) are reflexive relations over Prop and Class re-
spectively.

Theorem 2. Let G and H be ρdf graphs. Assume that H does not contain
triples of the form (x, sp, x) nor (x, sc, x) for x, y ∈ UL, nor triples of the form
(X, sp, Y ) nor (X, sc, Y ) for X ∈ B or Y ∈ B. Then,

G |=ρdf H iff G |=nrx
ρdf H.

Essentially the above theorem states that the only use of reflexive restrictions
in RDFS models is the entailment of triples of the form (x, sp, x), (x, sc, x), or
their existential versions replacing the subject or object by blank nodes. Another
property of |=nrx

ρdf is that it does not entail axiomatic triples:

Corollary 1. There is no triple t such that |=nrx
ρdf t.

3.1 Deductive System for ρdf Vocabulary

In what follows, we present a sound and complete deductive system for the
fragment of RDF presented in the previous section. The system is arranged in
groups of rules that captures the semantic conditions of models. In every rule,
A, B, C, X , and Y are meta-variables representing elements in UBL.
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1. Simple:

(a) G
G′ for a map μ : G′ → G (b) G

G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B) (B,sp,C)
(A,sp,C) (b) (A,sp,B) (X ,A,Y)

(X ,B,Y)

3. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C) (b) (A,sc,B) (X ,type,A)

(X ,type,B)

4. Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B) (b) (A,range,B) (X ,A,Y)

(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B) (C,sp,A) (X ,C,Y)
(X ,type,B) (b) (A,range,B) (C,sp,A) (X ,C,Y)

(Y,type,B)

6. Subproperty Reflexivity:

(a) (X ,A,Y)
(A,sp,A)

(b) (A,sp,B)
(A,sp,A) (B,sp,B)

(c) (p,sp,p) for p ∈ ρdf

(d) (A,p,X )
(A,sp,A) for p ∈ {dom, range}

7. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A) (B,sc,B) (b) (X ,p,A)

(A,sc,A) for p ∈ {dom, range, type}

Note 1 (On rules (5a) and (5b)). As noted in [10,8], the set of rules presented
in [15] is not complete for RDFS entailment. The problem is produced when
a blank node X is implicitly used as standing for a property in triples like
(a, sp, X), (X, dom, b), or (X, range, c). Here we solve the problem following the
elegant solution proposed by Marin [10] adding just two new rules of implicit
typing (rules 5 above).

An instantiation of a rule is a uniform replacement of the metavariables oc-
curring in the triples of the rule by elements of UBL, such that all the triples
obtained after the replacement are well formed RDF triples.

Definition 5 (Proof). Let G and H be graphs. Define G �ρdf H iff there exists
a sequence of graphs P1, P2, . . . , Pk, with P1 = G and Pk = H, and for each j
(2 ≤ j ≤ k) one of the following cases hold:

– there exists a map μ : Pj → Pj−1 (rule (1a)),
– Pj ⊆ Pj−1 (rule (1b)),
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– there is an instantiation R
R′ of one of the rules (2)–(7), such that R ⊆ Pj−1

and Pj = Pj−1 ∪ R′.

The sequence of rules used at each step (plus its instantiation or map), is called
a proof of H from G.

Theorem 3 (Soundness and completeness). The proof system �ρdf is sound
and complete for |=ρdf, that is, given graphs G and H we have

G �ρdf H iff G |=ρdf H.

Corollary 2. Define the proof system �nrx
ρdf as �ρdf by droping rules of reflexivity

(rules (6) and (7)). Then for graphs G and H,

G �nrx
ρdf H iff G |=nrx

ρdf H.

4 Deductive Systems for Minimal Fragments of ρdf

We will assume in the rest of the paper that the user does not redefine or enrich
the semantics of the ρdf-vocabulary. In syntactical terms this means that there
is no triple where this vocabulary occurs in subject or object positions. This
assumption is light and can be found on almost all published RDF specifications.

To begin with, the following theorem shows that for several purposes blank
nodes can be treated in an orthogonal form to ρdf vocabulary.

Theorem 4 (Normal form for proofs). Assume G �ρdf H. Then there is a
proof of H from G where the rule (1) is used at most once and at the end.

Consider the lattice of fragments of ρdf in Figure 1. Given one of the fragments
X , by an X-graph we will understand a graph that mention ρdf vocabulary only
from X . Similarly, an X-rule is one rule (2-7) that mention ρdf vocabulary only
from X .

Theorem 5. Let X be one of the fragments of ρdf in Figure 1, and let G and
H be X-graphs. Assume that G �ρdf H, then there exists a proof of H from G
which only uses X-rules and rule (1).

The above result is based in the observation that in a proof of H from G we can
avoid the following fact: a sequence of graphs Pi, Pi+1, . . . , Pi+j produced in the
proof may present vocabulary outside X , but with Pi and Pi+j X-graphs. This
fact may impose new rules obtained from the rules of �ρdf by a concatenation
that result in a sound derivation between X-graphs. It can be shown that the
only rules obtained in this way coincide actually with X-rules. A second point
is that triples with vocabulary outside X , produced by the application of non
X-rules are not needed and can be left out of the proof of H from G.

Theorem 5 implies that X-rules are sound and complete for |=ρdf in fragment
X . As a direct consequence we also obtain that X-rules without considering
reflexivity rules, are sound and complete for |=nrx

ρdf in fragment X .
In what follows G|V means the subgraph induced by vocabulary V , i.e. those

triples having subject, or predicate, or object in V .
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dfρ

sc, type, d+rsc,sp,d+rsp, type, d+rsc, sp, type

sc, d+rsc, typesp, d+r type, d+rsp, typesp, sc

sp d+rtypesc

Fig. 1. The lattice of fragments of ρdf

Interpolation Lemmas for RDF. Interpolation lemmas refer to lemmas express-
ing the role of vocabularies in deduction. They follow from the previous results
in this section.

Lemma 1. Let G and H be graphs. If (a, b, c) ∈ G and a, b, c do not appear in
voc(H) nor in ρdf, then G |=ρdf H iff G − {(a, b, c)} |=ρdf H.

Lemma 2. Let a, b, c be ground terms with b not belonging to ρdf. Then: G |=ρdf
(a, b, c) iff G|{sp,a,b,c} |=ρdf (a, b, c).

Lemma 3. Let a, b ∈ UBL, then

1. G |=ρdf (a, dom, b) iff G|dom |=ρdf (a, dom, b).
2. G |=ρdf (a, range, b) iff G|range |=ρdf (a, range, b).

Moreover, if a, b are ground, |=ρdf reduces to membership in G.

Note 2. Although (a, dom, b) refers to a property a and a class b, inferring a dom
statement in the RDFS system does not depend on statements about classes or
properties. For example, from the previous lemma follows the non-intuitive fact
that {(c1, sc, c2), (c2, sc, c1), (a, dom, c1)} does not entail (a, dom, c2).

Lemma 4. Let a 	= b, then

1. G |=ρdf (a, sc, b) iff G|sc |=ρdf (a, sc, b).
2. G |=ρdf (a, sp, b) iff G|sp |=ρdf (a, sp, b).

It turns out that type is the most entangled keyword in the vocabulary and
deducing G |=ρdf (a, type, b) can involve all of G (except those triples mentioned
in Lemma 1).
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5 The Complexity of ρdf Ground Entailment

Let us introduce some notation. For a graph G and a predicate p, define Gp as
the subgraph of G consisting of the triples of the form (x, p, y) of G, and define
G∅ as the subgraph consisting of triples without ρdf vocabulary. Let G(sp) be
the directed graph whose vertices are all the elements v which appear as subject
or objects in the triples of G, and in which (u, v) is an edge if and only if
(u, sp, v) ∈ G. Similar definition for G(sc).

The naive approach to test the entailment G |= H in the ground case would
be to consider the closure of G and check if H is included in it. Recall that for
ground G, the closure is the graph obtained by adding to G all ground triples
that are derivable from G. The following result shows that this procedure would
take time proportional to |H | · |G|2 in the worst case, which is too expensive
from a database point of view.

Theorem 6. The size of the closure of G is O(|G|2), and this bound is tight.

For the upper bound, the result follows by an analysis of the rules. The most
important point is the propagation –when applicable– of the triples of the form
(x, a, y) through the transitive closure of the G(sp) graph by the usage of rule
2(b): it can be shown that this gives at most |G∅|×|Gsp| triples. For triples having
a fixed predicate in ρdf the quadratic bound is trivial. For the tightness, consider
the graph {(a1, sp, a2), . . . , (an, sp, an+1)} ∪ {(x1, a1, yn), . . . , (xn, an, yn)}. The
number of triples of the closure of this graph is 2n+1+

∑n
k=1 k that is quadratic

in n.
The following algorithm presents a much better procedure to check ground

entailment in this fragment.

Algorithm (Ground Entailment)
Input: G, triple (a, p, b)

1. IF p ∈ {dom, range} THEN check if (a, p, b) ∈ G.
2. IF p = sp, a 	= b, THEN check if there is a path from a to b in G(sp).
3. IF p = sc, a 	= b, THEN check if there is a path from a to b in G(sc).
4. IF p ∈ {sp, sc} and a = b, THEN check if (a, p, a) ∈ G else check all patterns

of triples in the upper part of rules 6 (for sp) and rule 7 (for sc).
5. IF p /∈ ρdf THEN check (a, p, b) ∈ G∅, if it is not

LET G(sp)∗ be the graph G(sp) with the following marks:
For each (a, v, b) ∈ G∅, if v ∈ G(sp) then mark it green.

IN Check in G(sp)∗ if there is a path from a vertex marked green to p
6. IF p = type THEN

LET G(sp)′ be the graph G(sp) with the following marks:
- For each triple (u, dom, v) ∈ Gdom, if u ∈ G(sp) mark the
vertex u with d(v).

- For each triple (a, e, y) ∈ G∅, if e ∈ G(sp), mark the
vertex e with a.
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LET G(sc)′ be the graph G(sc) with the following marks:
- For vertex u marked d(v) reachable from a vertex marked a in G(sp)′,
if v ∈ G(sc) mark it blue.

- For each (a, type, w) ∈ G, if w ∈ G(sc) mark it blue.
IN Check in G(sc)′ if there is a path from a blue node to b.
Repeat this point for range instead of dom.

dom

u

a

y
e

sp

type

b
sc

sc

G(sp)′

G(sc)′
w

v

a

d(v)

Fig. 2. Point 6 of the Ground Entailment Algorithm

Theorem 7. Let (a, b, c) be a ground triple. The algorithm above can be used to
test the entailment G |=ρdf (a, b, c) in time O(|G| log |G|).

Correctness and completeness of the algorithm follows from an inspection of
the rules. The algorithm uses the rules in a bottom-up fashion. There are some
subtleties in points 5 and 6. Point 5 follows from Lemma 2 and rule 2(a). The
construction of G(sp)∗ can be done in |G| log |G| steps: order G∅ and then while
traversing G(sp) do binary search on G∅. For point 6 (see Figure 2) the crucial
observation is that in G(sp)′, if there is a path from a vertex marked a to a
vertex u marked d(v), then G |= (a, u, y) for some y, and hence G |= (a, type, v)
using rule 4(a). Note that this checking takes time at most linear in |G|. From
here, it is easy to see that the checking in G(sc)′ will do the job.

Corollary 3. Let H be a ground graph. Deciding if G |=ρdf H can be done in
time O(|H | · |G| log |G|).

The following result shows that the above algorithm cannot be essentially im-
proved, in the sense that, any other algorithm for testing the ground entailment
G |=ρdf H will take time proportional to |H | · |G| log |G| in the worst case.

Theorem 8. The problem of testing G |=ρdf t takes time Ω(|G| log |G|).

The bound is obtained by coding the problem of determining whether two sets
are disjoint, which is a well known problem that needs Ω(n log n) comparisons in
the worst case [1]. The codification is as follows: Given the sets A = {a1, . . . , an}
and B = {b1, . . . , bn}, construct the RDF graph G = {(ai−1, sp, ai)}2≤i≤n ∪
{(x, bj , y)}1≤j≤n. Then, we have that G |= (x, an, y) iff A ∩ B 	= ∅.
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6 Conclusions

We presented a streamlined fragment of RDFS which includes all the vocabu-
lary that is relevant for describing data, avoiding vocabulary and semantics that
theoretically corresponds to the definition of the structure of the language. We
concentrated in studying the semantics, entailment, minimal proof systems, and
algorithmic properties of this relevant fragment of RDFS. Our results show a vi-
able proposal to lower the complexity of RDF data processing by using fragments
of RDFS.

In this paper we have concentrated primarily on the ground dimension of RDF.
Future work includes the refinement of our current results about the interplay
between blank nodes semantics and the ground part. We are also working in the
applications of our results to practical cases, as well as developing best practices
for logical design of RDF specification based on the previous considerations.
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A Appendix: RDFS Semantics

To easy the job of the reader, we reproduce here the definitions and axioms of
the normative semantics of RDF [15] consisting of a model theory and axiomatic
triples. The set rdfsV stands for the RDFS vocabulary.

Definition 6 (cf. [15,10]). The interpretation I is an RDFS model for an
RDF graph G, denoted by I |= G, iff I is an iterpretation over vocabulary
rdfsV ∪ universe(G) that satisfies the RDF/S axiomatic triples [15,10] and the
following semantic conditions:

1. Simple:
(a) there exists a function A : B → Res such that for each (s, p, o) ∈ G, Int(p) ∈

Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)), where IntA is the extension of
Int using A.

2. RDF:
(a) x ∈ Prop ⇔ (x, Int(prop)) ∈ Ext(Int(type))
(b) If l ∈ universe(G) is a typed XML literal with lexical form w, then Int(l)

is the XML literal value of w, Int(l) ∈ Lit, and (Int(l), Int(xmlLit)) ∈
Ext(Int(type)).

3. RDFS Classes:
(a) x ∈ Res ⇔ x ∈ CExt(Int(res))
(b) x ∈ Class ⇔ x ∈ CExt(Int(class))
(c) x ∈ Lit ⇔ x ∈ CExt(Int(literal))

4. RDFS Subproperty:
(a) Ext(Int(sp)) is transitive and reflexive over Prop
(b) if (x, y) ∈ Ext(Int(sp)) then x, y ∈ Prop and Ext(x) ⊆ Ext(y)

5. RDFS Subclass:
(a) Ext(Int(sc)) is transitive and reflexive over Class
(b) if (x, y) ∈ Ext(Int(sc)) then x, y ∈ Class and CExt(x) ⊆ CExt(y)

6. RDFS Typing:
(a) x ∈ CExt(y) ⇔ (x, y) ∈ Ext(Int(type))
(b) if (x, y) ∈ Ext(Int(dom)) and (u, v) ∈ Ext(x) then u ∈ CExt(y)
(c) if (x, y) ∈ Ext(Int(range)) and (u, v) ∈ Ext(x) then v ∈ CExt(y)
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7. RDFS Additionals:
(a) if x ∈ Class then (x, Int(res)) ∈ Ext(Int(sc)).
(b) if x ∈ CExt(Int(datatype)) then (x, Int(literal)) ∈ Ext(Int(sc))
(c) if x ∈ CExt(Int(contMP)) then (x, Int(member)) ∈ Ext(Int(sp))

Now, given two graphs G and H we say that G RDFS entails H and write
G |= H, iff every RDFS model of G is also an RDFS model of H.

Table 1. RDF/S vocabulary [15,10] with shortcuts in brackets. The first column shows
built-in classes, second and third show built-in properties.

rdfs:Resource [res] rdf:type [type] rdfs:isDefinedBy [isDefined]
rdf:Property [prop] rdfs:domain [dom] rdfs:comment [comment]
rdfs:Class [class] rdfs:range [range] rdfs:label [label]
rdfs:Literal [literal] rdfs:subClassOf [sc] rdf:value [value]
rdfs:Datatype [datatype] rdfs:subPropertyOf [sp] rdf:nil [nil]
rdf:XMLLiteral [xmlLit] rdf:subject [subj] rdf: 1 [ 1]
rdfs:Container [cont] rdf:predicate [pred] rdf: 2 [ 2]
rdf:Statement [stat] rdf:object [obj] . . .
rdf:List [list] rdfs:member [member] rdf: i [ i]
rdf:Alt [alt] rdf:first [first] . . .
rdf:Bag [bag] rdf:rest [rest]
rdf:Seq [seq] rdfs:seeAlso [seeAlso]
rdfs:ContainerMembershipProperty [contMP]
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