
Exploiting RDFS and OWL for Integrating

Heterogeneous, Large-Scale, Linked Data Corpora

Aidan Hogan

Supervisor: Dr. Axel Polleres

Internal Examiner: Prof. Stefan Decker

External Examiner: Prof. James A. Hendler

Dissertation submitted in pursuance of the degree of Doctor of Philosophy

Digital Enterprise Research Institute, Galway
National University of Ireland, Galway / Ollscoil na hÉireann, Gaillimh

April 11, 2011

Copyright c© Aidan Hogan, 2011

The research presented herein was supported by an IRCSET Postgraduate Scholarship and by Science Foundation

Ireland under Grant No. SFI/02/CE1/I131 (Lion) and Grant No. SFI/08/CE/I1380 (Lion-2).

“If you have an apple and I have an apple and we exchange these apples then you
and I will still each have one apple. But if you have an idea and I have an idea and
we exchange these ideas, then each of us will have two ideas.”

—George Bernard Shaw

Acknowledgements

First, thanks to the taxpayers for the pizza and (much needed) cigarettes;

...thanks to friends and family;

...thanks to the various students and staff of DERI;

...thanks to the URQ folk;

...thanks to people with whom I have worked closely, including Alex, Antoine, Jeff, Luigi and Piero;

...thanks to people with whom I have worked very closely, particularly Andreas and Jürgen;

...thanks to John and Stefan for the guidance;

...thanks to Jim for the patience and valuable time;

...and finally, a big thanks to Axel for everything.

i

Abstract

The Web contains a vast amount of information on an abundance of topics, much of which is encoded

as structured data indexed by local databases. However, these databases are rarely interconnected and

information reuse across sites is limited. Semantic Web standards offer a possible solution in the form

of an agreed-upon data model and set of syntaxes, as well as metalanguages for publishing schema-level

information, offering a highly-interoperable means of publishing and interlinking structured data on the

Web. Thanks to the Linked Data community, an unprecedented lode of such data has now been published

on the Web—by individuals, academia, communities, corporations and governmental organisations alike—on

a medley of often overlapping topics.

This new publishing paradigm has opened up a range of new and interesting research topics with respect to

how this emergent “Web of Data” can be harnessed and exploited by consumers. Indeed, although Semantic

Web standards theoretically enable a high level of interoperability, heterogeneity still poses a significant

obstacle when consuming this information: in particular, publishers may describe analogous information

using different terminology, or may assign different identifiers to the same referents. Consumers must also

overcome the classical challenges of processing Web data sourced from multitudinous and unvetted providers:

primarily, scalability and noise.

In this thesis, we look at tackling the problem of heterogeneity with respect to consuming large-scale cor-

pora of Linked Data aggregated from millions of sources on the Web. As such, we design bespoke algorithms—

in particular, based on the Semantic Web standards and traditional Information Retrieval techniques—which

leverage the declarative schemata (a.k.a. terminology) and various statistical measures to help smooth out

the heterogeneity of such Linked Data corpora in a scalable and robust manner. All of our methods are

distributed over a cluster of commodity hardware, which typically allows for enhancing performance and/or

scale by adding more machines.

We first present a distributed crawler for collecting a generic Linked Data corpus from millions of sources;

we perform an open crawl to acquire an evaluation corpus for our thesis, consisting of 1.118 billion facts of

information collected from 3.985 million individual documents hosted by 783 different domains. Thereafter,

we present our distributed algorithm for performing a links-based analysis of the data-sources (documents)

comprising the corpus, where the resultant ranks are used in subsequent chapters as an indication of the

importance and trustworthiness of the information they contain. Next, we look at custom techniques for

performing rule-based materialisation, leveraging RDFS and OWL semantics to infer new information, of-

ten using mappings—provided by the publishers themselves—to translate between different terminologies.

Thereafter, we present a formal framework for incorporating metainformation—relating to trust, provenance

and data-quality—into this inferencing procedure; in particular, we derive and track ranking values for facts

based on the sources they originate from, later using them to repair identified noise (logical inconsistencies)

in the data. Finally, we look at two methods for consolidating coreferent identifiers in the corpus, and we

present an approach for discovering and repairing incorrect coreference through analysis of inconsistencies.

Throughout the thesis, we empirically demonstrate our methods against our real-world Linked Data corpus,

and on a cluster of nine machines.

ii

Declaration

I declare that this thesis is composed by myself, that the work contained herein is my own except where

explicitly stated otherwise in the text, and that this work has not been submitted for any other degree or

professional qualification except as specified.

Aidan Hogan

April 11, 2011

iii

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.1.1 Incomplete Agreement on Assertional Identifiers . 4

1.1.2 Use of Analogous Terminologies . 4

1.2 Hypothesis . 5

1.3 Contribution and Thesis Structure . 7

1.4 Impact . 8

2 Background 10

2.1 The World Wide Web . 10

2.2 The Semantic Web . 12

2.2.1 Resource Description Framework . 12

2.2.2 RDF Schema . 16

2.2.3 Web Ontology Language . 17

2.3 RDF Web Publishing and Linked Data . 20

2.4 RDF Search Engines . 22

3 Notation and Core Concepts 24

3.1 RDF . 24

3.2 Turtle Syntax . 25

3.3 Linked Data Principles and Provenance . 25

3.4 Atoms and Rules . 26

3.5 Terminological Data: RDFS/OWL . 28

3.6 Distribution Framework . 29

4 Crawling, Corpus and Ranking 31

4.1 Crawler . 31

4.1.1 Breadth-first Crawling . 32

4.1.2 Incorporating Politeness . 32

4.1.3 On-disk Queue . 34

4.1.4 Multi-threading . 34

4.1.5 Crawling RDF/XML . 35

4.1.6 Distributed Approach . 37

4.1.7 Related Work . 38

4.1.8 Critical Discussion and Future Directions . 39

4.2 Evaluation Corpus . 40

4.2.1 Crawl Statistics . 40

4.2.2 Corpus Statistics . 42

iv

4.2.3 Related Work . 43

4.2.4 Critical Discussion and Future Directions . 46

4.3 Ranking . 47

4.3.1 Rationale and High-level Approach . 47

4.3.2 Creating and Ranking the Source Graph . 48

4.3.3 Distributed Ranking Implementation . 48

4.3.4 Ranking Evaluation and Results . 49

4.3.5 Related Work . 49

4.3.6 Critical Discussion and Future Directions . 50

5 Reasoning 51

5.1 Linked Data Reasoning: Overview . 53

5.1.1 Incomplete Reasoning: Rationale . 53

5.1.2 Rule-based Reasoning . 55

5.1.3 Forward Chaining . 57

5.1.4 OWL 2 RL/RDF Scalability . 57

5.2 Distinguishing Terminological Data . 59

5.2.1 Implementing T-split Inferencing . 66

5.3 Optimising the Assertional Program . 68

5.3.1 Merging Equivalent T-ground Rules . 68

5.3.2 Rule Index . 70

5.3.3 Rule Saturation . 71

5.3.4 Preliminary Performance Evaluation . 72

5.4 Towards Linked Data Reasoning . 74

5.4.1 “A-linear” OWL 2 RL/RDF . 75

5.4.2 Authoritative Reasoning . 77

5.4.3 Distributed Reasoning . 80

5.4.4 Linked Data Reasoning Evaluation . 81

5.5 Related Work . 89

5.5.1 Scalable/Distributed Reasoning . 89

5.5.2 Web Reasoning . 91

5.6 Critical Discussion and Future Directions . 92

6 Annotated Reasoning 94

6.1 Generalised Annotated Programs . 95

6.2 Use-case Annotations . 96

6.2.1 Blacklisting . 96

6.2.2 Authoritative Analysis . 96

6.2.3 Triple Ranks . 97

6.3 Formal Annotation Framework . 97

6.3.1 Annotation Domains . 97

6.3.2 (Specialised) Annotated Programs . 98

6.3.3 Least Fixpoint and Decidability . 98

6.3.4 Seeding Annotations . 101

6.3.5 T-split Annotated Programs . 102

6.3.6 Annotated Reasoning Tasks . 103

6.3.7 Constraints . 110

6.4 Annotated Linked Data Reasoning . 113

6.4.1 Ranking Triples: Implementation/Evaluation . 113

v

6.4.2 Reasoning: Implementation/Evaluation . 114

6.4.3 Repair: Implementation/Evaluation . 117

6.5 Related Work . 125

6.5.1 Annotated Reasoning . 125

6.5.2 Inconsistency Repair . 126

6.6 Critical Discussion and Future Directions . 127

7 Consolidation 129

7.1 OWL Equality Semantics . 132

7.2 Corpus: Naming Across Sources . 133

7.3 Base-line Consolidation . 135

7.3.1 High-level approach . 135

7.3.2 Distributed approach . 136

7.3.3 Performance Evaluation . 137

7.3.4 Results Evaluation . 137

7.4 Extended Reasoning Consolidation . 139

7.4.1 High-level approach . 140

7.4.2 Distributed approach . 150

7.4.3 Performance Evaluation . 151

7.4.4 Results Evaluation . 152

7.5 Statistical Concurrence Analysis (Synopsis) . 155

7.6 Entity Disambiguation . 156

7.6.1 High-level Approach . 156

7.6.2 Implementing Disambiguation . 161

7.6.3 Distributed Implementation . 162

7.6.4 Performance Evaluation . 162

7.6.5 Results Evaluation . 163

7.7 Related Work . 163

7.8 Critical Discussion and Future Directions . 167

8 Discussion and Conclusion 170

A Prefixes 201

B Rule Tables 203

B.1 OWL 2 RL/RDF Rules . 203

B.2 RDF(S) Rules . 208

B.3 pD* Rules . 211

C Ranking Algorithms 212

D Concurrence Analysis 216

D.1 High-level Approach . 216

D.1.1 Quantifying Concurrence . 217

D.1.2 Implementing Entity-concurrence Analysis . 223

D.2 Distributed Implementation . 225

D.3 Performance Evaluation . 226

D.4 Results Evaluation . 227

vi

Chapter 1

Introduction

“Getting information off the Internet is like taking a drink from a fire hydrant.”

—Mitchell Kapor

Telecommunication has inarguably come a long way since the days of smoke signals and carrier pigeons.

Today, one quarter of the world’s population is now connected by the Internet : a shared global networking

infrastructure enabling near-seamless communication across (most) geopolitical divides.1 Such unprece-

dented fluency in inter-communication and information dissemination—between businesses, governments,

academia, organisations and individuals—has had profound socio-economic impact in an exceptionally short

time-span. In particular, the advent of the World Wide Web [Berners-Lee and Fischetti, 1999] has enabled

public publishing and consumption of information on a unique scale: publishing on the Web is low-cost and

largely accessible, with the size of the potential audience limited only by demand for the content.

As a result, the Web consists of at least 41 billion unique documents [Lee et al., 2008], forming a

vast mosaic of information on a veritable plethora of topics. However, what’s a person to do with 41

billion documents? Humans not only need machines to store, transmit and display information, but also

to characterise, categorise, prioritise and generally organise information for their convenient consumption;

however, most of the 41 billion documents encode their information in human readable prose, the meaning

of which is largely inscrutable to machines. Despite this, search engines—such as the now ubiquitous Google

engine [Brin and Page, 1998]—service tens of billions of keyword queries per month, leveraging the content

and limited structure of the indexed documents (for example: title, hyperlink, etc.) and statistics derivable

from the corpus as a whole to identify and return a prioritised list of query-relevant documents.2 Such

engines act like a panoptic (but largely illiterate) librarian, pointing users to relevant reading material—

possibly several documents—from which the required information is most likely to be gleaned: the gleaning,

thereafter, is up to the user.

However, the library analogy is only representative of an antediluvian Web centred around static docu-

ments: recent advancements in related technologies have changed how we view and interact with the Web,

culminating in a flood of user-generated data. Dubbed Web 2.0 [O’Reilly, 2006], more flexible client/server

communication has lead to more interactive sites, eventually blurring the classical roles of publisher and

consumer: the casual Web user no longer just passively consumes information, but instead participates in a

more social Web [Breslin et al., 2009, § 3]—for example, generating rich meta-content (ratings, comments,

1See http://www.internetworldstats.com/stats.htm; retr. 2010/10/02.
2As Halevy et al. [2009] put forward, simple statistical models (such as n-gram analysis) applied over vast unstructured or

semi-structured corpora (as readily derivable from the Web) are often sufficient for machines to “emulate” an understanding of

the meaning of data and solve complex tasks without requiring formalised knowledge.

1

http://www.internetworldstats.com/stats.htm

2

shares, tags, bookmarks, links, etc.) while browsing. This has had two major side-effects.

Firstly, more and more structured content is appearing on the Web, with pages being dynamically

generated depending on a specific user request or browsing action: information is no longer stored away in

static documents, but instead stored in structured indices—typically relational databases—used to power

individual sites [Ghanem and Aref, 2004]. Thus the primary function of documents is no longer as containers

of information, but as interfaces for conveying or requesting information; as such, documents constitute the

façade of the current Web, with more and more rich content (instead) being stored in structured databases.

Secondly, user-generated content abides by a form of preferential attachment [Barabási and Albert,

1999]: the more user-generated content a given site attracts, the more users and user loyalty that site

will attract. Thus, content on the Web coalesces into archipelagos of information, where large sites house

massive corpora of user-generated content, but where remote sites can only intercommunicate or share

their data based on ad-hoc mappings or alignments. Indeed, the underlying data of many sites constitute

their competitive advantage: although free, low-volume access is inherently made available through the

defined public services, very few sites offer flexible or high-volume access to their underlying corpus. Thus,

for example, users find that their data are “locked in” by different sites, can only be interacted with in

accordance with that site’s functionality, and typically cannot be repurposed (e.g., imported into another

site with different functionality).

For many commercial sites, providing open access to their underlying corpus would encourage competitors

and redirect traffic to other interfaces over their data; such sites would clearly be reluctant to do so without

some alternative economic impetus. However, non-commercial sites—such as governmental, academic or

community-run sites—typically host data under liberal licenses, and commercial sites may make some subset

of their data available in order to attract users or traffic (e.g., by encouraging third-party applications over

the data which ultimately direct traffic back to the originating site).

Looking towards the future, a major question is thus: how can structured data be published on the Web

such that they can be accessed, parsed and interpreted in a standardised way (i.e., assuming a site had

the motivation to do so, how can they publish their underlying corpus in a manner which best facilitates

public reuse), and how can the structured data of different independent sites be interlinked in order to enable

post-hoc discovery of relevant information across the Web (e.g., how can two sites with overlapping subject

matter interlink their corpora in a meaningful way)?

The Semantic Web community [Berners-Lee, 1998b] is (sometimes indirectly) taking tentative steps

towards answering these questions; centring around the Resource Description Framework (RDF) [Manola

et al., 2004] for publishing data in a machine-readable format, the Semantic Web offers a standardised means

of representing information on the Web such that:

1. resources—anything with identity—can be named using Unique Resource Identifiers (URIs);

2. data about resources are encoded within a standard, flexible data-model using standard syntaxes and

thus are structurally uniform and can be parsed and handled through standard APIs and applications;

3. the meaning of data can be encoded using declarative schemata (or ontologies) represented in RDF,

whose semantics can be defined within the RDF Schema (RDFS) [Brickley and Guha, 2004] and Web

Ontology Language (OWL) [Hitzler et al., 2009] standards.

Semantic Web standards focus on interoperability across data sources, on both a syntax, data (assertional)

and schemata (terminological) level, where Uniform Resource Identifiers (URIs) [Berners-Lee et al., 2005]

offer a global naming scheme compatible with current Web technologies, RDF provides a standard struc-

tured data model for describing those named resources, and RDFS and OWL provide a standard means of

declaratively publishing schema-level information used to describe those resources.

2

1.1. Problem Statement 3

As such, the Semantic Web community has addressed many technical and research challenges (sometimes)

regarding the dissemination of open, structured data on the Web. As a means of promoting grass-roots

adoption of Semantic Web standards, the Linked Data community [Bizer et al., 2009a] have advocated a set

of best principles for collaboratively publishing and interlinking structured data over the Web, as follows:

1. use URIs as names for things;

2. use HTTP URIs so those names can be looked up (aka. dereferencing);

3. return useful information upon lookup of those URIs (esp. RDF);

4. include links by using URIs which dereference to remote documents.

—paraphrasing Berners-Lee [2006]

The result can be conceptualised as a Web of Data, where URIs identify things, dereferencing URIs (by

means of the Hypertext Transfer Protocol [Fielding et al., 1999]) returns structured (RDF) information

about those things, and that structured information is inherently composed of related URIs which constitute

links to other sources enabling further discovery.

This vision is currently being realised: over the past few years, various Web publishers have turned to

RDF and Linked Data principles as a means of disseminating information in a machine-interpretable way,

resulting in a burgeoning Web of Data which now includes interlinked content provided by corporate bodies

(e.g., BBC [Kobilarov et al., 2009], BestBuy [Hepp, 2009], New York Times3, Freebase4), community-driven

efforts (e.g., WikipediA/DBpedia5 [Bizer et al., 2009b]), social networking sites (e.g., hi56, LiveJournal7),

biomedical datasets (e.g., DrugBank8, Linked Clinical Trials9), governmental entities (e.g., data.gov.uk,

data.gov), academia (e.g., DBLP10, UniProt11), as well as some esoteric corpora (e.g., Poképédia12, Linked

Open Numbers13 [Vrandeč́ıc et al., 2010]). See http://lod-cloud.net (retr. 15/10/2010) for Cyganiak and

Jentzsch’s Linked Open Data cloud diagram which illustrates the datasets comprising the current (and past)

Web of Data.

As such, there now exists a rich vein of heterogeneous, structured and interlinked data on the Web. Given

the success of current warehousing approaches for largely unstructured Web data—such as the aforemen-

tioned Google search engine—one might question what is further possible for structured data. Taking this

cue, herein we discuss algorithms and analyses which exploit the inherent semantics and statistics of RDF

data to perform fully-automatic, scalable and distributed alignment of Linked Data exports provided by

multitudinous, independent publishers, creating a more coherent corpus such that can be exploited by—in

particular—emerging Linked Data warehousing systems.

1.1 Problem Statement

As we have discussed, Semantic Web standards aim at providing the common substrate needed for publishing

highly-interoperable data on the Web, founded upon the RDF data-model. Subsequently, Linked Data

principles provide an agreed-upon method for publishing RDF on the Web where dereferencable URIs offer a

3http://data.nytimes.com/; retr. 15/10/2010
4http://www.freebase.com/; retr. 15/10/2010
5http://dbpedia.org/; retr. 15/10/2010
6http://api.hi5.com/; retr. 15/10/2010
7http://livejournal.com; retr. 15/10/2010
8http://www.drugbank.ca/; retr. 15/10/2010
9http://linkedct.org/; retr. 15/10/2010

10http://www4.wiwiss.fu-berlin.de/dblp/; retr. 15/10/2010
11http://www.uniprot.org/; retr. 15/10/2010
12http://www.pokepedia.net/; retr. 15/10/2010
13http://km.aifb.kit.edu/projects/numbers/; retr. 15/10/2010

3

http://lod-cloud.net
http://data.nytimes.com/
http://www.freebase.com/
http://dbpedia.org/
http://api.hi5.com/
http://livejournal.com
http://www.drugbank.ca/
http://linkedct.org/
http://www4.wiwiss.fu-berlin.de/dblp/
http://www.uniprot.org/
http://www.pokepedia.net/
http://km.aifb.kit.edu/projects/numbers/

1.1. Problem Statement 4

simple means of locating structured data about a given resource, which contain links for discovery of further

data.

To enable interoperability and subsequent data integration, Linked Data literature encourages reuse

of URIs—particularly those referential to classes and properties (schema-level terminology)—across data

sources: in the ideal case, a Linked Data consumer can perform a simple (RDF-)merge of datasets, where

consistent naming ensures that all available data about the same resource can be aligned across all sources,

and where consistent use of terminology ensures that resources are described uniformly and thus can be

accessed and queried uniformly. Although this ideal is achievable in part by community agreement and self-

organising phenomena such as preferential attachment [Barabási and Albert, 1999]—whereby, for example,

the most popular classes and properties would become the de-facto consensus and thus more widely used—

given the ad-hoc decentralised nature of the Web, complete and appropriate agreement upon the broad

spectrum of identifiers and terminology needed to fully realise the Web of Data is probably infeasible.

1.1.1 Incomplete Agreement on Assertional Identifiers

Complete agreement upon a single URI for each possible resource of interest is unrealistic, and would require

either a centralised naming registry to corroborate name proposals, or agreement upon some universal bijec-

tive naming scheme compatible with any arbitrary resource. Although partial (and significant) agreement

on ad-hoc URIs is more feasible, there is also an inherent conflict between encouraging reuse of identifiers

and making those identifiers dereferenceable: a publisher reusing an external URI to identify some thing

waives the possibility of that URI dereferencing to her local contribution.

Thus, although in theory Linked Data can be arbitrarily merged and heterogeneous data about a common

resource will coalesce around a common identifier, in practice, common identifiers are not always feasible, or

possibly even desirable. Consequently, we propose that Linked Data needs some means of (i) resolving coref-

erent identifiers which signify the same thing; (ii) canonicalising coreferent identifiers such that consumers

can access and process a heterogeneous corpus as if (more) complete agreement on identifiers was present.

Without this, the information about all resources in the Linked Data corpus will be fractured across naming

schemes, and a fundamental goal of the Web of Data—to attenuate the traditional barriers between data

publishers—will be compromised.

1.1.2 Use of Analogous Terminologies

Similarly, Linked Data publishers may use different but analogous terminology to describe their data: com-

peting vocabularies may offer different levels of granularity or expressivity more suitable to a given publisher’s

needs, may be popular at different times or within different communities, etc. Publishers may not only choose

different vocabularies, but may also choose alternate terms within a given vocabulary to model analogous

information; for example, vocabularies may offer pairs of inverse properties—e.g., foaf:made/foaf:maker—

which poses the publisher with two options for stating the same information (and where stating both could

be considered redundant). Further still, publishers may “cherry-pick” vocabularies, choosing a heterogeneous

“bag of terms” to describe their data [Bizer et al., 2008].

This becomes a significant obstacle for applications consuming a sufficiently heterogeneous corpus: for

example, queries posed against the data must emulate the various terminological permutations possible to

achieve (more) complete answers—e.g., in a simple case, formulate a disjunctive (sub-)query for triples using

either of the foaf:made/foaf:maker properties. Consequently, we propose that Linked Data needs some

4

1.2. Hypothesis 5

means of translating between terminologies to enable more complete query-answering (in the general case).14

1.2 Hypothesis

There has, of course, been recognition of the above stated problems within the Linked Data community;

publisher-side “solutions” involving RDFS and OWL semantics have been proposed. Firstly, in [Bizer et al.,

2008, § 6]—a tutorial positioned as the “definitive introductory resource” to Linked Data on the prominent

linkeddata.org site—Bizer et al. state that owl:sameAs should be used to interlink coreferent resources

in remote datasets:

“It is common practice to use the owl:sameAs property for stating that another data source also

provides information about a specific non-information resource.”

—Bizer et al. [2008, § 6]

Thus, the owl:sameAs property can be used to relate locally defined (and ideally dereferenceable) identifiers

to external legacy identifiers which signify the same thing. This approach offers two particular advantages:

(i) publishers can define an ad-hoc local naming scheme for their resources—thus reducing the initial inertia

for Linked Data publishing—and thereafter, incrementally provide mappings to external coreferent identifiers

as desirable; (ii) multiple dereferenceable identifiers can implicitly provide alternative sources of information

for a given resource, useful for discovery.

Furthermore, OWL provides the class owl:InverseFunctionalProperty: properties contained within

this class have values unique to a given resource—loosely, these can be thought of as key values where two

resources sharing identical values for some such property are, by OWL semantics, coreferent. Along these

lines, inverse-functional properties can be used in conjunction with existing identification schemes—such as

ISBNs for books, EAN·UCC-13 or MPN for products, MAC addresses for network-enabled devices, etc.—to

bootstrap identity on the Web of Data within certain domains; such identification values can be encoded

as simple datatype strings, thus bypassing the requirement for bespoke agreement or mappings between

URIs. Also, “information resources” with indigenous URIs can be used for (indirectly) identifying related

resources, where examples include personal email-addresses, personal homepages, etc. Although Linked Data

literature has not explicitly endorsed or encouraged such usage, prominent grass-roots efforts publishing

RDF on the Web rely (or have relied) on inverse-functional properties for maintaining consistent identity.15

Similar other constructs are available in OWL for resolving coreference, such as owl:FunctionalProperty,

owl:cardinality, and owl:hasKey (the latter was introduced in the updated OWL 2 standard). Note that

these OWL constructs require agreement on terminology—for example, agreement on a given property term

to denote the ISBN attribute—without which, coreference cannot be established.

As motivated before, we need some means of aligning the terminologies of different datasets. Along these

lines, the Linked Data literature offers some guidelines on best practices with respect to vocabularies, as

follows:

1. Do not define new vocabularies from scratch [...] complement existing vocabularies with addi-

14In particular, we wish to leverage existing mappings between internal and external terms, often included in the published

vocabularies themselves; we do not address the means of generating mappings, but rather the means of using them. In our

opinion, techniques from fields such as ontology matching [Jérôme Euzenat, 2007] have yet to prove themselves applicable for

consuming Linked Data—particularly large, heterogeneous corpora—and we feel that such techniques have greater potential as

a publisher-side technology for supervised discovery and maintenance of vocabulary mappings.
15For example, in the Friend Of A Friend (FOAF) community—a vocabulary and associated project dedicated to dissemi-

nating personal profiles in RDF—a technique called smushing was proposed to leverage such properties for identity, serving as

an early precursor to methods described herein (see http://wiki.foaf-project.org/w/Smushing; retr. 2011/01/22).

5

http://wiki.foaf-project.org/w/Smushing

1.2. Hypothesis 6

tional terms [...].

2. Provide for both humans and machines. [...] Don’t forget to add prose, e.g. rdfs:comments for

each term invented. Always provide a label for each term using the rdfs:label property.

3. Make term URIs dereferenceable. [...]

4. Make use of other people’s terms. [...] Common properties for providing such mappings are

rdfs:subClassOf or rdfs:subPropertyOf.

5. State all important information explicitly. For example, state all ranges and domains explicitly.

[...] Don’t leave important information out!

6. Do not create over-constrained, brittle models; leave some flexibility for growth. For

instance, if you use full-featured OWL to define your vocabulary, you might state things that lead to

unintended consequences and inconsistencies when somebody else references your term in a different

vocabulary definition. Therefore, unless you know exactly what you are doing, use RDF-Schema to

define vocabularies.

—excerpts verbatim from Bizer et al. [2008, § 6]

Thus, by item (1) and (4), we would expect terminological vocabularies to reuse and provide mappings to

external vocabularies. We would also expect some lightweight semantics to be defined by point (5), although

we note that “full-fledged” OWL—and in fact OWL itself—is discouraged for “inexperienced publishers”

(our words) in point (6).

Thus, our hypothesis can be summarised as follows:

Given a heterogeneous Linked Data corpus, the RDFS and OWL semantics of

the vocabularies it contains can be (partially) leveraged in a domain-agnostic, scal-

able, Web-tolerant manner for the purposes of (i) automatically translating between

(possibly remote) terminologies; and (ii) automatically resolving (possibly remote)

coreferent assertional identifiers.

There are three requirements implicit in the above hypothesis, the combination of which formulate the

novelty of this thesis:16

• domain-agnosticism: the methods presented herein rely on a-priori knowledge derived from the

Semantic Web standards themselves (RDF(S)/OWL (2)) and the core Linked Data principles—prior

domain- or vocabulary-specific knowledge could be considered biased, inflexible, infeasible to create/-

maintain, etc., and thus is not required by our methods;

• scalability: the methods presented herein aim at near-linear scale (more accurately, O(n log n) lin-

earithmic scale), where we wish to apply our methods over Linked Data corpora collected from millions

of sources;

• Web-tolerance: the methods presented herein are designed to operate over arbitrarily sourced Linked

Data, which requires tolerance to noisy, conflicting, inconsistent, and generally impudent contributions

from unknown publishers.

16More explicitly, our goal herein is to investigate the degree to which—and the respective means by which—the two aims

of the hypothesis can be achieved within the bounds of the three requirements in the hypothesis.

6

1.3. Contribution and Thesis Structure 7

Although the above requirements have been analysed in isolation by related works in the literature—which

will be discussed as pertinent—the combination of all three have received little attention, and we propose

that the above requirements capture the realistic scenario faced by consumers of large-scale arbitrary Linked

Data corpora (e.g., Linked Data warehouses).

1.3 Contribution and Thesis Structure

This thesis aims to demonstrate potential use-cases for RDFS/OWL semantics found within Linked Data,

with focus on scale and Web-tolerance.

With respect to domain-agnosticism, our methods do not require any input other than some Linked Data

corpus and knowledge about HTTP redirects encountered during acquisition (used for tracking dereference-

ability).

With respect to scale, we design, implement and evaluate distributed algorithms which can be applied

over a cluster of commodity hardware (as commonly deployed by current warehousing systems) and which

aim to provide horizontal scaling : adding more machines increases the total amount of data that can be

processed (increases scale), and/or decreases the total execution time for similar scale (increases efficiency).

We also focus on lightweight algorithms implementable by means of simple sorts and file-scans. Thus, for

reasons of scalability/computational feasibility, some of our methods are deliberately incomplete, and do not

exploit all of the possible RDFS/OWL semantics.

With respect to Web-tolerance, we propose some complementary techniques which incorporate a notion

of provenance—the source of data—to curtail the effects of unwanted third-party contributions. Given the

possibility of noisy or incorrect data, we also incorporate algorithms which cross-check the results of our

methods, and attempt to identify, diagnose, and repair problems arising from application thereof.

We thus begin by describing a distributed method for crawling Linked Data, which we use for deriving

a test-bed corpus—this corpus contains 1.118 billion Linked Data statements crawled from 3.985 million

RDF/XML sources and is used throughout the rest of the thesis for evaluation. We also describe a distributed

method for ranking Linked Data documents, which uses a PageRank [Page et al., 1998] inspired links-based

analysis to assign the sources comprising the corpus a score reflecting their (Eigenvector) centrality—these

ranking score are used in later chapters for analysing the importance of pertinent RDFS and OWL primitives

on the Web of Data, as well as being used to assign ranks to individual triples.

Thereafter, we propose our method for performing reasoning. We first propose a scalable, distributed

implementation which performs incomplete materialisation—asserting translations of the data into different

combinations of terminology—with respect to a subset of OWL 2 RL/RDF rules. We provide various

formal results relating to completeness, and describe and evaluate a number of optimisations for improving

efficiency. We then propose a method for performing authoritative reasoning, which tracks the provenance of

terminological data during reasoning and ignores unverifiable RDFS/OWL axioms. Additionally, we present

a survey of the use of different terminological axioms in our corpus, giving insights into the most commonly

used RDFS and OWL primitives on the Web of Data.

We then extend upon the given reasoning approach using an annotation framework, whereby triples can

be annotated with additional meta-information which can be tracked and transformed during the reasoning

process. We use this annotation framework to track the above notions of authority during reasoning. Taking

the ranks of documents as input, we propagate ranking scores to individual triples, indicating some level of

(loosely) “trust” assigned to a given triple. Based on the ranks of the input triples, the annotated reasoning

framework then produces a rank value for each triple inferred. We then apply inconsistency-detection over

the merge of the input and materialised corpora to diagnose suspected publishing errors and unintended

reasoning consequences; we repair the diagnosed errors using the rank measures and derive a parsimonious

7

1.4. Impact 8

repair which defeats the “marginal-view”.

We then proceed by tackling the resolution of coreferent assertional identifiers in the corpus.17 We

begin with a baseline approach which operates over explicit owl:sameAs relations, and then subsequently

extend the approach to consider a more complete RDFS/OWL semantics—for the latter, we reuse the above

reasoning results to pre-align terminologies and thus derive more complete coreference information. We

use this coreference information to consolidate the corpus: from each set of coreferent identifiers, we select

a “canonical identifier” to identify the consolidated resource, and rewrite the data accordingly. We also

describe a statistical method for deriving concurrence measures between resources we deem to be “similar”

based on the number and nature of inlinks and outlinks they share. Finally, we check the consolidated data

for inconsistencies—aiming to diagnose incorrect coreferences/consolidation—and sketch a process for repair

based on (i) how the coreferences are derived, and (ii) the concurrence measure observed between the original

resources involved.

Throughout, we provide detailed performance evaluation for application of our methods over a cluster of

commodity hardware, and discuss the fecundity of our algorithms with respect to our Linked Data corpus.

The remainder of the thesis is structured as follows:

• Chapter 2 provides background on the World Wide Web, Semantic Web standards, and Linked Data

publishing;

• Chapter 3 introduces some core concepts and notation used throughout the rest of the thesis;

• Chapter 4 describes our distributed Linked Data crawler, which we use to derive a test-bed corpus for

evaluation of our work; we also describe our distributed ranking implementation for applying links-

based analysis over the documents comprising the corpus;

• Chapter 5 details our approach to reasoning over Linked Data;

• Chapter 6 continues by introducing our annotation framework, including a lightweight method for

repairing inconsistencies;

• Chapter 7 describes our method for resolving coreferences and thereafter consolidating Linked Data,

as well as our method for detecting and revising any coreferences which instigate inconsistencies;

• Chapter 8 provides critical discussion of our work, suggestions for future directions, and concludes.

1.4 Impact

Parts of the work presented herein have been published in various international workshops, conferences, as

well as a journal article, which we now briefly introduce in chronological order.

• we presented preliminary results for consolidating RDF Web data at the I3 Workshop [Hogan et al.,

2007a], which serves as a precursor to work presented in Chapter 7;

• we presented preliminary reasoning results at the Asian Semantic Web Conference [Hogan et al., 2008],

which serves as a precursor to the approach presented in Chapter 5;

• we published an extension of the above paper (with new algorithms, formalisms and extended experi-

17Note that herein, we deliberately decouple reasoning with respect to terminology, and coreference analysis of assertional

identifiers; although OWL reasoning typically deals with both, we view them as intuitively distinct challenges which require

different approaches, particularly for the Linked Data use-case.

8

1.4. Impact 9

mental results) in the International Journal of Semantic Web and Information Systems [Hogan et al.,

2009a];

• we presented an extension of our reasoning approach to incorporate OWL 2 RL/RDF rules at the Web

Rules and Reasoning conference [Hogan and Decker, 2009];

• we presented a proposal for a statistical method of deriving coreference at the New Forms of Reasoning

for the Semantic Web workshop, co-located with ESWC [Hogan et al., 2010d]—this work forms the

basis for the concurrence analysis presented in Chapter 7 (and Appendix D);

• more recently, regarding our reasoning algorithms, we published general completeness results and

optimisations, distribution strategies, and new experimental performance analysis at the International

Semantic Web Conference [Hogan et al., 2010c]—these results are presented in Chapter 5.

Much of the work presented herein has recently been submitted for review; in particular, we have sub-

mitted three papers for review to the Journal of Web Semantics. The first describes our work to-date on the

Semantic Web Search Engine (SWSE)—a Linked Data warehouse which provides much of the inspiration

for this thesis, and in which we detail our distribution architecture and crawling framework; we also discuss

consolidation of Linked Data using explicit owl:sameAs and integration of the reasoning approach presented

herein into the SWSE architecture [Hogan et al., 2010b]. The second submission relates to the annotation

framework as presented in Chapter 6 [Bonatti et al., 2011]. The third submission relates to the results of

our work on coreference, consolidation, etc., as presented in Chapter 7 [Hogan et al., 2010e].

Besides the above papers, we have also been involved in numerous other published works which have

provided much inspiration for this thesis. Highlights include a paper presented at the Scalable Semantic

Web Knowledge Base Systems workshop on links-based ranking of RDF Web data which integrates links

between the source- and data-level graphs [Hogan et al., 2006]; an early overview of the SWSE system

published in the demo proceedings of the World Wide Web conference [Hogan et al., 2007b]; our paper

describing YARS2—a highly scalable, distributed quad-store and SPARQL engine—which we presented at

the International Semantic Web Conference in 2007 [Harth et al., 2007]; a paper addressing the quality of

RDF Web data which we presented at the Linked Data on the Web workshop, co-located with WWW [Hogan

et al., 2010a]; and a position paper in the inaugural issue of the new Semantic Web Journal discussing future

directions we feel to be important for Semantic Web research [Polleres et al., 2010].

Many of the above papers have been cited numerous times within the research community; e.g., see [Oren

et al., 2009a; Bizer et al., 2009a; Cheng and Qu, 2009; Urbani et al., 2009; Weaver and Hendler, 2009; Franz

et al., 2009; Neumann and Weikum, 2010; Urbani et al., 2010; Hitzler and van Harmelen, 2010] for some

recent citations.

As previously mentioned, the baseline reasoning and consolidation approaches have been integrated into

the SWSE engine, with a public prototype available at http://swse.deri.org/.

9

http://swse.deri.org/

Chapter 2

Background

“Knowledge of what is does not open the door directly to what should be.”

—Albert Einstein

2.1 The World Wide Web

The World Wide Web (or simply the Web) is a global system of interlinked documents accessible via the

Internet. Remotely stored documents are furnished with a globally unique address—a Uniform Resource

Locator (URL)—that encodes the location from which (and, to a certain extent, the means by which) that

document can be retrieved across the Internet. Traditionally, these documents consist of hypertext [Nelson,

1965]—specified by means of the HyperText Markup Langauge (HTML)—which primarily contains formatted

natural language, digital images, and other rendering instructions for the client’s browser application: a tool

for retrieving and displaying remote Web documents. Importantly, documents can hyperlink to other related

documents, embedding the URLs of target documents into the body of text, allowing users to browse between

related documents.

The World Wide Web arose from seminal work by Tim Berners-Lee while an employee with CERN in

Geneva, Switzerland. In the early 80s, Berners-Lee began work on a hypertext documentation engine called

ENQUIRE [Berners-Lee, 1980], which was a functional predecessor to the World Wide Web;1 Berners-Lee was

responding to the complex information and communication needs presented by the technical, collaborative

enviroment of CERN [Berners-Lee, 1993]. The ENQUIRE system centred around “cards” as information re-

sources about “nodes”, which could refer to a person, a software module, etc., and which could be interlinked

using a selection of relations, such as made, includes, uses, describes.

However—and although Berners-Lee recognised the potential of such a tool for collaborative information

tasks [Berners-Lee, 1993]—the ENQUIRE system was limited to a local file-system, and was not naturally

suited to such a task: besides the lack of a physical communication layer, the ENQUIRE system allowed for

open editing and required heavy co-ordination to keep information up-to-date and cross-linkage consistent.

In order to provide a more open, collaborative tool, Berners-Lee started a new project called the World Wide

Web:

“I wanted [ENQUIRE] to scale so that if two people started to use it independently, and later

1The ENQUIRE system itself has roots in other works such as Bush’s hypothetical Memex [Bush, 1945], Engelbart’s H-

LAM/T system [Engelbart, 1962] and its successor NLS [Engelbart, 1968], and Nelson’s work on hypertext and Xanadu [Nel-

son, 1965]; it’s perhaps worth noting that Berners-Lee does not cite these works as direct influences on ENQUIRE or the

Web [Berners-Lee, 1993].

10

2.1. The World Wide Web 11

started to work together, they could start linking together their information without making any

other changes. This was the concept of the Web.”

—Berners-Lee [1993]

By late 1990, Berners-Lee had developed initial versions of the technologies underpinning today’s Web:

the HyperText Markup Language (HTML) used for encoding document formatting and layout, the Hy-

perText Trasfer Protocol (HTTP) for client/server communication and transmission of data—particularly

HTML—over the Internet, the first Web client software (a “browser” called WorldWideWeb), and software

to run the first Web server.

The first application of the Web was to make a browsable version of the CERN phone-book accessible to

all employees’ terminals; subsequently, the technology was adopted for organising the library mainframe of

the Stanford Linear Accelerator Center, and thereafter, adoption of the Web grew amongst the High Energy

Physics community [Berners-Lee, 1993]. Eventually, graphical Web browsers for various platforms were

developed; a seminal browser released for the Windows Operating System, called Mosaic, quickly became

popular due to its ease of installation and intuitive graphical interface. Fighting off some competition from

the more established but more rigidly structured Gopher protocol [Anklesaria et al., 1993], the Web became

more and more mainstream.

With the advent and rapid adoption of server-side scripting languages, new technologies for creating dy-

namic and interactive content quickly became widespread in the next years: the Common Gateway Interface

standard, and later dedicated languages such as PHP Hypertext Preprocessor (PHP), Active Server Pages

(ASP) and JavaServer Pages (JSP), enabled developers to provide more and more dynamic content through

their server. Relational databases became increasingly popular to store structured information relating to

the sites’ content; a popular combination—dubbed “LAMP” and still in widespread use—combines the non-

commercial Linux operating system, the Apache HTTP Server, the MySQL database management system,

and one or more of the PHP/Perl/Python scripting languages.

Later advancements in client-side software saw website functionality begin to emulate that of desktop

applications: key enabling technologies included client-side Javascript used to manipulate retrieved docu-

ments and information, Macromedia/Adobe Flash for incorporating multimedia (videos, animations, and

other interactive artefacts) into webpages, Asynchronous JavaScript and XML (AJAX) enabling flexible

asynchronous communication between client and server whilst the former interacts with a given page, and

finally new Web browsers with built-in support of these burgeoning technologies.

As discussed at the outset, these technologies (amongst others) granted users much more participation in

sites, posting comments, ratings or even primary content, leading to websites accumulating massive amounts

of user-generated content. Various other publishing/communication paradigms also became common, in-

cluding blogging : published entries listed in reverse-chronological order; micro-blogging : a simple means of

broadcasting short messages to interested parties; and wikis: flexible, collaboratively editable pages. Other

media further blurred the lines between publishing and communication; social networking sites, such as the

prominent Facebook and MySpace services, allow friends to communicate and share content, but also to

publish these contributions for a select audience to view.

Many sites—such as the aforementioned social networking sites, video hosting site YouTube, the Internet

Movie Database (IMDb), the collaborative encyclopaedia WIKIPEDIA—have become hugely popular as a

service to submit, exchange, curate, and interact with large corpora of user-generated content, typically in

a highly collaborative and social environment.

This brings us to the Web we know today: a highly dynamic, highly flexible platform for hosting, pub-

lishing, adapting, submitting, interchanging, curating, editing and communicating various types of content,

where many sites boast large corpora of rich user-generated data—typically stored in relational databases—

11

2.2. The Semantic Web 12

but where the content of different sites is primarily interconnected by generic hyperlinks.

2.2 The Semantic Web

The Web has inarguably been tremendously successful, and begs the question: what’s next?

To begin to meaningfully answer this question, one has to look at the shortcomings of the current

Web; along these lines, consider researching the question: Which five universities have the highest number

of living alumni who have been appointed or elected into the United States Congress (Senate or House of

Representatives)? One could hope that: (i) someone has previously performed this task and published their

results, or (ii) a domain-specific site has the data and the functionality required to answer this query directly,

or (iii) a domain-specific site has the data available for download in a structured format processable off-line;

however, clearly these solutions do not extend to the general case.2

Assuming the above solutions don’t apply—and from the user’s experience, she knows that the data are

undoubtedly on the Web—the task will likely require a large manual effort. Firstly, she may have to cross-

reference published lists of university alumni, senators and representatives—likely from different sources—

which should be easy enough to locate. She’ll also have to find a reliable source of information about deaths,

possibly from available news reports or online biographies. The resulting data may be unstructured or in

heterogeneous formats: the user requires data in some consistent structured form as she wants to use some

local software to perform the arduous cross-referencing necessary for the task, and so will have to apply some

screen-scraping or other data extraction techniques to get what she needs. Once the data are in a computer-

processable state, the user will quickly run into problems with peoples names: titles may not match across

sources, abbreviations may be used, different people may share the same name, etc.

One can of course imagine variations on the above theme: original research which requires various levels of

cross-referencing of various Web documents. Such tasks require: (i) structured data to be made available by

the respective sources such that they can be subsequently processed (either client or server side) by machine;

(ii) some means of resolving the identity of resources involved such that consistent cross-referencing can be

performed.

Acknowledging such requirements, Berners-Lee [1998b] proposed the Semantic Web as a variation—or

perhaps more realistically, an augmentation—of the current Web such that it is more amenable to machine-

processing, and such that software agents can accomplish many of the tasks users must currently perform

manually.

2.2.1 Resource Description Framework

The first major step towards realising this machine-processable Web came in early 1999 when the initial

Resource Description Framework (RDF) became a W3C Recommendation [Lassila and Swick, 1999]. RDF

provides a standardised means for expressing information such that it can be exchanged between RDF-aware

agents without loss of meaning [Manola et al., 2004].

Notably, RDF is (implicitly) based on two major premises:

1. the Open World Assumption (OWA), which assumes that anything not known to be true is unknown,

and not necessarily false as would be assumed in closed systems;

2. no Unique Name Assumption (UNA), which means that RDF does not assume that a name (in

2We note that Richard MacManus has defined a similar litmus test for the Semantic Web called “The Modigliani Test”,

whereby a lay user can get answers (in a structured format) to the question “tell me the locations of all the original paintings of

Modigliani”—a moderately obscure artist from the early 20th century; see http://www.readwriteweb.com/archives/the_modigliani_

test_semantic_web_tipping_point.php (retr. 2010/01/22).

12

http://www.readwriteweb.com/archives/the_modigliani_test_semantic_web_tipping_point.php
http://www.readwriteweb.com/archives/the_modigliani_test_semantic_web_tipping_point.php

2.2. The Semantic Web 13

particular, a URI) signifies something unique—more precisely, the mapping from names to things they

identify is not assumed to be injective.

The standards built on top of RDF also (typically3) hold true to these premises. Given that RDF is intended

for deployment on the Web, the OWA necessarily assumes that data are naturally incomplete, and the lack

of UNA allows publishers to potentially identify the same thing using different identifiers, thus avoiding the

need for a centralised naming service or some such.

Thereafter, RDF allows for describing resources—anything with discernible identity [Manola et al.,

2004]—as follows:

1. resources are optionally defined to be members of classes, which are referenceable collections of

resources—typically sharing some intuitive commonality—such that classes can themselves be described

as resources;

2. resources are defined to have values for named properties; properties can themselves be described as

resources, and values can be either:

• a literal value representing some character-string, which can be optionally defined with either:

– a language tag—for example, en-IE—denoting the language a prose-text value is written in;

or

– a named datatype—for example, a date-time datatype—which indicates a predefined primitive

type with an associated syntax, means of parsing, and value interpretation;

• a resource, indicating a directed, named relationship between the two resources.

RDF data of the above form can be specified by means of triples, which are tuples of the form:

(subject, predicate, object)

which, as aforementioned, can be used to designate classes to resources:

(Fred, type, Employee)

to define literal-valued attributes of resources:

(Fred, age, "56"^̂ xsd:int)

and/or to define directed, named relationships between resources:

(Fred, technicianFor, AcmeInc)

An important part of RDF is naming and consistency; for example, the character-string Fred is clearly not

an ideal Web-scope identifier. User-defined resources (and by extension, classes, properties and datatypes)

are thus optionally named using a URI; unnamed resources are represented as blank-nodes.4 (Henceforth, we

use Compact URI (CURIE) names [Birbeck and McCarron, 2009] of the form prefix:reference to denote

URIs, as common in many RDF syntaxes; for example, given a prefix ex: which provides a shortcut for the

3Arguably, the SPARQL standard for querying RDF contains features which appear to have a Closed World Assumption

(e.g., negation-as-failure is expressible using a combination of OPTIONAL and !BOUND SPARQL clauses) and a Unique Name

Assumption (e.g., equals comparisons in FILTER expressions). The effects of the Open World Assumption and the lack of a

Unique Name Assumption are most overt in OWL.
4A certain reading of RDF could view literals as resources, in which case they “identify”—on the level of RDF—their own

syntactic form, including the optional language tag and datatype [Klyne and Carroll, 2004]. With inclusion of some datatype-

entailment regime, they “identify” some datatype value.

13

2.2. The Semantic Web 14

URI http://example.com/ns/, then ex:Fred denotes http://example.com/ns/Fred. Note that we give a

full list of prefixes used throughout this thesis in Appendix A.)

If required, language tags are denoted by simple strings and should be defined in accordance with RFC

3066 [Alvestrand, 2001]. Optional datatypes are inherited from the existing XML Schema standard [Biron

and Malhotra, 2004], which defines a set of hierarchical datatypes, associated syntaxes and mapping from

the lexical space (i.e., string syntax) to the value space (i.e., interpretable value); RDF defines one additional

datatype (rdf:XMLLiteral), which indicates a well-formed XML literal.

Additionally, the RDF standard provides a core set of terms useful for describing resources, which we

now briefly introduce.

The most prominent RDF term is rdf:type, used for stating that a resource is a member of a given

class:

(ex:Fred, rdf:type, ex:Employee)

(This is the same as the previous example, but using illustrative CURIEs as names.)

RDF also defines a (meta-)class rdf:Property as the class of all properties:

(ex:age, rdf:type, rdf:Property)

Next, RDF defines a set of containers which represent groups of things with informally defined seman-

tics [Manola et al., 2004]; viz., rdf:Bag denotes the class of unordered containers, rdf:Seq denotes the class

of ordered containers, and rdf:Alt denotes the class of containers denoting alternatives for some purposes.

Members of RDF containers are specified using properties of the form rdf: n, where for example rdf: 5 is

used to denote the fifth member of the container. However, in practice, RDF containers are not widely used

and have been suggested as candidates for deprecation [Berners-Lee, 2010; Feigenbaum, 2010].

Along similar lines, RDF defines syntax for specifying collections in the form of a linked list type structure:

the collection comprises of elements with a member (a value for rdf:first) and a pointer to the next element

(a value for rdf:rest). As opposed to containers, collections can be closed (using the value rdf:nil for

rdf:rest to terminate the list), such that the members contained within a “well-formed” collection can be

interpreted as all of the possible members in that collection. The ability to close the collection has made it

useful for standards built on top of RDF, as will be discussed later.

Next, RDF allows for reificiation: identifying and describing the RDF triples themselves. One could

consider many use-cases whereby such reification is useful (see [Lopes et al., 2010b]); for example, one could

annotate a triple with its source or provenance, an expiration time or other temporal information, a spatial

context within which it holds true, policies or access rights for the triple, etc. However, the structure of

triples required to perform reification are quite obtuse, where identification and reference to the reified triple

requires the following type of construct:

(ex:FredsAgeTriple, rdf:type, rdf:Statement)

(ex:FredsAgeTriple, rdf:subject, ex:Fred)

(ex:FredsAgeTriple, rdf:predicate, ex:age)

(ex:FredsAgeTriple, rdf:object, "56"^̂ xsd:int)

(ex:FredsAgeTriple, ex:expires, "2010-10-28"^̂ xsd:date)

Here, the first triple states that the resource ex:FredsAgeTriple signifies a triple (aka. a statement),

rdf:subject, rdf:predicate and rdf:object are used to reconstruct and thus identify the signified triple,

and thereafter arbitrary information can be described, such as the above expiration date. This indirect,

verbose modelling has made RDF reification unpopular, and again there have been calls for this usage to be

14

2.2. The Semantic Web 15

deprecated [Berners-Lee, 2010; Feigenbaum, 2010]. Note also that there is no (or at least, very little) formal

semantics defined for the above reification mechanisms.

Finally, RDF supports an explicit means of modelling higher-arity relations using rdf:value; for example:

(ex:Fred, ex:technicianFor, :bnode1)

(:bnode1, rdf:value, ex:AcmeInc)

(:bnode1, ex:since, "2005-10-28"^̂ xsd:date)

(:bnode1, ex:fulltime, "true"^̂ xsd:boolean)

Note that :bnode1 denotes a blank-node—an anonymous resource—whereby the ‘ ’ prefix is reserved in

many RDF syntaxes to denote such blank-nodes. Here, rdf:value denotes the “primary value” of the

ex:technicianFor property, with the rest of the triples giving auxiliary information about the relationship.

Finally, various RDF syntaxes have been defined down through the years. The most prominent such

syntax is RDF/XML [Beckett and McBride, 2004], which is based on the widely deployed Extensible Markup

Language (XML) standard. However, this syntax has been the subject of much criticism. As Beckett—an

editor on the (revised) RDF/XML standard—put it:

The problems of writing down a graph in a sequential document representing a tree such as

the XML DOM has proved just too hard to make it easy to do and clear. [Beckett, 2010]

However, the RDF/XML syntax has been promoted hand-in-hand with the RDF model itself; RDF/XML

still features heavily, for example, in the RDF Primer [Manola et al., 2004].5 Thus, RDF/XML is widely

deployed relative to other RDF syntaxes.

There have been proposals of other RDF syntaxes, each presenting its own unique strengths and weak-

nesses. Turtle aims to allow “RDF graphs to be completely written in a compact and natural text form, with

abbreviations for common usage patterns and datatypes” [Beckett and Berners-Lee, 2008]. N-Triples is a

line-delimited (triple-per-line) syntax [Grant and Beckett, 2004, § 3] amenable to simple parsing techniques,

line-based processing, and streaming. RDFa—one of the newest syntaxes—allows for embedding RDF data

directly into XHTML 1.1 (and, informally, into HTML 5) documents, thus allowing to “augment visual data

with machine-readable hints” [Adida and Birbeck, 2008].

In the RDF Semantics W3C Recommendation [Hayes, 2004], RDF is given a model-theoretic—albeit

relatively inexpressive—semantics, which gives data described in RDFmeaning, by means of an interpretation.

Firstly, these semantics interpret blank-nodes as existential variables—as denoting some unnamed thing

known to exist. Next, the simple interpretation is defined between graphs; a graph is simply a set of

triples, and given one graph known to be true, simple entailment can determine whether a second graph is

necessarily true or not according to the RDF semantics. Thus, for example, a graph always entails all of

its sub-graphs [Hayes, 2004]. Entailment is complicated by the existential nature of blank-nodes, where, for

example the singleton graph:

(:bnode1, ex:worksFor, :bnode2)

which can be read as “some resource works for some other resource” is entailed by the singleton graph:

(:bnodeA, ex:worksFor, ex:AcmeInc)

which can be read as “some resource works for Acme Inc.”. Thus, (not so) simple entailment checking involves

analysis of blank-node rewriting, which has been shown to be NP-complete [Hayes, 2004]. Thereafter, two

simple inference rules are defined:

5We believe this to have caused much confusion amongst RDF novices who (i) conflate the model and the syntax; (ii) do

not grasp the triple-centric nature of the RDF model due to obfuscation thereof by the unintuitive RDF/XML syntax.

15

2.2. The Semantic Web 16

(?uuu, ?aaa, :nnn) ← (?uuu, ?aaa, ?xxx)

(:nnn, ?aaa, ?aaa) ← (?uuu, ?aaa, ?xxx)

Variables—which we prefix with ?—can match any RDF URI, blank-node, or literal as appropriate. The

above two rules state that any RDF triple simple-entails the same triple with the subject and/or object

replaced with a unique blank-node (:nnn), thus axiomatising the aforementioned semantics of blank-nodes

using rules.

The RDF semantics also defines RDF interpretations, and thereafter, RDF entailment. RDF inter-

pretations codify the meaning of triples—in particular, the semantics of properties used in triples—and the

meaning of the rdf:XMLLiteral datatype. Thereafter, RDF entailment extends upon simple entailment with

two additional inference rules: one which states that a resource in the predicate position of triple is a member

of the class rdf:Property, and another which handles membership of the rdf:XMLLiteral datatype. RDF

entailment further defines a set of RDF axiomatic triples—involving core RDF terms—which always hold

true under RDF entailment; for example:

(rdf:type, rdf:type, rdf:Property)

In fact, this set contains countably infinite axiomatic triples of the following form:

(rdf: n, rdf:type, rdf:Property)

where n is any natural number. Thus, an empty graph RDF-entails infinite triples.

Note that we include the full set of simple entailment rules, RDF axiomatic triples and RDF entailment

rules in § B.2 for reference.

2.2.2 RDF Schema

In April 1998, the first draft of the RDF Schema (RDFS) specification was published as a W3C Working

Note [Brickley et al., 1998]. The core idea was to extend upon the relative (semantic) inexpressiveness of

RDF and allow for attaching semantics to user-defined classes and properties; the original proposal was to

be heavily modified in later versions—for example, features relating to constraints were dropped in favour

of a specification more explicitly in tune with the Open World Assumption.

The modern RDFS specification became a W3C Recommendation in early 2004 [Brickley and Guha,

2004]. In particular, RDFS extends RDF with four key terms [Muñoz et al., 2009] which allow for specifying

well-defined relationships between classes and properties; viz., rdfs:subClassOf, rdfs:subPropertyOf,

rdfs:domain and rdfs:range.

Subclassing allows to state that the extension of one class is contained with another:

(ex:Employee, rdfs:subClassOf, ex:Person)

This succinctly states that any member of ex:Employee is also a member of ex:Person.

Subproperties analogously allow for stating that, e.g.:

(ex:technicianFor, rdfs:subPropertyOf, ex:worksFor)

This states that any two things related by the ex:technicianFor property are also related by the

ex:worksFor property.

Domain and range respectively allow for stating that a resource with any value for a given property is a

member of a given class, or that a value for a given property is a member of a given class:

16

2.2. The Semantic Web 17

(ex:technicianFor, rdfs:domain, ex:Employee)

(ex:technicianFor, rdfs:range, ex:Organisation)

RDFS also defines some other terms which:

• denote (i) the class of all resources (rdfs:Resource), (ii) the class of classes (rdfs:Class), (iii) the

class of all literals (rdfs:Literal), and (iv) the class of all datatypes (rdfs:Datatype);

• extend upon the RDF container vocabulary, viz., (i) rdfs:Container denoting the super-class of the

three aforementioned RDF container classes, (ii) rdfs:ContainerMembershipProperty denoting the

class of properties of the form rdf: n, and (iii) rdfs:member denoting the super-property of all such

container membership properties.

• allow for annotating resources with (i) human-readable labels (using the rdfs:label property), and

(ii) human-readable comments (using the rdfs:comment property);

• allow for defining links from one resource to another resource—typically a document—which (i) defines

it (using the rdfs:isDefinedBy property), or (ii) may contribute relevant information (using the

rdfs:seeAlso property).

Subsequently, the RDF Semantics recommendation [Hayes, 2004] extends simple/RDF entailment with

RDFS entailment, defining a model-theoretic semantics incorporating RDFS terms and providing a set

of entailment rules which, by the RDFS entailment lemma [Hayes, 2004, § 7.2], give all possible RDFS

entailments for a given graph which do not contain an “XML clash” (an ill-formed rdf:XMLLiteral value

which represents an inconsistency).6

We take RDFS inference rule rdfs2—used to support the semantics of rdfs:domain—as an example:

(?uuu, rdf:type, ?xxx) ← (?aaa, rdfs:domain, ?xxx) , (?uuu, ?aaa, ?yyy)

This rule states that the subject resource (?uuu) with a given property attached (?aaa) is a member of the

class (?xxx) which is defined as the domain of that property. An example application would look like:

(ex:Fred, rdf:type, ex:Employee) ←
(ex:technicianFor, rdfs:domain, ex:Employee) ,

(ex:Fred, ex:technicianFor, ex:AcmeInc)

Here, an RDF graph containing the two triples on the right RDFS-entail the triple on the left. Along

these lines, there are fourteen RDFS rules, which include rules for supporting entailments possible through

the rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range terms, and which extend upon

the two simple entailment rules and two RDF entailment rules; for reference, we list all of RDFS rules and

axiomatic triples in § B.2.

It is worth noting that RDFS makes no restriction on how the RDF(S) vocabulary is used, and thus

applies to arbitrary RDF graphs and is backwards-compatible with RDF.

2.2.3 Web Ontology Language

Evolving from earlier proposals for Web ontology languages—such as that of SHOE [Luke et al., 1997;

Heflin et al., 1999], DAML [Hendler and McGuinness, 2000], OIL [Fensel et al., 2001] and the subsequent

hybrid DAML+OIL [McGuinness et al., 2002; Horrocks et al., 2002]—in 2001 the W3C began working

6Note that ter Horst ter Horst [2005b] later revealed a “bug” relating to the RDFS entailment lemma, showing that blank-

nodes would need to be (temporarily) allowed in the predicate position. Given the prolix nature of the RDFS standard, Muñoz

et al. [2009] propose a simpler semantics which only supports the most commonly adopted features.

17

2.2. The Semantic Web 18

on a new ontological language which would extend upon RDFS with more expressive semantics, enabling

richer entailment regimes: in 2004, the resulting Web Ontology Language (OWL) was recognised as a W3C

Recommendation [McGuinness and van Harmelen, 2004].

Like RDFS, OWL can be serialised as RDF (as triples), and abides by the OWA and lack of UNA inherent

in RDF. Extending upon RDFS, OWL introduces many new language primitives; a full enumeration is out

of scope where we refer the interested reader to [Smith et al., 2004]—for now, we give a brief (incomplete)

overview of novel OWL features, and will introduce new primitives in more detail as necessary throughout

the rest of the thesis.

Firstly, OWL allows for stating that two resources represent the same thing using owl:sameAs:

(ex:Fred, owl:sameAs, ex2:Freddy)

Here, ex:Fred and ex2:Freddy are stated to be two coreferent identifiers for the same person, which,

in particular, allows for aligning the naming schemes used by different sources. Conversely, the property

owl:differentFrom can be used to explicitly state that two identifiers do not refer to the same thing.

Reusing some of the RDFS vocabulary, OWL defines a richer set of primitives for describing classes and

properties used in RDF data. For example, OWL allows for defining equivalence between classes, stating

that their extension (set of members) is necessarily the same:

(ex:Human, owl:equivalentClass, ex:Person)

More complex class descriptions can be defined based on other class and property terms; for example, classes

can be defined as the union, complement or intersection of other classes, as an enumeration of members (e.g.,

defining the class of USAStates by listing precisely all of the states it contains), or in terms of the values of

certain properties attached to its members (e.g., defining the class Parent as any resource who has a value

for the property hasChild), etc.

OWL also extends upon the RDFS vocabulary for describing properties; for example, properties can

additionally be stated to be inverses of each other:

(ex:technicianFor, owl:inverseOf, ex:hasTechnician)

Properties can also be defined to be equivalent to each other, analogous to class-equivalence exemplified

above. OWL also defines four classes of properties which are used to delineate transitive properties, sym-

metric properties, functional properties (properties whose subject uniquely “identifies” a given value), and

inverse-functional properties (properties whose value uniquely “identifies” a given subject).

Additionally, OWL provides an extended set of terms for publishing descriptive metadata, including

owl:versionInfo, owl:priorVersion, owl:backwardCompatibleWith, owl:incompatibleWith, owl:Dep-

recatedClass, owl:DeprecatedProperty primitives used for simple versioning, etc.

On top of all of these primitives—and those inherited from RDF(S)—OWL defines three sublanguages,

with different levels of expressivity and different computational properties; viz., OWL Full, OWL DL and

OWL Lite.

The most expressive language is OWL Full, which makes no restriction on how the OWL language is

used—thus, OWL Full is backwards-compatible with RDFS. However, all typical reasoning tasks over an

OWL Full ontology—such as consistency checking, satisfiability checking (checking if a class can consistently

have a non-empty extension), checking if one class subsumes another (checking if a class is necessarily a

sub-class of another), instance checking (checking if a resource is a member of a class) and conjunctive query

answering (posing complex queries against the ontology and its entailments)—are undecidable.

Thus, OWL also defines two “decidable” variations: OWL DL and OWL Lite. Both of these sublanguages

are based on Description Logics (DL) [Baader et al., 2002], which provides formal results on the decidability

18

2.2. The Semantic Web 19

and complexity of certain reasoning tasks over an ontology using various combinations of formally-defined

language primitives. Such reasoning tasks are typically implemented using specialised tableau-based ap-

proaches inherited from first-order predicate logic [Schmidt-Schauß and Smolka, 1991]. Thus, by applying

certain restrictions on the OWL language informed by research on Description Logics, OWL DL and OWL

Lite boast certain computational guarantees not possible for OWL Full, in particular enabling the provision

of decidability guarantees for certain reasoning tasks—such guarantees on a syntactic subset of OWL are

particularly pertinent for “critical applications” where reasoning tasks must always provide complete and

correct results.

OWL DL—a syntactic subset of OWL Full—is the more expressive of the pair, and allows restricted use

of all OWL primitives. Interestingly, OWL DL is only known to be decidable for consistency, satisfiability

and instance checking tasks: the decidability of conjunctive query answering is an open question [Grau et al.,

2009].7 Further, the complexity of the former reasoning tasks is NExpTime-complete with respect to the

number of axioms8 and is open (at least NP-Hard) with respect to the number of triples—thus, despite

guarantees of decidability, OWL DL reasoning is intractable for certain (OWL DL valid) inputs, meaning

that a decision may not be reached in “acceptable time”.

Thereafter, OWL Lite—a syntactic subset of OWL DL—offers a still more lightweight variant of OWL

where “reasoners for OWL Lite will have desirable computational properties” [Smith et al., 2004]. However,

the complexity of OWL Lite is still ExpTime-complete for consistency, satisfiability and instance checking

tasks; unlike OWL DL, it is known to be decidable for conjunctive query answering, but is 2ExpTime-

complete with respect to query complexity [Grau, 2007]. Thus, again, despite guarantees of decidability,

OWL Lite reasoning is intractable for certain valid inputs.

Addressing these issues (amongst others [Grau et al., 2008]), OWL 2 became a recommendation in

2009 [Hitzler et al., 2009], and introduced new language primitives, new semantics for OWL 2 Full (RDF-

Based semantics [Schneider, 2009]) and OWL 2 DL (Direct Semantics based on DL formalisms [Motik et al.,

2009b]), and three new profiles [Grau et al., 2009]—viz., OWL 2 EL, OWL 2 QL, and OWL 2 RL—which

are syntactic subsets of OWL 2 DL targeted at different scenarios.

Novel OWL 2 features include additional primitives for describing classes—such as the ability to define

classes with reflexivity for a given property (owl:hasSelf), or classes which are the union of multiple pair-

wise disjoint classes (owl:disjointUnionOf), etc.—and properties—such as collections of properties whose

values taken together are unique to a resource (owl:hasKey), or relations which are entailed by a “chain” of

other relations (owl:propertyChainAxiom), as well as new classes for delineating reflexive, irreflexive and

asymmetric properties, etc.

Reasoning tasks with respect to OWL 2 Full are again undecidable, and with respect to OWL 2 DL are

2NExpTime-complete with the exception of conjunctive query-answering whose decidability/complexity is

still open [Grau et al., 2009].7 However, the new profiles offer better computational characteristics, with

each targeting specific scenarios.

OWL 2 EL is based on the Direct Semantics and is designed primarily for classification tasks (subsump-

tion/instance checking) and allows for expressive class axioms, but disallows certain property axioms: OWL 2

EL is PTime-complete (deterministic polynomial complexity) for all reasoning tasks except query-answering,

for which it is PSpace-complete [Grau et al., 2009].

OWL 2 QL is also based on the Direct Semantics and aims to provide relatively efficient, sound and

complete query-answering, in particular aimed at “query-rewriting” implementations over relational database

7Glimm and Rudolph [2010] have proven decidability for conjunctive query entailment with respect to the Description Logic

underlying OWL DL, but under the assumption that transitive properties (or properties that entail transitive properties) do

not appear as predicates in the query. (They believe that the result extends to OWL 2 DL; they do not currently address a

complexity bound.)
8An axiom represents an “atomic declaration” in OWL, which may consist of multiple triples.

19

2.3. RDF Web Publishing and Linked Data 20

systems, such that structured queries are expanded to request asserted data that may entail some (sub-)goal

of the query. Reasoning tasks are NLogSpace-complete with the exception of query answering which is

NP-complete; note that query-answering is tractable (NLogSpace/AC0) with respect to data complexity,

but NP-complete with respect to query complexity [Grau et al., 2009] (note this is the same complexity as

for simple entailment). To make these gains in complexity, OWL 2 QL makes heavy restrictions on the use

of OWL 2, ending up with expressiveness in the intersection of RDFS and OWL 2 DL [Grau et al., 2009].

OWL 2 RL is designed to be implementable using rule-based and tableau-based technologies; in particular,

it is based on previous proposals to partially support OWL semantics using rules, such as Description Logic

Programs (DLP) proposed by Grosof et al. [2004] and pD* proposed by ter Horst [2005b]. Along these

lines, OWL 2 RL is a syntactic subset of OWL 2 with an accompanying set of OWL 2 RL/RDF entailment

rules such that the entailments possible for OWL 2 RL though Direct Semantics (typically implemented

using tableau-based approaches) are aligned with the entailments given by the OWL 2 RL/RDF entailment

rules; the result is a partial axiomatisation of OWL 2 RDF-Based semantics in the form of the OWL 2

RL/RDF entailment rules, compatible with RDF Semantics, and computable using rule engines. OWL 2 RL

is PTime-complete for all reasoning tasks, except for query answering which remains NP-complete [Grau

et al., 2009]; note that query answering is PTime-complete with respect to data complexity, but (like OWL

2 QL) NP-complete with respect to query-complexity.

2.3 RDF Web Publishing and Linked Data

Early efforts involving RDF(S)/OWL publishing on the Web produced large, insular “‘data silos”, often

a dump of potentially huge RDF documents; such silos included OpenCyc comprising of axioms specify-

ing general knowledge9, the GALEN ontology for describing medical terminology10, exports from UniProt

describing protein sequences11, and exports from the WordNet lexical database12. Typically, these RDF

dumps were/are made available as compressed archives linked from some HTML webpage, or as monolithic

RDF documents; a person wishing to consume the data would have to visit the site, browse the webpage,

follow the links, download the dump and possibly decompress/pre-process the dump. As such, these dumps

contained little or no interlinkage.

One notable exception to the emerging RDF silos was the publishing centred around the Friend Of A

Friend (FOAF) community. In early 2000, Brickley and Miller started the “RDF Web Ring” project (or

simply “RDFWeb”) which was eventually rebranded as FOAF.13 FOAF provides a lightweight vocabulary

containing various terms for describing people; initially comprising of a set of RDF properties, this vocabulary

evolved throughout the years to include RDFS and OWL descriptions of properties and classes, continuously

adapting to community feedback and requirements. Various tools solidified adoption of the FOAF vocabu-

lary; one pertinent example is the simple FOAF-a-Matic generator which was released in 2004, and allows

users to fill some personal details into a form, which are then encoded as a FOAF profile (an RDF description

of the person using FOAF terms) which the user can download and copy to their Web-space—most interest-

ingly, the generator allows for adding information about friends, and for linking to friends’ FOAF profiles,

thus creating a web of FOAF data. Thus, FOAF profiles became popular amongst Semantic Web enthusiasts

and academics, with more adventurous adopters creating ad-hoc vocabularies to extend the personal details

contained within. In early 2004, the LiveJournal site—a blogging platform hosting millions of users—began

9http://www.cyc.com/2004/06/04/cyc; retr. 2010/11/01
10http://www.co-ode.org/galen/full-galen.owl; retr. 2010/11/01
11http://www.uniprot.org/; retr. 2010/11/01
12http://www.w3.org/2006/03/wn/wn20/; retr. 2010/11/01
13http://www.foaf-project.org/original-intro; retr. 2010/11/02

20

http://www.cyc.com/2004/06/04/cyc
http://www.co-ode.org/galen/full-galen.owl
http://www.uniprot.org/
http://www.w3.org/2006/03/wn/wn20/
http://www.foaf-project.org/original-intro

2.3. RDF Web Publishing and Linked Data 21

exporting FOAF data by default for all users14, which was followed by analogous exports from other social

platforms. Unlike earlier data silos, sites such as LiveJournal publish an individual RDF/XML document

for each user, thus enabling low-volume/targeted consumption of the structured data. However, early FOAF

data—and RDF in general—exhibited sparse use of URIs to identify people [Hogan et al., 2007a]. Thus,

consistent URI naming across documents was not even attempted—instead, common practice was to use

inverse-functional properties such as emails and weblog URLs to identify persons [Hogan et al., 2007a]—and

there was no direct means of finding information about a given resource.

As more and more RDF data were published on the Web and more and more vocabularies became

available, there was an eminent need in the community for a set of best practices. The first notable step in

this direction was the publication in March 2006 of a W3C Working Note entitled “Best Practice Recipes

for Publishing RDF Vocabularies” [Miles et al., 2006], which described URI naming schemes for vocabulary

terms, and the HTTP mechanisms that should be used to return information upon lookup of those URIs—

these best practices aligned with the then recent Web Architecture W3C Recommendation [Jacobs and

Walsh, 2004].

In July 2006, Berners-Lee [2006] published the initial W3C Design Issues document outlining Linked

Data principles, rationale and some examples—this generalised the earlier best-practices for vocabularies,

similarly espousing use of deferenceable HTTP URIs for naming, and additionally encouraging inclusion of

external URIs as a simple form of linking. This in turn spawned some initial efforts to promote and support

these principles, with tools such as the Tabulator browser [Berners-Lee et al., 2006] enabling browsing over

RDF published on the Web as Linked Data.

The first major boon to Linked Data and associated best-practices came in March 2007, when the W3C

Semantic Web Education and Outreach (SWEO) Interest Group announced a new Community Project called

“Interlinking Open Data”15—subsequently shortened to “Linking Open Data” (LOD)—which was inspired

by the growth in Open Data published on the Web under liberal licences. The goal of the Linked Open Data

project is twofold: (i) to bootstrap the Semantic Web by creating, publishing and interlinking RDF exports

from these open datasets, and in so doing, (ii) introduce the benefits of RDF and Semantic Web technologies

to the broader Open Data community [Bizer et al., 2009a]. The LOD project initially found traction through

the efforts of academics and developers in research labs converting existing data—most prominently, the

DBpedia project [Bizer et al., 2009b] extracting structured data from the collaboratively edited WIKIPEDIA

site—but spread to mainstream corporate entities such as the BBC16, Thompson Reuters17, the New York

Times18, and various governmental agencies, resulting in a burgeoning, heterogeneous Web of Data built

using Semantic Web standards, and augmented with Linked Data principles [Bizer et al., 2009a].

The core message of the Linked Data community is, in essence, a bottom-up approach to bootstrap-

ping Semantic Web publishing. This bottom-up philosophy is best epitomised by the Linked Data “5 Star

Scheme” [Berners-Lee, 2006] which was recently added to the Linked Data Design Issues document by

Berners-Lee; the scheme is summarised as follows:

? Publish data on the Web under an open license

? ? Publish structured data

? ? ? Use non-priorietary formats

? ? ? ? Use URIs to identify things

? ? ? ? ? Link your data to other data

—paraphrased from Berners-Lee [2006]

14http://community.livejournal.com/ljfoaf/; retr. 2010/11/02
15See http://www.w3.org/2005/06/blog/SWEOBlog.php?blog=14&posts=8&page=1&paged=2; retr. 2010/11/01.
16See http://www.bbc.co.uk/blogs/bbcinternet/2010/02/case_study_use_of_semantic_web.html; retr. 2011/02/21
17http://www.opencalais.com/; retr. 2011/02/21
18http://data.nytimes.com/; retr. 2011/02/21

21

http://community.livejournal.com/ljfoaf/
http://www.w3.org/2005/06/blog/SWEOBlog.php?blog=14&posts=8&page=1&paged=2
http://www.bbc.co.uk/blogs/bbcinternet/2010/02/case_study_use_of_semantic_web.html
http://www.opencalais.com/
http://data.nytimes.com/

2.4. RDF Search Engines 22

Here, each additional star is promoted as increasing the potential reusability and interoperability of the

publishers’ data.19

2.4 RDF Search Engines

As RDF publishing on the Web grew in popularity, various applications exploiting this novel source of struc-

tured data began to emerge: these included new RDF search engines/warehouses (or more modernly, Linked

Data search engines/warehouses) which locate, retrieve, process, index and provide search and querying

over RDF data typically gathered from a large number of Web sources. Such search engines may serve a

variety of purposes centring around locating pertinent sources of structured information about a given topic

or resource, displaying all known information about a given artefact (resource, document, etc.), or answering

structured queries posed by users (or user-agents).

Early discussion of structured Web data search engines was provided by Heflin et al. [1999]; whilst

discussing potential applications of their proposed SHOE language for annotating webpages, the authors

detail requirements for a query-engine with inference support, information gathering through crawling, and

subsequent information processing. A competing proposal at the time was Ontobroker [Decker et al.,

1998], which also introduced a language for annotating webpages with structured information, and which

proposed a mature warehouse architecture including a crawler and extraction component for building a

corpus from suitable HTML annotations, an inference engine, a query interface for posing structured queries

against the corpus, and an API exposing RDF. As opposed to SHOE, Ontobroker proposed a closed set of

ontologies agreed upon by the warehouse which supports them and the data providers that instantiate them.

Note that works on the above two systems were concurrent with the initial development of RDF and RDFS

and completely predated OWL; as Semantic Web standards matured, so too did the warehouses indexing

Semantic Web data.

The earliest “modern” Semantic Web warehouse—indexing RDF(S) and OWL data—was Swoogle [Ding

et al., 2004].20 Swoogle offers search over RDF documents by means of an inverted keyword index and a

relational database [Ding et al., 2004]. Given a user-input keyword query, Swoogle will return ontologies,

assertional documents and/or terms which mention that keyword (in an RDF literal), thus allowing for

discovery of structured information using primitives familiar to Web users from engines such as Google;

Swoogle also offers access to software agents [Ding et al., 2004]. To offer such services, Swoogle uses the Google

search engine to find documents with appropriate file extensions indicating RDF data, subsequently crawls

outwardly from these documents, ranks retrieved documents using links-analysis techniques (inspired by the

PageRank algorithm [Page et al., 1998] used by Google), and indexes documents using an inverted keyword

index and similarity measures inspired by standard Information Retrieval engines (again, for example, as

used by Google [Brin and Page, 1998]). As such, Swoogle leverages traditional document-centric techniques

for indexing RDF(S)/OWL documents, with the addition of term search.

Along these lines, we later proposed the Semantic Web Search Engine [Harth and Gassert, 2005; Hogan

et al., 2007b; Harth, 2010; Hogan et al., 2010b]21 as a domain-agnostic means of searching for information

about resources themselves, as opposed to offering links to related documents: we call this type of search

entity-centric where an entity is a resource whose description has specifically been amalgamated from nu-

merous (possibly) independent sources.22 Thus, the unit of search moves away from documents and towards

19Please see http://lab.linkeddata.deri.ie/2010/star-scheme-by-example/ (retr. 2011/01/22) for the rationale behind these

stars. Note that although the final star does not explicitly mention Linked Data or RDF, use of these technologies is implied.
20System available at http://swoogle.umbc.edu/; retr. 2010/10/03.
21System available at http://swse.deri.org/; retr. 2011/03/01
22Note that we did not coin the term “entity-centric”, but nor can we pinpoint its precise origins or etymology.

22

http://lab.linkeddata.deri.ie/2010/star-scheme-by-example/
http://swoogle.umbc.edu/
http://swse.deri.org/

2.4. RDF Search Engines 23

entities which are referential to (possibly) real-world things. Along these lines, we proposed scalable methods

for (i) crawling structured data from the Web [Harth et al., 2006], (ii) determining which resources correspond

to the same entity, and thereafter consolidating the data by means of identifier canonicalisation [Hogan et al.,

2007a]; (iii) performing reasoning to discover new information about entities [Hogan et al., 2009b, 2010c];

(iv) indexing and querying these structured data using the standardised query language SPARQL [Harth

et al., 2007]; (v) ranking entities and results [Hogan et al., 2006; Harth et al., 2009]; and (vi) offering user

search over the enhanced structured corpus [Hogan et al., 2007b; Harth, 2009]. As RDF Web publishing

matured—and with the advent of Linked Data principles—we have adapted our architecture and algorithms

accordingly; a recent summary of SWSE research is presented in [Hogan et al., 2010b] and a search prototype

is available at http://swse.deri.org/. The SWSE system offers much of the motivation behind this thesis,

where we particularly focus on points (ii) and (iii) above.

In parallel to the development of SWSE, researchers working on the Falcons Search engine23 had similar

goals in mind: offering entity-centric searching for entities (and concepts) over RDF data sourced from the

Web [Cheng et al., 2008a; Cheng and Qu, 2009]. Evolving from the Falcon-AO ontology matching service, the

Falcons service operates over arbitrary RDF Web data and also contains components for crawling, parsing,

organising, ranking, storing and querying structured data. Like us, they include reasoning, but focus on class-

based inferencing—namely class inclusion and instance checking—where class hierarchies and memberships

are used to quickly restrict initial results [Cheng and Qu, 2009]. More recently, the authors have proposed a

means of identifying coreferent resources (referring to the same entity) based on the semantics of OWL [Hu

et al., 2010] and various heuristics.

WATSON also provides keyword search facilities over Semantic Web documents and over entities,24 but

mainly focuses on providing an API to expose services to interested software agents: these services currently

include keyword search over indexed RDF documents, retrieving metadata about documents, searching

for documents mentioning a given entity, searching for entities matching a given keyword in a document,

retrieving class hierarchy information, retrieving entity labels and retrieving triples where a given entity

appears in the subject or object position [Sabou et al., 2007; d’Aquin et al., 2007, 2008].

Developed in parallel, Sindice25 offers similar services to WATSON, originally focussing on providing

an API for finding documents which reference a given RDF entity [Oren and Tummarello, 2007], soon

extending to keyword-search functionality [Tummarello et al., 2007], inclusion of consolidation using inverse-

functional properties [Oren et al., 2008], “per-document” reasoning [Delbru et al., 2008], and simple struc-

tured queries [Delbru et al., 2010a]. As such, Sindice have adopted a bottom-up approach, incrementally

adding more and more services as feasible and/or required. A more recent addition is that of entity search

in the form of Sig.ma26, which accepts a user-keyword query and returns a description of the primary entity

matching that entity as collated from numerous diverse sources [Tummarello et al., 2009] (this can be an

appealingly simple form of search, but one which currently assumes that there is only one possible entity of

interest for the input query).

As such, there are a number of systems which offer search and/or browsing over large heterogeneous

corpora of RDF sourced from the Web, hoping to exploit the emergent Web of Data, where this thesis is

inspired by works on SWSE, but where the results apply to any such system, particularly (but not restricted

to) systems which offer entity-centric search.

23System available at http://iws.seu.edu.cn/services/falcons/documentsearch/; retr. 2011/01/23
24System available at http://watson.kmi.open.ac.uk/WatsonWUI/; retr. 2010/11/02
25System available at http://sindice.com/; retr. 2010/11/02
26System available at http://sig.ma; retr. 2010/11/02

23

http://swse.deri.org/
http://iws.seu.edu.cn/services/falcons/documentsearch/
http://watson.kmi.open.ac.uk/WatsonWUI/
http://sindice.com/
http://sig.ma

Chapter 3

Notation and Core Concepts

“If I had eight hours to chop down a tree, I’d spend six hours sharpening my ax.”

—Abraham Lincoln

Herein, we provide core preliminaries and notation used throughout the rest of the thesis, relating to (i)

RDF (§ 3.1); (ii) Turtle syntax (§ 3.2) (iii) Linked Data principles and data sources (§ 3.3); (iv) atoms and

rules (§ 3.4); and (v) terminological data given by RDFS/OWL (§ 3.5). We attempt to preserve notation and

terminology as prevalent in the literature. Finally, in § 3.6, we describe our abstract distributed architecture

for parallelising the execution of tasks over a cluster of commodity hardware.

3.1 RDF

We briefly give some necessary notation relating to RDF constants and RDF triples; see [Hayes, 2004].

RDF Constant Given the set of URI references U, the set of blank nodes B, and the set of literals L,

the set of RDF constants is denoted by C := U ∪ B ∪ L. The set of literals includes plain literals (which

may have an associated language tag) and datatype literals. Note that we interpret blank-nodes as skolem

constants signifying particular individuals, as opposed to existential variables as prescribed by the RDF

Semantics [Hayes, 2004]. Also, we rewrite blank-node labels when merging documents to ensure uniqueness

of labels across those documents [Hayes, 2004].

RDF Triple A triple t := (s, p, o) ∈ (U ∪ B) × U × C is called an RDF triple, where s is called subject,

p predicate, and o object. A triple t := (s, p, o) ∈ G,G := C × C × C is called a generalised triple [Grau

et al., 2009], which allows any RDF constant in any triple position: henceforth, we assume generalised triples

unless explicitly stated otherwise. We call a finite set of triples G ⊂ G a graph.

RDF Variable/RDF Triple Pattern We denote the set of all RDF variables as V; we call a generic

member of the set V ∪ C an RDF term. Again, we denote RDF variables as alphanumeric strings with a ‘?’

prefix. We call a triple of RDF terms—where variables are allowed in any position—an RDF triple pattern.

Variable Substitution We call a mapping from the set of variables to the set of constants θ : V → C a

variable substitution; we denote the set of all such substitutions by Θ.

24

3.2. Turtle Syntax 25

3.2 Turtle Syntax

Throughout this thesis, we may use Terse RDF (Turtle) syntax [Beckett and Berners-Lee, 2008] to denote

RDF triples, triple patterns and graphs. Firstly, Turtle syntax allows the use of CURIEs [Birbeck and

McCarron, 2009] (e.g., ex:Fred) as previously introduced to provide abbreviated URIs—again, a full list

of prefixes used in this thesis is available for reference in Appendix A. Secondly, the ‘ ’ underscore prefix

is reserved for denoting blank-nodes. Thirdly, literals are represented between ‘"’ double-quotes; language

tags are appended onto literals using the ‘@’ at-symbol delimiter; assigned datatypes are appended after a

‘^̂ ’ double-caret delimiter. Tokens and terms are white-space delimited (no differentiation between spaces,

tabs, new-lines and carriage returns), and triples are (typically) delimited by ‘.’ period characters.

To give some examples of the main syntax and shortcuts:

:bnode1 rdfs:comment "Usually, I am existential"^̂ xsd:string .

:bnode1 rdfs:comment "Herein, I simply am"@en .

Further, triples which share a given subject can be grouped together using a ‘;’ semi-colon delimiter:

:bnode1 rdfs:comment "Usually, I am existential"^̂ xsd:string ;

rdfs:comment "Herein, I simply am"@en .

Triples which share a common subject and predicate can be grouped together using a ‘,’ comma delimiter:

:bnode1 rdfs:comment "Usually, I am existential"^̂ xsd:string ,

"Herein, I simply am"@en .

To avoid having to invent arbitrary blank-node labels, ‘[]’ square brackets can alternately be used:

[rdfs:comment "Usually, I am existential"^̂ xsd:string ,

"Herein, I simply am"@en .]

Syntax is also provided to abbreviate ordered RDF collections (a.k.a. lists) and boolean and numeric datatype

literals:

ex:Fred ex:top5Values (ex:Phi 1836.2 -5 false 3e2) .

where the above syntax would expand to the more verbose:

ex:Fred ex:top5Values [rdf:first ex:Phi ; rdf:rest

[rdf:first "1836.2"^̂ xsd:decimal ; rdf:rest

[rdf:first "-5"^̂ xsd:integer ; rdf:rest

[rdf:first "false"^̂ xsd:boolean ; rdf:rest

[rdf:first "3e2"^̂ xsd:double ; rdf:rest

rdf:nil]]]]] .

Finally, the simple term ‘a’ can be used as a shortcut for rdf:type:

ex:Fred a foaf:Person .

3.3 Linked Data Principles and Provenance

In order to cope with the unique challenges of handling diverse and unverified Web data, many of our

components and algorithms require inclusion of a notion of provenance: consideration of the source of RDF

data found on the Web. Thus, herein we provide some formal preliminaries for the Linked Data principles,

and HTTP mechanisms for retrieving RDF data.

25

3.4. Atoms and Rules 26

Linked Data Principles Throughout this thesis, we will refer to the four best practices of Linked Data

as follows [Berners-Lee, 2006]:

• (LDP1) use URIs as names for things;

• (LDP2) use HTTP URIs so those names can be dereferenced;

• (LDP3) return useful information upon dereferencing of those URIs; and

• (LDP4) include links using externally dereferenceable URIs.

Data Source We define the http-download function get : U→ 2G as the mapping from a URI to an RDF

graph it provides by means of a given HTTP lookup [Fielding et al., 1999] which directly returns status

code 200 OK and data in a suitable RDF format, or to the empty set in the case of failure; this function also

performs a rewriting of blank-node labels (based on the input URI) to ensure uniqueness when merging RDF

graphs [Hayes, 2004]. We define the set of data sources S ⊂ U as the set of URIs S := {s ∈ U | get(s) 6= ∅}.

RDF Triple in Context/RDF Quadruple An ordered pair (t, c) with a triple t := (s, p, o), and with

a context c ∈ S and t ∈ get(c) is called a triple in context c. We may also refer to (s, p, o, c) as an RDF

quadruple or quad q with context c.

HTTP Redirects/Dereferencing A URI may provide a HTTP redirect to another URI using a 30x

response code [Fielding et al., 1999]; we denote this function as redir : U → U which may map a URI to

itself in the case of failure (e.g., where no redirect exists)—note that we do not need to distinguish between

the different 30x redirection schemes, and that this function would implicitly involve, e.g., stripping the

fragment identifier of a URI [Berners-Lee et al., 2005]. We denote the fixpoint of redir as redirs, denoting

traversal of a number of redirects (a limit may be set on this traversal to avoid cycles and artificially long

redirect paths). We define dereferencing as the function deref := get ◦ redirs which maps a URI to an RDF

graph retrieved with status code 200 OK after following redirects, or which maps a URI to the empty set in

the case of failure.

3.4 Atoms and Rules

In this section, we briefly introduce some notation as familiar particularly from the field of Logic Program-

ming [Lloyd, 1987], which eventually gives us the notion of a rule—a core concept for reasoning. As such,

much of the notation in this section serves as a generalisation of the RDF notation already presented; we

will discuss this relation as pertinent. (In particular, the Logic Programming formalisms presented herein

allow for more clearly bridging to the work of Kifer and Subrahmanian [1992] on annotated logic programs,

which will be central to Chapter 6.)

Atom An atomic formula or atom is a formula of the form p(e1, . . . , en), where e1, . . . , en are terms (like

Datalog, function symbols are disallowed) and where p is a predicate of arity n—we denote the set of all

such atoms by Atoms. An atom, or its negation, is also known as a literal—we henceforth avoid this sense of

the term as it is homonymic with an RDF literal. As such, this notation can be thought of as generalising

that of RDF triples; note that an RDF predicate (the second element of a triple) has its etymology from

a predicate such as p above, where triples can be represented as atoms of the form p(s, o)—for example,

age(Fred,56). However, it is more convenient to consider an RDF predicate as a standard term, and to use

26

3.4. Atoms and Rules 27

a static ternary predicate T to represent RDF triples in the form T (s, p, o)—for example, T(Fred, age,

56)—where we will typically omit T whose presence remains implicit where appropriate.

Note that a term ei can also be a variable, and thus RDF triple patterns can also be represented directly

as atoms. Atoms not containing variables are called ground atoms or simply facts, denoted as the set Facts (a

generalisation of G); a finite set of facts I is called a (Herbrand) interpretation (a generalisation of a graph).

Letting A and B be two atoms, we say that A subsumes B—denoted A . B—if there exists a substitution

θ ∈ Θ of variables such that Aθ = B (applying θ to the variables of A yields B); we may also say that B

is an instance of A; if B is ground, we say that it is a ground instance. Similarly, if we have a substitution

θ ∈ Θ such that Aθ = Bθ, we say that θ is a unifier of A and B; we denote by mgu(A,B) the most general

unifier of A and B which provides the “minimal” variable substitution (up to variable renaming) required

to unify A and B.

Rule A rule R is given as follows:

H ← B1, . . . , Bn(n ≥ 0) , (3.1)

where H,B1, . . . , Bn are atoms, H is called the head (conclusion/consequent) and B1, . . . , Bn the body

(premise/antecedent). We use Head(R) to denote the head H of R and Body(R) to denote the body

B1, . . . , Bn of R.1 Our rules are range restricted, also known as safe [Ullman, 1989]: like Datalog, the

variables appearing in the head of each rule must also appear in the body, which means that a substitution

which grounds the body must also ground the head. We denote the set of all such rules by Rules. A rule

with an empty body is considered a fact; a rule with a non-empty body is called a proper-rule. We call a

finite set of such rules a program P .

Like before, a ground rule is one without variables. We denote with Ground(R) the set of ground

instantiations of a rule R and with Ground(P) the ground instantiations of all rules occurring in a program

P .

Again, an RDF rule is a specialisation of the above rule, where atoms strictly have the ternary predicate

T and contain RDF terms; an RDF program is one containing RDF rules, etc.

Note that we may find it convenient to represent rules as having multiple atoms in the head, such as:

H1, . . . ,Hm(m ≥ 1)← B1, . . . , Bn(n ≥ 0) ,

where we imply a conjunction between the head atoms, such that this can be equivalently represented as

the set of rules:

{Hi ← B1, . . . , Bn | (1 ≤ i ≤ m)} .

Immediate Consequence Operator We give the immediate consequence operator TP of a program P

under interpretation I as:2

TP : 2Facts → 2Facts

I 7→
{

Head(R)θ | R ∈ P ∧ ∃I ′ ⊆ I s.t. θ = mgu
(
Body(R), I ′

)}

Intuitively, the immediate consequence operator maps from a set of facts I to the set of facts it directly

entails with respect to the program P—note that TP (I) will retain the facts in P since facts are rules with

1Such a rule can be represented as a definite Horn clause.
2Note that in our Herbrand semantics, an interpretation I can be thought of as simply a set of facts.

27

3.5. Terminological Data: RDFS/OWL 28

empty bodies and thus unify with any interpretation, and note that TP is monotonic—the addition of facts

and rules to a program can only lead to the same or additional consequences. We may refer to the application

of a single rule T{R} as a rule application.

Since our rules are a syntactic subset of Datalog, TP has a least fixpoint—denoted lfp(TP)—which can

be calculated in a bottom-up fashion, starting from the empty interpretation ∆ and applying iteratively

TP [Yardeni and Shapiro, 1991] (here, convention assumes that P contains the set of input facts as well

as proper rules). Define the iterations of TP as follows: TP ↑ 0 = ∆; for all ordinals α, TP ↑ (α+ 1) =

TP (TP ↑ α); since our rules are Datalog, there exists an α such that lfp(TP) = TP ↑ α for α < ω, where ω

denotes the least infinite ordinal—i.e., the immediate consequence operator will reach a fixpoint in countable

steps [Ullman, 1989]. Thus, TP is also continuous. We call lfp(TP) the least model, or the closure of P ,

which is given the more succinct notation lm(P).

3.5 Terminological Data: RDFS/OWL

As previously described, RDFS/OWL allow for disseminating terminological data—loosely schema-level

data—which provide definitions of classes and properties. Herein, we provide some preliminaries relating

to our notion of terminological data. (Note that a precise and standard definition of terminological data

is somewhat difficult for RDFS and particularly OWL Full; we instead rely on a convenient ‘shibboleth’

approach which identifies markers for what we consider to be RDFS/OWL terminological data.)

Meta-class We consider a meta-class as a class specifically of classes or properties; i.e., the members of

a meta-class are themselves either classes or properties. Herein, we restrict our notion of meta-classes to

the set defined in RDF(S) and OWL specifications, where examples include rdf:Property, rdfs:Class,

owl:Class, owl:Restriction, owl:DatatypeProperty, owl:FunctionalProperty, etc.; rdfs:Resource,

rdfs:Literal, e.g., are not meta-classes.

Meta-property A meta-property is one which has a meta-class as its domain; again, we restrict our notion

of meta-properties to the set defined in RDF(S) and OWL specifications, where examples include rdfs:-

domain, rdfs:subClassOf, owl:hasKey, owl:inverseOf, owl:oneOf, owl:onProperty, owl:unionOf, etc.;

rdf:type, owl:sameAs, rdfs:label, e.g., do not have a meta-class as domain.

Terminological triple We define the set of terminological triples as the union of the following sets of

triples:

1. triples with rdf:type as predicate and a meta-class as object;

2. triples with a meta-property as predicate;

3. triples forming a valid RDF list whose head is the object of a meta-property (e.g., a list used for

owl:unionOf, owl:intersectionOf, etc.);

4. triples which contribute to an all-disjoint-classes or all-disjoint-properties axiom.3

Note that the last category of terminological data is only required for special consistency-checking rules

called constraints: i.e., rules which check for logical contradictions in the data. For brevity, we leave this

3That is, triples with rdf:type as predicate and owl:AllDisjointClasses or owl:AllDisjointProperties as object, triples

whose predicate is owl:members and whose subject unifies with the previous category of triples, and triples forming a valid RDF

list whose head unifies with the object of such an owl:members triple.

28

3.6. Distribution Framework 29

split

run(argsn) flood

flood
flood

flood

scattern

scatter1

scatter0

scatter...

splitsplit

split

run(args1)
run(args0)

gathern

gather1

gather0

gather
merge

merge merge

merge

split

merge

coordinate0...n

run(...)
init’ed

rea
dy

send

ready

fin
is

he
d

m

s0

s1

sn

s0

s1

sn

s0

s1

sn

s0

s1

sn

m m

m

s0 s1

sn

.........

...

...

prepare

Figure 3.1: Abstract distributed interface

last category of terminological data implicit in the rest of the thesis, where owl:AllDisjointClasses and

owl:AllDisjointProperties can be thought of as “honourary meta-classes” included in category 1, owl:-

members can be thought of as an “honourary meta-property” included in category 2, and the respective RDF

lists included in category 3.

3.6 Distribution Framework

We now introduce the distribution framework upon which all of our methods are implemented.

We employ a shared-nothing distributed architecture [Stonebraker, 1986] over a cluster of commodity

hardware. The distributed framework consists of a master machine which orchestrates the given tasks, and

several slave machines which perform parts of the task in parallel. The abstract interface of distributed

methods is illustrated in Figure 3.1.

The master machine can instigate the following distributed operations:

• scatter: partition on-disk data using some local split function, and send each chunk to individual

slave machines for subsequent processing;

• run: request the parallel execution of a task by the slave machines—such a task either involves

processing of some data local to the slave machine, or the coordinate method (described later) for

reorganising the data under analysis;

• gather: gathers chunks of output data from the slave swarm and performs some local merge function

over the data;

• flood: broadcast global knowledge required by all slave machines for a future task.

The master machine provides input data to the slave swarm, provides the control logic required by the

distributed task (commencing tasks, coordinating timing, ending tasks), gathers and locally perform tasks

29

3.6. Distribution Framework 30

on global knowledge which the slave machines would otherwise have to replicate in parallel, and transmits

globally required knowledge.

The slave machines, as well as performing tasks in parallel, can perform the following distributed operation

(on the behest of the master machine):

• coordinate: local data on each slave machine are partitioned according to some split function, with

the chunks sent to individual machines in parallel; each slave machine also gathers the incoming chunks

in parallel using some merge function.

The above operation allows slave machines to reorganise (split/send/gather) intermediary data amongst

themselves; the coordinate operation could be replaced by a pair of gather/scatter operations performed

by the master machine, but we wish to avoid the channelling of all intermediary data through one machine.

For the experiments run in thesis, we instantiate this architecture using the standard Java Remote Method

Invocation libraries as a convenient means of development given our Java code-base.

All of our evaluation is based on nine machines connected by Gigabit ethernet4, each with uniform

specifications; viz.: 2.2GHz Opteron x86-64, 4GB main memory, 160GB SATA hard-disks, running Java

1.6.0 12 on Debian 5.0.4. Please note that much of the evaluation presented in this thesis assumes that the

slave machines have roughly equal specifications in order to ensure that tasks finish in roughly the same

time, assuming even data distribution.

4We observe, e.g., a max FTP transfer rate of 38MB/sec between machines.

30

Chapter 4

Crawling, Corpus and Ranking*

“Be conservative in what you do; be liberal in what you accept from others”

—Postel’s Law

In this chapter, we provide some initial contributions necessary for the core work presented in Chapters 5–

7. In particular, we describe the design and implementation of our distributed Linked Data crawler for

retrieving large amounts of RDF data from the Web. Subsequently, we detail the parameters of the crawl we

performed to achieve an evaluation corpus of 1.118 billion quadruples from 3.985 million sources, presenting

a selection of pertinent statistics from the data—this corpus is used throughout the rest of the thesis.

Finally, we present our distributed implementation of an algorithm—introduced by Harth et al. [2009]—for

performing links-based ranking of Linked Data documents; we use the results of this ranking procedure in

Chapter 5 when analysing the use of RDFS and OWL in Linked Data, and also in Chapter 6 as the basis

for annotating triples with ranking scores.

4.1 Crawler

Our crawler is designed to retrieve large amounts (in the order of billions of triples) of RDF data from the

Web by following links between documents; we thus draw inspiration from traditional (HTML-centric) Web

crawlers, with which we share the following requirements:

• Politeness: The crawler must implement politeness restrictions to avoid hammering remote servers

with dense HTTP GET requests and to abide by policies identified in the provided robots.txt1 files.

• Throughput: The crawler should crawl as many URIs as possible in as little time as is possible within

the bounds of the politeness policies.

• Scale: The crawler must be able to locate, retrieve and process millions of documents.

• Quality: The crawler should prioritise crawling URIs it considers to be “high quality”.

Our crawler starts with a set of seed URIs referring to RDF documents, retrieves the content of URIs,

parses and writes content to disk in the form of quads, and recursively extracts new URIs for crawling.

*Parts of this chapter have been submitted for review as [Hogan et al., 2010b].

1See http://www.robotstxt.org/orig.html; retr. 2010/12/01

31

http://www.robotstxt.org/orig.html

4.1. Crawler 32

Following LDP2 and LDP3 (see § 3.3), we consider all http: protocol URIs extracted from an RDF doc-

ument (as found in either the subject, predicate or object position of a triple) as candidates for crawling.

Additionally—and specific to crawling structured data—we identify the following requirement:

• Structured Data: The crawler should retrieve a high percentage of RDF/XML documents and avoid

wasted lookups on unwanted formats: e.g., HTML documents.

Currently, we crawl for RDF/XML syntax documents where RDF/XML is still the most commonly used

syntax for publishing RDF on the Web.2

Algorithm 4.1 outlines the operation of the crawler, which will be explained in detail throughout this

section.3 Although we only extract links from RDF/XML, note that all of our methods apply to generic

crawling, with the exception of some optimisations for maximising the ratio of RDF/XML documents (dis-

cussed in § 4.1.5).

4.1.1 Breadth-first Crawling

Traditional Web crawlers (e.g., see [Heydon and Najork, 1999; Boldi et al., 2002]) typically use a breadth-first

crawling strategy: the crawl is conducted in rounds, with each round crawling a frontier. On a high-level,

Algorithm 4.1 represents this round-based approach applying ROUNDS number of rounds. The frontier

comprises of seed URIs for round 0 (Line 1, Algorithm 4.1), and thereafter with novel URIs extracted from

documents crawled in the previous round (Line 18, Algorithm 4.1). Thus, the crawl emulates a breadth-

first traversal of inter-linked Web documents. (Note that the algorithm is further tailored according to

requirements we will describe as the section progresses.)

As we will see later in the section, the round-based approach fits well with our distributed framework,

allowing for crawlers to work independently for each round, and coordinating new frontier URIs at the

end of each round. Additionally, Najork and Wiener [2001] show that a breadth-first traversal strategy

tends to discover high-quality pages early on in the crawl, with the justification that well-linked documents

(representing higher quality documents) are more likely to be encountered in earlier breadth-first rounds;

similarly, breadth first crawling leads to a more diverse dataset earlier on, rather than a depth-first approach

which may end up traversing deep paths within a given site. [Lee et al., 2008] justify a rounds-based approach

to crawling based on observations that writing/reading concurrently and dynamically to a single queue can

become the bottleneck in a large-scale crawler.

4.1.2 Incorporating Politeness

The crawler must be careful not to bite the hands that feed it by hammering the servers of data providers

or breaching policies outlined in the provided robots.txt file [Thelwall and Stuart, 2006]. We use pay-

level-domains [Lee et al., 2008] (PLDs; a.k.a. “root domains”; e.g., bbc.co.uk) to identify individual data

providers, and implement politeness on a per-PLD basis. Firstly, when we first encounter a URI for a

PLD, we cross-check the robots.txt file to ensure that we are permitted to crawl that site; secondly, we

implement a “minimum PLD delay” to avoid hammering servers, viz.: a minimum time-period between

subsequent requests to a given PLD. This is given by MINDELAY in Algorithm 4.1—we currently allow two

lookups per domain per second.4

2In future to extend the crawler to support other formats such as RDFa, N-Triples and Turtle—particularly given the

increasing popularity of the former syntax.
3Algorithm 4.1 omits some details for brevity—e.g., checking robots.txt policies.
4We note that different domains have different guidelines, and our policy of two lookups per second may be considered

conservative for many providers; e.g., see http://www.livejournal.com/bots/ (retr. 2010/01/10) which allows up to five lookups

per second. However, we favour a more conservative policy in this regard.

32

http://www.livejournal.com/bots/

4.1. Crawler 33

Algorithm 4.1: Algorithm for crawling

Require: SEEDS , ROUNDS , PLDLIMIT , MINDELAY

1: F ← {(u, 1) | u ∈ SEEDS} /* frontier with inlink count: F : U→ N */
2: Q← ∅ /* per-PLD queue: Q := (P1, . . . , Pn), Pi : U× . . .× U */
3: R← ∅ /* RDF/non-RDF counts for a pld: R : U→ N× N */
4: S ← ∅ /* seen list: S ⊂ U */
5: for r ← 1 to ROUNDS do
6: fill(Q,F, S,PLDLIMIT) /* add highest linked u to each PLD queue */
7: for d← 1 to PLDLIMIT do
8: start← current time()
9: for Pi ∈ Q do

10: cur ← calculate cur(Pi, R) /* see § 4.1.5 */
11: if cur > random([0,1]) then
12: poll u from Pi
13: add u to S
14: uderef ← deref(u)
15: if uderef = u then
16: G← get(u)
17: for all uG ∈ extractHttpURIs(G) do
18: F (uG)++ /* F (uG)← 1 if novel */
19: end for
20: output G to disk
21: update R /* based on whether G = ∅ or G 6= ∅ */
22: else
23: F (u)→ F (uderef) /* add & link counts for u to uderef */
24: end if
25: end if
26: end for
27: elapsed← current time() - start
28: if elapsed < MINDELAY then
29: wait(MINDELAY− elapsed)
30: end if
31: end for
32: end for

In order to accommodate the min-delay policy with minimal effect on performance, we must refine our

crawling algorithm: large sites with a large internal branching factor (large numbers of unique intra-PLD

outlinks per document) can result in the frontier of each round being dominated by URIs from a small

selection of PLDs. Thus, näıve breadth-first crawling can lead to crawlers hammering such sites; conversely,

given a politeness policy, a crawler may spend a lot of time idle waiting for the min-delay to pass.

One solution is to reasonably restrict the branching factor [Lee et al., 2008]—the maximum number of

URIs crawled per PLD per round—which ensures that individual PLDs with large internal fan-out are not

hammered; thus, in each round of the crawl, we implement a cut-off for URIs per PLD, given by PLDLIMIT

in Algorithm 4.1.

Secondly, to enforce the politeness delay between crawling successive URIs for the same PLD, we im-

plement a per-PLD queue (given by Q in Algorithm 4.1) whereby each PLD is given a dedicated queue of

URIs filled from the frontier, and during the crawl, a URI is polled from each PLD queue in a round-robin

fashion. If all of the PLD queues have been polled before the min-delay is satisfied, then the crawler must

wait: this is given by Lines 27-30 in Algorithm 4.1. Thus, the minimum crawl time for a round—assuming

33

4.1. Crawler 34

a sufficiently full queue—becomes MINDELAY * PLDLIMIT .

4.1.3 On-disk Queue

As the crawl continues, the in-memory capacity of the machine will eventually be exceeded by the capacity

required for storing URIs [Lee et al., 2008].5 In order to scale beyond the implied main-memory limitations of

the crawler, we implement on-disk storage for URIs, with the additional benefit of maintaining a persistent

state for the crawl and thus offering a “continuation point” useful for extension of an existing crawl, or

recovery from failure.

We implement the on-disk storage of URIs using Berkeley DB [Olson et al., 1999] which comprises of two

indexes—the first provides lookups for URI strings against their status (polled/unpolled); the second offers

a key-sorted map which can iterate over unpolled URIs in decreasing order of inlink count. The inlink count

reflects the total number of documents from which the URI has been extracted thus far; we deem a higher

count to roughly equate to a higher priority URI (following similar intuition as links-analysis techniques

such as PageRank [Page et al., 1998] whereby we view an inlink as a positive vote for the content of that

document).

The crawler utilises both the on-disk index and the in-memory queue to offer similar functionality as

above. The on-disk index and in-memory queue are synchronised at the start of each round:

1. links and respective inlink counts extracted from the previous round (or seed URIs if the first round)

are added to the on-disk index;

2. URIs polled from the previous round have their status updated on-disk;

3. an in-memory PLD queue—representing the candidate URIs for the round—is filled using an iterator

of on-disk URIs sorted by descending inlink count.

Most importantly, the above process ensures that only the URIs active (current PLD queue and frontier

URIs) for the current round must be stored in memory. Also, the process ensures that the on-disk index

stores the persistent state of the crawler up to the start of the last round; if the crawler (or machine, etc.)

unexpectedly fails, the crawl can be resumed from the start of the last round. Finally, the in-memory PLD

queue is filled with URIs sorted in order of inlink count, offering a cheap form of intra-PLD URI prioritisation

(Line 6, Algorithm 4.1).

4.1.4 Multi-threading

The bottle-neck for a single-threaded crawler will be the response times of remote servers; the CPU load,

I/O throughput and network bandwidth of a crawling machine will not be efficiently exploited by sequential

HTTP GET requests over the Web. Thus, crawlers are commonly multi-threaded to mitigate this bottleneck

and perform concurrent HTTP lookups. At a certain point of increasing the number of active lookup threads,

the CPU load, I/O load, or network bandwidth becomes an immutable bottleneck with respect to local

hardware (not dependant on remote machines).

In order to find a suitable thread count for our particular setup (with respect to processor/network

bandwidth), we conducted some illustrative small-scale experiments comparing a machine crawling with the

same setup and input parameters, but with an exponentially increasing number of threads: in particular,

5By means of illustration, we performed a stress-test and observed that with 2GB of JAVA heap-space, our implementation

could crawl approx. 199 thousand URIs (additionally storing the respective frontier URIs) before throwing an out-of-memory

exception.

34

4.1. Crawler 35

we measure the time taken for crawling 1,000 URIs given a seed URI6 for 1, 2, 4, 8, 16, 32, 64, and 128

threads.7

For the different thread counts, Figure 4.1 overlays the total time taken in minutes to crawl the 1,000

URIs, and also overlays the average percentage CPU idle time.8 Time and CPU% idle noticeably have a

direct correlation. As the number of threads increases up until 64, the time taken for the crawl decreases—

the reduction in time is particularly pronounced in earlier thread increments; similarly, and as expected, the

CPU idle time decreases as a higher density of documents are retrieved and processed. Beyond 64 threads,

the effect of increasing threads becomes minimal as the machine reaches the limits of CPU and disk I/O

throughput; in fact, the total time taken starts to increase – we suspect that contention between threads for

shared resources affects performance. Thus, we settle upon 64 threads as an approximately optimal figure

for our setup.

Note that we can achieve a similar performance boost by distributing the crawl over a number of machines;

we will see more in § 4.1.6.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 64 128 256
 0

 20

 40

 60

 80

 100

to
ta

l c
ra

w
l t

im
e

(m
in

s.
)

av
er

ag
e

%
C

P
U

 id
le

threads

total crawl time (mins.)
average %CPU idle

Figure 4.1: Total time (mins.) and average percentage of CPU idle time for crawling 1,000 URIs with a
varying number of threads

4.1.5 Crawling RDF/XML

Given that we currently only handle RDF/XML documents, we would feasibly like to maximise the ratio of

HTTP lookups which result in RDF/XML content; i.e., given the total HTTP lookups as L, and the total

number of downloaded RDF/XML pages as R, we would like to maximise the ratio R/L.

In order to reduce the amount of HTTP lookups wasted on non-RDF/XML content, we implement the

6http://aidanhogan.com/foaf/foaf.rdf
7We pre-crawled all of the URIs before running the benchmark to help ensure that the first test was not disadvantaged by

a lack of remote caching.
8Idle times are measured as (100 - %CPU Usage), where CPU usage is extracted from the UNIX command ps taken every

three seconds during the crawl.

35

http://aidanhogan.com/foaf/foaf.rdf

4.1. Crawler 36

following heuristics:

1. firstly, we blacklist non-http(s) URI schemes (e.g., mailto:, file:, fax:, ftp:9, tel:);

2. secondly, we blacklist URIs with common file-extensions that are highly unlikely to return RDF/XML

(e.g., html, jpg, pdf, etc.) following arguments we previously laid out in [Umbrich et al., 2008];

3. thirdly, we check the returned HTTP header and only retrieve the content of URIs reporting

Content-type: application/rdf+xml;10

4. finally, we use a credible useful ratio when polling PLDs to indicate the probability that a URI from

that PLD will yield RDF/XML based on past observations.

Although the first two heuristics are quite trivial and should still offer a high theoretical recall of RD-

F/XML, the third is arguable in that previous observations [Hogan et al., 2010a] indicate that 17% of

RDF/XML documents are returned with a Content-type other than application/rdf+xml—it is indeed

valid (although not considered best practice) to return more generic content-types for RDF/XML (e.g.,

text/xml)—where we automatically exclude such documents from our crawl; however, here we put the onus

on publishers to ensure reporting of the most specific Content-type.

With respect to the fourth item, we implement an algorithm for selectively polling PLDs based on their

observed useful ratio: the percentage of documents thus far retrieved from that domain which the crawler

deems useful. Since our crawler only requires RDF/XML, we use this score to access PLDs which offer a

higher percentage of RDF/XML more often (Lines 10 & 11, Algorithm 4.1). Thus, we can reduce the amount

of time wasted on lookups of HTML documents and save the resources of servers for non-RDF/XML data

providers.

The credible useful ratio for PLD i is derived from the following credibility formula:

curi =
rdfi + µ

totali + µ

where rdfi is the total number of RDF documents returned thus far by PLD i, totali is the total number

of lookups performed for PLD i excluding redirects, and µ is a “credibility factor”. The purpose of the

credibility formula is to dampen scores derived from few readings (where totali is small) towards the value

1 (offering the benefit-of-the-doubt), with the justification that the credibility of a score with few readings

is less than that with a greater number of readings: with a low number of readings (totali � µ), the curi
score is affected more by µ than actual readings for PLD i; as the number of readings increases (totali � µ),

the score is affected more by the observed readings than the µ factor. We set this constant to 10;11 thus, for

example, if we observe that PLD a has returned 1/5 RDF/XML documents and PLD b has returned 1/50

RDF/XML documents, then cura = (1 + µ)/(5 + µ) = 0.73 and curb = (1 + µ)/(50 + µ) = 0.183—we thus

ensure that PLDs are not unreasonably punished for returning non-RDF/XML documents early on.

To implement selective polling of PLDs according to their useful ratio, we simply use the cur score as a

probability of polling a URI from that PLD queue in that round (Lines 10-11, Algorithm 4.1). Thus, PLDs

which return a high percentage of RDF/XML documents—or indeed PLDs for which very few URIs have

been encountered—will have a higher probability of being polled, guiding the crawler away from PLDs which

return a high percentage of non RDF/XML documents.

9Admittedly, the ftp: scheme may yield valid RDF/XML, but for the moment we omit the scheme.
10Indeed, one advantage RDF/XML has over RDFa is an unambiguous MIME-type which is useful in such situations—RDFa

is typically served as application/xhtml+xml.
11Admittedly, a ‘magic number’; however, the presence of such a factor is more important than its actual value: without the

credibility factor, if the first document returned by a PLD was non-RDF/XML, then that PLD would be completely ignored

for the rest of the crawl

36

4.1. Crawler 37

PLD polled skipped ur cur % polled
linkedmdb.org 1980 0 1 1 100
geonames.org 1971 26 0.996 0.996 98.7
rdfabout.com 1944 0 1 1 100
fu-berlin.de 1925 74 0.947 0.949 96.3
bbc.co.uk 1917 33 0.982 0.982 98.3

deri.ie 233 1814 0.013 0.054 11.4
megginson.com 196 1795 0 0.049 9.8
xbrl.us 206 1785 0 0.046 10.3
wikipedia.org 203 1784 0 0.051 10.2
uklug.co.uk 215 1776 0 0.044 10.7

Table 4.1: Useful ratio (ur) and credible useful ratio (cur) for the top five most often polled/skipped PLDs

We evaluated the useful ratio scoring mechanism on a crawl of 100k URIs, with the scoring enabled and

disabled. In the first run, with scoring disabled, 22,504 of the lookups resulted in RDF/XML (22.5%), whilst

in the second run with scoring enabled, 30,713 lookups resulted in RDF/XML (30.7%). Table 4.1 enumerates

the top 5 PLDs which were polled and the top 5 PLDs which were skipped for the crawl with scoring enabled,

including the useful ratio (ur—the unaltered ratio of useful documents returned to non-redirect lookups)

and the credible useful ratio score (cur). The top 5 polled PLDs were observed to return a high-percentage

of RDF/XML, and the top 5 skipped PLDs were observed to return a low percentage of RDF.

4.1.6 Distributed Approach

We have seen that given a sufficient number of threads, the bottleneck for multi-threaded crawling becomes

the CPU and/or I/O capabilities of one machine; thus, by implementing a distributed crawling framework

balancing the CPU workload over multiple machines, we expect to increase the throughput of the crawl. We

apply the crawling over our distributed framework (§ 3.6) as follows:

1. scatter: the master machine scatters a seed list of URIs to the slave machines, using a hash-based

split function;

2. run: each slave machine adds the new URIs to its frontier and performs a round of the crawl, writing

the retrieved and parsed content to the local hard-disk, and creating a frontier for the next round;

3. coordinate: each slave machine then uses the split function to scatter new frontier URIs to its peers.

Steps 2 & 3 are recursively applied until ROUNDS has been fulfilled. Note that in Step 2, we adjust the

MINDELAY for subsequent HTTP lookups to a given PLD value by multiplying the number of machines:

herein, we somewhat relax our politeness policy (e.g., no more than 8 lookups every 4 seconds, as opposed to

1 lookup every 0.5 seconds), but deem the heuristic sufficient assuming a relatively small number of machines

and/or large number of PLDs.

In order to evaluate the effect of increasing the number of crawling machines within the framework, we

performed a crawl performing lookups on 100k URIs on 1, 2, 4 and 8 machines using 64 threads. The results

are presented in Table 4.2, showing number of machines, number of minutes taken for the crawl, and also

the percentage of times that the in-memory queue had to be delayed in order to abide by our politeness

policies. There is a clear increase in the performance of the crawling with respect to increasing number of

machines. However, in moving from four machines to eight, the decrease in time is only 11.3%. With 8

37

4.1. Crawler 38

#machines 1 2 4 8
mins 360 156 71 63

%delay 1.8 10 81.1 94.6

Table 4.2: Time taken for a crawl performing lookups on 100 thousand URIs, and average percentage of
time each queue had to enforce a politeness wait, for differing numbers of machines

machines (and indeed, starting with 4 machines), there are not enough active PLDs in the queue to fill the

adjusted min-delay of 4 seconds (8*500 ms), and so the queue has a delay hit-rate of 94.6%.

We term this state PLD starvation: the slave machines do not have enough unique PLDs to keep them

occupied until the MINDELAY has been reached. Thus, we must modify somewhat the end-of-round criteria

to reasonably improve performance in the distributed case:

• firstly, a crawler can return from a round if the MINDELAY is not being filled by the active PLDs

in the queue—the intuition here being that new PLDs can be discovered in the frontier of the next

round;

• secondly, in the case that new PLDs are not found in the frontier, we implement a MINPLDLIMIT

which ensures that slave machines don’t immediately return from the round;

• finally, in the case that one slave crawler returns from a round due to some stopping criteria, the

master machine will request that all other slave machines also end their round such that machines do

not remain idle waiting for their peers to return.

The above conditions help to somewhat mitigate the effect of PLD starvation on our distributed crawl;

however, given the politeness restriction of 500 ms per PLD, this becomes a hard-limit for performance

independent of system architecture and crawling hardware, instead imposed by the nature of the Web of

Data itself. As a crawl progresses, active PLDs (PLDs with unique content still to crawl) will become less and

less, and the performance of the distributed crawler will approach that of a single-machine crawl. As Linked

Data publishing expands and diversifies, and as the number of servers hosting RDF content increases, better

performance would be observed for distributed crawling on larger numbers of machines: for the moment, we

observe that 8 machines currently approaches the limit of performance given our setup and policies.

4.1.7 Related Work

With respect to crawling, parts of our architecture and some of our design decisions are influenced by work

on traditional Web crawlers; e.g., the IRLBot system of Lee et al. [2008] and the distributed crawler of

Boldi et al. [2002].

Related work in the area of focused crawling can be categorised roughly as follows [Batsakis et al., 2009]:

• classic focused crawling : e.g., Chakrabarti et al. [1999] use primary link structure and anchor texts to

identify pages about a topic using various text similarity of link analysis algorithms;

• semantic focused crawling : is a variation of classical focused crawling but uses conceptual similarity

between terms found in ontologies [Ehrig and Maedche, 2003; Dong et al., 2009]

• learning focused crawling : Diligenti et al. [2000]; Pant and Srinivasan [2005] use classification algorithms

to guide crawlers to relevant Web paths and pages.

However, a fundamental difference between these approaches and ours is that our definition of high quality

pages is not based on topic, but instead on the content-type of documents.

38

4.1. Crawler 39

With respect to RDF, the Swoogle search engine implements a crawler which extracts links from Google,

and further crawls based on various—sometimes domain specific—link extraction techniques [Ding et al.,

2004]; like us, they also use file extensions to throw away non-RDF URIs. In later work, Ding and Finin

[2006] conducted a crawl of 1.7 million RDF documents resulting in 300 million triples which they then

analysed and found that, e.g., terms from the foaf:, rss: and dc: namespaces were particularly popular.

Cheng and Qu [2009] provide a very brief description of the crawler used by the FalconS search engine

for obtaining RDF/XML content. Interestingly, they provide statistics identifying a power-law like distri-

bution for the number of documents provided by each pay-level domain, correlating with our discussion of

PLD-starvation: few domains provide many documents, translating into fewer and fewer domains actively

contributing data as the crawl continues.

In [Sabou et al., 2007], for the purposes of the WATSON engine, the authors use Heritrix12 to retrieve

ontologies using Swoogle, Google and Protégé indexes, and also crawl by interpreting rdfs:seeAlso and

owl:imports as links—they do not exploit the dereferencability of URIs popularised by Linked Data.

Similarly, the Sindice crawler [Tummarello et al., 2007] retrieves content based on a push model, crawling

documents which pinged some central service such as PingTheSemanticWeb13; they also discuss a PLD-level

scheduler for ensuring politeness and diversity of data retrieved.

4.1.8 Critical Discussion and Future Directions

From a pragmatic perspective, we would prioritise extension of our crawler to handle arbitrary RDF formats,

especially the RDFa format which is growing in popularity. Such an extension may mandate modification

of the current mechanisms for ensuring a high percentage of RDF/XML documents: for example, we could

no longer blacklist URIs with a .html file extension, nor could we rely on the Content-type returned by

the HTTP header (unlike RDF/XML, RDFa does not have a specific MIME-type). Along these lines, we

could perhaps also investigate extraction of structured data from non-RDF sources; these could include

Microformats, metadata embedded in documents such as PDFs and images, extraction of HTML meta-

information, HTML scraping, etc. Again, such a process would require revisitation of our RDF-centric

focused crawling techniques.

The other main challenge posed in this section is that of PLD starvation; although we would expect

this to become less of an issue as the Semantic Web matures, it perhaps bears further investigation. For

example, we have yet to evaluate the trade-off between small rounds with frequent updates of URIs from

fresh PLDs, and large rounds which persist with a high delay-rate but require less co-ordination. Also, given

the inevitability of idle time during the crawl, it may be practical to give the crawler more tasks to do in

order to maximise the amount of processing done on the data, and minimise idle time.

Another aspect we have not treated in detail is that of our politeness policies: research and development

of more mature politeness policies could enable a higher crawl throughput, or perhaps a more sustainable

mechanism for crawling data which is in-tune with the capacity of remote data providers and competing

consumers. In future, it may also be beneficial to exploit Semantic Sitemap descriptions14 (where available)

which may point to a monolithic dump of an exporter’s data without the need for expensive and redundant

HTTP lookups.15

Finally, we have not discussed the possibility of incremental crawls: choosing URIs to recrawl may lead

to interesting research avenues. Besides obvious solutions such as HTTP caching, URIs could be re-crawled

12http://crawler.archive.org/; retr. 2011/01/22
13http://pingthesemanticweb.com; retr. 2011/01/22
14http://sw.deri.org/2007/07/sitemapextension/; retr. 2011/03/01
15However, using such Sitemaps would omit redirect information useful for later consumption of the data; also, partial

crawling of a domain according to a inlink-prioritised documents would no longer be possible.

39

http://crawler.archive.org/
http://pingthesemanticweb.com
http://sw.deri.org/2007/07/sitemapextension/

4.2. Evaluation Corpus 40

based on, e.g., detected change frequency of the document over time, some quality metric for the document,

or how many times data from that document were requested in the UI. More practically, an incremental

crawler could use PLD statistics derived from previous crawls, and the HTTP headers for URIs—including

redirections—to achieve a much higher ratio of lookups to RDF documents returned. Such considerations

would largely countermand the effects of PLD starvation, by reducing the amount of lookups the crawler

needs in each run. Hand-in-hand with incremental crawling comes analysis and mechanisms for handling

the dynamicity of RDF sources on the Web (e.g., see an initial survey by Umbrich et al. [2010]). For the

moment, we support infrequent, independent, static crawls.

4.2 Evaluation Corpus

To obtain our evaluation Linked Data corpus, we ran the crawler continuously for 52.5 h on 8 machines from

a seed list of ∼8 million URIs (extracted from an older RDF crawl) with cur scoring enabled.16 In that

time, we gathered a total of 1.118 billion quads, of which 11.7 million were duplicates (∼1%—representing

duplicate triples being asserted in the same document).17 We observed a mean of 140 million quads per

machine and an average absolute deviation of 1.26 million across machines: considering that the average

absolute deviation is ∼1% of the mean, this indicates near optimal balancing of output data on the machines.

4.2.1 Crawl Statistics

The crawl attempted 9.206 million lookups, of which 448 thousand (4.9%) were for robots.txt files. Of the

remaining 8.758 million attempted lookups, 4.793 million (54.7%) returned response code 200 Okay, 3.571

million (40.7%) returned a redirect response code of the form 3xx, 235 thousand (2.7%) returned a client error

code of the form 4xx and 95 thousand (1.1%) returned a server error of the form 5xx; 65 thousand (0.7%)

were disallowed due to restrictions specified by the robots.txt file. Of the 4.973 million lookups returning

response code 200 Okay, 4.022 million (83.9%) returned content-type application/rdf+xml, 683 thousand

(14.3%) returned text/html, 27 thousand (0.6%) returned text/turtle, 27 thousand (0.6%) returned

application/json, 22 thousand (0.4%) returned application/xml, with the remaining 0.3% comprising

of relatively small amounts of 97 other content-types—again, we only retrieve the content of the former

category of documents. Of the 3.571 million redirects, 2.886 million (80.8%) were 303 See Other as used

in Linked Data to disambiguate general resources from information resources, 398 thousand (11.1%) were

301 Moved Permanently, 285 thousand (8%) were 302 Found, 744 (∼0%) were 307 Temporary Redirect

and 21 (∼0%) were 300 Multiple Choices. In summary, of the non-robots.txt lookups, 40.7% were

redirects and 45.9% were 200 Okay/application/rdf+xml (as rewarded in our cur scoring mechanism). Of

the 4.022 million lookups returning response code 200 Okay and content-type application/rdf+xml, the

content returned by 3.985 million (99.1%) were successfully parsed and included in the corpus.

An overview of the total number of URIs crawled per each hour is given in Figure 4.2; in particular,

we observe a notable decrease in performance as the crawl progresses. In Figure 4.3, we give a breakdown

of three categories of lookups: 200 Okay/RDF/XML lookups, redirects, and other—again, our cur scoring

views the latter category as wasted lookups. We note an initial decrease in the latter category of lookups,

which then plateaus and varies between 2.2% and 8.8%.

During the crawl, we encountered 140 thousand PLDs, of which only 783 served content under 200

Okay/application/rdf+xml. However, of the non-robots.txt lookups, 7.748 million (88.5%) were on the

16The crawl was conducted in late May, 2010.
17Strictly speaking, an RDF/XML document represents an RDF graph—a set of triples which cannot contain duplicates.

However, given that we may sequentially access a number of very large RDF/XML documents, we parse data in streams and

omit duplicate detection.

40

4.2. Evaluation Corpus 41

latter set of PLDs; on average, 7.21 lookups were performed on PLDs which never returned RDF/XML,

whereas on average, 9,895 lookups were performed on PLDs which returned some RDF/XML. Figure 4.4

gives the number of active and new PLDs per crawl hour, where ‘active PLDs’ refers to those to whom a

lookup was issued in that hour period, and ‘new PLDs’ refers to those who were newly accessed in that

period; we note a high increase in PLDs at hour 20 of the crawl, where a large amount of ‘non-RDF/XML

PLDs’ were discovered. Perhaps giving a better indication of the nature of PLD starvation, Figure 4.5

renders the same information for only those PLDs who return some RDF/XML, showing that half of said

PLDs are exhausted after the third hour of the crawl, that only a small number of new ’RDF/XML PLDs’

are discovered after the third hour (between 0 and 14 each hour), and that the set of active PLDs plateaus

at ∼50 towards the end of the crawl.

 0

 50000

 100000

 150000

 200000

 250000

 10 20 30 40 50

lo
ok

up
s

hour

total lookups

Figure 4.2: Number of HTTP lookups per crawl hour.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

%
 o

f t
ot

al
 lo

ok
up

s

hour

200 Okay RDF/XML
redirects

other

Figure 4.3: Breakdown of HTTP lookups per crawl
hour.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10 20 30 40 50

no
. o

f p
ld

s

hour

active plds
new plds

Figure 4.4: Breakdown of PLDs per crawl hour.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50

no
. o

f p
ld

s

hour

active ’RDF’ plds
new ’RDF’ plds

Figure 4.5: Breakdown of RDF/XML PLDs per crawl
hour.

41

4.2. Evaluation Corpus 42

4.2.2 Corpus Statistics

The resulting evaluation corpus is sourced from 3.985 million documents and contains 1.118 billion quads,

of which 1.106 billion are unique (98.9%) and 947 million are unique triples (84.7% of raw quads).

To characterise our corpus, we first look at a breakdown of data providers. We extracted the PLDs

from the source documents and summated occurrences: Table 4.3 shows the top 25 PLDs with respect to

the number of triples they provide in our corpus, as well as their document count and average number of

triples per document. We see that a large portion of the data is sourced from social networking sites—such as

hi5.com and livejournal.com—that host FOAF exports for millions of users. Notably, the hi5.com domain

provides 595 million (53.2%) of all quadruples in the data: although the number of documents crawled from

this domain was comparable with other high yield domains, the high ratio of triples per document meant

that in terms of quadruples, hi5.com provides the majority of data. Other sources in the top-5 include the

opiumfield.com domain which offers LastFM exports, and linkedlifedata.com and bio2rdf.org which

publishes data from the life-science domain.

PLD quads documents quads/document

1 hi5.com 595,086,038 255,742 2,327
2 livejournal.com 77,711,072 56,043 1,387
3 opiumfield.com 66,092,693 272,189 243
4 linkedlifedata.com 54,903,837 253,392 217
5 bio2rdf.org 50,659,976 227,307 223
6 rdfize.com 38,107,882 161,931 235
7 appspot.com 28,734,556 49,871 576
8 identi.ca 22,873,875 65,235 351
9 freebase.com 18,567,723 181,612 102

10 rdfabout.com 16,539,018 135,288 122
11 ontologycentral.com 15,981,580 1,080 14,798
12 opera.com 14,045,764 82,843 170
13 dbpedia.org 13,126,425 144,850 91
14 qdos.com 11,234,120 14,360 782
15 l3s.de 8,341,294 163,240 51
16 dbtropes.org 7,366,775 34,013 217
17 uniprot.org 7,298,798 11,677 625
18 dbtune.org 6,208,238 181,016 34
19 vox.com 5,327,924 44,388 120
20 bbc.co.uk 4,287,872 262,021 16
21 geonames.org 4,001,272 213,061 19
22 ontologyportal.org 3,483,480 2 1,741,740
23 ordnancesurvey.co.uk 2,880,492 43,676 66
24 loc.gov 2,537,456 166,652 15
25 fu-berlin.de 2,454,839 135,539 18

Table 4.3: Top twenty-five PLDs and number of quads they provide.

Continuing, we encountered 199.4 million unique subjects, of which 165.3 million (82.9%) are blank-

nodes and 34.1 million (17.1%) are URIs. This translates into an average of 5.6 quadruple occurrences

per subject; Figure 4.6(a) shows the distribution of the number of quadruple appearances for each unique

subject, where one subject appears in 252 thousand quadruples, and where the plurality of subjects occur

in three quadruples—a power-law is ostensibly apparent.18 There are some irregular “peaks” apparent the

distribution, where we notice large groups of subjects have precisely the same number of edges due to triple

18We are reluctant to claim a power-law following the criticism of Clauset et al. [2009] with respect to the over-prevalence

of such claims in research literature.

42

4.2. Evaluation Corpus 43

limits enforced by certain exporters (we will discuss this further in § D.4 where it affects our evaluation).

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1 100 10000 1e+006

nu
m

be
r

of
 s

ub
je

ct
s

number of edges

(a) Subjects

 1

 10

 100

 1000

 10000

 1 100 10000 1e+006 1e+008 1e+010

nu
m

be
r

of
 p

ro
pe

rt
ie

s

number of predicate appearances

(b) Predicates

 1

 10

 100

 1000

 10000

 100000

 1 100 10000 1e+006 1e+008 1e+010

nu
m

be
r

of
 c

la
ss

es

number of appearances as object of rdf:type

(c) rdf:type values

Figure 4.6: Distributions for number of triples per (a) subject, (b) predicate (properties), (c) value of
rdf:type (classes) [log/log].

With respect to objects, we found that 668 million are URIs (60.4%), 273.5 million are literals (24.7%),

and 164.5 million (14.9%) are blank-nodes.

Next, we look at usage of properties and classes in the data: for properties, we analysed the frequency

of occurrence of terms in the predicate position, and for classes, we analysed the occurrences of terms in

the object position of rdf:type quads. We found 23,155 unique predicates, translating into an average

48,367 quads per predicate; Figure 4.6(b) gives the distribution of predicate occurrences (property usage),

which again resembles a power-law, and where the plurality of predicates (4,659 | 20.1%) appear only once;

Table 4.4 gives the listing of the top twenty-five predicates, where (unsurprisingly) rdf:type heads the list

(18.5% of all quads), and where foaf properties also feature prominently.

Analogously, we found 104,596 unique values for rdf:type, translating into an average of 1,977 rdf:type

quadruples per class term; Figure 4.6(c) gives the distribution of rdf:type-value occurrences (class usage),

which also resembles a power-law, where the plurality of classes (29,856 | 28.5%) appear only once; Table 4.4

gives the listing of the top twenty-five classes, where again FOAF—and in particular foaf:Person (79.2%

of all rdf:type quads)—features prominently.

In order to get an insight into the most instantiated vocabularies, we extracted the ‘namespace’ from

predicates and URI-values for rdf:type—we simply strip the URI upto the last hash or slash. Table 4.4

gives the top-25 occurring namespaces for a cumulative count, where FOAF, RDFS, and RDF dominate;

in contrast, Table 4.4 also gives the top 25 namespaces for unique URIs appearing as predicate or value of

rdf:type, where in particular namespaces relating to DBPedia, Yago and Freebase offer a diverse set of

instantiated terms; note that (i) the terms need not be defined in that namespace (e.g., foaf:tagLine used

by LiveJournal) or may be misspelt versions of defined terms (e.g., foaf:image used by LiveJournal instead

of foaf:img [Hogan et al., 2010a]), and (ii) 460 of the 489 terms in the rdf: namespace are predicates of

the form rdf: n.

4.2.3 Related Work

With respect to evaluation corpora, Semantic Web research has long relied upon synthetic benchmarks to

demonstrate (in particular) the performance of various techniques for reasoning, indexing, query answering,

etc.

Perhaps the most prominent synthetic frawework for evaluating Semantic Web systems is the “Lehigh

University Benchmark” (LUBM) proposed by Guo et al. [2005]—in fact, we will use this benchmark ourselves

for some initial performance evaluation of reasoning optimisations in § 5.3.4. The LUBM framework consists

43

4.2. Evaluation Corpus 44

#
p
re

d
ic

a
te

tr
ip

le
s

c
la

ss
tr

ip
le

s
n
a
m

e
sp

a
c
e

tr
ip

le
s

n
a
m

e
sp

a
c
e

te
rm

s

1
r
d
f
:
t
y
p
e

2
0
6
,7

9
9
,1

0
0

f
o
a
f
:
P
e
r
s
o
n

1
6
3
,6

9
9
,1

6
1

f
o
a
f
:

6
1
5
,1

1
0
,0

2
2

y
a
g
o
r
:

4
1
,4

8
3

2
r
d
f
s
:
s
e
e
A
l
s
o

1
9
9
,9

5
7
,7

2
8

f
o
a
f
:
A
g
e
n
t

8
,1

6
5
,9

8
9

r
d
f
s
:

2
1
9
,2

0
5
,9

1
1

y
a
g
o
:

3
3
,4

9
9

3
f
o
a
f
:
k
n
o
w
s

1
6
8
,5

1
2
,1

1
4

s
k
o
s
:
C
o
n
c
e
p
t

4
,4

0
2
,2

0
1

r
d
f
:

2
1
3
,6

5
2
,2

2
7

d
b
t
r
o
p
e
s
:

1
6
,4

0
1

4
f
o
a
f
:
n
i
c
k

1
6
3
,3

1
8
,5

6
0

m
o
:
M
u
s
i
c
A
r
t
i
s
t

4
,0

5
0
,8

3
7

b
2
r
:
/
b
2
r
r
:

4
3
,1

8
2
,7

3
6

f
b
:

1
4
,8

8
4

5
b
2
r
r
:
l
i
n
k
e
d
T
o
F
r
o
m

3
1
,1

0
0
,9

2
2

f
o
a
f
:
P
e
r
s
o
n
a
l
P
r
o
f
i
l
e
D
o
c
u
m
e
n
t

2
,0

2
9
,5

3
3

l
l
d
p
u
b
m
e
d
:

2
7
,9

4
4
,7

9
4

d
b
p
:

7
,1

7
6

6
l
l
d
e
g
e
n
e
:
p
u
b
m
e
d

1
8
,7

7
6
,3

2
8

f
o
a
f
:
O
n
l
i
n
e
A
c
c
o
u
n
t

1
,9

8
5
,3

9
0

l
l
d
e
g
e
n
e
:

2
2
,2

2
8
,4

3
6

o
w
n
1
6
:

1
,1

4
9

7
r
d
f
s
:
l
a
b
e
l

1
4
,7

3
6
,0

1
4

f
o
a
f
:
I
m
a
g
e

1
,9

5
1
,7

7
3

s
k
o
s
:

1
9
,8

7
0
,9

9
9

s
e
m
w
e
b
i
d
:

1
,0

2
4

8
o
w
l
:
s
a
m
e
A
s

1
1
,9

2
8
,3

0
8

o
p
i
u
m
f
i
e
l
d
:
N
e
i
g
h
b
o
u
r

1
,9

2
0
,9

9
2

f
b
:

1
7
,5

0
0
,4

0
5

o
p
e
n
c
y
c
:

9
3
7

9
f
o
a
f
:
n
a
m
e

1
0
,1

9
2
,1

8
7

g
e
o
n
a
m
e
s
:
F
e
a
t
u
r
e

9
8
3
,8

0
0

o
w
l
:

1
3
,1

4
0
,8

9
5

e
s
t
o
c
:

9
2
7

1
0

f
o
a
f
:
w
e
b
l
o
g

1
0
,0

6
1
,0

0
3

f
o
a
f
:
D
o
c
u
m
e
n
t

7
4
5
,3

9
3

o
p
i
u
m
f
i
e
l
d
:

1
1
,5

9
4
,6

9
9

d
b
o
:

8
4
3

1
1

f
o
a
f
:
h
o
m
e
p
a
g
e

9
,5

2
2
,9

1
2

o
w
l
:
T
h
i
n
g

6
7
9
,5

2
0

m
o
:

1
1
,3

2
2
,4

1
7

s
u
m
o
:

5
8
1

1
2

l
l
d
p
u
b
m
e
d
:
c
h
e
m
i
c
a
l

8
,9

1
0
,9

3
7

e
s
t
o
c
:
c
p
h
i
m

4
2
1
,1

9
3

d
c
:

9
,2

3
8
,1

4
0

r
d
f
:

4
8
9

1
3

f
o
a
f
:
m
e
m
b
e
r
n
a
m
e

8
,7

8
0
,8

6
3

g
r
:
P
r
o
d
u
c
t
O
r
S
e
r
v
i
c
e
M
o
d
e
l

4
0
7
,3

2
7

e
s
t
o
c
:

9
,1

7
5
,5

7
4

w
n
:

3
0
3

1
4

f
o
a
f
:
t
a
g
L
i
n
e

8
,7

8
0
,8

1
7

m
o
:
P
e
r
f
o
r
m
a
n
c
e

3
9
2
,4

1
6

d
c
t
:

6
,4

0
0
,2

0
2

b
2
r
:
/
b
2
r
r
:

3
6
6

1
5

f
o
a
f
:
d
e
p
i
c
t
i
o
n

8
,4

7
5
,0

6
3

f
b
:
f
i
l
m
.
p
e
r
f
o
r
m
a
n
c
e

3
0
0
,6

0
8

b
2
r
n
s
:

5
,8

3
9
,7

7
1

m
o
v
i
e
:

2
5
1

1
6

f
o
a
f
:
i
m
a
g
e

8
,3

8
3
,5

1
0

f
b
:
t
v
.
t
v
g
u
e
s
t
r
o
l
e

2
9
0
,2

4
6

s
i
o
c
:

5
,4

1
1
,7

2
5

u
n
i
p
r
o
t
:

2
0
7

1
7

f
o
a
f
:
m
a
k
e
r

7
,4

5
7
,8

3
7

f
b
:
c
o
m
m
o
n
.
w
e
b
p
a
g
e

2
8
8
,5

3
7

v
o
t
e
:

4
,0

5
7
,4

5
0

a
i
f
b
:

1
9
6

1
8

l
l
d
p
u
b
m
e
d
:
j
o
u
r
n
a
l

6
,9

1
7
,7

5
4

d
c
m
i
t
:
T
e
x
t

2
6
2
,5

1
7

g
e
o
n
a
m
e
s
:

3
,9

8
5
,2

7
6

f
a
c
t
b
o
o
k
:

1
9
1

1
9

f
o
a
f
:
t
o
p
i
c

6
,1

6
3
,7

6
9

e
s
t
o
c
:
i
r
t
h
e
u
r
y
l
d
d

2
4
3
,0

7
4

s
k
i
p
i
n
i
o
n
s
:

3
,4

6
6
,5

6
0

f
o
a
f
:

1
5
0

2
0

l
l
d
p
u
b
m
e
d
:
k
e
y
w
o
r
d

5
,5

6
0
,1

4
4

o
w
l
:
C
l
a
s
s

2
1
7
,3

3
4

d
b
o
:

3
,2

9
9
,4

4
2

g
e
o
s
p
e
c
i
e
s
:

1
4
3

2
1

d
c
:
t
i
t
l
e

5
,3

4
6
,2

7
1

o
p
w
n
:
W
o
r
d
S
e
n
s
e

2
0
6
,9

4
1

u
n
i
p
r
o
t
:

2
,9

6
4
,0

8
4

b
2
r
n
s
:

1
3
3

2
2

f
o
a
f
:
p
a
g
e

4
,9

2
3
,0

2
6

b
i
l
l
:
L
e
g
i
s
l
a
t
i
v
e
A
c
t
i
o
n

1
9
3
,2

0
2

e
s
t
o
c
:

2
,6

3
0
,1

9
8

l
u
d
o
p
i
n
i
o
n
s
:

1
3
2

2
3

b
2
r
:
l
i
n
k
e
d
T
o
F
r
o
m

4
,5

1
0
,1

6
9

f
b
:
c
o
m
m
o
n
.
t
o
p
i
c

1
9
0
,4

3
4

l
l
d
l
i
f
e
s
k
i
m
:

2
,6

0
3
,1

2
3

o
p
l
w
e
b
:

1
3
0

2
4

s
k
o
s
:
s
u
b
j
e
c
t

4
,1

5
8
,9

0
5

r
d
f
:
S
t
a
t
e
m
e
n
t

1
6
9
,3

7
6

p
t
i
m
e
:

2
,5

1
9
,5

4
3

e
s
n
s
:

1
2
7

2
5

s
k
o
s
:
p
r
e
f
L
a
b
e
l

4
,1

4
0
,0

4
8

m
u
:
V
e
n
u
e

1
6
6
,3

7
4

d
b
p
:

2
,3

7
1
,3

9
6

d
r
u
g
b
a
n
k
:

1
1
9

T
ab

le
4.

4:
T

op
tw

en
ty

-fi
v
e

(i
)

p
re

d
ic

at
es

b
y

n
u
m

b
er

o
f

tr
ip

le
s

th
ey

a
p

p
ea

r
in

;
(i

i)
va

lu
es

fo
r
r
d
f
:
t
y
p
e

b
y

n
u

m
b

er
o
f

tr
ip

le
s

th
ey

a
p

p
ea

r
in

;
a
n

d
(i

ii
)

n
am

es
p

ac
es

b
y

n
u

m
b

er
of

tr
ip

le
s

th
e

co
n
ta

in
ed

p
re

d
ic

a
te

s
o
r

va
lu

es
fo

r
r
d
f
:
t
y
p
e

a
p

p
ea

r
in

;
(i

v
)

n
a
m

es
p

a
ce

s
b
y

u
n

iq
u

e
p

re
d

ic
a
te

s
o
r

va
lu

es
fo

r
r
d
f
:
t
y
p
e

th
at

th
ey

co
n
ta

in
.

44

4.2. Evaluation Corpus 45

of (i) an OWL ontology which provides a formally defined terminology relating to universities, staff, students,

and so forth, (ii) code for populating variable-sized corpora of instance data using this terminology and

pseudo-random generative algorithms, (iii) a set of benchmark (SPARQL [Prud’hommeaux and Seaborne,

2008]) queries of various types which can be posed against the corpora, some of which rely on inferencing

to generate a complete set of answers. LUBM has been heavily used for scalability benchmarks given that

massive corpora can be quickly generated for testing; e.g., see the recent evaluation of reasoning systems

by Weaver and Hendler [2009]; Urbani et al. [2009, 2010] and evaluation of indexing and query-processing

by ourselves [Harth et al., 2007], as well as Liu and Hu [2005]; Erling and Mikhailov [2009]; Stocker et al.

[2008], etc.

Ma et al. [2006] later extended LUBM to create the “University Ontology Benchmark” (UOBM), intro-

ducing variants of the university ontology which make more extensive use of the OWL Lite and OWL DL

dialects. They also noted that the LUBM benchmark was poorly interlinked on a global level, with data

from different universities forming (in our words) “cliques”; they thus updated the generative algorithms to

better interlink different universities. UOBM was subsequently used to evaluate various reasoning engines,

such as those proposed by Zhou et al. [2006]; Lu et al. [2007].

More recently, Bizer and Schultz [2009] proposed the “Berlin SPARQL Benchmark” (BSBM): a framework

for evaluating SPARQL query engines based on synthetic e-commerce data and a set of benchmark queries—

unlike LUBM, reasoning is not part of the benchmark. BSBM has been used in a number of evaluations,

including for systems proposed by Castillo and Leser [2010]; Martin et al. [2010] etc.

A number of other benchmarking suites have also been proposed, but—to the best of our knowledge—

have yet to enjoy notable adoption, including the “Lehigh Bibtex Benchmark” (LBBM) [Wang et al., 2005]

and SP2Bench for SPARQL query-answering [Schmidt et al., 2009a].

However, synthetic benchmarks are inherently unsuitable for evaluating systems which intend to operate

over real-world and/or heterogeneous corpora, given that (i) the morphology of the data created by the

generative algorithms may be overly simplistic and not reflective of real data; (ii) the queries defined may

not align with those of a typical use-case; (iii) the data typically correspond to a closed, single terminology;

(iv) the data can always be assumed to be correct. Acknowledging these concerns, numerous other real-world,

curated datasets have been used in evaluating various Semantic Web systems, including UniProt [Wu et al.,

2006], DBPedia [Bizer et al., 2009b], OpenCyc19, etc. Again, although these datasets may feature some noise,

and may be the result of collaborative editing and curation, they are not representative of heterogeneous

Web corpora.

Moving towards evaluation of more heterogeneous data, Kiryakov et al. [2009] collected together a selec-

tion of dumps hosted by various Linked Data providers—viz., DBPedia, Freebase20, Geonames21, UMBEL22,

WordNet R©23, CIA World Factbook24, Lingvoj25, MusicBrainz26—and selected vocabularies—viz. Dublin

Core, SKOS, RSS and FOAF—to create a corpus of one billion facts for the “Linked Data Semantic Reposi-

tory” (LDSR). Unlike our corpus, the sources of data constituting LDSR are manually chosen; although the

authors discuss methods to overcome various forms of domain-specific noise present in their data, they do

not address generic issues of provenance or handling arbitrary Web data.

Again, like us, various systems crawl their own corpora for populating and evaluating their systems;

please see discussion in § 4.1.7.

19http://www.cyc.com/cyc/opencyc; retr. 2010/01/10
20http://www.freebase.com/; retr. 2010/01/10
21http://www.geonames.org/; retr. 2010/01/10
22http://www.umbel.org/; retr. 2010/01/10
23http://wordnet.princeton.edu/; retr. 2010/01/10
24http://www4.wiwiss.fu-berlin.de/factbook/; retr. 2010/01/10
25http://www.lingvoj.org/; retr. 2010/01/10
26http://musicbrainz.org/; retr. 2010/01/10

45

http://www.cyc.com/cyc/opencyc
http://www.freebase.com/
http://www.geonames.org/
http://www.umbel.org/
http://wordnet.princeton.edu/
http://www4.wiwiss.fu-berlin.de/factbook/
http://www.lingvoj.org/
http://musicbrainz.org/

4.2. Evaluation Corpus 46

With respect to evaluating systems against real-world RDF Web Data, perhaps the most agreed upon

corpus is that provided annually for the“Billion Triple Challenge” (BTC)27: this corpus is crawled every year

from millions of sources, and entrants to the challenge must demonstrate applications thereover. Since the

first challenge in 2008, a number of other papers have used BTC corpora (or some derivation there from) for

evaluation, including works by Erling and Mikhailov [2009]; Urbani et al. [2009]; Schenk et al. [2009]; Delbru

et al. [2010a], etc.—-as well as ourselves [Hogan et al., 2009b] and (of course) various other entrants to the

BTC itself.28

4.2.4 Critical Discussion and Future Directions

Firstly, we again note that our corpus only consists of RDF/XML syntax data, and thus we miss potentially

interesting contributions from, in particular, publishers of RDFa—for example, GoodRelations data [Hepp,

2009] is often published in the latter format. However, we conjecture that RDF/XML is still the most

popular format for Linked Data publishing, and that only considering RDF/XML still offers a high coverage

of those RDF providers on the Web.29

Further, we note that some of the sources contributing data to our corpus may not be considered Linked

Data in the strict sense of the term: some RDF exporters—such as opera.com—predate the Linked Data

principles, and may demonstrate (i) sparse use of URIs (LDP1/LDP2/LDP3), and (ii) sparse outlinks to

external data sources (LDP4). However, these exporters are published as RDF/XML on the Web, receive

inlinks from other Linked Data sources, and often share a common vocabulary—particularly FOAF—with

other Linked Data providers; since we do not want to blacklist providers of RDF/XML Web documents, we

consider the data provided by these exporters as “honourary” Linked Data.

Similarly, a large fragment of our corpus is sourced from FOAF exporters which provide uniform data

and which we believe to be of little general interest to users outside of that particular site—again, such

dominance in data volume is due to a relatively large triple-to-document ratio exhibited by domains such as

hi5.com (cf. Table 4.3). In future, we may consider a triple-based budgeting of domains to ensure a more

even triple count across all data providers, or possibly PLD prioritisation according to inlink-based quality

measures (it’s worth noting, however, that such measures would make our crawl sub-optimal with respect to

our politeness policies).

With respect to the scale of our corpus—in the order of a billion triples—we are still (at least) an order

of magnitude below the current amount of RDF available on the Web of Data. Although our methods are

designed to scale beyond the billion triple mark, we see the current scope as being more exploratory, and

evaluating the wide variety of algorithms and techniques we present in later chapters for a larger corpus

would pose significant practical problems, particularly with respect to our hardware and required runtimes.

In any case, we believe that our billion triple corpus poses a very substantial challenge with respect to the

efficiency and scalability of our methods—later chapters include frank discussion on potential issues with

respect to scaling further (these issues are also summarised in Chapter 8).

Finally, given that we perform crawling of real-world data from the Web, we do not have any form of gold-

standard against which to evaluate our methods—this poses inherent difficulties with respect to evaluating

the quality of results. Thus, we rely on known techniques rooted in the standards by which the data are

published, such that errors in our results are traceable to errors in the data (with respect to the standards)

and not deficiencies in our approach. Additionally, we offer methods for automatically detecting noise in our

27http://challenge.semanticweb.org/; retr. 2010/01/10
28In fact, these corpora have been crawled by colleagues Andreas Harth and Jürgen Umbrich using SWSE architecture.
29Note that at the time of writing, Drupal 7 has just been released, offering RDFa export of data as standard; for example,

see http://semanticweb.com/drupal-7-debuts-parties-set-to-begin_b17277; retr. 2010/01/10. We hope that these developments

will lead to richer sources of RDF in future.

46

http://challenge.semanticweb.org/
http://semanticweb.com/drupal-7-debuts-parties-set-to-begin_b17277

4.3. Ranking 47

results—in the form of inconsistency—and sketch approaches for repairing such problems.

4.3 Ranking

We now give an overview of our distributed implementation for ranking Linked Data sources, based on the

methods of Harth et al. [2009]; again, we will use the results of this ranking procedure in Chapter 5 when

analysing the use of RDFS and OWL in Linked Data, and also in Chapter 6 as the basis for annotating

triples with ranking scores.

4.3.1 Rationale and High-level Approach

There is a long history of links-based analysis over Web data—and in particular over hypertext documents—

where links are seen as a positive vote for the relevance or importance of a given document. Seminal

works exploiting the link structure of the Web for ranking documents include HITS [Kleinberg, 1999] and

PageRank [Page et al., 1998]; however, these techniques are not immediately applicable to Linked Data. More

recent works (e.g., [Harth et al., 2009; Delbru et al., 2010b]) have presented various links-based techniques

for ranking RDF corpora with various end-goals in mind: most commonly, prioritisation of informational

artefacts in user result-views.

Inspired in particular by work presented in [Harth et al., 2009], herein we use links-based analysis with

the underlying premise that higher ranked sources contribute more “trustworthy” data: in our case, we

assume a correlation between the (Eigenvector) centrality of a source in the graph, and the “quality” of

data that it provides.30 We thus implement a two-step process similar to that presented in [Harth et al.,

2009]: (i) we create the graph of links between sources, and apply a standard PageRank calculation over

said graph to derive source ranks; (ii) we propagate source ranks to the elements of interest they contain

using a simple summation aggregation—elements of interest may be terms, triples, predicates, axioms, etc.,

as required. Herein, we focus on the first step: viz., ranking sources.

Harth et al. [2009] discuss and compare two levels of granularity for deriving source-level ranks: (i)

document-level granularity analysing inter-linkage between Web documents; and (ii) pay-level-domain (PLD)

granularity analysing inter-linkage between domains (e.g., dbpedia.org, data.gov.uk). Document-level

analysis is more expensive—in particular, it generates a larger graph for analysis—but allows for more fine-

grained ranking of elements resident in different documents. PLD-level analysis is cheaper—it generates a

smaller graph—but ranks are more coarse-grained, and many elements can share identical ranks grouped by

the PLDs they appear in.

In the SWSE engine [Hogan et al., 2010b], we employ in-memory techniques for applying a PageRank

analysis of the PLD-granularity source graph: we demonstrated this to be efficiently computable in our

distributed setup due to the small size of the graph extracted (in particular, the PageRank calculation

took <1 min in memory applying 10 iterations), and argued that PLD-level granularity was sufficient for

that particular use-case (ranking entity ‘importance’, which is combined with TF-IDF relevance scores for

prioritising entity-search results) [Hogan et al., 2010b]. However, in this thesis, we opt to apply the more

expensive document-level analysis which provides more granular results useful, in particular, for repairing

inconsistent data in § 6.4.3. Since we will deal with larger graphs, we opt for on-disk batch-processing

techniques—mainly sorts, scans, and sort-merge joins of on-disk files—which are not hard-bound by in-

memory capacity, but which are significantly slower than in-memory analysis.

30With respect to Linked Data, data quality is a complex issue worthy of a thesis itself—we leave the definition open and

the word “quality” in inverted commas.

47

4.3. Ranking 48

4.3.2 Creating and Ranking the Source Graph

Creating the graph of interlinking Linked Data sources is non-trivial, in that the notion of a hyperlink does

not directly exist for our corpus. Thus, we must extract a graph sympathetic to Linked Data principles

(§ 3.3) and current publishing patterns.

According to LDP4, links should be specified simply by using external URI names in the data. These URI

names should dereference to an RDF description of themselves according to LDP2 and LDP3 respectively.

Let D = (V,E) represent a simple directed graph where V ⊂ S is a set of sources (vertices), and E ⊂ S× S

is a set of pairs of vertices (edges). Letting si, sj ∈ V be two vertices, then (si, sj) ∈ E iff si 6= sj and there

exists some u ∈ U such that redirs(u) = sj and u appears in some triple t ∈ get(si): i.e., an edge extends

from si to sj iff the RDF graph returned by si mentions a URI which dereferences to a different source sj .

Now, let E(s) denote the set of direct successors of s (outlinks), let E∅ denote the set of vertices with no

outlinks (dangling nodes), and let E−(s) denote the set of direct predecessors of s (inlinks). The PageRank

of a vertex si in the directed graph D = (V,E) is then given as follows [Page et al., 1998]:

rank(si) =
1− d
|V |

+ d
∑
s∅∈E∅

rank(s∅)

|V |
+ d

∑
sj∈E−(si)

rank(sj)

|E(sj)|

where d is a damping constant (usually set to 0.85) which helps ensure convergence in the following iterative

calculation, and where the middle component splits the ranks of dangling nodes evenly across all other nodes.

Note also that the first and second components are independent of i, and constitute the minimum possible

rank of all nodes (ensures that ranks do not need to be normalised during iterative calculation).

Now let w = 1−d
|V | represent the weight of a universal (weak link) given by all non-dangling nodes to all

other nodes—dangling nodes split their vote evenly and thus don’t require a weak link; we can use a weighted

adjacency matrix M as follows to encode the graph D = (V,E):

mi,j =

d

|E(sj)| + w, if (sj , si) ∈ E
1
|V | , if sj ∈ E∅
w, otherwise

where this stochastic matrix can be thought of as a Markov chain (dubbed the random-surfer model). The

ranks of all sources can be expressed algebraically as the principal eigenvector of M , which in turn can be

estimated using the power iteration method up until some termination criterium (fixed number of iterations,

convergence measures, etc.) is reached. We refer the interested reader to [Page et al., 1998] for more detail.

4.3.3 Distributed Ranking Implementation

Individual tasks are computed using parallel sorts, scans and merge-joins of flat compressed files over the

slave machines in our cluster; we assume that the corpus is pre-distributed over the cluster, as is the output

of our crawling component. For reference, we provide the detailed description of the ranking sub-algorithms

in Appendix C, where our high-level distributed approach can be summarised as follows:

1. run: each slave machine sorts its segment of the data by context (aka. source), with a list of sorted

contexts generated on each machine;

2. gather/flood: the master machine gathers the list of contexts, merge-sorting the raw data into a

global list of contexts which is subsequently flooded to the slave machines;

3. run: the slave machines extract the source-level graph in parallel from their segment of the data

(Algorithm C.1), rewrite the vertices in the sub-graph using redirects (Algorithm C.2), prune links in

48

4.3. Ranking 49

Document Rank

1 http://www.w3.org/1999/02/22-rdf-syntax-ns 0.112
2 http://www.w3.org/2000/01/rdf-schema 0.104
3 http://dublincore.org/2008/01/14/dcelements.rdf 0.089
4 http://www.w3.org/2002/07/owl 0.067
5 http://www.w3.org/2000/01/rdf-schema-more 0.045
6 http://dublincore.org/2008/01/14/dcterms.rdf 0.032
7 http://www.w3.org/2009/08/skos-reference/skos.rdf 0.028
8 http://www.w3.org/2003/g/data-view 0.014
9 http://xmlns.com/foaf/spec/ 0.014

10 http://www.w3.org/2000/01/combined-ns-translation.rdf.fr 0.010

Table 4.5: Top 10 ranked documents

the sub-graph such that it only contains vertices in the global list of contexts (Algorithm C.3), and

finally sort the sub-graph according to inlinks and outlinks;

4. gather/flood: the master machine gathers the sub-graphs (for both inlink and outlink order) from

the slave machines and merge-sorts to create the global source-level graph; the master machine then

performs the power iteration algorithm to derive PageRank scores for individual contexts using on-disk

sorts and scans (Algorithms C.4 & C.5); ranks are subsequently flooded to each machine;

The result of this process is context rank pairs of the form (c, r) available on disk to all machines.

4.3.4 Ranking Evaluation and Results

Applying distributed ranking over the 1.118 billion statement corpus (which is pre-distributed over the slave

machines as a result of the crawl) took just under 30.3 h, with the bulk of time consumed as follows: (i)

parallel sorting of data by context took 2.2 h; (ii) parallel extraction and preparation of the source-level graph

took 1.9 hours; (iii) ranking the source-level graph on the master machine took 26.1 h (applying ten power

iterations). In particular, the local on-disk PageRank calculation—performed on the master machine—proved

the most expensive task, and would become a bottleneck when increasing slave machines.31

The source-level graph consisted of 3.985 million vertices (sources) and 183 million unique non-reflexive

links. In Table 4.5, we provide the top 10 ranked documents in our corpus. The top result refers to the

RDF namespace, followed by the RDFS namespace, the DC namespace and the OWL namespace (the

latter three are referenced by the RDF namespace, and amongst themselves). Subsequently, the fifth result

contains some links to multi-lingual translations of labels for RDFS terms, and is linked to by the RDFS

document; the sixth result refers to an older version of DC (extended by result 3); the seventh result is

the SKOS vocabulary; the eighth result provides data and terms relating to the GRDDL W3C standard;

the ninth result refers to the FOAF vocabulary; the tenth is a French translation of RDFS terms. Within

the top ten, all of the documents are somehow concerned with terminological data (e.g., are ontologies or

vocabularies, or—sometimes informally—describe classes or properties): the most wide-spread reuse of terms

across the Web of Data is on a terminological level, representing a higher in-degree and subsequent rank for

terminological documents (cf. § 4.2.2).

4.3.5 Related Work

Applying links-based analysis to Web data has its roots in the seminal approaches of HITS [Kleinberg, 1999]

and PageRank [Page et al., 1998] which have spawned a rich area of research. Herein, we briefly introduce

31In future, it would be worthwhile investigate distribution of this task; for example, see [Gleich et al., 2004].

49

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://dublincore.org/2008/01/14/dcelements.rdf
http://www.w3.org/2002/07/owl
http://www.w3.org/2000/01/rdf-schema-more
http://dublincore.org/2008/01/14/dcterms.rdf
http://www.w3.org/2009/08/skos-reference/skos.rdf
http://www.w3.org/2003/g/data-view
http://xmlns.com/foaf/spec/
http://www.w3.org/2000/01/combined-ns-translation.rdf.fr

4.3. Ranking 50

proposals which—like us—specifically aim at ranking RDF.

Balmin et al. [2004] introduced “ObjectRank” for applying PageRank over a directed labelled graph

using “authority transfer schema graphs”, which requires manual weightings for the transfer of propagation

through different types of links; further, the algorithm does not include consideration of the source of data,

and is perhaps better suited to domain-specific ranking over verified knowledge.

The Swoogle RDF search engine ranks documents using the “OntoRank” method [Ding et al., 2005], a

variation on PageRank which iteratively calculates ranks for documents based on references to terms (classes

and properties) defined in other documents. However, they rely on manually specified weightings for links

between documents, and since they predate Linked Data, do not consider dereferenceability of terms in

constructing the graph.

We previously introduced “ReConRank” [Hogan et al., 2006]: an initial effort to apply a PageRank-type

algorithm to a graph which unifies data-level and source-level linkage. ReConRank does take data provenance

into account: however, because it simultaneously operates on the data-level graph, it is more susceptible to

spamming than the presented approach.

A more recent proposal by [Delbru et al., 2010b] for ranking Linked Data—called “Dataset rankING”

(DING)—holds a similar philosophy to that presented herein: they adopt a two-layer approach consisting of

an entity layer and a dataset layer. However, they also apply rankings of entities within a given dataset, using

PageRank (or optionally link-counting) and unsupervised link-weighting schemes, subsequently combining

dataset and local entity ranks to derive global entity ranks.

There are numerous other loosely related RDF ranking approaches which—although they do not deal

directly with ranking sources—we briefly mention. The Ontocopi system [Alani et al., 2003] uses a spreading

activation algorithm to locate instances in a knowledge base which are most closely related to a target

instance; later, Alani et al. [2006] introduced “AKTiveRank” for ranking ontologies according to how well

they cover specified search terms. “SemRank” [Anyanwu et al., 2005] ranks relations and paths on Semantic

Web data using information-theoretic measures. The SemSearch system [Lei et al., 2006] also includes

relevance ranks for entities according to how well they match a user query.

4.3.6 Critical Discussion and Future Directions

Although links-based analyses have proven themselves fruitful for ranking HTML documents, we can only

conjecture a correlation between the Eigenvector centrality of Linked Data documents and the quality or

reliability of the data they provide. We note that Harth et al. [2009] performed a user-evaluation to validate

the outlined ranking procedure for prioritising results as they appear in the SWSE system, but herein we use

the ranking scores as an (unproven) indicator of reliability of data. Still—and as per the HTML Web—we

believe that well-linked RDF documents should intuitively provide higher-quality information. Although

more intricate methods for constructing or ranking the source-level graph may provide better results for our

purposes, we leave investigation thereof for a necessarily more focused scope.

Similarly, Google’s use of the PageRank algorithm encouraged the proliferation of HTML “link farms”:

heavily interlinked groups of artifice websites used to game the PageRank calculations and promote certain

results for popular search terms. This precedent demonstrates that the näıve PageRank model is not tol-

erant to certain forms of spamming. Currently, there is insufficient economic or social motivation for such

spamming on the Web of Data, and although (as we will see) substantial noise is present, we believe that it

is primarily indeliberate. As the Web of Data matures, so too must various algorithms operating over it.

Finally, using only one machine to apply the PageRank calculations over the source-level graph poses a

practical barrier to efficiency and scale; in future we would reasonably prioritise pushing the execution of

this task onto the slave machines—indeed, parallelising the underlying sorts and scans may prove sufficient.

50

Chapter 5

Reasoning*

“The question of whether computers can think is just like the question of whether

submarines can swim.”

—Edsger W. Dijkstra

Given a sufficiently large corpus from the Web, heterogeneity in terminology often poses a significant

problem to its subsequent consumption. Here, we take the motivating example of a simple query described

in prose as:

What are the webpages related to ex:resource?

Knowing that the property foaf:page defines the relationship from resources to the documents somehow

concerning them, we can formulate a simple structured query in SPARQL [Prud’hommeaux and Seaborne,

2008]—the W3C standardised RDF query language—as given in Listing 5.1.

Listing 5.1: Simple query for all pages relating to ex:resource

SELECT ?page

WHERE {

ex:resource foaf:page ?page .

}

However, in our corpus there exist other, more fine-grained properties for relating a resource to specific

types of pages—these properties are not only given by FOAF, but also by remote vocabularies. Thus,

to ensure more complete answers, the SPARQL query must use disjunction (UNION clauses) to reflect the

possible triples which may answer the query; we give such an example in Listing 5.2 involving properties

in our corpus, where we additionally annotate each pattern with the total number of triples found in our

corpus for the respective predicate; this gives a rough indicator of the relative likelihood of finding additional

answers with each additional pattern.

Not only is the resulting query much more cumbersome to formulate, but it also requires a much more in-

depth knowledge of the various vocabularies in the corpus. However, since foaf:page is relatively well-known

within the Linked Data community, all of the properties appearing in the extended query are (possibly indi-

rectly) related to foaf:page using RDFS and OWL connectives in their respective vocabularies. In fact, all

*Parts of this chapter have been published as [Hogan et al., 2008, 2009b; Hogan and Decker, 2009; Hogan et al., 2010c].

51

52

Listing 5.2: Extended query for all pages relating to ex:resource

SELECT ?page

WHERE {

{ ex:resource foaf:page ?page . } #4,923,026

UNION { ex:resource foaf:weblog ?page . } #10,061,003

UNION { ex:resource foaf:homepage ?page . } #9,522,912

UNION { ?page foaf:topic ex:resource . } #6,163,769

UNION { ?page foaf:primaryTopic ex:resource . } #3,689,888

UNION { ex:resource mo:musicbrainz ?page . } #399,543

UNION { ex:resource foaf:openid ?page . } #100,654

UNION { ex:resource foaf:isPrimaryTopicOf ?page . } #92,927

UNION { ex:resource mo:wikipedia ?page . } #55,228

UNION { ex:resource mo:myspace ?page . } #28,197

UNION { ex:resource po:microsite ?page . } #15,577

UNION { ex:resource mo:amazon_asin ?page . } #14,790

UNION { ex:resource mo:imdb ?page . } #9,886

UNION { ex:resource mo:fanpage ?page . } #5,135

UNION { ex:resource mo:biography ?page . } #4,609

UNION { ex:resource mo:discogs ?page . } #1,897

UNION { ex:resource rail:arrivals ?page . } #347

UNION { ex:resource rail:departures ?page . } #347

UNION { ex:resource mo:musicmoz ?page . } #227

UNION { ex:resource mo:discography ?page . } #195

UNION { ex:resource mo:review ?page . } #46

UNION { ex:resource mo:freedownload ?page . } #37

UNION { ex:resource mo:mailorder ?page . } #35

UNION { ex:resource mo:licence ?page . } #28

UNION { ex:resource mo:paiddownload ?page . } #13

UNION { ex:resource foaf:tipjar ?page . } #8

UNION { ex:resource doap:homepage ?page . } #1

UNION { ex:resource doap:old-homepage ?page . } #1

UNION { ex:resource mo:download ?page . } #0

UNION { ex:resource mo:event_homepage ?page . } #0

UNION { ex:resource mo:free_download ?page . } #0

UNION { ex:resource mo:homepage ?page . } #0

UNION { ex:resource mo:paid_download ?page . } #0

UNION { ex:resource mo:preview_download ?page . } #0

UNION { ex:resource mo:olga ?page . } #0

UNION { ex:resource mo:onlinecommunity ?page . } #0

UNION { ex:resource plink:addFriend ?page . } #0

UNION { ex:resource plink:atom ?page . } #0

UNION { ex:resource plink:content ?page . } #0

UNION { ex:resource plink:foaf ?page . } #0

UNION { ex:resource plink:profile ?page . } #0

UNION { ex:resource plink:rss ?page . } #0

UNION { ex:resource xfn:mePage ?page . } #0

...

}

52

5.1. Linked Data Reasoning: Overview 53

properties referenced in Listing 5.2 are either directly or indirectly related to foaf:page by rdfs:subProper-

tyOf or owl:inverseOf, where relations using these properties can be used to infer foaf:page answers—note

that we italicise patterns for properties which have an inverse (sub-)relation to foaf:page in Listing 5.2.

Taking some examples, plink:profile is defined to have the relation rdfs:subPropertyOf to foaf:page;

doap:homepage is defined to have the relation rdfs:subPropertyOf to foaf:homepage, which itself has

the relation rdfs:subPropertyOf to foaf:isPrimaryTopicOf, which in turn has the rdfs:subPropertyOf

relation to foaf:page; foaf:topic has the relation owl:inverseOf to foaf:page; and so forth.1 Thus, we

have the necessary formal knowledge to be able to answer the former simple query with all of the answers

given by the latter elaborate query. In order to exploit this knowledge and realise this goal in the general

case, we require reasoning.

Herein, we detail our system for performing reasoning over large-scale Linked Data corpora, which we

call the Scalable Authoritative OWL Reasoner (SAOR); in particular:

• we begin by discussing the requirements of our system for performing Linked Data/Web reasoning and

high-level design decisions (§ 5.1);

• we continue by discussing a separation of terminological data during reasoning, providing soundness

and conditional completeness results (§ 5.2);

• we subsequently detail the generic optimisations that a separation of terminological data allows (§ 5.3);

• we then look at identifying a subset of OWL 2 RL/RDF rules suitable for scalable materialisation, and

discuss our method for performing distributed authoritative reasoning over our Linked Data corpus

(§ 5.4);

• finally, we provide an overview of related work (§ 5.5) and give general discussion (§ 5.6).

5.1 Linked Data Reasoning: Overview

Performing reasoning over large amounts of arbitrary RDF data sourced from the Web implies unique

challenges which have not been significantly addressed by the literature. Given that we will be dealing with

a corpus in the order of a billion triples collected from millions of unvetted sources, we must acknowledge

two primary challenges:

• scalability: the reasoning approach must scale to billion(s) of statements;

• robustness: the reasoning approach should be tolerant to noisy, impudent and inconsistent data.

These requirements heavily influence the design choices of our reasoning approach, where in particular we

(must) opt for performing reasoning which is incomplete with respect to OWL semantics.

5.1.1 Incomplete Reasoning: Rationale

Following discussion in § 2.2, standard reasoning approaches are not naturally suited to meet the aforemen-

tioned challenges.

Firstly, standard RDFS entails infinite triples, although implementations commonly support a decidable

(finite) subset [ter Horst, 2005b; Muñoz et al., 2007, 2009; Weaver and Hendler, 2009]. In any case, RDFS

does not support reasoning over OWL axioms commonly provided by Linked Data vocabularies.

1Of course, other relevant properties may not be related to foaf:page, but we would expect certain self-organising phenom-

ena in the community to ensure that commonly instantiated terms (which provide the most answers) are properly interlinked

with other commonly instantiated terms, as has been encouraged within the Linked Data community.

53

5.1. Linked Data Reasoning: Overview 54

With respect to OWL, reasoning with respect to OWL (2) Full is known to be undecidable. Reasoning

with standard dialects such as OWL (2) DL or OWL Lite have more than exponential worst-case complexity,

and are typically implemented using tableau-based algorithms which have yet to demonstrate scalability

propitious to our scenario: certain reasoning tasks may require satisfiability checking which touch upon a large

proportion of the individuals in the knowledgebase, and may have to operate over a large, branching search

space [Baader et al., 2002]. Similarly, although certain optimisation techniques may make the performance of

such tableau-reasoning sufficient for certain reasonable inputs and use-cases, guarantees of such reasonability

do not extend to a Web corpus like ours. Reasoning with respect to the new OWL 2 profiles—viz., OWL 2

EL/QL/RL—have polynomial runtime, which although an improvement, may still be prohibitively expensive

for our scenario.

Aside from complexity considerations, most OWL documents on the Web are in any case OWL Full:

“syntactic” assumptions made in DL-based profiles are violated by even very commonly used ontologies.

For example, the FOAF vocabulary knowingly falls into OWL Full since, e.g., foaf:name is defined as a

sub-property of the core RDFS property rdfs:label, and foaf:mbox sha1sum is defined as a member of

both owl:InverseFunctionalProperty and owl:DatatypeProperty: such axioms are disallowed by OWL

(2) DL (and by extension, disallowed by the sub-dialects and profiles). Some older surveys of Web data

echo this claim: Bechhofer and Volz [2004] identified and categorised OWL DL restrictions violated by a

sample group of 201 OWL ontologies (all of which were found to be in OWL Full); these include incorrect or

missing typing of classes and properties, complex object-properties (e.g., functional properties) declared to

be transitive, inverse-functional datatype properties, etc. Wang et al. [2006a] later provided a more extensive

survey over ∼1,300 ontologies: 924 were identified as being in OWL Full. However, it is worth noting that

in both surveys, the majority of infringements into OWL Full were found to be purely syntactic, rather

innocuous with no real effect on decidability, and unambiguously repairable without affecting expressivity;

after repair, Wang et al. [2006b] showed that the majority of Web documents surveyed were within the

relatively inexpressive ALC Description Logic.

Finally, OWL semantics prescribe that anything can be entailed from an inconsistency, following the

principle of explosion in classical logics. This is not only true of OWL (2) Full semantics, but also of

those sub-languages rooted in Description Logics, where reasoners use the results of Horrocks and Patel-

Schneider [2004] to check entailment by reduction to satisfiability—if the original graph is inconsistent, it is

already in itself unsatisfiable, and the entailment check will return true for any arbitrary graph. Given that

consistency cannot be expected on the Web, we wish to avoid the arbitrary entailment of all possible triples

(that is, the entire set G) from our knowledge-base. Along these lines, a number of paraconsistent reasoning

approaches have been defined in the literature (see, e.g., [Huang and van Harmelen, 2008; Ma and Hitzler,

2009; Zhang et al., 2009; Maier, 2010; Lembo et al., 2010]) typically relying upon four-valued logic [Belnap,

1977]2—however, again, these approaches have yet to demonstrate the sort of performance required for our

scenario.

Thus, due to the inevitability of inconsistency and the prohibitive computational complexity involved,

complete reasoning with respect to the standardised RDFS/OWL (sub-)languages is infeasible for our sce-

nario. Thereafter, one could consider distilling a sub-language by which complete reasoning becomes feasible

for the Web (it would seem that this language could not allow inconsistency)—although we admit that

this is an interesting formal exercise, we consider it as outside of the current scope, and argue that in

practice, it would serve to restrict the expressiveness available to vocabulary publishers when defining their

terms, drawing analogy to FOAF’s (reasonable) definition of foaf:mbox sha1sum as being simultaneously a

2The four values are: true, false, neither/undefined/unknown, both/overdefined/inconsistent.

54

5.1. Linked Data Reasoning: Overview 55

datatype-property and an inverse-functional-property breaching current OWL DL syntactic restrictions.3

We instead argue that completeness (with respect to the language) is not a requirement for our use-case,

particularly given that the corpus itself represents incomplete knowledge; this is argued by Fensel and van

Harmelen [2007] who state:

“The Web is open, with no defined boundaries. Therefore, completeness is a rather strange re-

quirement for an inference procedure in this context. Given that collecting all relevant information

on the Web is neither possible nor often even desirable (usually, you want to read the first 10

Google hits but dont have the time for the remaining two million), requesting complete reasoning

on top of such already heavily incomplete facts seems meaningless.”

—Fensel and van Harmelen [2007]

Similar arguments for incomplete reasoning in scenarios such as ours are laid out by Hitzler and van

Harmelen [2010] who state:

“[...] we would advocate [viewing] the formal semantics of a system (in whatever form it is spec-

ified) as a “gold standard”, that need not necessarily be obtained in a system (or even be obtain-

able). What is required from systems is not a proof that they satisfy this gold standard, but rather

a precise description of the extent to which they satisfy this gold standard.”

—Hitzler and van Harmelen [2010]

Moving forward, we opt for sound but incomplete support of OWL Full semantics such that entailment

is axiomatised by a set of rules which are applicable to arbitrary RDF graphs (no syntactic restrictions) and

which do not rely on satisfiability checking (are not bound by the principle of explosion).

5.1.2 Rule-based Reasoning

Predating OWL 2—and in particular the provision of the OWL 2 RL/RDF ruleset—numerous rule-based

entailment regimes were proposed in the literature to provide a partial axiomatisation of OWL’s semantics.

One of the earliest efforts looking at combining rules and ontologies was Description Logic Programs

(DLP) introduced by Grosof et al. [2004] and refined by Motik [2004]. The key aim of DLP is to iden-

tify and characterise the expressive intersection of the Description Logics (DL) and Logic Program (LP)

formalisms, such that knowledge represented in DLP can be mapped to either formalism without loss of

meaning, and thus is amenable to both tableau and rule-based implementation of inferencing. Since DLP

predates OWL, the authors discussed how individual RDFS and DAML+OIL constructs are expressible

in DL and LP and under what syntactic restrictions. These results carry naturally over to OWL, and

lead to a restricted, rule-expressible fragment of OWL DL, which includes full support for owl:inverseOf,

owl:TransitiveProperty, owl:equivalentProperty, owl:equivalentClass, owl:intersectionOf, and

restricted support for owl:unionOf, owl:someValuesFrom, and owl:allValuesFrom. Following this work,

de Bruijn et al. [2005b] subsequently proposed the OWL− family of OWL dialects, defining rule-expressible

syntactic subsets of OWL Lite, OWL DL and OWL Full.

ter Horst [2005a,b] later defined pD* semantics as an extension of RDFS semantics to cover a subset

of OWL, along with a set of associated pD* entailment rules. Although discernibly similar to DLP, pD*

3In fact, it is possible to emulate datatype “keys” using the new OWL 2 owl:hasKey primitive, but such an axiom is

somewhat unwieldy, and, in some corner cases, does not correspond directly to the semantics of the current FOAF definition

for foaf:mbox sha1sum; cf. http://www.mail-archive.com/public-lod@w3.org/msg06086.html; retr. 2011/01/11.

55

http://www.mail-archive.com/public-lod@w3.org/msg06086.html

5.1. Linked Data Reasoning: Overview 56

includes support for additional constructs such as owl:SymmetricProperty, owl:sameAs, owl:Function-

alProperty, owl:InverseFunctionalProperty, and owl:hasValue (the former, at least, could trivially

have been included in DLP)—again, the pD* entailment rules can only offer partial (intensional) sup-

port for the OWL semantics of axioms involving, e.g., owl:allValuesFrom. The set of pD* entailment

rules—commonly dubbed “OWL Horst”—was subsequently implemented by a number of systems, including

OWLIM [Kiryakov et al., 2005], BigOWLIM [Bishop et al., 2011], and more recently, WebPIE [Urbani et al.,

2010]. A variant of pD* called OWL Prime [Wu et al., 2008] added partial support for owl:differentFrom

and owl:disjointWith; OWL Prime was integrated into the Oracle 11g RDF storage system.

Given adoption of partial rule-support for OWL, Allemang and Hendler [2008] moved away from purely

formal considerations and identified criteria important for adoption and uptake of an extension to RDFS: (i)

pedagogism—additional OWL constructs should be compatible with the underlying intuition behind RDFS;

(ii) practicality—additional OWL constructs should have practical and tangible applications for modelling;

(iii) computational flexibility—additional OWL constructs should be implementable using a number of tech-

nologies (including rule engines). Based on these criteria and an informal poll of adopters, Allemang and

Hendler [2008] defined RDFS-plus, which extends RDFS with support for owl:inverseOf, owl:Symmet-

ricProperty, owl:TransitiveProperty, owl:equivalentProperty, owl:equivalentClass, owl:sameAs,

owl:FunctionalProperty, owl:InverseFunctionalProperty, owl:DatatypeProperty and owl:Object-

Property.4 Thereafter, a number of systems have implemented variations on this theme. The SPIN rule

engine has defined a ruleset to support inferencing over the RDFS-plus fragment as originally defined.5 The

AllegroGraph RDF store supports a fragment they call “RDFS++”, which extends RDFS with owl:sameAs,

owl:inverseOf and owl:TransitiveProperty.6 The Oracle 11g RDF store defines its own variant of

“RDFS++” which extends RDFS with owl:sameAs and owl:InverseFunctionalProperty.7

Recognising the evident demand for rule-based support of OWL, in 2009, the W3C OWL Working

Group standardised the OWL 2 RL profile and accompanying OWL 2 RL/RDF ruleset [Grau et al., 2009].

The OWL 2 RL profile is a syntactic subset of OWL 2 which is implementable through translation to the

Direct Semantics (DL-based semantics) or the RDF-Based Semantics (OWL 2 Full semantics), and where—

taking inspiration from DLP—there is a known relationship between both formal views of the profile: this

is provided by Theorem PR1 [Grau et al., 2009] which states that given a valid OWL 2 RL ontology with

certain restrictions (no use of metamodelling or extension of annotation properties, etc.), the same assertional

entailments are given by the Direct Semantics and the provided OWL 2 RL/RDF entailment rules.

As such, the OWL 2 RL/RDF ruleset comprises a partial-axiomatisation of the OWL 2 RDF-Based Se-

mantics which is applicable for arbitrary RDF graphs, and thus is is compatible with RDF Semantics [Hayes,

2004]. The atoms of these rules comprise primarily of ternary predicates encoding generalised RDF triples;

some rules have a special head (denoted false) which indicates that a ground instance of the body of the

rule is inconsistent. Given that OWL 2 RL/RDF is currently the most comprehensive, standard means

of supporting RDFS and OWL entailment using rules—and given that it largely subsumes the entailment

possible through RDFS, DLP, pD*, RDFS-Plus, etc.—in this thesis we select OWL 2 RL/RDF as the basis

for our reasoning procedure. Appendix B provides a categorisation of the OWL 2 RL/RDF rules according

to how they are supported; the full list of OWL 2 RL/RDF rules is also available at [Grau et al., 2009].

4We ourselves note that this corresponds to the set of OWL primitives whose axioms are expressible using a single triple, but

excluding OWL terms relating to annotations, versioning, and those which can lead to inconsistency (e.g., owl:differentFrom,

owl:disjointWith, etc.).
5See http://topbraid.org/spin/rdfsplus.html; retr. 2010/11/30
6See http://www.franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml; retr. 2010/11/30
7See http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28397/owl_concepts.htm; retr. 2010/11/30

56

http://topbraid.org/spin/rdfsplus.html
http://www.franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28397/owl_concepts.htm

5.1. Linked Data Reasoning: Overview 57

5.1.3 Forward Chaining

We opt to perform forward-chaining materialisation of inferred data with respect to (a subset of) OWL 2

RL/RDF rules—i.e., we aim to make explicit the implicit data inferable through these rules (as opposed to,

e.g., rewriting/extending queries and posing them against the original data in situ).

A materialisation approach offers two particular benefits:

• pre-runtime execution: materialisation can be conducted off-line (or, more accurately while loading

data) avoiding the run-time expense of query-specific backward-chaining techniques which may ad-

versely affect query response times;

• consumer independence: the inferred data provided by materialisation can subsequently be consumed

in the same manner as explicit data, without the need for integrating a reasoning component into the

runtime engine.

Note that in the spirit of one size does not fit all, forward-chaining materialisation is not a “magic-

bullet”: backward-chaining may be more propitious to support inferences where the amount of data involved

is prohibitively expensive to materialise and index, and where these inferred data are infrequently required by

the consumer application. In engineering terms, this can be reduced to the simple trade-off of precomputing

and storing answers—suitable for frequently accessed data which are expensive to compute but small enough

to efficiently store—versus storing a minimal index from which more complex answers can be computed

on demand—more suitable where the “answer space” is too large to materialise, where answers can be

efficiently computed at runtime, and/or where there is little scope for reuse of computed answers. Herein, we

focus on materialisation, but grant that the inherent trade-off between offline forward-chaining and runtime

backward-chaining warrants further investigation in another scope.

Alongside scalability and robustness, we identify two further requirements for our materialisation

approach:

• efficiency: the reasoning algorithm must not only be able to process large-amounts of data, but should

do so in as little computation time as possible;

• terseness: to reduce the burden on the consumer system—e.g., with respect to indexing or query-

processing—we wish to keep a succinct volume of materialised data and aim instead for “reasonable”

completeness.

Both of these additional requirements are intuitive, but also non-trivial, and so will provide important input

for our design decisions.

5.1.4 OWL 2 RL/RDF Scalability

Full materialisation with respect to the entire set of OWL 2 RL/RDF rules is infeasible for our use-case.

First, a subset of OWL 2 RL/RDF rules are expressed informally—i.e., they are not formalised by means of

Horn clauses—and may introduce new terms as a consequence of the rule, which in turn affects decidability

(i.e., the achievability of a finite fixpoint). For example, OWL 2 RL/RDF rule dt-eq is specified as:

∀lt1, lt2 ∈ L with the same data value, infer (lt1, owl : sameAs, lt2) .

Note that this rule does not constrain lt1 or lt2 to be part of any graph or interpretation under analysis.

Similarly, rule dt-diff entails pairwise owl:differentFrom relations between all literals with different data

values, and rule dt-type2 entails an explicit membership triple for each literal to its datatype. These rules

57

5.1. Linked Data Reasoning: Overview 58

applied to, e.g., the value set of decimal-expressible real numbers (denotable by the datatype xsd:decimal)

entail infinite triples. Typically, materialisation engines support the above rules using heuristics such as

canonicalisation of datatype literals, or only applying the rules over literals that appear in the ruleset or in

the data under analysis.

Aside from these datatype rules, the worst-case complexity of applying OWL 2 RL/RDF rules is cubic

with respect to the known set of constants; for example, consider the following two triples:

(owl:sameAs, owl:sameAs, rdf:type)

(owl:sameAs, rdfs:domain, rdfs:Resource)

Adding these two triples to any arbitrary RDF graph will lead to the inference of all possible (generalised)

triples by the OWL 2 RL/RDF rules: i.e., the inference of C × C × C (a.k.a. the Herbrand base), where

C ⊂ C is the set of RDF constants (§ 3.1) mentioned in the OWL 2 RL/RDF ruleset and the graph (a.k.a.

the Herbrand universe). The process is as follows:

• every term in C is inferred to have the owl:sameAs relation to itself by rule eq-ref;

• thus, by the second triple above and rule prp-dom, every term is inferred to be a member of the class

rdfs:Resource with the rdf:type relation;

• thus, by the first triple above and rule eq-rep-p, every term is inferred to have the owl:sameAs relation

to rdfs:Resource;

• thus, by the semantics of equality supported by rules eq-*, all terms are pairwise equivalent, and every

term is replaceable by every other term in every position of a triple.

Thus, these two triples entail |C|3 triples by the OWL 2 RL/RDF rules, and as such, emulate the explosive

nature of inconsistency without actually requiring any inconsistency. (Note that for pD*, the first triple alone

is sufficient to give cubic reasoning since everything is already entailed to be a member of rdfs:Resource

through rules rdfs4a & rdfs4b—strictly speaking however, pD* does not support “fully generalised” triples,

and so triples with literals as subject or predicate will not be inferred.)

This simple example raises concerns with respect to all of our defined requirements: materialising the

required entailments for a large graph will be neither scalable nor efficient; even assuming that materiali-

sation were possible, the result would not be terse (or be of any use at all to the consumer system); given

that a single remote publisher can arbitrarily make such assertions in any location they like, such reasoning

is clearly not robust.

Even for reasonable inputs, the result size and expense of OWL 2 RL/RDF materialisation can be pro-

hibitive for our scenario. For example, chains of transitive relations of length n mandate quadratic (n
2−n
2)

materialisation. Large equivalence classes (sets of individuals who are pairwise related by owl:sameAs)

similarly mandate the materialisation of n2 pairwise symmetric, reflexive and transitive owl:sameAs rela-

tions. Given our input sizes and the distinct possibility of such phenomena in our corpus, such quadratic

materialisation quickly infringes upon our requirements for scalability, efficiency and arguably terseness.

Moreover, certain rules can materialise inferences which hold for every term in the graph—we call these

inferences tautological. For example, the OWL 2 RL/RDF rule eq-ref materialises a reflexive owl:sameAs

statement for every known term, reflecting the fact that everything is the same as itself. This immediately

adds C triples to the materialised graph, where these triples are probably of little interest to the consumer

system, can easily be supported by backward-chaining, and typically do not lead to further novel infer-

58

5.2. Distinguishing Terminological Data 59

ences.8 Thus, we omit such tautological rules (eq-ref for OWL 2 RL/RDF), viewing them as contrary to our

requirement for terseness.

As such, the OWL 2 RL/RDF ruleset—and application thereof—requires significant tailoring to meet

our requirements; we begin with our first non-standard optimisation in the following section.

5.2 Distinguishing Terminological Data

Given a sufficiently large corpora collected from the Web, the percentage of terminological data (§ 3.5) is

relatively small when compared to the volume of assertional data: typically—and as we will see in § 5.4.4—

terminological data represent less than one percent of such a corpus [Hogan et al., 2009b, 2010c]. Assuming

that the proportion of terminological data is quite small—and given that these data are among the most

commonly accessed during reasoning—we formulate an approach around the assumption that such data can

be efficiently handled and processed independently of the main bulk of assertional data.

As such, this approach is related to the area of partial evaluation and program specialisation of Logic

Programs [Komorowski, 1982; Lloyd and Shepherdson, 1991; Jones et al., 1993]:

“A partial evaluator is an algorithm which, when given a program and some of its input data,

produces a so-called residual or specialized program. Running the residual program on the re-

maining input data will yield the same result as running the original program on all of its input

data. [...] The essence of applying partial evaluation is to solve a problem indirectly, using some

relatively static information to generate a faster special-purpose program, which is then run on

various data supplied more dynamically.”

—[Jones et al., 1993]

Herein, we take a generic (meta) program—such as RDFS, pD*, OWL 2 RL/RDF, etc.—and partially

evaluate this program with respect to terminological knowledge. The result of this partial evaluation is a

set of terminological inferences and a residual program which can be applied over the assertional data; this

specialised assertional program is then primed using further optimisation before application over the bulk of

assertional data.

To begin, we formalise the notion of a T-split rule which distinguishes between terminological and asser-

tional atoms (T-atoms/A-atoms as defined for RDFS/OWL in § 3.5).

Definition 5.1 (T-split rule) A T-split rule R is given as follows:

H ← A1, . . . , An, T1, . . . , Tm (n,m ≥ 0) , (5.1)

where the Ti, 0 ≤ i ≤ m atoms in the body (T-atoms) are all those that can only have terminological

ground instances, whereas the Ai, 1 ≤ i ≤ n atoms (A-atoms), can have arbitrary ground instances. We use

TBody(R) and ABody(R) to respectively denote the set of T-atoms and the set of A-atoms in the body of R.

Henceforth, we assume that rules are T-split such that T-atoms and A-atoms can be referenced using the

functions TBody and ABody when necessary.

Example 5.1 Let REX denote the following rule:

8Where they do lead to novel inferences, we can rewrite the rules involved to implicitly support the tautological triples

since they hold true for every term. For example, eq-diff1 requires reflexive owl:sameAs statements to detect inconsistencies for

reflexive owl:differentFrom statements, but we can easily add an additional rule to check specifically for such statements.

59

5.2. Distinguishing Terminological Data 60

(?x, a, ?c2) ← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

When writing T-split rules, we denote TBody(REX) by underlining: the underlined T-atom can only be

bound by a triple with the meta-property rdfs:subClassOf as RDF predicate, and thus can only be bound by

a terminological triple. The second atom in the body can be bound by assertional or terminological triples,

and so is considered an A-atom. ♦

The notion of a T-split program—containing T-split rules and ground T-atoms and A-atoms—follows natu-

rally. Distinguishing terminological atoms in rules enables us to define a form of stratified program execution,

whereby a terminological fixpoint is reached first, and then the assertional data is reasoned over; we call this

the T-split least fixpoint. Before we formalise this alternative fixpoint procedure, we must first describe our

notion of a T-ground rule, where the variables appearing in T-atoms of a rule are grounded separately by

terminological data:

Definition 5.2 (T-ground rule) A T-ground rule is a set of rule instances for the T-split rule R given

by grounding TBody(R) and the variables it contains across the rest of the rule. We denote the set of such

rules for a program P and a set of facts I as GroundT (P, I), defined as:

GroundT (P, I) :=
{

Head(R)θ ← ABody(R)θ | R ∈ P, ∃I ′ ⊆ I s.t. θ = mgu(TBody(R), I ′)
}
.

The result is a set of rules whose T-atoms are grounded by the terminological data in I.

Example 5.2 Consider the T-split rule REX as before:

(?x, a, ?c2) ← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

Now let

IEX := { (foaf:Person, rdfs:subClassOf, foaf:Agent),

(foaf:Agent, rdfs:subClassOf, dc:Agent) }

Here,

GroundT ({REX}, IEX) = { (?x, a, foaf:Agent) ← (?x, a, ?foaf:Person);

(?x, a, dc:Agent) ← (?x, a, ?foaf:Agent) }.
♦

We can now formalise our notion of the T-split least fixpoint, where a terminological least model is

determined, T-atoms of rules are grounded against this least model, and the remaining (proper) assertional

rules are applied against the bulk of assertional data in the corpus. (In the following, we recall from § 3.4

the notions of the immediate consequence operator TP , the least fixpoint lfp(TP), and the least model lm(P)

for a program P .)

Definition 5.3 (T-split least fixpoint) The T-split least fixpoint for a program P is broken up into two

parts: (i) the terminological least fixpoint, and (ii) the assertional least fixpoint. Let PF := {R ∈ P |
Body(R) = ∅} be the set of facts in P ,9 let PT∅ := {R ∈ P | TBody(R) 6= ∅,ABody(R) = ∅}, let P ∅A :=

{R ∈ P | TBody(R) = ∅,ABody(R) 6= ∅}, and let PTA := {R ∈ P | TBody(R) 6= ∅,ABody(R) 6= ∅}. Note

that P = PF ∪ PT∅ ∪ P ∅A ∪ PTA. Now, let

TP := PF ∪ PT∅
9Of course, PF can refer to axiomatic facts and/or the initial facts given by an input knowledge-base.

60

5.2. Distinguishing Terminological Data 61

denote the initial (terminological) program containing ground facts and T-atom only rules, and let lm(TP)

denote the least model for the terminological program. Let

PA+ := GroundT (PTA, lm(TP))

denote the set of (proper) rules achieved by grounding rules in PTA with the terminological atoms in lm(TP):

Now, let

AP := lm(TP) ∪ P ∅A ∪ PA+

denote the second (assertional) program containing all available facts and proper assertional rules. Finally,

we can give the least model of the T-split program P as lm(AP) for AP derived from P as above—we more

generally denote this by lmT (P).

An important question thereafter is how the standard fixpoint of the program lm(P) relates to the T-split

fixpoint lmT (P). Firstly, we show that the latter is sound with respect to the former:

Theorem 5.1 (T-split soundness) For any program P , it holds that lmT (P) ⊆ lm(P).

Proof: Given that, (i) by definition TP (lm(P)) = lm(P)—i.e., lm(P) represents a fixpoint of applying the

rules, (ii) TP is monotonic, and (iii) TP ⊆ P ⊆ lm(P), it follows that lm(TP) ⊆ lm(P). Analogously, given

AP := lm(TP) ∪ P ∅A ∪ PA+, since P ∅A ⊆ P , PTA ⊆ P and all PA+ rules are PTA rules partially ground

by lm(TP) ⊆ lm(P), then lm(AP) ⊆ lm(P). Since lm(AP) := lmT (P), the proposition holds. �

Thus, for any given program containing rules and facts (as we define them), the T-split least fixpoint is

necessarily a subset of the standard least fixpoint. Next, we look at characterising the completeness of the

former with respect to the latter; beforehand, we need to define our notion of a T-Box:

Definition 5.4 (T-Box) We define the T-Box of an interpretation I with respect to a program P as the

subset of facts in I that are an instance of a T-atom of a rule in P :

TBox(P, I) :=
{
F ∈ I | ∃R ∈ P,∃T ∈ TBody(R) s.t. T . F

}
.

(Here, we recall the . notation of an instance from § 3.4 whereby A.B iff ∃θ s.t. Aθ = B.) Thus, our T-Box

is precisely the set of terminological triples in a given interpretation (i.e., graph) that can be bound by a

terminological atom of a rule in the program.

We now give a conditional proposition of completeness which states that if no new T-Box facts are

produced during the execution of the assertional program, the T-split least model is equal to the standard

least model.

Theorem 5.2 (T-split conditional completeness) For any program P , its terminological program TP

and its assertional program AP , if TBox(P, lm(TP)) = TBox(P, lm(AP)), then lm(P) = lmT (P).

Proof: Given the condition that TBox(P, lm(TP)) = TBox(P, lm(AP)), we can say that lm(AP) :=

lm(lm(TP) ∪ PA+ ∪ P ∅A) = lm(lm(TP) ∪ PA+ ∪ P ∅A ∪ PT∅ ∪ PTA) since by the condition there is no

new terminological knowledge to satisfy rules in PT∅ ∪ PTA after derivation of TP and PA+; this can then

be reduced to lm(AP) = lm(lm(PF ∪ PT∅) ∪ PF ∪ P ∅A ∪ PT∅ ∪ PTA ∪ PA+) = lm(lm(TP) ∪ P ∪ PA+) =

lm(AP ∪ P). Since by Theorem 5.1 we (unconditionally) know that lm(AP) ⊆ lm(P), then we know that

lm(AP) = lm(AP ∪ P) = lm(P) under the stated condition. �

The intuition behind this proof is that applying the standard program P over the T-split least model

lmT (P) (a.k.a. lm(AP)) under the condition of completeness cannot give any more inferences, and since the

61

5.2. Distinguishing Terminological Data 62

T-split least model contains all of the facts of the original program (and is sound), it must represent the

standard least model. Note that since lmT (P) = lm(AP), the condition for completeness can be rephrased

as TBox(lmT (P)) = TBox(lm(TP)), or TBox(lmT (P)) = TBox(lm(P)) given the result of the proof.

We now briefly give a corollary which rephrases the completeness condition to state that the T-split least

model is complete if assertional rules do not infer terminological facts.

Corollary 5.3 (Rephrased condition for T-split completeness) For any program P , if a rule with

non-empty ABody does not infer a terminological fact, then lm(P) = lmT (P).

Proof: It is sufficient to show that TBox(P, lm(TP)) 6= TBox(P, lm(AP)) can only occur if rules with

non-empty ABody infer TBox(P, lm(AP)) \ TBox(P, lm(TP)). Since (i) lm(TP) contains all original facts

and all inferences possible over these facts by rules with empty ABody, (ii) lm(TP) ⊆ AP , (iii) all proper

rules in AP have non-empty ABody, then the only new facts that can arise (terminological or not) after the

computation of lm(TP) are from (proper) rules with non-empty ABody during the computation of lm(AP).

�

So one may wonder when this condition of completeness is broken—i.e., when do rules with assertional

atoms infer terminological facts? Analysis of how this can happen must be applied per rule-set, but for

OWL 2 RL/RDF, we conjecture that such a scenario can only occur through (i) so called non-standard use

of the set of RDFS/OWL meta-classes and meta-properties required by the rules, or, (ii) by the semantics

of replacement for owl:sameAs (supported by OWL 2 RL/RDF rules eq-rep-* in Table B.7).10

We first discuss the effects of non-standard use for T-split reasoning over OWL 2 RL/RDF, starting with

a definition.

Definition 5.5 (Non-standard triples) With respect to a set of meta-properties MP and meta-classes

MC, a non-standard triple is a terminological triple (T-fact wrt. MP/MC) where additionally:

• a meta-class in MC appears in a position other than as the value of rdf:type; or

• a property in MP ∪ {rdf:type,rdf:first,rdf:rest} appears outside of the RDF predicate position.

We call the set MP ∪MC ∪{rdf:type,rdf:first,rdf:rest} the restricted vocabulary. (Note that restrict-

ing the use of rdf:first and rdf:rest would be superfluous for RDFS and pD* which do not support

terminological axioms containing RDF lists.)

Now, before we formalise a proposition about the incompleteness caused by such usage, we provide an

intuitive example thereof:

Example 5.3 As an example of incompleteness caused by non-standard use of the meta-class owl:Inverse-

FunctionalProperty, consider:

1a. (ex:MyKeyProperty, rdfs:subClassOf, owl:InverseFunctionalProperty)

2a. (ex:isbn13, a, ex:MyKeyProperty)

3a. (ex:The Road, ex:isbn13, "978-0307265432")

4a. (ex:Road%2C The, ex:isbn13, "978-0307265432")

where triple (1a) is considered non-standard use. The static T-Box in the terminological program will include

the first triple, and, through the assertional rule cax-sco and triples (1a) and (2a) will infer:

5a. (ex:isbn13, a, owl:InverseFunctionalProperty)

10We note that the phrase “non-standard use” has appeared elsewhere in the literature with the same intuition, but with

slightly different formulation and intention; e.g., see [de Bruijn and Heymans, 2007].

62

5.2. Distinguishing Terminological Data 63

but this T-fact will not be considered by the pre-ground T-atoms of the rules in the assertional program.

Thus, the inferences:

6a. (ex:The Road, owl:sameAs, ex:Road%2C The)

7a. (ex:Road%2C The, owl:sameAs, ex:The Road)

which should hold through rule prp-ifp and triples (3a), (4a) and (5a) will not be made.

A similar example follows for non-standard use of meta-properties; e.g.:

1b. (ex:inSubFamily, rdfs:subClassOf, rdfs:subClassOf)

2b. (ex:Bos, ex:inSubFamily, ex:Bovinae)

3b. (ex:Daisy, a, ex:Bos)

which through the assertional rule prp-spo1 and triples (1b) and (2b) will infer:

4b. (ex:Bos, rdfs:subClassOf, ex:Bovinae) ,

but not:

5b. (ex:Daisy, a, ex:Bovinae)

since triple (4b) is not included in the terminological program. ♦

Theorem 5.4 (Conditional completeness for standard use) Let O2R′ denote the set of (T-split)

OWL 2 RL/RDF rules excluding eq-rep-s, eq-rep-p and eq-rep-o; let I be any interpretation not contain-

ing any non-standard use of the restricted vocabulary which contains (i) meta-classes or meta-properties

appearing in the T-atoms of O2R′, and (ii) rdf:type, rdf:first, rdf:list; and let P := O2R′ ∪ I; then,

it holds that lm(P) = lmT (P).

Proof: (Sketch) First, we note that the set of axiomatic facts in O2R′ (Table B.1) does not contain any

non-standard triples.

Second, given that P does not contain any non-standard triples, we need to show that non-standard

triples cannot be generated during the computation of lm(TP), where TP is the terminological program of

P (recall: TP := PF ∪ PT∅). Note that PT∅ corresponds to Table B.2, in which we observe by inspection

that non-standard triples can only be created if a restricted term is substituted for a variable in the rule

body (i.e., that no atom in any of the heads is trivially only grounded by non-standard triples—none of the

atoms in the heads contains a restricted constant in a non-standard position), which can only happen if the

body is grounded by a non-standard triple since (i) the atoms in the rule bodies are all terminological; and

(ii) any restricted term substituted for a variable in a body atom must be in a non-standard position of a

terminological triple since, for all rule bodies, no variable appears in the predicate position or object position

of an rdf:type atom—i.e., all variables in all rule bodies are necessarily in non-standard positions for any

restricted term.

Next, we want to show that the assertional program AP (recall AP := lm(TP) ∪ P ∅A ∪ PA+) cannot

introduce any new terminological triples if there are no non-standard triples initially in AP . For convenience,

we first note that by Theorem 5.1, the T-split least model is necessarily a subset of the standard least model,

and so we can inspect the rules in P ∅A ∪ PTA without considering the T-grounding separately. Now, we

can apply an analogous inspection of the rules in Tables B.3, B.4, B.7, B.8, B.9 (ignoring eq-rep-s, eq-rep-p,

eq-rep-o by the assumption, and rules with false in the head which cannot infer triples). All such rules can

be observed to have atoms in the head of the following generic form:11

11Again, note that rules with multiple atoms in the head (e.g., H1, H2 ← B) serve as a shortcut for multiple rules with single

atoms in the head (e.g., H1 ← B, H2 ← B)—i.e., that we imply conjunction (e.g., H1 ∧H2 ← B) (§ 3.4).

63

5.2. Distinguishing Terminological Data 64

1. (?v′, owl:sameAs, ?v′′)

2. (?va, rdf:type, ?vb)

3. (?v1, ?v2, ?v3)

By definition, rules with heads of the form (1) cannot directly infer terminological triples since a triple with

owl:sameAs as predicate cannot be terminological; thus we can now ignore all rules in Tables B.7 & B.8.

For rules with heads of the form (2), ?vb must be substituted by a meta-class for the direct inference to

be terminological; however, inspecting each such rule, ?vb always appears in a non-standard position for a

terminological atom in the head, and thus ?vb can only be substituted by a meta-class if the atom is grounded

by a non-standard triple. For rules with heads of the form (3), a grounding can only be terminological if ?v2

is substituted by rdf:type, rdf:first, rdf:rest or a meta-property: again, by inspection, grounding this

variable in each rule always leaves a terminological atom that can only be grounded by a non-standard triple.

Thus, we know that new terminological triples cannot be directly inferred in the absence of non-standard

triples. Next, note that non-standard triples are terminological, so TAP also cannot introduce non-standard

triples. Again, by induction, we have that if AP does not contain non-standard triples, then lm(AP) does

not contain non-standard triples, and TBox(P, lm(TP)) = TBox(P, lm(AP)) (recall lm(TP) ⊆ AP). We’ve

reached the condition for completeness from Theorem 5.2, and thus lm(P) = lmT (P) and the theorem holds.

�

Briefly, we note that Weaver and Hendler [2009] have given a similar result for RDFS by inspection of the

rules, and that pD* inference relies on non-standard axiomatic triples whereby the above results do not

translate naturally.

With respect to rules eq-rep-* (which we have thus far omitted), new terminological triples can be

inferred from rules with non-empty ABody through the semantics of owl:sameAs, breaking the condition for

completeness from Theorem 5.2. However, with respect to the T-split inferencing procedure, we conjecture

that incompleteness can only be caused if owl:sameAs affects some constant in the TBody of an OWL 2

RL/RDF rule. We now take some examples:

Example 5.4 As an example of how new terminology can be inferred from rules with assertional atoms

through the semantics of replacement for owl:sameAs, consider:

1a. (ex:isbn13, a, owl:InverseFunctionalProperty)

2a. (ex:isbnThirteen, owl:sameAs, ex:isbn13)

3a. (ex:The Road, ex:isbn13, "978-0307265432")

4a. (ex:Road%2C The, ex:isbnThirteen, "978-0307265432")

where by rule eq-rep-s and triples (1a) and (2a), we infer that:

5a. (ex:isbnThirteen, a, owl:InverseFunctionalProperty)

which is a terminological triple inferred through the assertional rule eq-rep-s. However, by rule eq-rep-p and

triples (2a), (3a) and (4a), we infer that:

6a. (ex:The Road, ex:isbnThirteen, "978-0307265432")

7a. (ex:Road%2C The, ex:isbn13, "978-0307265432")

Now, note that the inferences:

8a. (ex:The Road, owl:sameAs, ex:Road%2C The)

9a. (ex:Road%2C The, owl:sameAs, ex:The Road)

hold through rule prp-ifp and triples (1a), (3a) and (7a)—the terminological triple (5a) is redundant since

64

5.2. Distinguishing Terminological Data 65

by eq-rep-p, all of the relevant relations will be expressed using both predicates ex:isbnThirteen and ex:-

isbn13, and the inverse-functional inferences will be given by the original terminological triple (1a) for the

triples using the latter predicate. Thus, in this example, completeness is not affected.

Typically, incompleteness can only be caused when owl:sameAs relations involve the restricted vocabulary

itself. One can consider again Example 5.3 replacing the predicate of triple (1a) with owl:sameAs.

However, there are some other corner cases that can force incompleteness. To see this, we need to look

at another (rather unappealing) example. Consider:12

1b. (ex:isbn13, rdfs:domain, :card)

2b. (:card, owl:maxCardinality, ex:one)

3b. (:card, owl:onProperty, ex:isbn13)

4b. (ex:one, owl:sameAs, 1)

5b. (ex:The Road, ex:isbn13, "978-0307265432")

6b. (ex:Road%2C The, ex:isbn13, "978-0307265432")

By rule prp-dom and triples (1b), (5b) and (6b), we have:

7b. (ex:The Road, a, :card)

8b. (ex:Road%2C The, a, :card)

Now, by rule eq-rep-o, we have:

9b. (:card, owl:maxCardinality, 1)

which is a new terminological triple inferred by an assertional rule, and one which is part of the OWL 2

RL/RDF T-Box. Now, by rule cax-maxc2 and triples (3b), (5b), (6b), (7b), (8b), (9b), we should infer:

10b. (ex:The Road, owl:sameAs, ex:Road%2C The)

11b. (ex:Road%2C The, owl:sameAs, ex:The Road)

but we miss these inferences since (9b) is not in the terminological program. By a similar principle,

owl:sameAs relations affecting rdf:nil can also cause incompleteness.

Finally, incompleteness can also occur if owl:sameAs causes alignment of a terminological join; consider

the above example again, but replace (2b) with:

2b. (:cardx, owl:maxCardinality, ex:one)

and add:

xb. (:cardx, owl:sameAs, :card)

such that we should be able to infer the original (2b) and follow the same inference, but inferring (2b) requires

the application of eq-rep-s over triples (2b) and (xb) in the assertional program, and thus (2b) will not be

considered in the terminological program. ♦

Although we could attempt to broaden the scope of non-standard usage to tackle such problematic owl:-

sameAs relation(s), we note that such owl:sameAs triples can also be inferred—i.e., in order to extend the

scope of non-standard use in a manner which facilitates a completeness guarantee in the presence of eq-

rep-* rules, it is not enough to only control the use of explicit owl:sameAs, but also the various primitives

which can infer owl:sameAs for the problematic terms. This would lead to either (i) a very broad generic

12Note that for the term 1, we use Turtle syntax and imply that it matches any literal which shares the value space of

"1"^̂ xsd:decimal —i.e., that the semantics of rule dt-eq are implied in the shortcut syntax.

65

5.2. Distinguishing Terminological Data 66

restriction—for example, disallowing use of owl:sameAs, as well as (inverse-)functional-properties, keys and

cardinalities-of-one; or (ii) a narrower but very intricate restriction, which blocks the various (indirect)

inference paths for only those problematic owl:sameAs relations. For (i), such restrictions would cover a

lot of real-world data; for (ii), it seems that the myriad (indirect) inference paths for owl:sameAs relations

would lead to very nebulous restrictions.

Having sketched the nature of the issue, we leave it open: in our intended use-case, we do not apply rules

eq-rep-* in our inferencing procedure due to scalability concerns; this will be discussed further in § 5.4.

Instead, we look at partially supporting the semantics of equality by non-standard means in Chapter 7. In

any case, we believe that in practice, T-split incompleteness through such owl:sameAs relations would only

occur for rare corner cases.

Conceding the possibility of incompleteness—in particular in the presence of non-standard triples or

owl:sameAs relations affecting certain terminological constants—we proceed by describing our implementa-

tion of the T-split program execution, how it enables unique optimisations, and how it can be used to derive

a subset of OWL 2 RL/RDF rules which are linear with respect to assertional knowledge.

5.2.1 Implementing T-split Inferencing

Given that the T-Box remains static during the application of the assertional program, our T-split algorithm

enables a partial-indexing approach to reasoning, whereby only a subset of assertional triples—in particular

those required by rules with multiple A-atoms in the body—need be indexed. Thus, the T-split closure can

be achieved by means of two triple-by-triple scans of the corpus:

1. the first scan identifies and separates out the T-Box and applies the terminological program:

(a) during the scan, any triples that are instances of a T-atom of a rule are indexed in memory;

(b) after the scan, rules with only T-atoms in the body are applied over the in-memory T-Box until

the terminological least model is reached, and rules with T-atoms and A-atoms in the body are

partially-grounded by these terminological data;

(c) novel inferences in the terminological least model are written to an on-disk file (these will later

be considered as part of the inferred output, and as input to the assertional program);

2. the second scan applies the assertional program over the main corpus and the terminological

inferences;

(a) each triple is individually checked to see if it unifies with an atom in an assertional rule body;

i. if it unifies with a single-atom rule body, the inference is immediately applied;

ii. if it unifies with a multi-atom rule body, the triple is indexed and the index is checked to

determine whether the other atoms of the rule can be instantiated by previous triples—if so,

the inference is applied;

(b) inferred triples are immediately put back into step (2a), with an in-memory cache avoiding cycles

and (partially) filtering duplicates.

The terminological program is applied using standard semi-näıve evaluation techniques, whereby only

instances of rule bodies involving novel data will fire, ensuring that derivations are not needlessly and

endlessly repeated (see, e.g., [Ullman, 1989]).

We give a more formal break-down of the application of the assertional program in Algorithm 5.1.

For our purposes, the A-Box input is the set of axiomatic statements in the rule fragment, the set of novel

terminological inferences, and the entire corpus; i.e., we consider terminological data as also being assertional

in a unidirectional form of punning [Golbreich and Wallace, 2009].

66

5.2. Distinguishing Terminological Data 67

Algorithm 5.1: Reason over the A-Box

Require: Abox: A /* {t0 . . . tm} */
Require: Assertional Program: AP /* {R0 . . . Rn},TBody(Ri) = ∅ */

1: Index := {} /* triple index */
2: LRU := {} /* fixed-size, least recently used cache */
3: for all t ∈ A do
4: G0 := {}, G1 := {t}, i := 1
5: while Gi 6= Gi−1 do
6: for all tδ ∈ Gi \Gi−1 do
7: if tδ /∈ LRU then /* if tδ ∈ LRU, make tδ most recent entry */
8: add tδ to LRU /* remove eldest entry if necessary */
9: output(tδ)

10: for all R ∈ AP do
11: if |Body(R)| = 1 then
12: if ∃θ s.t. {tδ} = Body(R)θ then
13: Gi+1 := Gi+1 ∪ Head(R)θ
14: end if
15: else
16: if ∃θ s.t. tδ ∈ Body(R)θ then
17: if tδ /∈ Index then
18: Index := Index ∪ {tδ}
19: for all θ s.t. Body(R)θ ⊆ Index, tδ ∈ Body(R)θ do
20: Gi+1 := Gi+1 ∪ Head(R)θ
21: end for
22: end if
23: end if
24: end if
25: end for
26: end if
27: end for
28: i++

29: Gi+1 := copy(Gi) /* copy inferences to new set to avoid cycles */
30: end while
31: end for

32: return output /* on-disk inferences */

First note that duplicate inference steps may be applied for rules with only one atom in the body (Lines

11–14): one of the main optimisations of our approach is that it minimises the amount of data that we

need to index, where we only wish to store triples which may be necessary for later inference, and where

triples only grounding single atom rule bodies need not be indexed. To provide partial duplicate removal,

we instead use a Least-Recently-Used (LRU) cache over a sliding window of recently encountered triples

(Lines 7 & 8)—outside of this window, we may not know whether a triple has been encountered before or

not, and may repeat inferencing steps.

Thus, in this partial-indexing approach, we need only index triples which are matched by a rule with a

multi-atom body (Lines 15–24). For indexed triples, aside from the LRU cache, we can additionally check

to see if that triple has been indexed before (Line 17) and we can apply a semi-näıve check to ensure that

we only materialise inferences which involve the current triple (Line 19). We note that as the assertional

index is required to store more data, the two-scan approach becomes more inefficient than the “full-indexing”

approach; in particular, a rule with a body atom containing all variable terms will require indexing of all

data, negating the benefits of the approach; e.g., if the rule OWL 2 RL/RDF rule eq-rep-s:

(?s′, ?p, ?o) ← (?s, owl:sameAs, ?s′),(?s, ?p, ?o)

67

5.3. Optimising the Assertional Program 68

is included in the assertional program, the entire corpus of assertional data must be indexed (in this case

according to subject) because of the latter “open” atom. We emphasise that our partial-indexing performs

well if the assertional index remains small and performs best if every proper rule in the assertional program

has only one A-atom in the body—in the latter case, no assertional indexing is required. We will use

this observation to identify a subset of T-split OWL 2 RL/RDF rules which are linear with respect to the

assertional knowledge in § 5.4.1, but first we look at some generic optimisations for the assertional program.

5.3 Optimising the Assertional Program

Note that in Algorithm 5.1 Line 10, all rules are checked for all triples to see if an inference should take place.

Given that (i) the assertional program will be applied over a corpus containing in the order of a billion triples;

(ii) the process of grounding the T-atoms of T-split rules may lead to a large volume of assertional rules

given a sufficiently complex terminology; we deem it worthwhile to investigate some means of optimising the

execution of the assertional program. Herein, we discuss such optimisations and provide initial evaluation

thereof—note that since our assertional program contains only assertional atoms, we herein omit the T-split

notation where Body(R) always refers to a purely assertional body.

5.3.1 Merging Equivalent T-ground Rules

Applying the T-grounding of rules to derive purely assertional rules may generate “equivalent rules”: rules

which can be unified through a bijective variable rewriting. Similarly, there may exist T-ground rules with

“equivalent bodies” which can be merged into one rule. To formalise these notions, we first define the

bijective variable rewriting function used to determine equivalence of atoms.

Definition 5.6 (Variable rewriting) A bijective variable rewriting function is an automorphism on the

set of variables, given simply as:

ν : V 7→ V

As such, this function is a specific form of variable substitution, where two atoms which are unifiable by

such a rewriting are considered equivalent :

Definition 5.7 (Equivalent atoms) Two atoms are considered equivalent (denoted A1 /.A2 reflecting the

fact that both atoms are instances of each other) iff they are unifiable by a bijective variable rewriting:13

A1 /.A2 ⇔ ∃ν s.t. A1ν = A2

Equivalence of a set of atoms follows naturally. Two rules are body-equivalent (R1 /.bR2) iff their bodies

are equivalent:

R1 /.bR2 ⇔ Body(R1) /.Body(R2)⇔ ∃ν s.t. Body(R1)ν = Body(R2)

Two rules are considered fully-equivalent if their bodies and heads are unifiable by the same variable rewriting:

R1 /.rR2 ⇔ ∃ν s.t.
(

Body(R1)ν = Body(R2) ∧ Head(R1)ν = Head(R2)
)

13Note that in the unification, only the variables in the left atom are rewritten and not both; otherwise two atoms such as

(?a, foaf:knows, ?b) and (?b, foaf:knows, ?c) would not be equivalent: they could not be aligned by any (necessarily injective)

rewriting function ν.

68

5.3. Optimising the Assertional Program 69

Note that fully-equivalent rules are considered redundant, and all but one can be removed without affecting

the computation of the least model.

We now briefly demonstrate that our equivalence relations meet the necessary requirements to be called

such:

Proposition 5.5 The equivalence relations /., /.b and /.r are reflexive, symmetric and transitive.

Proof: For /., the proposition follows trivially from the fact that ν is automorphic. Reflexivity is given by

the necessary existence of the identity morphism ν(A) = A which gives A/.A. Symmetry is given by the

necessary existence of the inverse (auto)morphism ν−1 where:

A1 /.A2 ⇔ ∃ν s.t. (A1ν = A2)⇔ ∃ν−1 s.t. (A2ν
−1 = A1)⇔ A2 /.A1

Transitivity is given by the necessary existence of the composite (auto)morphism νx ◦ νy where:

A1 /.A2 /.A3 ⇔ ∃νx, νy s.t. (A1νx = A2 ∧A2νy = A3)

⇔ ∃νx ◦ νy s.t. (A1νx ◦ νy = A3)⇔ A1 /.A3

Thus, the proposition holds for /., and can be proven analogously for /.b and /.r. �

Using these equivalence relations, we can now define our rule-merge function (again recall from § 3.4 our

interpretation of multi-atom heads as being conjunctive, and a convenient representation of the equivalent

set of rules):

Definition 5.8 (Rule merging) Given an equivalence class of rules [R]/.b—a set of rules between which

/.b holds—select a canonical rule R ∈ [R]/.b ; we can now describe the rule-merge of the equivalence class

as

merge([R]/.b) := Head[R]/.b
← Body(R)

where

Head[R]/.b
:=

⋃
Ri∈[R]/.b

Head(Ri)νi s.t. Body(Ri)νi = Body(R)

Now take a program P and let:

P//.b := {[R]/.b | R ∈ P}

denote the quotient set of P given by /.b: the set of all equivalent classes [R]/.b wrt. the equivalence relation

/.b in P . We can generalise the rule merge function for a set of rules as

merge : 2Rules → 2Rules

P 7→
⋃

[R]/.b∈P//.b

merge([R]/.b)

Example 5.5 Take three T-ground rules:

(?x, a, foaf:Person) ← (?x, foaf:img, ?y)

(?s, foaf:depicts, ?o) ← (?s, foaf:img, ?o)

(?a, foaf:depicts, ?b) ← (?a, foaf:img, ?b)

The second rule can be merged with the first using ν1 = {?s/?x, ?o/?y}, which gives:

(?x, a, foaf:Person),(?x, foaf:depicts, ?y) ← (?x, foaf:img, ?y)

69

5.3. Optimising the Assertional Program 70

The third rule can be merged with the above rule using ν1 = {?a/?x, ?b/?y} to give:

(?x, a, foaf:Person),(?x, foaf:depicts, ?y) ← (?x, foaf:img, ?y)

...the same rule. This demonstrates that the merge function removes redundant fully-equivalent rules. ♦

Merging the rules thus removes redundant rules, and reduces the total number of rule applications required

for each triple without affecting the final least model:

Proposition 5.6 For any program P , lm(P) = lm(merge(P)).

Proof: (Sketch) First, we can show that TP = Tmerge(P) since (i) the bijective variable rewriting does

not affect rule application; (ii) concatenation of rules with equivalent bodies does not affect the immediate

consequence operator over that set of rules. Give that the immediate consequences of the program are the

same, proof that the least models are the same can be demonstrated by induction over natural numbers. �

5.3.2 Rule Index

We have reduced the amount of rules in the assertional program through merging; however, given a sufficiently

complex T-Box, we may still have a prohibitive number of rules for efficient recursive application. We now

look at the use of a rule index which maps a fact to rules containing a body atom for which that fact is an

instance, thus enabling the efficient identification and application of only relevant rules for a given triple.

Definition 5.9 (Rule lookup) Given a fact F and program P , the rule lookup function returns all rules

in the program containing a body atom for which F is an instance:

lookup : Facts× 2Rules → 2Rules

(F, P) 7→
{
R ∈ P | ∃Bi ∈ Body(R) s.t. Bi . F

}

Now, instead of attempting to apply all rules, for each triple we can perform the above lookup function and

return only triples from the assertional program which could potentially lead to a successful rule application.

Example 5.6 Given a triple:

t :=(ex:me, a, foaf:Person)

and a simple example ruleset:

P := {(?x, a, foaf:Person) ← (?x, foaf:img, ?y),

(?x, a, foaf:Agent) ← (?x, a, foaf:Person),

(?y, a, rdfs:Class) ← (?x, a, ?y)}

lookup(t, P) returns a set containing the latter two rules. ♦

With respect to implementing this lookup function, we require a rule index. A triple pattern has 23 = 8

possible forms: (?, ?, ?), (s, ?, ?), (?, p, ?), (?, ?, o), (s, p, ?), (?, p, o), (s, ?, o), (s, p, o). Thus, we require eight

indices for indexing body patterns, and eight lookups to perform lookup(t, P) and find all relevant rules for a

triple. We use seven in-memory hashtables storing the constants of the rule antecedent patterns as key, and

a set of rules containing such a pattern as value; e.g., {(?x, a, foaf:Person)} is put into the (?, p, o) index

70

5.3. Optimising the Assertional Program 71

with (a, foaf:Person) as key. Rules containing (?, ?, ?) patterns without constants are stored in a set, as

they are relevant to all triples—they are returned for all lookups.

We further optimise the rule index by linking dependencies between rules, such that once one rule fires,

we can determine which rules should fire next without requiring an additional lookup. This is related to the

notion of a rule graph in Logic Programming (see, e.g., [Ramakrishnan et al., 1990]):

Definition 5.10 (Rule graph) A rule graph is defined as a directed graph:

Γ := (P, ↪→)

such that:14

Ri ↪→ Rj ⇔ ∃B ∈ Body(Rj),∃H ∈ Head(Ri) s.t. B . H

where Ri ↪→ Rj is read as “Rj follows Ri”.

By building and encoding such a rule graph into our index, we can “wire” the recursive application of

rules for the assertional program. However, from the merge function (or otherwise) there may exist rules

with large sets of head atoms. We therefore extend the notion of the rule graph to a directed labelled graph

with the inclusion of a labelling function

Definition 5.11 (Rule-graph labelling) Let Λ denote a labelling function as follows:

Λ : Rules× Rules→ 2Atoms

(Ri, Rj) 7→
{
H ∈ Head(Ri) | ∃B ∈ Body(Rj) s.t. B . H

}
A labelled rule graph is thereafter defined as a directed labelled graph:

ΓΛ := (P, ↪→,Λ)

Each edge in the rule graph is labelled with Λ(Ri, Rj), denoting the set of atoms in the head of Ri that,

when grounded, would be matched by atoms in the body of Rj .

Example 5.7 Take the two rules:

Ri. (y, a, foaf:Image),(?x, a, foaf:Person) ← (?x, foaf:img, ?y)

Rj. (s, a, foaf:Agent) ← (?s, a, foaf:Person)

We say that Ri
λ
↪→ Rj, where λ = Λ(Ri, Rj) = {(?x, a, foaf:Person)}. ♦

In practice, our rule index stores sets of elements of a linked list, where each element contains a rule and

links to rules which are relevant for the atoms in that rule’s head. Thus, for each input triple, we can retrieve

all relevant rules for all eight possible patterns, apply those rules, and if successful, follow the respective

labelled links to recursively find relevant rules without re-accessing the index until the next input triple.

5.3.3 Rule Saturation

We briefly describe the final optimisation technique we investigated, but which later evaluation demonstrated

to be mostly disadvantageous: rule saturation. We say that a subset of dependencies in the rule graph are

14Here, we recall from § 3.4 the ‘.’ notation for an instance.

71

5.3. Optimising the Assertional Program 72

strong dependencies, where the successful application of one rule will always lead to the successful application

of another. In such cases, we can saturate rules with single-atom bodies by pre-computing the recursive rule

application of its dependencies; we give the gist with an example:

Example 5.8 Take rules

Ri. (?x, a, foaf:Person),(?y, a, foaf:Image) ← (?x, foaf:img, ?y)

Rj. (?s, a, foaf:Agent) ← (?s, a, foaf:Person)

Rk. (?y, a, rdfs:Class) ← (?x, a, ?y)

We can see that Ri ↪→ Rj, Ri ↪→ Rk, Rj ↪→ Rk as before. Now, we can remove the links from Ri to Rj
and Rk by saturating Ri to:

R′i. (?x, a, foaf:Person),(?y, a, foaf:Image),(?x, a, foaf:Agent),

(foaf:Person, a, rdfs:Class),(foaf:Image, a, rdfs:Class),

(foaf:Agent, a, rdfs:Class) ← (?x, foaf:img, ?y)

and, analogously, we can remove the links from Rj to Rk by saturating Rj to:

R′j. (?s, a, foaf:Agent),(foaf:Agent, a, rdfs:Class) ← (?s, a, foaf:Person)

Thus, the index now stores R′i, R
′
j , Rk, but without the links between them. (Note that R′j does not contain

the atom (foaf:Person, a, rdfs:Class) in its head since R′k will also be applied on the input triple, although

not on the consequences of R′j.) ♦

However, as we will see in § 5.3.4, our empirical analysis found rule saturation to be mostly disadvanta-

geous: although it decreases the number of necessary rule applications, as a side-effect, saturated rules can

immediately produce a large batch of duplicates which would otherwise have halted a traversal of the rule

graph early on. Using the above example, consider encountering the following sequence of input triples:

1. (ex:Fred, a, foaf:Person)

2. (ex:Fred, foaf:img, ex:FredsPic)

The first triple will fire rule R′j and Rk; the second triple will subsequently fire rule R′i, and in so doing,

will produce a superset of inferences already given by its predecessor. Without saturation, the second triple

would fire Ri, identify (ex:Fred, a, foaf:Person) as a duplicate, and instead only fire Rk for (ex:FredsPic,

a, foaf:Image).

5.3.4 Preliminary Performance Evaluation

We now perform some (relatively) small-scale experiments to empirically (in)validate our optimisations for

the assertional program execution.

We applied reasoning for RDFS (minus the infinite rdf: n axiomatic triples [Hayes, 2004]), pD* and

OWL 2 RL/RDF over LUBM(10) [Guo et al., 2005], consisting of about 1.27 million assertional triples and

295 terminological triples.15 For each rule profile, we applied the following configurations:

1. N: no partial evaluation: T-Box atoms are bound at runtime from an in-memory triple-store;

2. NI: no partial evaluation with linked (meta-)rule index;

3. P: partial-evaluation: generating and applying an assertional program;

15Note that we exclude lg/gl rules for RDFS/pD* since we allow generalised triples [Grau et al., 2009]. We also restrict OWL

2 RL/RDF datatype reasoning to apply only to literals in the program.

72

5.3. Optimising the Assertional Program 73

4. PI: partial evaluation with linked rule index;

5. PIM: partial evaluation with linked rule index and rule merging;

6. PIMS: partial evaluation with linked rule index, rule merging and rule saturation.

Table 5.1 enumerates the results for each profile, with a breakdown of (i) the number of inferences made,

(ii) the total number of assertional rules generated, (iii) the total number of merged rules; and for each of the

six configurations; (iv) the time taken, (v) the total number of attempted rule applications—i.e., the total

number of times a triple is checked to see if it grounds a body atom of a rule to produce inferences—and the

percent of rule applications which generated inferences, and (vi) the number of duplicate triples filtered out

by the LRU cache (Lines 7 & 8, Algorithm 5.1).

RDFS

inferred 0.748 million

T-ground rules 149
after merge 87

config. N NI P PI PIM PIMS

time (s) 99 117 404 89 81 69

rule apps (m) 16.5 15.5 308 11.3 9.9 7.8
% success 43.4 46.5 2.4 64.2 62.6 52.3

cache hits (m) 10.8 10.8 8.2 8.2 8.2 8.1

pD*

inferred 1.328 million

T-ground rules 175
after merge 108

config. N NI P PI PIM PIMS

time (s) 365 391 734 227 221 225

rule apps (m) 62.5 50 468 22.9 21.1 13.9
% success 18.8 23.4 2.6 51.5 48.7 61.3

cache hits (m) 19.1 19.1 15.1 15.1 14.9 38.7

OWL 2 RL/RDF

inferred 1.597 million

T-ground rules 378
after merge 119

config. N NI P PI PIM PIMS

time (s) 858 940 1,690 474 443 465

rule apps (m) 149 110 1,115 81.8 78.6 75.6
% success 4.2 5.6 0.8 10.5 6.8 15

cache hits (m) 16.5 16.5 13.1 13 12.7 34.4

Table 5.1: Details of reasoning for LUBM(10)—containing 1.27M assertional triples and 295 terminological
triples—given different reasoning configurations (the most favourable result for each row is highlighted in
bold)

In all approaches, applying the non-optimised partially evaluated (assertional) program takes the longest:

although the partially evaluated rules are more efficient to apply, this approach requires an order of magnitude

more rule applications than directly applying the meta-program, and so applying the unoptimised residual

assertional program takes approximately 2× to 4× longer than the baseline.

With respect to rule indexing, the technique has little effect when applying the meta-program directly—

many of the rules contain open patterns in the body. Although the number of rule applications diminishes

somewhat, the expense of maintaining and accessing the rule index actually worsens performance by between

10% and 20%. However, with the partially evaluated rules, more variables are bound in the body of the

73

5.4. Towards Linked Data Reasoning 74

rules, and thus triple patterns offer more selectivity and, on average, the index returns fewer rules. We

see that for PI and for each profile respectively, the rule index sees a 78%, 69% and 72% reduction in the

equivalent runtime (P) without the rule index; the reduction in rule applications (73%, 80%, 86% reduction

resp.) is significant enough to more than offset the expense of maintaining and using the index. With

respect to the baseline (N), PI makes a 10%, 38% and 45% saving respectively; notably, for RDFS, the gain

in performance over the baseline is less pronounced, where, relative to the more complex rulesets, the number

of rule applications is not signficantly reduced by partial evaluation and indexing.

Merging rules provided a modest saving across all rulesets, with PIM giving a 9%, 3% and 6.5% saving

in runtime and a 12%, 8% and 4% saving in rule applications over PI respectively for each profile. Note

that although OWL 2 RL/RDF initially creates more residual rules than pD* due to expanded T-Box level

reasoning, these are merged to a number just above pD*: OWL 2 RL supports intersection-of inferencing

used by LUBM and not in pD*. LUBM does not contain OWL 2 constructs, but redundant meta-rules are

factored out during the partial evaluation phase.

Finally, we look at the effect of saturation for the approach PIMS. For RDFS, we encountered a 15%

reduction in runtime over PIM, with a 21% reduction in rule applications required. However, for pD* we

encountered a 2% increase in runtime over that of PIM despite a 34% reduction in rule applications: as

previously alluded to, the cache was burdened with 2.6× more duplicates, negating the benefits of fewer rule

applications. Similarly, for OWL 2 RL/RDF, we encountered a 4% increase in runtime over that of PIM

despite a 4% reduction in rule applications: again, the cache encountered 2.7× more duplicates.

The purpose of this evaluation is to give a granular analysis and empirical justification for our opti-

misations for different rule-based profiles: one might consider different scenarios (such as a terminology-

heavy corpus) within which our optimisations may not work. However, we will later demonstrate these

optimisations—with the exception of rule saturation—to be propitious for our scenario of reasoning over

Linked Data.

It is worth noting that—aside from reading input and writing output—we performed the above experi-

ments almost entirely in-memory. Given the presence of (pure) assertional rules which have multi-atom bodies

where one such atom is “open” (all terms are variables)—viz., pD* rule rdfp11 and OWL 2 RL/RDF rules

eq-rep-*—we currently must näıvely store all data in memory, and cannot scale much beyond LUBM(10).16

5.4 Towards Linked Data Reasoning

With the notions of a T-split program, partial evaluation and assertional program optimisations in hand,

we now reunite with our original use-case of Linked Data reasoning, for which we move our focus from clean

corpora in the order of a million statements to our corpus in the order of a billion statements collected from

almost four million sources—we will thus describe some trade-offs we make in order to shift up (at least)

these three orders of magnitude in scale, and to be tolerant to noise and impudent data present in the corpus.

More specifically, we:

• first describe, motivate and characterise the scalable subset of OWL 2 RL/RDF that we implement

(§ 5.4.1) based partially on the discussion in the previous section;

• introduce and describe authoritative reasoning, whereby we include cautious consideration of the source

of terminology into the reasoning process (§ 5.4.2);

• outline our distribution strategy for reasoning (§ 5.4.3);

16We could consider storing data in an on-disk index with in-memory caching; however, given the morphology and volume of

the assertional data, and the frequency of lookups required, we believe that the cache hit rate would be low, and that the näıve

performance of the on-disk index would suffer heavily from hard-disk latency, becoming a severe bottleneck for the reasoner.

74

5.4. Towards Linked Data Reasoning 75

• evaluate our methods (§ 5.4.4) by applying reasoning over the corpus crawled in the previous chapter.

5.4.1 “A-linear” OWL 2 RL/RDF

Again, for a generic set of RDF rules (which do not create new terms in the head), the worst case complexity

is cubic—in § 5.1.4 we have already demonstrated a simple example which instigates cubic reasoning for

OWL 2 RL/RDF rules, and discussed how, for many reasonable inputs, rule application is quadratic. Given

our use-case, we want to define a profile of rules which will provide linear complexity with respect to the

assertional data in the corpus: what we call “A-linearity”.

In fact, in the field of Logic Programming (and in particular Datalog) the notion of a linear program

refers to one which contains rules with no more than one recursive atom in the body—a recursive atom being

one which cannot be instantiated from an inference (e.g., see [Cosmadakis et al., 1988]).17 For Datalog,

recursiveness is typically defined on the level of predicates using the notion of intensional predicates, which

represent facts that can (only) be inferred by the program, and extensional predicates, which represent facts

in the original data: atoms with intensional predicates are non-recursive [Cosmadakis et al., 1988]. Since we

deal with a single ternary predicate, such a predicate-level distinction does not apply, but the general notion

of recursiveness does. This has a notable relationship to our distinction of terminological knowledge—which

we deem to be recursive only within itself (assuming standard use of the meta-vocabulary and “well-behaved

equality” involving owl:sameAs)—and assertional knowledge which is recursive.

Based on these observations, we identify an A-linear subset of OWL 2 RL/RDF rules which contain only

one recursive/assertional atom in the body, and apply only these rules. Taking this subset as our “meta-

program”, after applying our T-grounding of meta-rules during partial evaluation, the result will be a set of

facts and proper rules with only one assertional atom in the body. The resulting linear assertional program

can then be applied without any need to index the assertional data (other than for the LRU duplicates

soft-cache); also, since we do not need to compute assertional joins—i.e., to find the most general unifier

of multiple A-atoms in the data—we can employ a straightforward distribution strategy for applying the

program.

Definition 5.12 (A-linear program) Let P be any T-split (a.k.a. meta) program. We denote the A-linear

program of P by P∝A defined as follows:

P∝A := {R ∈ P : |ABody(R)| ≤ 1}

(Note that by the above definition, P∝A also includes the pure-terminological rules and the facts of P.)

Thus, the proper rules of the assertional program AP∝A generated from an A-linear meta-program P∝A will

only contain one atom in the head. For convenience, we denote the A-linear subset of OWL 2 RL/RDF by

O2R∝A, which consists of rules in Tables B.1–B.4 (Appendix B).

Thereafter, the assertional program demonstrates two important characteristics with respect to scalabil-

ity: (i) the assertional program can be independently applied over subsets of the assertional data, where a

subsequent union of the resultant least models will represent the least model achievable by application of

the program over the data in whole; (ii) the volume of materialised data and the computational expense of

applying the assertional program are linear with respect to the assertional data.

Proposition 5.7 (Assertional partitionability) Let I be any interpretation, and {I1, . . . , In} be any

17There is no relation between a linear program in our case, and the field of Linear Programming [Vanderbei, 2008].

75

5.4. Towards Linked Data Reasoning 76

set of interpretations such that:

I =

n⋃
i=1

Ii

Now, for any meta-program P , its A-linear subset P∝A, and the assertional program AP∝A derived therefrom,

it holds that:

lm(AP∝A ∪ I) =

n⋃
i=1

lm(AP∝A ∪ Ii)

Proof: Follows naturally from the fact that rules in AP∝A (i) are monotonic and (ii) only contain single-atom

bodies. �

Thus, deriving the least model of the assertional program can be performed over any partition of an

interpretation; the set union of the resultant least models is equivalent to the least model of the unpartitioned

interpretation. Aside from providing a straightforward distribution strategy, this result allows us to derive

an upper-bound on the cardinality of the least model of an assertional program.

Proposition 5.8 (A-Linear least model size) Let AP∝A denote any A-linear assertional program com-

posed of RDF proper rules and RDF facts composed of ternary-arity atoms with the ternary predicate T .

Further, let I∝A denote the set of facts in the program and PR∝A denote the set of proper rules in the program

(here, AP∝A = I∝A ∪ PR∝A). Also, let the function Const denote the Herbrand universe of a set of atoms

(the set of RDF constants therein), and let τ denote the cardinality of the Herbrand universe of the heads of

all rules in PR∝A (the set of RDF constants in the heads of the proper T-ground rules of AP∝A) as follows:

τ =
∣∣∣Const

(⋃
R∈PR∝A

Head(R)
)∣∣∣

Finally, let α denote the cardinality of the set of facts:

α = |I∝A|

Then it holds that:

|lm(AP∝A)| ≤ τ3 + α(9τ2 + 27τ + 27)

Proof: The proposition breaks the least model into two parts: The first part consists of τ3 triples rep-

resenting the cardinality of the set of all possible triples that can be generated from the set of constants

in the heads of the proper rules—clearly, no more triples can be generated without accessing the Herbrand

universe of the assertional facts. The second part of the least model consists of α(9τ2 + 27τ + 27) triples

generated from the assertional facts. From Proposition 5.7, we know that the least model can be viewed as

the set union of the consequences from each individual triple. For each triple, the program has access to the

τ terms in the Herbrand universe of the proper-rule heads, and three additional terms from the triple itself;

the total number of unique possible triples from this extended Herbrand universe is:

(τ + 3)3 = τ3 + 9τ2 + 27τ + 27

However, we have already counted the τ3 triples that can be created purely from the former Herbrand

universe, and thus the total number of unique triples that can be derived thereafter comes to:

9τ2 + 27τ + 27

denoting the number of possible triples which include at least one term from the input triple. Thus, multi-

plying the total number of triples α, we end up with the maximum total size of the least model given in the

76

5.4. Towards Linked Data Reasoning 77

proposition. �

Note that τ is given by the terminology (more accurately the T-Box) of the data and the terms in the

heads of the original meta-program. Considering τ as a constant, we arrive at the maximum size of the

least model as c + cα: i.e., the least model is linear with respect to the assertional data. In terms of rule

applications, the number of rules is again a function of the terminology and meta-program, and the maximum

number of rule applications is the product of the number of rules (considered a constant) and the maximum

size of the least model. Thus, the number of rule applications remains linear with respect to the assertional

data.

This is a tenuous result with respect to scalability, and constitutes a refactoring of the cubic complexity

to separate out a static terminology. Thereafter, assuming the terminology to be small, the constant c will

be small and the least model will be terse; however, for a sufficiently complex terminology, obviously the

τ3 and ατ2 factors begin to dominate—for a terminology heavy program, the worst-case complexity again

approaches τ3. Thus, applying an A-linear subset of a program is again not a “magic bullet” for scalability,

although it should demonstrate scalable behaviour for small terminologies (i.e., where τ is small) and/or

other reasonable inputs.

Moving forward, we select an A-linear subset of the OWL 2 RL/RDF ruleset for application over our

ruleset. This subset is enumerated in Appendix B, with rule tables categorised by terminological and

assertional arity of rule bodies. Again, we also make some other amendments to the ruleset:

1. we omit datatype rules which lead to the inference of (near-)infinite triples;

2. we omit inconsistency checking rules (. . . for now: we will examine use-cases for these rules in the next

two chapters);

3. for reasons of terseness, we omit rules which infer ‘tautologies’—statements that hold for every term

in the graph, such as reflexive owl:sameAs statements (we also filter these from the output).

5.4.2 Authoritative Reasoning

In preliminary evaluation of our Linked Data reasoning [Hogan et al., 2009b], we encountered a puzzling

deluge of inferences: We found that remote documents sometimes cross-define terms resident in popular

vocabularies, changing the inferences authoritatively mandated for those terms. For example, we found one

document18 which defines owl:Thing to be an element (i.e., a subclass) of 55 union class descriptions—thus,

materialisation wrt. OWL 2 RL/RDF rule cls-uni [Grau et al., 2009, Table 6] over any member of owl:Thing

would infer 55 additional memberships for these obscure union classes. We found another document19 which

defines nine properties as the domain of rdf:type—again, anything defined to be a member of any class

would be inferred to be a member of these nine properties by rules prp-dom. Even aside from “cross-defining”

core RDF(S)/OWL terms, popular vocabularies such as FOAF were also affected (we will see more in the

evaluation presented in § 5.4.4).

In order to curtail the possible side-effects of open Web data publishing (as also exemplified by the two

triples which cause cubic reasoning in § 5.1.4), we include the source of data in inferencing. Our methods are

based on the view that a publisher instantiating a vocabulary’s term (class/property) thereby accepts the

inferencing mandated by that vocabulary (and recursively referenced vocabularies) for that term. Thus, once

a publisher instantiates a term from a vocabulary, only that vocabulary and its references should influence

what inferences are possible through that instantiation. As such, we ignore unvetted terminology at the

18http://lsdis.cs.uga.edu/~oldham/ontology/wsag/wsag.owl; retr. early 2010, offline 2011/01/13
19http://www.eiao.net/rdf/1.0; retr. 2011/01/13

77

http://lsdis.cs.uga.edu/~oldham/ontology/wsag/wsag.owl
http://www.eiao.net/rdf/1.0

5.4. Towards Linked Data Reasoning 78

potential cost of discounting serendipitous mappings provided by independent parties, since we currently

have no means of distinguishing “good” third-party contributions from “bad” third-party contributions. We

call this more conservative form of reasoning authoritative reasoning, which only considers authoritatively

published terminological data, and which we now describe.

Firstly, we must define the relationship between a class/property term and a vocabulary, and give the

notion of term-level authority. We view a term as an RDF constant, and a vocabulary as a Web document.

From § 3.3, we recall the get mapping from a URI (a Web location) to an RDF graph it may provide by

means of a given HTTP lookup, and the redirs mapping for traversing the HTTP redirects given for a URI.

Definition 5.13 (Authoritative sources for terms) Letting B(G) denote the set of blank-nodes appear-

ing in the graph G, we denote a mapping from a source URI to the set of terms it speaks authoritatively for

as follows:20

auth : S→ 2C

s 7→ {c ∈ U | redirs(c) = s} ∪ B(get(s))

Thus, a Web source is authoritative for URIs which redirect to it and the blank nodes contained in its

associated graph; for example, the FOAF vocabulary is authoritative for terms in its namespace since it

follows best-practices and makes its class/property URIs dereference to an RDF/XML document defining

the terms. Note that we consider all documents to be non-authoritative for all literals.

To negate the effects of non-authoritative terminological axioms on reasoning over Web data, we add an

extra condition to the T-grounding of a rule (see Definition 5.2): in particular, we only require amendment

to rules where both TBody(R) 6= ∅ and ABody(R) 6= ∅.

Definition 5.14 (Authoritative T-ground rule instance) Let TAVars(R) ⊂ V denote the set of vari-

ables appearing in both TBody(R) and ABody(R), let G denote a graph, and let s denote the source of that

graph. Now, we define the set of authoritative T-ground rule instances for a program P in the graph G as:

̂GroundT (P,G, s) :=
⋃
R∈P

GroundT ({R}, G) s.t. if R ∈ PTA then ∃v ∈ TAVars(R) s.t. θ(v) ∈ auth(s)

here recalling the GroundT (P,G) notation for T-ground rule instances from Definition 5.2, and reusing the

previous convention that PTA := {R ∈ P | TBody(R) 6= ∅,ABody(R) 6= ∅}.

The additional condition for authoritativeness states that if ABody(R) 6= ∅ and TBody(R) 6= ∅, then the

unifier θ must substitute at least one variable appearing in both ABody(R) and TBody(R) for an authoritative

term (wrt. source s)—i.e., source s must speak authoritatively for a term that necessarily appears in each

instance of ABody(R), and cannot create rule instances which could apply over arbitrary assertional data

not mentioning any of its terms. We now formalise this notion:

Theorem 5.9 (Authoritative reasoning guarantee) Let Const denote a function which returns the

Herbrand universe of a set of rules (including facts): i.e., a function which returns the set of RDF con-

stants appearing in a program P or a graph G. Next, let G′ be any graph, let s′ be the source of graph G′

such that get(s′) = G′, and let P be any (T-split) program and G be any graph such that

Const(P ∪G) ∩ auth(s′) = ∅ ;

20Even predating Linked Data, dereferenceable vocabulary terms were encouraged; cf. http://www.w3.org/TR/2006/

WD-swbp-vocab-pub-20060314/; retr. 2011/01/13.

78

http://www.w3.org/TR/2006/WD-swbp-vocab-pub-20060314/
http://www.w3.org/TR/2006/WD-swbp-vocab-pub-20060314/

5.4. Towards Linked Data Reasoning 79

i.e., neither P nor G contain any terms for which s′ speaks authoritatively. Finally, let P ′ be the set of

partially evaluated rules derived from G with respect to P , where:

P ′ := {R ∈ ̂GroundT (P,G′, s′) | Body(R) 6= ∅}

Now, it holds that lm(P ∪G) = lm(P ∪ P ′ ∪G).

Proof: First, we note that P ′ contains proper rules generated from P ∅A and PTA—the ̂GroundT function will

ground any rules in PT∅, where the resulting facts will, by definition, not be included in P ′. Note that with

respect to P ∅A, by definition the ̂GroundT function will not alter these rules such that ̂GroundT (P ∅A, G′, s′) =

P ∅A. Thus, we have that

P \ P ′ = ̂GroundT (PTA, G′, s′) .

Letting P ′′ := P \ P ′, we are now left to prove lm(P ∪G) = lm(P ∪ P ′′ ∪G): since our rules are monotonic,

the ⊆ inclusion is trivial, where we are left to prove the ⊇ inclusion.

From Definition 5.9, since for all RTA ∈ PTA there must exist a substitution v ∈ TAVars(R) s.t. θ(v) ∈
auth(s′), and since v must appear in ABody(RTA), then we know that for all R′′ ∈ P ′′, there exists a constant

in R′′ for which s′ is authoritative; i.e.:

∀R′′ ∈ P ′′ it holds that Const({Body(R′′)}) ∩ auth(s′) 6= ∅ .

Now, given the theorem’s assumption that Const(P ∪G) ∩ auth(s′) = ∅, we know that

∀R′′ ∈ P ′′ it holds that Const({Body(R′′)}) 6⊆ Const(P ∪G) ,

and since lm cannot introduce new terms not in the original Herbrand universe, it follows that

∀R′′ ∈ P ′′ it holds that Const({Body(R′′)}) 6⊆ Const
(
lm(P ∪G)

)
.

Now, since all R′′ are proper rules, it follows that no such R′′ can have its body instantiated by P ∪ G or

lm(P ∪G), or give an inference therefrom. Finally, by straightforward induction for TP∪P ′′∪G, we have that

lm(P ∪G) = lm(P ∪ P ′′ ∪G). Hence the proposition holds. �

Corollary 5.10 Given the same assumption(s) as Theorem 5.4.2, it also holds that lmT (P ∪G) = lmT (P ∪
P ′ ∪G).

Proof: Follows from Theorem 5.4.2 by replacing P with its terminological program TP and its assertional

program AP . �

Example 5.9 Take the T-split rule REX as before:

(?x, a, ?c2) ← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

and let GEX be the graph from source s:

GEX := { (foaf:Person, rdfs:subClassOf, foaf:Agent),

(foaf:Agent, rdfs:subClassOf, dc:Agent) }

Here, TAVars(REX) = {?c1}. Now, for each substitution θ, there must exist v ∈ TAVars(REX) such that s

speaks authoritatively for θ(v). In this case, s must speak authoritatively for the ?c1 substitution foaf:Per-

son for the rule:

79

5.4. Towards Linked Data Reasoning 80

(?x, a, foaf:Agent) ← (?x, a, foaf:Person)

to be an authoritatively T-ground rule instance, and speak authoritatively for the ?c1 substitution foaf:Agent

for:

(?x, a, dc:Agent) ← (?x, a, foaf:Agent)

to be authoritative. In other words, for these T-ground rules to be authoritative, GEX must be served by

the document dereferenced by the FOAF terms—i.e., the FOAF vocabulary. Note, for example, that this

authoritatively ground rule contains the term foaf:Agent in the body, and thus can only generate inferences

over graphs containing this term (for which s is authoritative). ♦

For reference, we highlight variables in TAVars(R) with boldface in Table B.4 (Appendix B).

It is worth noting that for rules where ABody(R) and TBody(R) are both non-empty, authoritative

instantiation of the rule will only consider unifiers for TBody(R) which come from one source. However, in

practice for OWL 2 RL/RDF, this is not so restrictive: although TBody(R) may contain multiple atoms, in

such rules TBody(R) usually refers to an atomic axiom which requires multiple triples to represent—indeed,

the OWL 2 Structural Specification [Motik et al., 2009c] enforces usage of blank-nodes and cardinalities on

such constructs to ensure that the constituent triples of the multi-triple axiom appear in one source. To take

an example, for the T-atoms:

(?x, owl:hasValue, ?y)

(?x, owl:onProperty, ?p)

we would expect ?x to be ground by a blank-node skolem and thus expect the instance to come from one

graph. Although it should be noted that such restrictions do not carry over for OWL 2 Full—which is appli-

cable for arbitrary RDF graphs—it still seems reasonable for us to restrict those OWL 2 Full terminological

axioms which require multiple triples to express to be given entirely within one Web document (here, perhaps

even making our reasoning more robust).

Note finally that terminological inferences—produced by rules with only T-atoms—are never considered

authoritative. Thus, by applying authoritative reasoning, we do not T-ground rules from such facts. For

OWL 2 RL/RDF, this only has a “minor” effect on the least model computation since OWL 2 RL/RDF

(intentionally) contains redundant rules [Grau et al., 2009], which allow for deriving the same inferences on

a purely assertional level. Along these lines, in Appendix B, Table B.5, we list all of the T-atom only rules;

assuming that the inferences given by each rule are not considered terminological, we show how the omissions

are covered by the recursive application of other assertional rules. We note that we may miss some inferences

possible through inference of rdfs:subClassOf relations between owl:someValuesFrom restriction classes,

and also between owl:allValuesFrom restriction classes—this is because we do not support the respective

assertional rules cls-svf1 and cls-avf which both contain two A-atoms, whereas we do support inferencing

over rdfs:subClassOf through rule cax-sco.21

5.4.3 Distributed Reasoning

As previously mentioned, Proposition 5.7 lends itself to a straightforward distribution strategy for applying

our A-linear OWL 2 RL/RDF subset. Given that the corpus is pre-distributed over the machines as a direct

result of the crawl (cf. § 4.2), we first extract the T-Box data from each machine, use the master machine

to execute the terminological program and create the residual assertional program, and then distribute this

assertional program (the proper rules) to each slave machine and let it apply the program independently

(and in parallel) over its local segment of the corpus. This process is summarised as follows:

21Informally, we conjecture that such incompleteness would be extremely rare in practice (cf. Table 5.2).

80

5.4. Towards Linked Data Reasoning 81

1. run/gather: identify and separate out the T-Box from the main corpus in parallel on the slave

machines, and subsequently merge the T-Box segments on the master machine;

2. run: generate axiomatic triples from the meta-program and apply T-atom only rules on the master

machine; subsequently ground the T-atoms in rules with non-zero A-atoms generating the assertional

program; optimise the assertional program by merging rules and building a linked rule index;

3. flood/run: send the assertional linked rule index to all slave machines, and reason over the main

corpus in parallel on each machine.

Note that during the first step, assuming that the data are grouped by context—as is the direct result

of our document-by-document crawl—we can detect and remove non-terminological collection triples based

on whether or not they form part of an owl:unionOf or owl:intersectionOf axiom within the current

document. If the data are not grouped by context, this step can be performed on the master machine: in

our corpus, we found 22,360 rdf:first and 22,646 rdf:rest triples, which—along with 4,168 owl:unionOf

triples and 136 owl:intersectionOf triples—are processable in sub-second time.

The results of the above three-step operation are: (a) axiomatic triples and terminological inferences

resident on the master machine; and (b) assertional inferences split over the slave machines. Note further

that the output of this process may contain (both local and global) duplicates.

5.4.4 Linked Data Reasoning Evaluation

We now give evaluation of applying our subset of OWL 2 RL/RDF over the 1.118b quads (947m unique

triples) of Linked Data crawled in the previous chapter. Note that we also require information about

redirects encountered in the crawl to reconstruct the redirs function required for authoritative reasoning (see

Definition 5.13) and that we output a flat file of G-Zipped triples.

Survey of Terminology

In this section, we analyse the terminology given by our corpus, including for OWL 2 RL/RDF rules which we

do not support (or support in later chapters). By extension, we provide insights into which RDFS and OWL

constructs feature prominently in Linked Data vocabularies. Note that for the purposes of this analysis, we

only consider duplicate terminological axioms once (and as served in the highest-ranked document).

To begin, in Table 5.2 we present the counts of T-ground rules generated for each OWL 2 RL/RDF

rule which handles reasoning over assertional data; we include the primary RDFS/OWL meta-class or meta-

property supported by the rule as a mnemomic, where the complete rules are enumerated in Appendix B.

Loosely, the count of T-ground rules corresponds with the number of such axioms in the data, with the

exception of some “disjunctive” rules involving RDF lists in the body or head where we count fixed length

atomic rules as follows:

• for cls-uni, an owl:unionOf expression with x constituent classes would count as x rules which infer

membership of the union class;

• similarly, for cls-int2, an owl:intersectionOf expression with x constituent classes would count as x

rules which infer membership of those classes from membership of the intersection class;

• for cax-adc and prp-adp, an owl:AllDisjointClasses or owl:AllDisjointProperties expression

(respectively) with x members would lead to x2−1
2 non-reflexive, pairwise disjointness rules.

Other axioms involving lists—viz., cls-int1/owl:intersectionOf, prp-key/owl:hasKey and prp-spo2/owl:-

81

5.4. Towards Linked Data Reasoning 82

Rule ID Sup.? Meta-Class/-Property
T-Ground Rules Documents
all auth ¬auth all auth ¬auth

1 cax-sco X rdfs:subClassOf 307,121 244,608 68,246 51,597 51,034 707

2
cax-eqc1 X owl:equivalentClass 22,922 22,898 17 22,657 22,652 9
cax-eqc2 X owl:equivalentClass 22,922 18,544 4,378 22,657 18,311 4,349

3 prp-dom X rdfs:domain 16,204 14,066 2,499 623 609 101
4 prp-rng X rdfs:range 13,938 13,662 553 717 704 30
5 cls-uni X owl:unionOf 13,004 10,693 2,272 109 98 88
6 prp-spo1 X rdfs:subPropertyOf 9,109 8,790 361 227 213 24

7
prp-inv1 X owl:inverseOf 992 746 244 98 93 13
prp-inv2 X owl:inverseOf 992 733 256 98 90 19

8 cax-dw ⊥ owl:disjointWith 917 714 46 60 56 4
9 prp-fp C owl:FunctionalProperty 496 445 48 63 59 9

10 cls-svf1 X owl:someValuesFrom 465 420 29 48 45 6
11 cls-int2 X owl:intersectionOf 325 325 – 12 12 –
12 cls-avf X owl:allValuesFrom 256 256 – 33 33 –
13 cls-maxc2 C owl:maxCardinality 159 159 – 14 14 –

14
prp-eqp1 X owl:equivalentProperty 159 121 15 89 87 6
prp-eqp2 X owl:equivalentProperty 159 109 39 89 76 16

15 prp-trp X owl:TransitiveProperty 140 127 8 32 30 2
16 cls-int1 X owl:intersectionOf 136 136 – 12 12 –
17 prp-symp X owl:SymmetricProperty 128 108 19 24 22 4
18 cax-adc ⊥ owl:AllDisjointClasses 116 110 6 3 3 1
19 prp-ifp C owl:InverseFunctionalProperty 62 60 12 27 25 4

20
cls-hv1 X owl:hasValue 13 13 – 6 6 –
cls-hv2 X owl:hasValue 13 11 – 6 5 –

21 prp-irp ⊥ owl:IrreflexiveProperty 10 10 3 1 1 1
22 prp-asyp ⊥ owl:AsymmetricProperty 9 9 3 1 1 1
23 cls-com ⊥ owl:complementOf 7 7 – 2 2 –
24 prp-spo2 X owl:propertyChainAxiom 6 6 – 1 1 –
25 cls-svf2 X owl:someValuesFrom 2 2 – 2 2 –
26 prp-key CX owl:hasKey 1 1 – 1 1 –
27 cls-maxc1 ⊥ owl:maxCardinality – – – – – –
– cls-maxqc1 ⊥ owl:maxQualifiedCardinality – – – – – –
– cls-maxqc2 ⊥ owl:maxQualifiedCardinality – – – – – –
– cls-maxqc3 CX owl:maxQualifiedCardinality – – – – – –
– cls-macqc4 C owl:maxQualifiedCardinality – – – – – –
– prp-adp ⊥ owl:AllDisjointProperties – – – – – –
– prp-pdw ⊥ owl:propertyDisjointWith – – – – – –

all rules 410,783 337,889 79,054 56,710 56,139 5,181
rules supported (X) 408,003 335,429 78,899 56,703 56,132 5,179

rules not supported (X/⊥/C/CX) 2,780 2,460 155 160 156 21

Table 5.2: Counts of T-ground OWL 2 RL/RDF rules containing non-empty TBody and ABody from our
corpus and count of documents serving the respective axioms

propertyChainAxiom—compile into rules with conjunctive bodies, and are thus necessarily expressed in the

statistics as a single axiom.

Acknowledging that a single document may be responsible for many such axioms, in Table 5.2 we also

present the counts of documents providing each type of axiom; in total, we found terminological data in

86,179 documents, of which 65,861 documents (76.4%) provided terminological axioms required by those

rules in Table 5.2,22 and 56,710 documents (65.8%) provided axioms not already given by a higher ranked

document. We note that there are two orders of magnitude more documents defining rdfs:subClassOf

and owl:equivalentClass axioms than any other form of axiom. With respect to documents using rdfs:-

subClassOf, we found (i) 25,106 documents from the zitgist.com domain, (ii) 18,288 documents from the

bio2rdf.org (iii) 5,832 documents from the skipforward.net domain, and (iv) 1,016 from the dbpedia.org

domain; these four publishers account for 97.2% of the documents with subclass axioms. With respect to

22Many documents only contained memberships of owl:Class, which although terminological, are not required by the rules

in the table.

82

5.4. Towards Linked Data Reasoning 83

Pay-Level-Domain Axioms
1 ebusiness-unibw.org 112,344
2 ontologydesignpatterns.org 82,709
3 dbpedia.org 78,006
4 bio2rdf.org 73,153
5 zitgist.com 25,252
6 umbel.org 8,680
7 skipforward.net 7,695
8 ontologyportal.org 7,166
9 w3.org 2,822

10 fao.org 1,989

Table 5.3: Top ten largest providers of terminolog-
ical axioms

Pay-Level-Domain Documents
1 zitgist.com 25,169
2 bio2rdf.org 18,354
3 skipforward.net 5,852
4 umbel.org 4,330
5 dbpedia.org 1,280
6 uriburner.com 673
7 uniprot.org 364
8 vocab.org 105
9 data.gov.uk 95

10 kit.edu 56

Table 5.4: Top ten largest providers of termi-
nological documents

using owl:equivalentClass, we found (i) 18,284 documents again from the bio2rdf.org domain, and (ii)

4,330 documents from the umbel.org domain; these two publishers account for 99.8% of documents with

equivalent-class axioms.

More generally, we found 81 pay-level domains providing terminological data. Table 5.3 enumerates

the top ten such domains with respect to the number of axioms (more precisely, T-ground rules) they

provide, and Table 5.4 enumerates the top ten domains with respect to the number of documents containing

terminological data. We note that the terminology provided by ebusiness-unibw.org is contained within

one document,23 which represents the largest terminological document we encountered.

In Table 5.2, we additionally denote rules that the work in this chapter supports (X), rules involving

inconsistency detection used later in Chapters 6 & 7 (⊥), rules which infer owl:sameAs which we support-

/don’t support in Chapter 7 (C/CX), and remaining rules which we do not support (X). We observe that

our A-linear rules support the top seven most popular forms of terminological axioms in our data (amongst

others), and that they support 99.3% of the total T-ground rules generated in our corpus; the 2,780 not

supported come from 160 documents spanning 36 domains: 826 come from the geospecies.org domain,

318 from the fao.org domain, 304 come from the ontologyportal.org domain, and so forth.

In Table 5.2, we also give a breakdown of counts for authoritative and non-authoritative T-ground rules

and the documents providing the respective axioms. Note that the T-ground rules generated by equivalent

authoritative and non-authoritative axioms are counted in both categories, and likewise for a document

serving authoritative and non-authoritative axioms of a given type.24 We find that 82.3% of all generated

T-ground rules have an authoritative version, that 9.1% of the documents serve some non-authoritative

axioms, and that 99% of the documents contain some authoritative axioms. We note that:

1. the domain ontologydesignpatterns.org publishes 61,887 (78.3%) of the non-authoritative axioms,

almost all in one document25 and almost all of which pertain to rule cax-sco (subclass axioms with a

non-authoritative subject);

2. skipforward.net publishes a further 5,633 (7.1%) in nine documents, all of which again pertain to

cax-sco;

3. umbel.net publishes 4,340 such axioms (5.5%) in as many documents, all of which pertain to rule

cax-eqc2 (equivalent-class axiom with non-authoritative object);

23http://www.ebusiness-unibw.org/ontologies/eclass/5.1.4/eclass_514en.owl; retr. 2011/01/06
24Thus, the difference between ¬auth and (all − auth) is given by authoritative axioms “echoed” in non-authoritative

documents, and documents which provide a mix of authoritative and non-authoritative axioms respectively.
25http://ontologydesignpatterns.org/ont/own/own16.owl; retr. 2011/01/06

83

http://www.ebusiness-unibw.org/ontologies/eclass/5.1.4/eclass_514en.owl
http://ontologydesignpatterns.org/ont/own/own16.owl

5.4. Towards Linked Data Reasoning 84

4. bio2rdf.org publishes 3,765 such axioms (4.8%) in sixty-seven documents—in particular, 2,144 of

these pertain to rule cls-uni (non-authoritative member of a local union class), and 1,564 pertain to

rule prp-dom (domain axioms with non-authoritative subject);

5. fao.org publishes 1,005 such axioms (1.3%) in nineteen documents—in particular, 300 of these pertain

to rule prp-spo1 (non-authoritative subject for subproperty axiom), 404 relate to rules prp-inv1/prp-inv2

(non-authoritative subject/object for inverse-of axioms), and the remaining 300 were spread over eight

other rules.

Concluding with Table 5.2, we see that 81.7% of all possible T-ground OWL 2 RL/RDF rules are

authoritative and supported by our A-linear fragment, and that we fully support 51,369 (90.6%) of the

56,710 documents contributing unique terminological axioms.

However, we have yet to consider the importance of these terminological documents. Along these lines,

we reuse the ranks for documents computed in § 4.3—again, these ranks are based on a PageRank analysis,

denoting the (Eigenvector) centrality of the documents with respect to their linkage on the Web of Data.

Thereafter, Table 5.5 presents the sum of ranks for documents featuring each type of axiom: note that the

position shown in the left hand column only counts rules requiring identical terminological axioms once (e.g.,

prp-inv1/prp-inv2), but counts different forms of the same axiom separately (e.g., cls-maxc1/cls-maxc2 which

deal with max-cardinalities of zero and one respectively).

Also shown are the positions of the top-ranked document containing such an axiom: note that these

positions are relative to the 86,179 documents containing terminology—we provide a legend for the documents

with notable positions (higher than 10,000) separately in Table 5.6.26

We make the following observations:

1. The top four axioms equate to the core RDFS primitives (or ρDF; see [Muñoz et al., 2009]).27

2. Of the top thirteen axiom types, twelve axioms are expressible as a single triple (the exception is

owl:unionOf in position 8).

3. Of the axioms considered, all twelve RDFS/OWL 1 axioms expressible as a single triple appear in the

top thirteen (the exception is again owl:unionOf in position 8).

4. The eleven axiom-types that form the RDFS plus profile [Allemang and Hendler, 2008] are in the top

thirteen (the remaining two are owl:disjointWith in position 6 and owl:unionOf in position 8).

5. All eleven axiom types using new OWL 2 constructs are in the bottom twelve—we conjecture that

they haven’t had time to find proper traction on the Web yet.

6. The total summation of ranks for documents containing some axioms which we do not support is 23% of

the total summation of document ranks; the highest ranked document which we do not fully support is

SKOS (#5) which uses owl:FunctionalProperty, owl:disjointWith and owl:TransitiveProperty.

7. The total summation of ranks for documents containing some non-authoritative axioms was 6.7% of

the total summation of ranks. The highest ranked non-authoritative axioms were given by FOAF (#7),

who publish equivalence relations between foaf:Agent and dcterms:Agent using owl:equivalent-

Class, and between foaf:maker and dcterms:creator using owl:equivalentProperty: these were

26Also note that these do not directly correspond to the rank positions listed in Table 4.5, wherein the DC Elements and

RDFS-More documents (#3 and #5 resp.) do not contain any OWL 2 RL/RDF terminology. We were surprised to note that

the former document does not contain any terminology: it does contain memberships of rdf:Property and RDFS “annotation”

properties, but these are not considered as terminology with respect to OWL 2 RL/RDF rules.
27Also see http://web.ing.puc.cl/~jperez/talks/eswc07.pdf; retr. 2011/01/11

84

http://web.ing.puc.cl/~jperez/talks/eswc07.pdf

5.4. Towards Linked Data Reasoning 85

Rule ID Sup.? Meta-Class/-Property
Sum of Doc. Ranks Top Ranked Doc.

all auth ¬auth all auth ¬auth
1 cax-sco X rdfs:subClassOf 2.95E-01 2.95E-01 3.53E-03 1 1 10
2 prp-rng X rdfs:range 2.94E-01 2.93E-01 3.31E-03 1 1 10
3 prp-dom X rdfs:domain 2.92E-01 2.92E-01 3.85E-03 1 1 10
4 prp-spo1 X rdfs:subPropertyOf 8.95E-02 8.92E-02 2.87E-03 4 4 10
5 prp-fp C owl:FunctionalProperty 6.27E-02 6.23E-02 2.79E-03 5 5 10
6 cax-dw ⊥ owl:disjointWith 4.85E-02 4.80E-02 3.02E-07 5 5 13,742

7
prp-inv1 X owl:inverseOf 4.72E-02 4.68E-02 2.75E-03 5 5 10
prp-inv2 X owl:inverseOf 4.72E-02 4.68E-02 3.25E-03 5 5 10

8 cls-uni X owl:unionOf 3.46E-02 3.45E-02 3.82E-03 5 5 10
9 prp-symp X owl:SymmetricProperty 3.33E-02 2.74E-03 2.80E-03 5 5 10

10 prp-trp X owl:TransitiveProperty 3.00E-02 3.00E-02 1.05E-07 5 5 48,058

11
cax-eqc1 X owl:equivalentClass 2.11E-02 2.06E-02 2.80E-03 7 7 10
cax-eqc2 X owl:equivalentClass 2.11E-02 6.13E-03 1.52E-02 7 10 7

12 prp-ifp C owl:InverseFunctionalProperty 1.88E-02 1.88E-02 3.74E-07 7 7 12,094

13
prp-eqp1 X owl:equivalentProperty 1.86E-02 1.82E-02 2.80E-03 7 7 10
prp-eqp2 X owl:equivalentProperty 1.86E-02 3.56E-03 1.48E-02 7 10 7

14 cls-svf1 X owl:someValuesFrom 1.79E-02 1.75E-02 3.58E-07 6 6 39,002

15
cls-hv1 X owl:hasValue 2.86E-04 2.86E-04 – 71 71 –
cls-hv2 X owl:hasValue 2.86E-04 1.61E-04 1.25E-04 71 71 –

16 cls-avf X owl:allValuesFrom 2.62E-04 2.62E-04 – 69 69 –
17 cls-maxc2 C owl:maxCardinality 2.12E-04 2.12E-04 – 71 71 –

18
cls-int1 X owl:intersectionOf 1.73E-04 1.73E-04 – 91 91 –
cls-int2 X owl:intersectionOf 1.73E-04 1.73E-04 – 91 91 –

19 cls-svf2 X owl:someValuesFrom 2.33E-07 2.33E-07 – 10,381 10,381 –
20 cls-com ⊥ owl:complementOf 1.62E-07 1.62E-07 – 29,075 29,075 –
21 cax-adc ⊥ owl:AllDisjointClasses 1.51E-07 1.51E-07 6.17E-08 51,914 51,914 51,914
22 prp-irp ⊥ owl:IrreflexiveProperty 5.94E-08 5.94E-08 5.03E-08 53,653 53,653 63,368
23 prp-asyp ⊥ owl:AsymmetricProperty 5.94E-08 5.94E-08 5.03E-08 53,653 53,653 63,368
24 prp-key CX owl:hasKey 4.99E-08 4.99E-08 – 63,972 63,972 –
25 prp-spo2 X owl:propertyChainAxiom 4.48E-08 4.48E-08 – 72,343 72,343 –
– cls-maxc1 ⊥ owl:maxCardinality – – – – – –
– cls-maxqc1 ⊥ owl:maxQualifiedCardinality – – – – – –
– cls-maxqc2 ⊥ owl:maxQualifiedCardinality – – – – – –
– cls-maxqc3 CX owl:maxQualifiedCardinality – – – – – –
– cls-macqc4 C owl:maxQualifiedCardinality – – – – – –
– prp-adp ⊥ owl:AllDisjointProperties – – – – – –
– prp-pdw ⊥ owl:propertyDisjointWith – – – – – –

all rules 3.05E-01 3.05E-01 2.05E-02 1 1 7
rules supported (X) 3.05E-01 3.05E-01 2.05E-02 1 1 7

rules not supported (X/⊥/C/CX) 7.01E-02 7.01E-02 2.79E-03 5 5 10

Table 5.5: Summary of ranks of documents in our corpus serving terminological axioms pertaining to OWL
2 RL/RDF rules with non-empty TBody and ABody

added in December 2009,28 and mandate the translation of the external DC terms into local FOAF

terms by rules cax-eqc2 and prp-eqp2 respectively. (Note that translation from FOAF terms to DC

terms is still authoritative by rules cax-eqc1 and prp-eqp1.) Further, we note that DC reciprocated

these equivalence claims on October 2010 (too late for our crawl in May 2010). Non-authoritative

axioms given by the Music Ontology (#10) were due to a misconfiguration of their server, leading to

incorrect handling of redirects.29

In summary, our A-linear rules support 99.3% of the total T-ground rules generated from the terminology

in the Linked Data corpus, and authoritative reasoning with respect to these rules supports 81.7% of the

total; excluding one document from the ontologydesignpatterns.org domain which publishes 61,887 non-

authoritative axioms, the latter percentage increases to 95.1%. Our authoritative A-linear rules fully support

(with respect to OWL 2 RL/RDF rules) 90.6% of the documents containing unique terminology, and partially

28See http://xmlns.com/foaf/spec/20091215.html; retr. 2011/01/11
29See http://groups.google.com/group/pedantic-web/browse_thread/thread/21fa1b2a85d2db44; retr. 2011/01/11

85

http://xmlns.com/foaf/spec/20091215.html
http://groups.google.com/group/pedantic-web/browse_thread/thread/21fa1b2a85d2db44

5.4. Towards Linked Data Reasoning 86

Document Rank

1 http://www.w3.org/1999/02/22-rdf-syntax-ns 1.12E-01
4 http://dublincore.org/2008/01/14/dcterms.rdf 3.21E-02
5 http://www.w3.org/2009/08/skos-reference/skos.rdf 2.82E-02
6 http://www.w3.org/2003/g/data-view 1.42E-02
7 http://xmlns.com/foaf/spec/ 1.41E-02

10 http://motools.sourceforge.net/doc/musicontology.rdfs 2.74E-03
69 http://www.w3.org/2006/03/wn/wn20/schemas/wnfull.rdfs 1.65E-04
71 http://www.w3.org/2006/time 1.60E-04
91 http://motools.sourceforge.net/timeline/timeline.rdf 1.25E-04

Table 5.6: Legend for notable documents (pos.< 10, 000) whose rank positions are mentioned in Table 5.5

support 99% of these documents. The summation of the ranks of documents fully supported by our A-linear

rules was 77% of the total, and the analagous percentage for documents supported by authoritative reasoning

over these rules was 70.3% of the total; we see that the top-ranked documents favour OWL 1 axioms which

are expressible as a single RDF triple, and that the highest ranked document serving non-authoritative

axioms was FOAF (#7).

Authoritative Reasoning

In order to demonstrate the effects of (non-)authoritative reasoning wrt. our O2R∝A rules and corpus, we

applied reasoning over the top ten asserted classes and properties. For each class c, we performed reasoning—

wrt. the T-ground program and the authoritatively T-ground program—over a single assertion of the form

(x, rdf:type, c) where x is an arbitrary unique name; for each property p, we performed the same over

a single assertion of the form (x1, p, x2).30 Table 5.7 gives the results (cf. older results in [Hogan et al.,

2009b]).31 Notably, the non-authoritative inference sizes are on average 55.46× larger than the authoritative

equivalent. Much of this is attributable to noise in and around core RDF(S)/OWL terms, in particular

rdf:type, owl:Thing and rdfs:Resource;32 thus, in the table we also provide results for the core top-level

concepts and rdf:type, and provide equivalent counts for inferences not relating to these concepts—still,

for these popular terms, non-authoritative inferencing creates 12.74× more inferences than the authoritative

equivalent.

We now compare authoritative and non-authoritative inferencing in more depth for the most popular class

in our data: foaf:Person. Excluding the top-level concepts rdfs:Resource and owl:Thing, and the infer-

ences possible therefrom, each rdf:type triple with foaf:Person as value leads to five authoritative infer-

ences and twenty-six additional non-authoritative inferences (all class memberships). Of the latter twenty-six,

fourteen are anonymous classes. Table 5.8 enumerates the five authoritatively-inferred class memberships and

the remaining twelve non-authoritatively inferred named class memberships; also given are the occurrences of

the class as a value for rdf:type in the raw data. Although we cannot claim that all of the additional classes

inferred non-authoritatively are noise—although classes such as b2r2008:Controlled vocabularies appear

to be—we can see that they are infrequently used and arguably obscure. Although some of the inferences we

omit may of course be serendipitous—e.g., perhaps po:Person—again we currently cannot distinguish such

30Subsequently, we only count inferences mentioning an individual name x*.
31Note that the count of classes and properties is not necessarily unique, where we performed a count of the occurrences of

each term in the object of an rdf:type triple (class membership) or predicate position (property membership) in our corpus.
32We note that much of the noise is attributable to 107 terms from the opencalais.com domain; cf. http://d.opencalais.

com/1/type/em/r/PersonAttributes.rdf (retr. 2011/01/22) and http://groups.google.com/group/pedantic-web/browse_thread/thread/

5e5bd42a9226a419 (retr. 2011/01/22).

86

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://dublincore.org/2008/01/14/dcterms.rdf
http://www.w3.org/2009/08/skos-reference/skos.rdf
http://www.w3.org/2003/g/data-view
http://xmlns.com/foaf/spec/
http://motools.sourceforge.net/doc/musicontology.rdfs
http://www.w3.org/2006/03/wn/wn20/schemas/wnfull.rdfs
http://www.w3.org/2006/time
http://motools.sourceforge.net/timeline/timeline.rdf
http://d.opencalais.com/1/type/em/r/PersonAttributes.rdf
http://d.opencalais.com/1/type/em/r/PersonAttributes.rdf
http://groups.google.com/group/pedantic-web/browse_thread/thread/5e5bd42a9226a419
http://groups.google.com/group/pedantic-web/browse_thread/thread/5e5bd42a9226a419

5.4. Towards Linked Data Reasoning 87

#
T
e
r
m

n
a

n
*
a

a
−

n
*
a
−

n
a

n
*
n
a

n
a
−

n
*
n
a
−

C
o
r
e
c
la
ss
e
s

(∼
to

p
-l

ev
el

co
n

ce
p

ts
)

–
r
d
f
s
:
R
e
s
o
u
r
c
e

1
2
,1

0
7

0
0

0
0

1
0
8

1
,3

0
7
,5

5
6

0
0

–
o
w
l
:
T
h
i
n
g

6
7
9
,5

2
0

1
6
7
9
,5

2
0

0
0

1
0
9

7
4
,0

6
7
,6

8
0

0
0

C
o
r
e
p
r
o
p
e
r
ty

–
r
d
f
:
t
y
p
e

2
0
6
,7

9
9
,1

0
0

1
2
0
6
,7

9
9
,1

0
0

0
0

1
0
9

2
2
,5

4
1
,1

0
1
,9

0
0

0
0

T
o
p

te
n

a
ss
e
r
te

d
c
la
ss
e
s

1
f
o
a
f
:
P
e
r
s
o
n

1
6
3
,6

9
9
,1

6
1

6
9
8
2
,1

9
4
,9

6
6

5
8
1
8
,4

9
5
,8

0
5

1
4
0

2
2
,9

1
7
,8

8
2
,5

4
0

3
1

5
,0

7
4
,6

7
3
,9

9
1

2
f
o
a
f
:
A
g
e
n
t

8
,1

6
5
,9

8
9

2
1
6
,3

3
1
,9

7
8

1
8
,1

6
5
,9

8
9

1
2
3

1
,0

0
4
,4

1
6
,6

4
7

1
4

1
1
4
,3

2
3
,8

4
6

3
s
k
o
s
:
C
o
n
c
e
p
t

4
,4

0
2
,2

0
1

5
2
2
,0

1
1
,0

0
5

3
1
3
,2

0
6
,6

0
3

1
1
5

5
0
6
,2

5
3
,1

1
5

6
2
6
,4

1
3
,2

0
6

4
m
o
:
M
u
s
i
c
A
r
t
i
s
t

4
,0

5
0
,8

3
7

1
4
,0

5
0
,8

3
7

0
0

1
3
2

5
3
4
,7

1
0
,4

8
4

2
3

9
3
,1

6
9
,2

5
1

5
f
o
a
f
:
P
e
r
s
o
n
a
l
P
r
o
f
i
l
e
D
o
c
u
m
e
n
t

2
,0

2
9
,5

3
3

2
4
,0

5
9
,0

6
6

1
2
,0

2
9
,5

3
3

1
1
4

2
3
1
,3

6
6
,7

6
2

5
1
0
,1

4
7
,6

6
5

6
f
o
a
f
:
O
n
l
i
n
e
A
c
c
o
u
n
t

1
,9

8
5
,3

9
0

2
3
,9

7
0
,7

8
0

1
1
,9

8
5
,3

9
0

1
1
0

2
1
8
,3

9
2
,9

0
0

1
1
,9

8
5
,3

9
0

7
f
o
a
f
:
I
m
a
g
e

1
,9

5
1
,7

7
3

1
1
,9

5
1
,7

7
3

0
0

1
1
0

2
1
4
,6

9
5
,0

3
0

1
1
,9

5
1
,7

7
3

8
o
p
i
u
m
f
i
e
l
d
:
N
e
i
g
h
b
o
u
r

1
,9

2
0
,9

9
2

1
1
,9

2
0
,9

9
2

0
0

1
0
9

2
0
9
,3

8
8
,1

2
8

0
0

9
g
e
o
n
a
m
e
s
:
F
e
a
t
u
r
e

9
8
3
,8

0
0

2
1
,9

6
7
,6

0
0

1
9
3
8
,8

0
0

1
1
1

1
0
9
,2

0
1
,8

0
0

2
1
,9

6
7
,6

0
0

1
0

f
o
a
f
:
D
o
c
u
m
e
n
t

7
4
5
,3

9
3

1
7
4
5
,3

9
3

0
0

1
1
3

8
4
,2

2
9
,4

0
9

4
2
,9

8
1
,5

7
2

T
o
p

te
n

a
ss
e
r
te

d
p
r
o
p
e
r
ti
e
s

(a
ft

er
r
d
f
:
t
y
p
e
)

1
r
d
f
s
:
s
e
e
A
l
s
o

1
9
9
,9

5
7
,7

2
8

0
0

0
0

2
1
8

4
3
,5

9
0
,7

8
4
,7

0
4

0
0

2
f
o
a
f
:
k
n
o
w
s

1
6
8
,5

1
2
,1

1
4

1
4

2
,3

5
9
,1

6
9
,5

9
6

1
2

2
,0

2
2
,1

4
5
,3

6
8

2
8
5

4
8
,0

2
5
,9

5
2
,4

9
0

6
7

1
1
,2

9
0
,3

1
1
,6

3
8

3
f
o
a
f
:
n
i
c
k

1
6
3
,3

1
8
,5

6
0

0
0

0
0

0
0

0
0

4
b
i
o
2
r
d
f
:
l
i
n
k
e
d
T
o
F
r
o
m

3
1
,1

0
0
,9

2
2

0
0

0
0

0
0

0
0

5
l
l
d
:
p
u
b
m
e
d

1
8
,7

7
6
,3

2
8

0
0

0
0

0
0

0
0

6
r
d
f
s
:
l
a
b
e
l

1
4
,7

3
6
,0

1
4

0
0

0
0

2
2
1

3
,2

5
6
,6

5
9
,0

9
4

3
4
4
,2

0
8
,0

4
2

7
o
w
l
:
s
a
m
e
A
s

1
1
,9

2
8
,3

0
8

5
5
9
,6

4
1
,5

4
0

1
1
1
,9

2
8
,3

0
8

2
2
1

2
,6

3
6
,1

5
6
,0

6
8

3
3
5
,7

8
4
,9

2
4

8
f
o
a
f
:
n
a
m
e

1
0
,1

9
2
,1

8
7

5
5
0
,9

6
0
,9

3
5

2
2
0
,3

8
4
,3

7
4

2
5
6

2
,6

0
9
,1

9
9
,8

7
2

3
8

3
8
7
,3

0
3
,1

0
6

9
f
o
a
f
:
w
e
b
l
o
g

1
0
,0

6
1
,0

0
3

8
8
0
,4

8
8
,0

2
4

5
5
0
,3

0
5
,0

1
5

3
1
0

3
,1

1
8
,9

1
0
,9

3
0

9
2

9
2
5
,6

1
2
,2

7
6

1
0

f
o
a
f
:
h
o
m
e
p
a
g
e

9
,5

2
2
,9

1
2

8
7
6
,1

8
3
,2

9
6

5
4
7
,6

1
4
,5

6
0

4
2
5

4
,0

4
7
,2

3
7
,6

0
0

2
0
7

1
,9

7
1
,2

4
2
,7

8
4

to
ta

l
1
,0
3
5
,5
3
1
,8
7
2

6
5

3
,8
7
3
,1
2
6
,4
0
1

3
7

2
,9
9
7
,2
4
4
,7
4
5

3
,4
3
9

1
5
5
,9
3
1
,9
1
4
,7
0
9

4
9
7

1
9
,9
8
2
,0
7
7
,0
6
4

T
ab

le
5.

7:
S

u
m

m
ar

y
of

au
th

or
it

at
iv

e
in

fe
re

n
ce

s
v
s.

n
o
n

-a
u

th
o
ri

ta
ti

v
e

in
fe

re
n

ce
s

fo
r

co
re

p
ro

p
er

ti
es

,
cl

a
ss

es
,

a
n

d
to

p
-t

en
m

o
st

fr
eq

u
en

tl
y

a
ss

er
te

d
cl

as
se

s
an

d
p

ro
p

er
ti

es
:

gi
ve

n
ar

e
th

e
n
u

m
b

er
of

a
ss

er
te

d
m

em
b

er
sh

ip
s

o
f

th
e

te
rm

n
,

th
e

n
u

m
b

er
o
f

u
n

iq
u

e
in

fe
re

n
ce

s
(w

h
ic

h
m

en
ti

o
n

a
n

“
in

d
iv

id
u

a
l

n
am

e”
)

p
os

si
b

le
fo

r
an

ar
b
it

ra
ry

m
em

b
er

sh
ip

a
ss

er
ti

o
n

o
f

th
a
t

te
rm

w
rt

.
th

e
a
u

th
o
ri

ta
ti

ve
T

-g
ro

u
n

d
p

ro
g
ra

m
(a

),
th

e
p

ro
d

u
ct

o
f

th
e

n
u

m
b

er
o
f

as
se

rt
io

n
s

fo
r

th
e

te
rm

an
d

au
th

or
it

at
iv

e
in

fe
re

n
ce

s
p

o
ss

ib
le

fo
r

a
si

n
g
le

a
ss

er
ti

o
n

(n
*

a
),

re
sp

ec
ti

ve
ly

,
th

e
sa

m
e

st
a
ti

st
ic

s
ex

cl
u

d
in

g
in

fe
re

n
ce

s
in

vo
lv

in
g

th
e

to
p

-l
ev

el
co

n
ce

p
ts

r
d
f
s
:
R
e
s
o
u
r
c
e

a
n

d
o
w
l
:
T
h
i
n
g

(a
−
|n

*
a
−

),
st

a
ti

st
ic

s
fo

r
n

o
n

-a
u

th
o
ri

ta
ti

ve
in

fe
re

n
ci

n
g

(n
a
|n

*
n

a
)

a
n

d
a
ls

o
n

on
-a

u
th

or
it

at
iv

e
in

fe
re

n
ce

s
m

in
u

s
in

fe
re

n
ce

s
th

ro
u

g
h

a
to

p
-l

ev
el

co
n

ce
p

t
(n

a
−
|n

*
n

a
−

)

87

5.4. Towards Linked Data Reasoning 88

Class (Raw) Count

Authoritative
foaf:Agent 8,165,989
wgs84:SpatialThing 64,411
contact:Person 1,704
dct:Agent 35
contact:SocialEntity 1

Non-Authoritative (additional)
po:Person 852
wn:Person 1
aifb:Kategorie-3AAIFB 0
b2r2008:Controlled vocabularies 0
foaf:Friend of a friend 0
frbr:Person 0
frbr:ResponsibleEntity 0
pres:Person 0
po:Category 0
sc:Agent Generic 0
sc:Person 0
wn:Agent-3 0

Table 5.8: Breakdown of non-authoritative and authoritative inferences for foaf:Person, with number of
appearances as a value for rdf:type in the raw data

cases from noise or blatant spam; for reasons of robustness and terseness, we conservatively omit such

inferences.

Single-machine Reasoning

We first applied authoritative reasoning on one machine: reasoning over the dataset described inferred 1.58

billion raw triples, which were filtered to 1.14 billion triples removing non-RDF generalised triples and

tautological statements (see § 5.1.4)—post-processing revealed that 962 million (∼61%) were unique and

had not been asserted (roughly a 1:1 inferred :asserted ratio). The first step—extracting 1.1 million T-Box

triples from the dataset—took 8.2 h.

Subsequently, Table 5.9 gives the results for reasoning on one machine for each approach outlined in

§ 5.3.4. T-Box level processing—e.g., applying terminological rules, partially evaluation, rule indexing,

etc.—took roughly the same time (∼9 min) for each approach. During the partial evaluation of the meta-

program, 301 thousand assertional rules were created with 2.23 million links; these were subsequently merged

down to 216 thousand (71.8%) with 1.15 million (51.6%) links. After saturation, each rule has an average of

6 atoms in the head and all links are successfully removed; however, the saturation causes the same problems

with extra duplicate triples as before, and so the fastest approach is PIM, which takes ∼15% of the time

for the baseline N algorithm. Note that with 301 thousand assertional rules and without indexing, applying

all rules to all statements—roughly 750 trillion rule applications—would take approximately 19 years. In

Figure 5.1, we also show the linear performance of the fastest approach: PIM (we would expect all methods

to be similarly linear).

88

5.5. Related Work 89

T-Box (min) A-Box (hr)

N 8.9 118.4
NI 8.9 121.3
P 8.9 17160933

PI 8.9 22.1
PIM 8.9 17.7
PIMS 8.9 19.5

Table 5.9: Performance for reasoning over
1.1 billion statements on one machine for
all approaches

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 1.6e+009

 0 200 400 600 800 1000

st

at
em

en
ts

time (min)

input
output

Figure 5.1: Detailed throughput performance for ap-
plication of assertional program using the fastest ap-
proach: PIM

Machines Extract T-Box Build T-Box Reason A-Box Total

1 492 8.9 1062 1565
2 240 10.2 465 719
4 131 10.4 239 383
8 67 9.8 121 201

Table 5.10: Distributed reasoning in minutes using PIM for 1, 2, 4 & 8 slave machines

Distributed Reasoning

We also apply reasoning over 1, 2, 4 and 8 slave machines using the distribution strategy outlined in § 5.4.3;

Table 5.10 gives the performance. Note that the most expensive aspects of the reasoning process—extracting

the T-Box from the dataset and executing the assertional program—can be executed in parallel by the slave

machines without coordination. The only communication required between the machines is during the

aggregation of the T-Box and the subsequent partial evaluation and creation of the shared assertional-rule

index: this takes ∼10 min, and becomes the lower bound for time taken for distributed evaluation with

arbitrary machine count.

In summary, taking our best performance, we apply reasoning over 1.118 billion Linked Data triples in

3.35 h using nine machines, deriving 1.58 billion inferred triples, of which 962 million are novel and unique.

5.5 Related Work

Herein, we discuss related works specifically in the field of scalable and distributed reasoning (§ 5.5.1) as

well as works in the area of robust Web reasoning (§ 5.5.2).

5.5.1 Scalable/Distributed Reasoning

From the perspective of scalable RDF(S)/OWL reasoning, one of the earliest engines to demonstrate rea-

soning over datasets in the order of a billion triples was the commercial system BigOWLIM [Bishop et al.,

2011], which is based on a scalable and custom-built database management system over which a rule-based

materialisation layer is implemented, supporting fragments such as RDFS and pD*, and more recently OWL

89

5.5. Related Work 90

2 RL/RDF. Most recent results claim to be able to load 12 billion statements of the LUBM synthetic bench-

mark, and 20.5 billion statements statements inferrable by pD* rules on a machine with 2x Xeon 5430

(2.5GHz, quad-core), and 64GB (FB-DDR2) of RAM.34 We note that this system has been employed for rel-

atively high-profile applications, including use as the content management system for a live BBC World Cup

site.35 BigOWLIM features distribution, but only as a replication strategy for fault-tolerance and supporting

higher query load.

Following our initial work on SAOR—which had discussed the benefits of a separation of terminolog-

ical data, but which had not demonstrated distribution [Hogan et al., 2009b]—a number of scalable and

distributed reasoners adopted a similar approach.

Weaver and Hendler [2009] discuss a similar approach for distributed materialisation with respect to

RDFS—they also describe a separation of terminological (what they call ontological) data from assertional

data. Thereafter, they identify that all RDFS rules have only one assertional atom and, like us, use this as

the basis for a scalable distribution strategy: they flood the ontological data and split the assertional data

over their machines. They demonstrate the completeness of their approach—arriving to a similar conclusion

to us—but by inspection of the RDFS fragment. Inferencing is done over an in-memory RDF store. They

evaluate their approach over a LUBM-generated synthetic corpus of 345.5 million triples using a maximum

of 128 machines (each with two dual-core 2.6 GHz AMD Opteron processors and 16 GB memory); with this

setup, reasoning in memory takes just under 5 minutes, producing 650 million triples.

Similarly following our earlier work on SAOR, Urbani et al. [2009] use MapReduce [Dean and Ghemawat,

2004] for distributed RDFS materialisation over 850 million Linked Data triples. They also consider a

separation of terminological (what they call schema) data from assertional data as a core optimisation of

their approach, and—likewise with Weaver and Hendler [2009]—identify that RDFS rules only contain one

assertional atom. As a pre-processing step, they sort their data by subject to reduce duplication of inferences.

Based on inspection of the rules, they also identify an ordering (stratification) of RDFS rules which (again

assuming standard usage of the RDFS meta-vocabulary) allows for completeness of results without full

recursion—unlike us, they do reasoning on a per-rule basis as opposed to our per-triple basis. Unlike us,

they also use a 8-byte dictionary encoding of terms. Using 32 machines (each with 4 cores and 4 GB of

memory) they infer 30 billion triples from 865 million triples in less than one hour; however, they do not

materialise or decode the output—a potentially expensive process. Note that they do not include any notion

of authority (although they mention that in future, they may include such analysis): they attempted to apply

pD* on 35 million Web triples and stopped after creating 3.8 billion inferences in 12 h, lending strength to

our arguments for authoritative reasoning.

In more recent work, (approximately) the same authors [Urbani et al., 2010] revisit the topic of mate-

rialisation with respect to pD*. They again use a separation of terminological data from assertional data,

but since pD* contains rules with multiple assertional atoms, they define bespoke MapReduce procedures

to handle each such rule, some of which are similar in principle to those presented in [Hogan et al., 2009b]

(and later on) such as canonicalisation of terms related by owl:sameAs. They demonstrate their methods

over three datasets; (i) 1.51 billion triples of UniProt data, generating 2.03 billion inferences in 6.1 h using

32 machines; (ii) 0.9 billion triples of LDSR data, generating 0.94 billion inferences in 3.52 h using 32 ma-

chines; (iii) 102.5 billion triples of LUBM, generating 47.6 billion inferences in 45.7 h using 64 machines.

The latter experiment is two orders of magnitude above our current experiments, and features rules which

require A-Box joins; however, the authors do not look at open Web data, stating that:

“[...] reasoning over arbitrary triples retrieved from the Web would result in useless and unrealistic

derivations.”

34http://www.ontotext.com/owlim/benchmarking/lubm.html; retr. 2011/01/22
35http://www.readwriteweb.com/archives/bbc_world_cup_website_semantic_technology.php; retr. 2011/01/22

90

http://www.ontotext.com/owlim/benchmarking/lubm.html
http://www.readwriteweb.com/archives/bbc_world_cup_website_semantic_technology.php

5.5. Related Work 91

—[Urbani et al., 2010]

They do, however, mention the possibility of including our authoritative reasoning algorithm in their ap-

proach, in order to prevent such adverse affects.

In very recent work, Kolovski et al. [2010] have presented an (Oracle) RDBMS-based OWL 2 RL/RDF

materialisation approach. They again use some similar optimisations to the scalable reasoning literature,

including parallelisation, canonicalisation of owl:sameAs inferences, and also partial evaluation of rules based

on highly selective patterns—from discussion in the paper, these selective patterns seem to correlate with the

terminological patterns of the rule. They also discuss many low-level engineering optimisations and Oracle

tweaks to boost performance. Unlike the approaches mentioned thus far, Kolovski et al. [2010] tackle the

issue of updates, proposing variants of semi-näıve evaluation to avoid rederivations. The authors evaluate

their work for a number of different datasets and hardware configurations; the largest scale experiment they

present consists of applying OWL 2 RL/RDF materialisation over 13 billion triples of LUBM using 8 nodes

(Intel Xeon 2.53 GHz CPU, 72GB memory each) in just under 2 hours.

5.5.2 Web Reasoning

As previously mentioned, Urbani et al. [2009] discuss reasoning over 850m Linked Data triples—however,

they only do so over RDFS and do not consider any issues relating to provenance.

Kiryakov et al. [2009] apply reasoning over 0.9 billion Linked Data triples using the aforementioned

BigOWLIM reasoner; however, their “LDSR” dataset is comprised of a small number of manually selected

datasets, as opposed to an arbitrary corpus—they do not consider any general notions of provenance or Web

tolerance. (Again, Urbani et al. [2010] also apply reasoning over the LDSR dataset.)

Related to the idea of authoritative reasoning is the notion of “conservative extensions” described in

the Description Logics literature (see, e.g., [Ghilardi et al., 2006; Lutz et al., 2007; Jiménez-Ruiz et al.,

2008]). However, the notion of a “conservative extension” was defined with a slightly different objective

in mind: according to the notion of deductively conservative extensions, a dataset Ga is only considered

malicious towards Gb if it causes additional inferences with respect to the intersection of the signature—

loosely, the set of classes and properties defined in the dataset’s namespace—of the original Gb with the

newly inferred statements. Thus, for example, defining ex:moniker as a super -property of foaf:name

outside of the FOAF spec would be “disallowed” by our authoritative reasoning: however, this would still

be a conservative extension since no new inferences using FOAF terms can be created. However, defining

foaf:name to be a sub-property of foaf:givenName outside of the FOAF vocabulary would be disallowed by

both authoritative reasoning and model conservative extensions since new inferences using FOAF terms could

be created. Summarising, we can state that (on an abstract level) all cases of non-conservative extension

are cases of non-authoritative definitions, but not vice versa: some non-authoritative definitions may be

conservative extensions.36 Finally, we note that works on conservative extension focus moreso on scenarios

involving few ontologies within a “curated” environment, and do not consider the Web use-case, or, for

example, automatic analyses based on Linked Data publishing principles.

In a similar approach to our authoritative analysis, Cheng and Qu [2008] introduced restrictions for

accepting sub-class and equivalent-class axioms from third-party sources; they follow similar arguments to

that made in this thesis. However, their notion of what we call authoritativeness is based on hostnames and

does not consider redirects; we argue that both simplifications are not compatible with the common use of

PURL services37: (i) all documents using the same service (and having the same namespace hostname) would

36Informally, we note that non-conservative extension can be considered “harmful” hijacking which contravenes robustness,

whereas the remainder of ontology hijacking cases can be considered “inflationary” and morseo contravening terseness.
37http://purl.org/; retr. 2011/01/14; see Table A.2 for 10 namespaces in this domain, including dc: and dcterms:.

91

http://purl.org/

5.6. Critical Discussion and Future Directions 92

be ‘authoritative’ for each other, (ii) the document cannot be served directly by the namespace location, but

only through a redirect. Indeed, further work presented by Cheng et al. [2008b] better refined the notion

of an authoritative description to one based on redirects—and one which aligns very much with our notion

of authority. They use their notion of authority to do reasoning over class hierarchies, but only include

custom support of rdfs:subClassOf and owl:equivalentClass, as opposed to our general framework for

authoritative reasoning over arbitrary T-split rules.

A viable alternative approach—which looks more generally at provenance for Web reasoning—is that of

“quarantined reasoning”, described by Delbru et al. [2008] and employed by Sindice [Oren et al., 2008]. The

core intuition is to consider applying reasoning on a per-document basis, taking each Web document and

its recursive (implicit and explicit) imports and applying reasoning over the union of these documents. The

reasoned corpus is then generated as the merge of these per-document closures. In contrast to our approach

where we construct one authoritative terminological model for all Web data, their approach uses a bespoke

trusted model for each document; thus, they would infer statements within the local context which we would

consider to be non-authoritative, but our model is more flexible for performing inference over the merge of

documents.38 As such, they also consider a separation of terminological and assertional data; in this case

ontology documents and data documents. Their evaluation was performed in parallel using three machines

(quad-core 2.33GHz CPU with 8GB memory each); they reported loading, on average, 40 documents per

second.

5.6 Critical Discussion and Future Directions

Herein, we have demonstrated that materialisation with respect to a carefully selected—but still inclusive—

subset of OWL 2 RL/RDF rules is currently feasible over large corpora (in the order of a billion triples) of

arbitrary RDF data collected from the Web; in order to avoid creating a massive bulk of inferences and to

protect popular vocabularies from third-party interference, we include analyses of the source of terminological

data into our reasoning, conservatively ignoring third-party contributions and only considering first-party

definitions and alignments. Referring back to our motivating foaf:page example at the start of the chapter,

we can now get the same answers for the simple query if posed over the union of the input and inferred data

as for the extended query posed over only the input data.

We do however identify some shortcomings of our approach. Firstly, the scalability of our approach is

predicated on the assumption that the terminological fragment of the corpus remain relatively small and

simple—as we have seen in § 5.4.4, this holds true for our current Linked Data corpus. The further from this

assumption we get, the closer we get to quadratic (and possibly cubic) materialisation on a terminological

level, and a high τ “multiplier” for the assertional program. Thus, the future feasibility of our approach for

the Web (in its current form) depends on the assumption that assertional data dwarves terminological data.

We note that almost all highly-scalable approaches in the literature currently rely on a similar premise to

some extent, especially for partial-evaluation and distribution strategies.

Secondly, we adopt a very conservative authoritative approach to reasoning which may miss some inter-

esting inferences given by independently published mappings: although we still allow one vocabulary to map

its local terms to those of an external vocabulary, we thus depend on each vocabulary to provide all useful

mappings in the dereferenced document. Current vocabularies popular on the Web—such as Dublin Core,

FOAF and SIOC—are very much open to community feedback and suggestions, and commonly map between

each other as appropriate. However, this may not be so true of more niche or fringe vocabularies; one could

38Although it should be noted that without considering rules with assertional joins, our ability to make inferences across

documents is somewhat restricted; however, we will be looking at the application of such rules for supporting equality in

Chapter 7.

92

5.6. Critical Discussion and Future Directions 93

imagine the scenario whereby a vocabulary achieves some adoption, but then falls out of maintenance and

the community provides mappings in a separate location. Thus, in future work, we believe it would be

worthwhile to investigate “trusted” third-party mappings in the wild, perhaps based on links-analysis or

observed adoption.39

Thirdly, thus far we have not considered rules with more than one A-atom—rules which could, of

course, lead to useful inferences for our query-answering use-case. Many such rules—for example supporting

property-chains, transitivity or equality—can näıvely lead to quadratic inferencing with respect to many

reasonable corpora of assertional data. As previously discussed, a backward-chaining or hybrid approach

may often make more sense in cases where materialisation produces too many inferences; in fact, we will

discuss such an approach for equality reasoning in Chapter 7. Note however that not all multiple A-atom

rules can produce quadratic inferencing with respect to assertional data: some rules (such as cls-int1, cls-svf1)

are what we call A-guarded, whereby (loosely) the head of the rule contains only one variable not ground

by partial evaluation with respect to the terminology, and thus we posit that such rules also abide by our

maximum least-model size for A-linear programs. Despite this, such rules would not fit neatly into our

distribution framework (would not be conveniently partitionable), where assertional data must then be coor-

dinated between machines to ensure correct computation of joins (such as in [Urbani et al., 2010]); similarly,

some variable portion of assertional data must also be indexed to compute these joins.

Finally, despite our authoritative analysis, reasoning may still introduce significant noise and produce

unwanted or unintended consequences; in particular, publishers of assertional data are sometimes unaware

of the precise semantics of the vocabulary terms they use. We will examine this issue further in the next

chapter.

39This may depend on more philosophical considerations as to whether showing special favour to established, well-linked vo-

cabularies is appropriate. Our authoritative reasoning is deliberately quite democratic, and does not allow popular vocabularies

to redefine smaller vocabularies; each vocabulary has its own guaranteed “rights and privileges”.

93

Chapter 6

Annotated Reasoning*

“Logic is the art of going wrong with confidence.”

—Joseph Wood Krutch

In the previous chapter, we looked at performing reasoning with respect to a scalable subset of OWL 2

RL/RDF rules over a corpus of arbitrarily sourced Linked Data. Although we demonstrated the approach

to be feasible with respect to our evaluation corpus, we informally noted that reasoning may still introduce

unintended consequences and accentuate various types of noise.

In this chapter, we want to move away from crisp, binary truth values—where something is either true

or false—to truth values which better capture the unreliable nature of inferencing over Web data, and offer

varying degrees of the strength of a particular derivation. Thus, we look at incorporating more fine-grained

information about the underlying corpus within the reasoning framework; to do this, we use annotations and

other concepts from the field of Annotated Logic Programs [Kifer and Subrahmanian, 1992].

We thus derive a formal logical framework for annotated reasoning in our setting; within this framework,

we encode the notion of authority from the previous chapter, as well as a simple annotation for blacklisting

triples and an annotation which includes a rank value for each triple computed from links-based analysis of

the sources in the corpus. We then demonstrate a use-case of the latter form of annotation, using OWL 2

RL/RDF inconsistency detection rules to pinpoint (a subset of) noise in the materialisation-extended corpus,

and to subsequently perform a repair thereof.

Thus, this chapter is organised as follows:

• we begin by discussing some concepts relating to General Annotated Programs which inspire our

formalisms and lend useful results (§ 6.1);

• we introduce the three annotation values we currently consider for our Linked Data use-case (§ 6.2);

• we formalise our annotated program framework, demonstrating some computational properties for

various reasoning tasks (§ 6.3);

• we discuss the distributed implementation and evaluation of our methods for ranking, reasoning and

repairing Linked Data corpora (§ 6.4);

• we present related works in the field of annotated reasoning, knowledgebase repair, and reasoning in

the presence of inconsistency (§ 6.5);

*Parts of this chapter have been preliminarily accepted for publication as [Bonatti et al., 2011].

94

6.1. Generalised Annotated Programs 95

• we conclude the chapter with discussion, critical appraisal, and future directions (§ 6.6).

Note that in the following, our formalisms allow for extension towards other (possibly multi-dimensional)

domains of annotation one might consider useful for reasoning over Web data.

6.1 Generalised Annotated Programs

Herein, we introduce key concepts from the works of Kifer and Subrahmanian [1992] on Generalised Annotated

Programs, which form the basis of our (more specialised) framework.

In Generalised Annotated Programs, annotations are used to represent an extent to which something is

true. This set of truth values can take the form of any arbitrary upper semilattice T : a partially ordered set

over which any subset of elements has a defined greatest lower bound (or glb, infimum—the greatest element

in T which is known to be less than or equal to all elements of the subset). Such a semilattice can represent

truth-values from arbitrary domains, such as time intervals, geo-spatial regions, provenance, probabilistic or

fuzzy values, etc. Atoms with truth-values from T (or a variable truth-value ranging over T , or a function

over such truth values) are called annotated atoms:

Definition 6.1 (Generalised annotated atoms) We denote annotated atoms by A:µ where µ is either

(i) a simple annotation: an element of the semilattice T , or a variable ranging over T ; or (ii) a complex

annotation: a function f(µ1, . . . , µn) over a tuple of simple annotations.

Thereafter, Generalised Annotated Programs allow for doing reasoning over data annotated with truth

values of this form using annotated rules:

Definition 6.2 (Generalised annotated rules) Annotated rules are expressions of the form:

H:ρ← B1:µ1, . . . , Bn:µn ,

where H,B1, Bn are atoms (as per § 3.4), where all µi(1 ≤ i ≤ n) are simple annotations and where ρ is a

complex annotation of the form f(µ1, . . . , µn).

Thus, annotated rules are rules as before, but which additionally apply some function over the set of

annotations in the instance of the body to produce the annotation of the consequence. Note that complex

annotations are only allowed in the head of the rule, where variables appearing in this annotation must also

appear as annotations of the body atoms [Kifer and Subrahmanian, 1992].

Other annotated programming concepts—such as facts, programs, etc.—follow naturally from their clas-

sical (non-annotated) version, where facts are associated with constant annotations and programs are sets

of annotated rules (and facts).

Moving forward, restricted interpretations map each ground atom to a member of T .

Definition 6.3 (Restricted interpretations) A restricted interpretation I satisfies A:µ (in symbols, I |=
A:µ) iff I(A) ≥T µ, where ≥T is T ’s ordering.

From this notion of a restricted interpretation follows the restricted immediate consequence operator of a

general annotated program P :

Definition 6.4 (Restricted immediate consequences) The restricted immediate consequence operator

is given as follows:

RP (I)(H) = lub
{
ρ |(H:ρ← B1:µ1, . . . , Bn:µn)σ ∈ Ground(P), I |= (Bi:µi)σ for (1 ≤ i ≤ n)

}
,

95

6.2. Use-case Annotations 96

where σ is a substitution for annotation variables, Ground(P) is a shortcut for classical rule instantiation (as

per § 3.4, with a slight abuse of notation to ignore annotations), and the function lub returns the least upper

bound (or supremum—the least element in T which is known to be greater than or equal to all elements of

the set) of a set of ground annotations in T .

Note that the ρ function is always considered evaluable, and so when all µi are substituted for constant

annotations (necessary for I |= (Bi:µi) to hold), ρ will evaluate to a constant annotation.

Kifer and Subrahmanian [1992] demonstrated various desirable and (potentially) undesirable properties

of RP ; for example, they discussed how RP is monotonic, but not always continuous: loosely, a continuous

function is one where there are no “impulses” in the output caused by a small change in the input, where in

particular, RP may not be continuous if a rule body contains a mix of annotation variables and annotation

constants (we will see an example later in § 6.3.2), and where given discontinuity, lfp(RP) = RP ↑ ω does

not always hold.

We will leverage these formalisms and results as the basis of our more specialised annotated programs—

we will be looking at them in more detail later, particularly in § 6.3. First, we introduce the annotation

values we wish to track for our Linked Data use-case.

6.2 Use-case Annotations

Moving forward, in this section we discuss the three annotation values we have chosen to represent a combined

truth value within our specialised annotated programs for reasoning over Linked Data: blacklisting, authority,

and triple rank. These values are combined and processed during the annotated reasoning procedure to

produce annotations for inferred triples.

6.2.1 Blacklisting

Despite our efforts to create algorithms which automatically detect and mitigate noise in the input corpus,

it may often be desirable to blacklist input data or derived data based on some (possibly heuristic) criteria:

for example, data from a certain domain may be considered likely to be spam, or certain triple patterns

may constitute common publishing errors which hinder the reasoning process. We currently do not require

the blacklisting function, and thus consider all triples to be not blacklisted per default. However, such an

annotation has obvious uses for bypassing noise which cannot otherwise be automatically detected, or which

can occur during the reasoning process.

One such example we had in mind was for blacklisting void values for inverse-functional properties,

whereby publishers give empty literal values for properties such as foaf:mbox sha1sum, or generic URI

values such as http://facebook.com/ for foaf:homepage—however, in our formal reasoning framework,

we currently do not include the specific OWL 2 RL/RDF rule (prp-ifp; Table B.8) which would infer the

incorrect owl:sameAs relations caused by such noise since it contains more than one assertional atom, and

thus falls outside of our scalable subset. Instead, rules relating to equality are supported using bespoke

optimisations discussed separately in Chapter 7; therein, the most common void values for inverse-functional

properties is listed in Table 7.5.

In summary, the blacklisting annotation essentially serves as a pragmatic last resort for annotating data

considered to be noise: data which should be circumvented during inferencing.

6.2.2 Authoritative Analysis

As discussed in § 5.4.2, our reasoning framework includes consideration of the provenance of terminological

data, conservatively excluding certain third-party (unvetted) contributions. In this chapter, we demonstrate

96

6.3. Formal Annotation Framework 97

how such values can be included within the formalisms of our annotation framework.

6.2.3 Triple Ranks

The primary motivation for investigating annotations is to incorporate ranks of individual triples into the

reasoning process. Later in this chapter, we will provide a use-case for these ranks relating to the repair of

inconsistencies, but one can also imagine scenarios whereby consumers can leverage the ranks of input and

inferred triples for the purposes or prioritising the display of information in a user interface, etc.

First, we need to annotate the input triples. To do so, we reuse the ranks of sources calculated in § 4.3:

we calculate the ranks for individual triples as the summation of the ranks of sources in which they appear,

based on the intuition that triples appearing in highly ranked sources should benefit from that rank, and

that each additional source stating a triple should increase the rank of the triple.1 Thus, the process for

calculating the rank of a triple t is simply as follows:

trank(t) =
∑

st∈{s∈S|t∈get(s)}

rank(st) .

In particular, we note that core information about resources is often repeated across data sources, where,

for example, in profiles using the FOAF vocabulary, publishers will often assert that their acquaintances are

members of the class foaf:Person and provide their name as a value for the property foaf:name; thus,

our ranking scheme positively rewards triples for being re-enforced across different documents. Relatedly,

from the statistics of our corpus presented in § 4.2.2, we note that of our 1.106 billion unique quadruples,

947 million are unique triples, implying that 14.4% of our corpus is composed of triples which are repeated

across documents.

Note that we will discuss the (straightforward) implementation for annotating the input corpus with

these ranking annotations in § 6.4.1.

6.3 Formal Annotation Framework

In this section, we look at incorporating the above three dimensions of trust and provenance—blacklisting,

authority and triple-rank, which we will herein refer to as annotation properties—into a specialised annotated

logic programming framework which tracks this information during reasoning, and determines the annota-

tions of inferences based on the annotations of the rule and the relevant instances, where the resultant values

of the annotation properties can be viewed as denoting the strength of a derivation (or as a truth value).

6.3.1 Annotation Domains

The annotation properties are abstracted by an arbitrary finite set of domains D1, . . . , Dz:

Definition 6.5 (Annotated domain) An annotation domain is a cartesian product D = ×zi=1Di where

each Di is totally ordered by a relation ≤i such that each Di has a ≤i-maximal element >i. Define a partial

order ≤ on D as the direct product of the orderings ≤i, that is 〈d1, . . . , dz〉 ≤ 〈d′1, . . . , d′z〉 iff for all 1 ≤ i ≤ z,

di ≤i d′i.2 When 〈d1, . . . , dz〉 < 〈d′1, . . . , d′z〉 we say that 〈d′1, . . . , d′z〉 dominates 〈d1, . . . , dz〉.3

1Note that one could imagine a spamming scheme where a large number of spurious low-ranked documents repeatedly make

the same assertions to create a set of highly-ranked triples. In future, we may revise this algorithm to take into account some

limiting function derived from PLD-level analysis.
2We favour angle brackets to specifically denote a tuple of annotation values.
3Note that we thus do not assume a lexicographical order.

97

6.3. Formal Annotation Framework 98

We denote with lub(D′) and glb(D′) respectively the least upper bound and the greatest lower bound of a

subset D′ ⊆ D.

For the use-case annotation domain based on blacklisting, authoritativeness, and ranking, z = 3 and D1 =

{b,nb} (b=blacklisted, nb=non-blacklisted), D2 = {na,a} (a=authoritative, na=non-authoritative), D3 =

R. Moreover, b ≤1 nb, na ≤2 a, and x ≤3 y iff x ≤ y.

6.3.2 (Specialised) Annotated Programs

Following our definition of the domain of annotations, (specialised) annotated programs are defined as follows:

Definition 6.6 (Annotated programs) An annotated program P is a finite set of annotated rules

H ← B1, . . . , Bm : d (m ≥ 0)

where H,B1, . . . , Bm are logical atoms and d ∈ D. When m = 0, a rule is called a fact and denoted by H:d

(omitting the arrow).

Note that again, any (simple) predicate can be considered for the atoms, but in practice we will only be

using an implicit ternary (triple) predicate (s, p, o). As opposed to the formalisms for Generlised Annotated

Programs, our annotated programs associate each rules (or fact) with a constant annotation.

Now we can define the models of our programs. The semantics of a fact F is a set of annotations,

covering the possible ways of deriving F . Roughly speaking, the annotations of F include the “minimum”

of the annotations which hold for the facts and rule(s) from which F can be inferred.

Definition 6.7 (Annotation interpretations) Let BP be the Herbrand base of a program P (the set of

all possible facts from the constants in P). An annotation interpretation is a mapping I : BP → 2D that

associates each fact F ∈ BP with a set of possible annotations.

Given a ground rule R of the form H ← B1, . . . , Bm : d an interpretation I satisfies R if for all di ∈ I(Bi)

(1 ≤ i ≤ m), glb({d1, . . . ,dm,d}) ∈ I(H).

More generally, I satisfies a (possibly non-ground) rule R (in symbols, I |= R) iff I satisfies all of the

ground rules in Ground(R). Accordingly, I is a model of a program P (I |= P) iff for all R ∈ P , I |= R.

Finally, we say that the fact F :d is a logical consequence of P (written P |= F :d) iff for all interpretations

I, I |= P implies I |= F :d.

Following the same principles as for our notion of a classical program, we can define an immediate

consequence operator AP for annotated programs (of the form described in Definition 6.6) as follows:

Definition 6.8 (Annotation immediate consequences) The annotation immediate consequence oper-

ator is a mapping over annotation interpretations such that for all facts F ∈ BP :

AP (I)(F) =
⋃

F←B1,...,Bm:d∈Ground(P)

{
glb({d1, . . . ,dm,d}) | ∀1≤i≤m

(
di ∈ I(Bi)

)}
6.3.3 Least Fixpoint and Decidability

We now demonstrate that the semantics of annotated programs have the same desirable properties as those

for our classical program: every given annotated program P has one minimal model which contains exactly

the logical consequences of P , and which can be characterised as the least fixed point of the monotonic

immediate consequence operator AP .

98

6.3. Formal Annotation Framework 99

To see this, we first need to define a suitable ordering over interpretations:

I � I ′ ⇔ ∀F ∈ BP
(
I(F) ⊆ I ′(F)

)
The partial order � induces a complete lattice in the set of all interpretations. Given a set of interpretations

I the least upper bound tI and the greatest lower bound uI satisfy tI(F) =
⋃
I∈I I(F) and uI(F) =⋂

I∈I I(F), for all F ∈ BP .4 The bottom interpretation ∆ maps each F ∈ BP to ∅.

Theorem 6.1 For all programs P and interpretations I:

1. I is a model of P iff AP (I) � I;

2. AP is monotone, i.e. I � I ′ implies AP (I) � AP (I ′).

Proof: Our framework can be regarded as a special case of General Annotated Programs [Kifer and

Subrahmanian, 1992] (introduced in § 6.1). In that framework, our rules can be reformulated as

H:ρ← B1:µ1, . . . , Bn:µn

where each µi is a variable ranging over 2D and

ρ :=
{

glb({d1, . . . ,dm,d}) | ∀1≤i≤n(di ∈ µi)
}

(6.1)

The upper semilattice of truth values T [Kifer and Subrahmanian, 1992, § 2] can be set, in our case, to the

complete lattice 〈2D,⊆,∪,∩〉. Then our semantics corresponds to the restricted semantics defined in [Kifer

and Subrahmanian, 1992] and our operator AP corresponds to the operator RP which has been proven in

[Kifer and Subrahmanian, 1992] to satisfy the two statements. �

Corollary 6.2 For all programs P :

1. P has a minimal model that equals the least fixed point of AP , lfp(AP);

2. for all F ∈ BP , d ∈ lfp(AP)(F) iff P |= F :d.

Another standard consequence of Theorem 6.1 is that lfp(AP) can be calculated in a bottom-up fashion,

starting from the empty interpretation ∆ and applying iteratively AP . Define the iterations of AP in the

usual way: AP ↑ 0 = ∆; for all ordinals α, AP ↑ (α+ 1) = AP (AP ↑ α); if α is a limit ordinal, let

AP ↑ α = tβ<αAP ↑ β. Now, it follows from Theorem 6.1 that there exists an α such that lfp(AP) = AP ↑ α.

To ensure that the logical consequences of P can be effectively computed, it should also be proven that

α ≤ ω—in other words that AP ↑ ω = lfp(AP)—which is usually done by showing that AP is continuous

(§ 6.1). Before we continue, we paraphrase [Kifer and Subrahmanian, 1992, Ex. 3] in order to demonstrate a

discontinuous program for which RP ↑ ω = lfp(RP) does not hold with respect to their restricted immediate

consequence operator RP :

Example 6.1 Consider a simple general annotated program P with truth values T from the set {r ∈ R |
0 ≤ r ≤ 1} and three rules as follows:

A:0←
A: 1+α

2 ← A:α

B:1← A:1

4We favour t over lub to denote the least upper bound of a set of interpretations, where it corresponds with the set-union

operator; we favour u over glb for greatest upper bound analogously.

99

6.3. Formal Annotation Framework 100

By the restricted semantics of general annotated programs, A:1 ∈ RP ↑ ω. However, since the third rule is

discontinuous, B:1 /∈ RP ↑ ω and so we see that RP ↑ ω 6= lfp(RP); note that B:1 ∈ RP ↑ (ω + 1). ♦

Thus, even if a general annotated program is Datalog (i.e., it has no function symbols), RP may be discon-

tinuous if a mix of constant and variable annotations are used (as in the example) [Kifer and Subrahmanian,

1992]. In order to prove that our AP is continuous, we have to first demonstrate specific properties of the

glb function given for ρ in (6.1).

Lemma 6.3 Let D be a z-dimensional annotation domain, P a program and F a fact. The number of

possible annotations d such that P |= F :d is bounded by |P |z.

Proof: Let DP
i , for 1 ≤ i ≤ z, be the set of all values occurring as the i-th component in some annotation

in P and DP = ×zi=1D
P
i . Clearly, for all i = 1, . . . , z, |DP

i | ≤ |P |, therefore the cardinality of DP is at most

|P |z. We are only left to show that the annotations occurring in AP ↑ α are all members of DP . Note that

if {d1, . . . ,dm,d} ⊆ DP , then also glb{d1, . . . ,dm,d} ∈ DP . Then, by straightforward induction on α, it

follows that for all α, if F :d ∈ AP ↑ α, then d ∈ DP .

In other words, since the glb function cannot introduce new elements from the component sets of the

annotation domain, the application of AP can only create labels from the set of tuples which are combinations

of existing domain elements in P ; thus the set of all labels is bounded by |P |z. �

Next, in order to demonstrate that AP is continuous we must introduce the notion of a chain of interpre-

tations: a sequence {Iβ}β≤α such that for all β < γ, Iβ � Iγ . Now, AP is continuous if applying AP to

the union of the interpretations in a chain is equivalent to the union of applying AP individually to each

interpretation in the chain. Formally:

Theorem 6.4 For all programs P , AP is continuous: that is, for all chains I := {Iβ}β≤α, it holds that

AP (tI) = t{AP (I) | I ∈ I}.

Proof: The ⊇ inclusion is trivial since AP is monotone. For the ⊆ inclusion, assume that d ∈ AP (tI)(H).

By definition, there exists a rule H ← B1, . . . , Bn : d′ in Ground(P) and some d1, . . . ,dn such that d =

glb(d′,d1, . . . ,dn) and for all 1 ≤ j ≤ n, dj ∈ tI(H). Therefore, for all 1 ≤ j ≤ n there exists a βj ≤ α such

that dj ∈ Iβj . Let β be the maximum value of d1, . . . ,dn; since I is a chain, dj ∈ Iβ(H), for all 1 ≤ j ≤ n.

Therefore, d is in AP (Iβ)(H) and hence in t{AP (I) | I ∈ I}(H). �

Corollary 6.5 The interpretation AP ↑ ω is the least fixed point of AP , lfp(AP), and hence it is the minimal

model of P .

The logical consequences of our programs satisfy another important property that does not hold for general

annotated programs, even if RP is continuous.

Example 6.2 Consider Example 6.1, but drop the last (discontinuous) rule:

A:0←
A: 1+α

2 ← A:α

This program is continuous such that, with respect to the restricted semantics of general annotated programs,

RP ↑ ω = lfp(RP). However, although A:1 ∈ RP ↑ ω, it is not finitary because for all i < ω, A:1 6∈ RP ↑ i.♦

Thus, we now need to explicitly demonstrate that the fixpoint of our AP is finitary.

100

6.3. Formal Annotation Framework 101

Lemma 6.6 A fact F :d is a ground logical consequence of P iff for some (finite) i < ω, d ∈ AP ↑ i(F).

Proof: Due to Corollaries 6.2 and 6.5, P |= F :d iff d ∈ AP ↑ ω(F). By definition, AP ↑ ω(F) =
⋃
i<ω AP ↑

i(F), therefore P |= F :d iff for some finite i < ω, d ∈ AP ↑ i(F). �

In the jargon of classical logic, this means that our framework is finitary, and that the logical consequences

of P are semidecidable. Moreover, if P is Datalog, then the least fixed point of AP is reached after a finite

number of iterations:

Lemma 6.7 If P is Datalog, then there exists i < ω such that lfp(AP) = AP ↑ i.

Proof: Due to Corollary 6.2 and Lemma 6.3, for each F ∈ BP , the set of annotations in lfp(AP)(F) is finite.

Moreover, when P is Datalog, the Herbrand base BP is finite as well. Thereafter, since AP is monotone, the

lemma holds. �

Finally, (and as for our classical program) it follows that the least model of P (again denoted lm(P)) can be

finitely represented, and that the logical consequences of P are decidable.

6.3.4 Seeding Annotations

We now briefly discuss a generic formalisation for deriving the initial set of annotations for the base program—

that is, the initial A-linear OWL 2 RL/RDF program O2R∝A (§ 5.4.1; herein, we may refer to these as

meta-rules) and the input corpus of quadruples.

Recalling our specific annotations of blacklisting, triple ranks, and authority, we can identify three cate-

gories of annotation according to the information they require to seed from the input:

1. Some—like certain forms of blacklisting—depend on structural properties of input facts (e.g., inverse-

functional values set to empty strings or triples with URIs from spamming domains).

2. Some—like page ranking or other forms of blacklisting—rely on the source context; for example, all of

the atoms in get(s) inherit the ranking assigned to the source s.5

3. Some—like authority—additionally rely on the structure of the inference rules in the original program.

In this case, the quality and reliability of the meta-program itself is not questioned, where instead,

the value of the annotation is derived (indirectly) from the T-atoms unified with the body of the

rule. Accordingly, partially evaluated rules are assigned annotations based on the composition of the

originating meta-rule and the provenance of the facts unified with the meta-rule body.

The first two kinds of annotation functions can be generalised as:

ψi : Facts× S→ Di

where, roughly speaking, they can be considered as a function of the corpus’ quadruples.6 We assume

that ψi(F, s) is defined for all F ∈ get(s). Slightly abusing notation, we use sα to denote a special source

containing the set of axiomatic triples, such that getsα := Iα: the set of axiomatic facts in the meta-program;

we let ψi(F, sα) := >i (∀F ∈ Iα). Furthermore we assume without loss of generality that for some index z′

(0 ≤ z′ ≤ z), D1, . . . , Dz′ are associated to annotation functions of this type.

5Strictly speaking, page ranking depends also on the hyperlinks occurring in context contents; these details are left implicit

in our framework.
6We would also require information about redirects, but here we generalise.

101

6.3. Formal Annotation Framework 102

Annotations of type 3 are produced from known information by functions of the form:

ψi : Rules× 2Facts × S→ Di

where information about the rules is also required.7 We assume that ψi(R, get(s), s) is defined for all R ∈ P ;

again, ψi(R, Iα, sα) := >i. In addition, we define another special source sτ for the terminological least model

Iτ such that get(sτ) := Iτ and where we assume ψi(R, Iτ , sτ) to be defined since the results of terminological

reasoning may serve as (partial) instances of rules bodies.8 As above, we assume without further loss of

generality that Dz′+1, . . . , Dz are associated to annotation functions of this type.9

6.3.5 T-split Annotated Programs

In order to integrate the annotated framework with our classical approach to reasoning—and following the

discussion of the classical T-split least fixpoint in § 5.2—we now define a similar procedure for partially

evaluating an annotated (meta-)program with respect to the terminological data to create an assertional

annotated program; this procedure includes the aforementioned functions for deriving the seed annotations

of the initial program.

Definition 6.9 (T-split annotated least fixpoint) We define the T-split annotated least fixpoint as a

two step process in analogy to the classical variant in Definition 5.3: (i) build and derive the least model

of the terminological annotated program; (ii) build and derive the least model of the assertional annotated

program. Starting with (i), let all rules (and facts) from the meta-program be annotated with 〈>1, . . . ,>z〉.
Next, let S ⊂ S denote the set of sources whose merged graphs comprise our corpus (including sα); now, let:

PF :=
⋃
s∈S

{
F :〈d1, . . . , dz〉 | F ∈ get(s), ∀

1≤i≤z′

(
di = ψi(F, s)

)
, ∀
z′<i≤z

(
di = >i)

}
denote the set of all annotated facts from the original corpus. We reuse PT∅, PTA, P ∅A as given in Defini-

tion 5.3 (each such meta-rule is now annotated with 〈>1, . . . ,>z〉). Now, let TP := PF ∪ PT∅ denote the

terminological annotated program, with least model lm(TP), and define the special source sτ as before such

that get(sτ) := lm(TP). Next, let:

PA+:=
⋃

s∈S∪{sτ}

{
Head(R)θ ← ABody(R)θ : 〈d1, . . . , dz〉 |R ∈ PTA,

∃I ⊆ get(s) s.t. θ = mgu(TBody(R), I),

〈d1, . . . , dz′〉 = glb({d′ | ∃F :d′ ∈ TBody(R)θ}),
∀

z′<i≤z

(
di = ψi(R,TBody(R)θ, s)

)}
denote the set of T-grounded rules with annotations up until z′ derived from the respective instances, and

annotations thereafter derived from the annotation functions requiring knowledge about rules (e.g., author-

ity).10 Now, let AP := lm(TP) ∪ P ∅A ∪ PA+ describe the assertional annotated program analogous to the

classical version. Finally, we can give the least model of the assertional program AP as lm(AP)—we more

7One may note the correlation to the arguments of the authoritative T-grounding function in § 6.2.2.
8For authority, ψauth(R, get(sτ), sτ) = ⊥auth for all proper rules.
9As per the labelling in § 6.3.1, |D1| and |D3| (blacklisting and ranking respectively) are associated to the first form of

labelling function, whereas |D2| (authority) is associated with the second form of labelling function—note that keeping the

ranking domain in the last index allows for a more intuitive presentation of thresholding and finite domains in § 6.3.6.
10Note that this formulation of PA+ only allows residual rules to be created from T-instances which appear entirely in one

source, as per discussion in § 6.2.2.

102

6.3. Formal Annotation Framework 103

generally denote this by lmT (P): the T-split least model of the program P , where AP is derived from P as

above.

This definition of the T-split annotated least fixpoint is quite long, but follows the same intuition as for

classical reasoning. First, all rules and facts in the meta-program are given the strongest possible truth

value(s). Next, facts in the corpus are annotated according to functions which require only information

about quadruples (annotations requiring knowledge of rules are annotated with >i). Then, the T-atom

only rules are applied over the corpus (in particular, over the T-Box) and the terminological least model

is generated (including annotations of the output facts). Next, rules with non-empty A-body and T-body

have their T-atoms grounded with a set of T-facts, and the corresponding variable substitution is used to

partially evaluate the A-body and head, where the resulting (proper) rule is annotated as follows: (i) the

first category of annotation values (1 ≤ i ≤ z′) are given as the greatest lower bound of the truth values for

the T-facts (thus, the rule is as “reliable” as the “least reliable” T-fact in the instance); (ii) the values for

the second category of annotations (z′ < i ≤ z) are created as a function of the rule itself, the source of the

T-facts, and the T-facts themselves. Finally, the assertional program is created, adding together the partially

evaluated rules, the A-body only rules, and the facts in the terminological least fixpoint (which includes the

set of original and axiomatic facts); the least model of this assertional program is then calculated to derive

the T-split least model.

Note that during this process, rules and facts may be associated with more than one annotation tuple.

Thus, although we will be applying the A-linear O2R∝A subset of OWL—and although the classical part of

the program will still feature the same scalable properties as discussed in § 5.4.1—the growth of annotation

tuples may still be polynomial (in our case cubic since z = 3; cf. Lemma 6.3) with respect to the set of

original annotation values. In the next section, we look at scalability aspects of some reasoning tasks with

respect to the annotated program (in particular, the assertional annotation program).

6.3.6 Annotated Reasoning Tasks

Within this framework, it is possible to define several types of reasoning tasks which, roughly speaking, refine

the set of ground logical consequences according to optimality and threshold conditions. In this section, we

introduce these reasoning tasks and look at the scalability of each in turn.

Plain: Returns all the ground logical consequences of P . Formally,

plain(P) := {F :d | F ∈ BP ∧ P |= F :d} .

Optimal: Only the non-dominated elements of plain(P) are returned. Intuitively, an answer A—say,

〈nb,na, 0.5〉—can be ignored if a stronger evidence for A can be derived, for example 〈nb,a, 0.6〉.
Formally, for an annotated program P (containing annotated rules and facts), let:

max(P) := {R:d ∈ P | ∀R:d′ ∈ P (d 6< d′)} ,

and define opt(P) = max(plain(P)).

Above Threshold (Optimal): Refines opt(P) by selecting the optimal annotated consequences that are

above a given threshold. Formally, given a threshold vector t ∈ D, let:

P≥t := {R:d ∈ P | t ≤ d} ,

and define optt(P) = opt(P)≥t.

103

6.3. Formal Annotation Framework 104

Above Threshold (Classical): Returns the classical facts that have some annotation above a given

threshold t such that annotations are not included in the answer. Formally, define:

abovet(P) := {F ∈ BP | ∃d ≥ t(P |= F :d)} .

In our scenario, all tasks except plain enable us to prune the input program by dropping some facts/rules

that do not contribute to the answers. For example, opt(P) does not depend on the dominated elements of

P—when encountered, these elements can be discarded without affecting the task:

Theorem 6.8 opt(P) = opt(max(P)).

Proof: Clearly, max(P) ⊆ P and both max and plain are monotonic with respect to set inclusion. There-

fore, plain(max(P)) is contained in plain(P) and max(plain(max(P))) is contained in max(plain(P)); i.e.,

opt(max(P)) ⊆ opt(P).

For the opposite inclusion, we first prove by induction on natural numbers that for all i ≥ 0 and F ∈ BP ,

if d ∈ AP ↑ i(F), then there exists an annotation d′ ≥ d such that d′ ∈ Amax(P) ↑ i(F).

The assertion is vacuously true for i = 0. Assume that d ∈ AP ↑ (i + 1)(F), with i ≥ 0, where we

have that d = glb({d1, . . . ,dn,d}) for some rule F ← B1, . . . , Bn : d in Ground(P) and some associated

d1, . . . ,dn; also, for all 1 ≤ j ≤ n, we have that dj ∈ AP ↑ i(Bj). By the definition of max(P), there exists a

F ← B1, . . . , Bn : d̂ in Ground(max(P)) with d̂ ≥ d. Moreover, by induction, for all 1 ≤ j ≤ n, there exists

a d′j ≥ dj such that d′j ∈ Amax(P) ↑ i(Bj). Thus if we set d′ = glb({d′1, . . . ,d′m, d̂}), we have d′ ≥ d and

d′ ∈ Amax(P) ↑ (i+ 1)(F).

Now assume that F :d ∈ opt(P). In particular F :d is a logical consequence of P , therefore, by Lemma 6.6

and the previous statement, we have that there exists an annotation F :d′ ∈ plain(max(P)) with d ≤ d′.

However, since opt(max(P)) ⊆ opt(P), then plain(max(P)) cannot contain facts that improve F :d, and

therefore d′ = d and F :d ∈ opt(max(P)). �

Similarly, if a minimal threshold is specified, then the program can be filtered by dropping all of the rules

that are not above the given threshold:

Theorem 6.9 optt(P) = opt(P≥t).

Proof: Since by definition optt(P) = max(plain(P))≥t and also since max(plain(P))≥t = max(plain(P)≥t),

it suffices to show that plain(P)≥t = plain(P≥t). By Lemma 6.6, F :d ∈ plain(P)≥t implies that for some i,

d ∈ AP ↑ i(F) and d ≥ t. Analogously to Theorem 6.8, it can be proven by induction on natural numbers

that for all i ≥ 0 and F ∈ BP , if d ∈ AP ↑ i(F) and d ≥ t, then d ∈ AP≥t
↑ i(F). Therefore, d ∈ AP≥t

↑ i(F)

and hence F :d ∈ plain(P≥t).

Again, it can be proven by induction that if F :d ∈ plain(P≥t), then d ≥ t. Now, since plain is monotone

with respect to set inclusion and P≥t ⊆ P , then plain(P≥t) ⊆ plain(P); however, plain(P≥t) only contains

annotations that dominate t—hence plain(P≥t) ⊆ plain(P)≥t. �

Again, we will want to apply such reasoning tasks over corpora in the order of billions of facts sourced

from millions of sources, so polynomial guarantees for the growth of annotations is still not sufficient for

programs of this size—again, even quadratic growth may be too high. In order to again achieve our notion

of A-linearity for the annotated case, for each F ∈ BP , the number of derived consequences and associated

annotations F :d should remain linear with respect to the cardinality of P (assuming, of course, that P is

A-linear in the classical sense). In the rest of this section, we assess the four reasoning tasks with respect to

this requirement—in particular, we focus on the scalability of the assertional annotated program, where we

accept the polynomial bound with respect to terminological knowledge, and again appeal to our assumption

that the terminological segment of the corpus remains small.

104

6.3. Formal Annotation Framework 105

From Lemma 6.3, we know that the cardinality of plain(P) is bounded by |P |z; we can show this bound

to be tight in the general case with an example:

Example 6.3 Consider a z-dimensional D where each component i may assume an integer value from 1 to

n. Let P be the following propositional program consisting of all rules of the following form:

A1 : 〈m1, n, . . . , n〉 (1 ≤ m1 ≤ n)

Ai ← Ai−1 : 〈n, . . . ,mi, . . . , n〉 (1 ≤ mi ≤ n)

. . . (2 ≤ i ≤ z)

where, intuitively, mi assigns all possible values to each component i. Now, there are n facts which have every

possible value for the first annotation component and the value n for all other components. Thereafter, for

each of the remaining z−1 annotation components, there are n annotated rules which have every possible value

for the given annotation component, and the value n for all other components. Altogether, the cardinality of

P is nz. The set of annotations that can be derived for Az is exactly D, therefore its cardinality is nz which

grows as Θ(|P |z). When z ≥ 2, the number of labels associated to Az alone exceeds the desired linear bound

on materialisations.

To demonstrate this, let’s instantiate P for n = 2 and z = 3:

A1 : 〈1, 2, 2〉 , A1 : 〈2, 2, 2〉 ,
A2 ← A1 : 〈2, 1, 2〉 , A2 ← A1 : 〈2, 2, 2〉 ,
A3 ← A2 : 〈2, 2, 1〉 , A3 ← A2 : 〈2, 2, 2〉 .

Here, |P | = 2 ∗ 3 = 6. By plain(P), we will get:

A1 : 〈1, 2, 2〉 , A1 : 〈2, 2, 2〉 ,
A2 : 〈1, 1, 2〉 , A2 : 〈1, 2, 2〉 , A2 : 〈2, 1, 2〉 , A2 : 〈2, 2, 2〉 ,
A3 : 〈1, 1, 1〉 , A3 : 〈1, 1, 2〉 , A3 : 〈1, 2, 1〉 , A3 : 〈1, 2, 2〉 ,
A3 : 〈2, 1, 1〉 , A3 : 〈2, 1, 2〉 , A3 : 〈2, 2, 1〉 , A3 : 〈2, 2, 2〉 .

Where A3 is associated with 23 = 8 annotations. ♦

This potential growth of plain(.) makes opt(.) a potentially appealing alternative; however, even if Theo-

rem 6.8 enables some optimisation, in general opt(P) is not linear with respect to |P |. This can again be

seen with an example:

Example 6.4 Consider a program containing all rules of the form:

(ex:Foo, ex:spam, ex:Bar) : 〈k, 1
k 〉

. . .

(?x, ex:spam k, ?y) ← (?y, ex:spam, ?x) : 〈n, n〉
. . .

such that n is a (constant) positive integer and 1 ≤ k ≤ n. By increasing n, P grows as Θ(2n), whereas (as

per the previous example) |plain(P)| grows as Θ(n2), with n facts of the form (ex:Foo, ex:spam k, ex:Bar)

being associated with n annotations of the form 〈k, 1
k 〉—thus, |plain(P)| grows quadratically with |P |. Now,

for all such consequences relative to the same fact F :〈h, 1
h 〉 and F :〈j, 1

j 〉, if h < j, then 1
j <

1
h and vice versa.

This implies that all of the derived consequences are optimal—that is, plain(P) = opt(P). Consequently,

|opt(P)| grows quadratically with |P |, too.

To demonstrate this, let’s instantiate P for n = 3:

105

6.3. Formal Annotation Framework 106

(ex:Foo, ex:spam, ex:Bar) : 〈1, 1〉 ,

(ex:Foo, ex:spam, ex:Bar) : 〈2, 1
2 〉 ,

(ex:Foo, ex:spam, ex:Bar) : 〈3, 1
3 〉 ,

(?x, ex:spam 1, ?y) ← (?y, ex:spam, ?x) : 〈3, 3〉 ,

(?x, ex:spam 2, ?y) ← (?y, ex:spam, ?x) : 〈3, 3〉 ,

(?x, ex:spam 3, ?y) ← (?y, ex:spam, ?x) : 〈3, 3〉 .

Here, |P | = 23 = 6. Now, opt(P)—or, equivalently, plain(P)—will give 32 = 9 annotated facts of the form:

(ex:Bar, ex:spam k, ex:Foo) : 〈1, 1〉 ,

(ex:Bar, ex:spam k, ex:Foo) : 〈2, 1
2 〉 ,

(
∀1 ≤ k ≤ 3

)
(ex:Bar, ex:spam k, ex:Foo) : 〈3, 1

3 〉 .

Here, all 9 facts are considered optimal (as per Definition 6.5, we do not assume a lexicographical order). ♦

In this example, the annotations associated to each atom grow linearly with |P |. We can generalise this

result and prove that the annotations of a given atom may grow as |P | z2 by slightly modifying Example 6.3

(which was for plain materialisation) along similar lines.

Example 6.5 Assume that the dimension z is even, and that a component may assume any value from the

set of rationals in the interval [0, n]; now, consider the program P containing all such facts and rules:

A1 :〈r1,
1
r1
, n . . . , n〉 (1 ≤ r1 ≤ n)

Ai←Ai−1 :〈n, . . . , n, r2i−1,
1

r2i−1
, n, . . . , n〉 (1≤r2i−1 ≤ n)

(2 ≤ i ≤ z
2)

where r2i−1 assigns the (2i − 1)th (odd) component all possible values between 1 and n inclusive, and 1
r2i−1

assigns the 2ith (even) component all possible values between 1 and 1
n inclusive. Note that the cardinality

of P is nz
2 , containing n facts and n(z−2)

2 proper rules. Now, given two consequences A:d1, A:d2 ∈ plain(P)

sharing the same atom A, there exist two distinct integers j, k ≤ n, j 6= k and a pair of contiguous components

i, i + 1 ≤ z such that d1 = 〈. . . , j, 1
j , . . .〉 and d2 = 〈. . . , k, 1

k , . . .〉. Therefore, all the facts in plain(P) are

optimal, and the number of annotations for A z
2

is n
z
2 .

To demonstrate this, let’s instantiate P for n = 2 and z = 6:

A1 : 〈1, 1, 2, 2, 2, 2〉 , A1 : 〈2, 1
2 , 2, 2, 2, 2〉 ,

A2 ← A1 : 〈2, 2, 1, 1, 2, 2〉 , A2 ← A1 : 〈2, 2, 2, 1
2 , 2, 2〉 ,

A3 ← A2 : 〈2, 2, 2, 2, 1, 1〉 , A3 ← A2 : 〈2, 2, 2, 2, 2, 1
2 〉 .

Here, |P | = 2×6
2 = 6. By opt(P)—or, equivalently, by plain(P)—we will get:

A1 : 〈1, 1, 2, 2, 2, 2〉 , A1 : 〈2, 1
2 , 2, 2, 2, 2〉 ,

A2 : 〈1, 1, 1, 1, 2, 2〉 , A2 : 〈1, 1, 2, 1
2 , 2, 2〉 , A2 : 〈2, 1

2 , 1, 1, 2, 2〉 , A2 : 〈2, 1
2 , 2,

1
2 , 2, 2〉 ,

A3 : 〈1, 1, 1, 1, 1, 1〉 , A3 : 〈1, 1, 1, 1, 2, 1
2 〉 , A3 : 〈1, 1, 2, 1

2 , 1, 1〉 , A3 : 〈1, 1, 2, 1
2 , 2,

1
2 〉 ,

A3 : 〈2, 1
2 , 1, 1, 1, 1〉 , A3 : 〈2, 1

2 , 1, 1, 2,
1
2 〉 , A3 : 〈2, 1

2 , 2,
1
2 , 1, 1〉 , A3 : 〈2, 1

2 , 2,
1
2 , 2,

1
2 〉 .

Here, A3 is associated with 2
6
2 = 8 optimal annotations.

It is not hard to adapt this example to odd z and prove that for all z ∈ N, the number of annotations

associated to an atom is in Θ(|P |b z2 c). Therefore, if the number of distinct atoms occurring in the answer

can grow linearly (as in the aforementioned fragment O2R∝A), then |opt(P)| is in Θ(|P |b z2 c+1) and hence

not linear for z > 1. ♦

106

6.3. Formal Annotation Framework 107

If we further restrict our computations to the consequences above a given threshold (i.e., optt(.)), then some

improvements may be possible (cf. Theorem 6.9). However, by setting t to the least element of D, one can

see that the worst case complexity of optt(.) and opt(.) are the same.

The last reasoning task, abovet(P), returns atoms without annotations, and hence it is less informative

than the other tasks. However, it does not suffer from the performance drawbacks of the other tasks: abovet(.)

does not increase the complexity of annotation-free reasoning where it can be computed by dropping all rules

(and facts) whose annotations are below t and reasoning classically with the remaining rules, as formalised

by the following proposition:

Proposition 6.10 Let lm(P t) denote the least Herbrand model of the (classical) program P t. Then

abovet(P) = lm(P≥t) .

Proof: Let T be the classical immediate consequence operator (as introduced in § 3.4) and define TP≥t
↑ α

by analogy with AP≥t
↑ α. It is straightforward to see by induction on natural numbers that for all i ≥ 0,

AP≥t
↑ i(F) 6= ∅ iff F ∈ TP≥t

↑ i. This means that F ∈ lm(P≥t) iff AP≥t
↑ ω(F) 6= ∅, or equivalently, iff for

some d, F :d ∈ plain(P≥t). Moreover, as already shown in the proof of Theorem 6.9, plain(P≥t) = plain(P)≥t,

therefore F :d ∈ plain(P)≥t (for some d) iff F ∈ abovet(P). �

The analysis carried out so far apparently suggests that abovet is the only practically feasible inference

among the four tasks. However, our use-case annotation domain—comprised of blacklisting, triple-rank and

authoritativeness—enjoys certain properties that can be exploited to efficiently implement both opt and optt.

Such properties bound the number of maximal labels with an expression that is constant with respect to P

and depends only on the annotation domains: the most important property is that all Dis but one are finite

(blacklisting and authoritativeness are boolean; only triple-ranks range over an infinite set of values). Thus,

the number of maximal elements of any finite set of annotations is bounded by a linear function of D.

Example 6.6 Here we see an example of a fact with four non-dominated annotations.

(ex:Foo, ex:precedes, ex:Bar) : 〈b,na, 0.4〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈b,a, 0.3〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈nb,na, 0.3〉 ,
(ex:Foo, ex:precedes, ex:Bar) : 〈nb,a, 0.2〉 .

Any additional annotation for this fact would either dominate or be dominated by a current annotation—in

either case, the set of maximal annotations would maintain a cardinality of four. ♦

We now formalise and demonstrate this intuitive result. For simplicity, we assume without further loss

of generality that the finite domains are D1, . . . , Dz−1; we make no assumption on Dz. (Note that for

convenience, this indexing of the (in)finite domains replaces the former indexing presented in § 6.3.4 relating

to how annotations are labelled—the two should be considered independent.)

First, with a little abuse of notation, given D′ ⊆ D, max(D′) is the set of maximal values of D′; formally,

{d ∈ D′ | ∀d′ ∈ D′(d 6< d′)}.

Theorem 6.11 If D1, . . . , Dz−1 are finite, then for all finite D′ ⊆ D, |max(D′)| ≤ Πz−1
1 |Di| .

Proof: There exist at most Πz−1
1 |Di| combinations of the first z − 1 components. Therefore, if |max(D′)|

was greater than Πz−1
1 |Di|, there would be two annotations d1 and d2 in max(D′) that differ only in the

last component. But in this case either d1 > d2 or d1 < d2, and hence they cannot be both in max(D′) (a

contradiction). �

107

6.3. Formal Annotation Framework 108

As a consequence, in our reference scenario (where z = 3 and |D1| = |D2| = 2) each atom can be associated

with at most 4 different maximal annotations. Therefore, if P is A-linear and if all but one domain are finite,

then opt(P) is also A-linear.

However, a linear bound on the output of reasoning tasks does not imply the same bound on the

intermediate steps (e.g., the alternative framework introduced in the next subsection needs to compute

also non-maximal labels for a correct answer). Fortunately, a bottom-up computation that considers

only maximal annotations is possible in this framework. Let Amax
P (I) be such that for all F ∈ BP :

Amax
P (I)(A) = max(AP (I)(A)) , and define its powers Amax

P ↑ α by analogy with AP ↑ α.

Lemma 6.12 For all ordinals α, Amax
P ↑ α = max(AP ↑ α).

Proof: First we prove the following claim (from which the lemma follows by induction):

max(AP (max(I))) = max(AP (I)) .

The inclusion ⊆ is trivial. For the other inclusion, assume that for some H ∈ BP , d ∈ max(AP (I)(H)),

this means that d ∈ AP (I)(H) and for all d′ ∈ AP (I)(H), d 6< d′. As d ∈ AP (I)(H), there exists a rule

H ← B1, . . . , Bn : d and some annotations d1, . . . ,dn such that 1) d = glb({d1, . . . ,dn,d}) and 2) for all

1 ≤ j ≤ n, dj ∈ I(Bj).

By definition, for all 1 ≤ j ≤ n, there exists a dmax
j ∈ max(I) such that dj ≤ dmax

j . Clearly, given

dmax = glb({dmax
1 , . . . ,dmax

n ,d}) ,

d ≤ dmax and dmax ∈ AP (max(I)). However, since d is maximal with respect to AP (I)(H) and

AP (max(I))(H) ⊆ AP (I)(H), then d ≤ dmax and d ∈ max(AP (max(I))). This proves the claim—thereafter,

the lemma follows by a straightforward induction. �

Simply put, we only need knowledge of maximal annotations to compute maximal annotations by the glb

function—dominated annotations are redundant and can be removed at each step.

Although Amax
P is not monotonic—annotations may be replaced by new maximal annotations at later

steps11—it follows from Lemma 6.12 that Amax
P reaches a fixpoint; further, when P is Datalog, this fixpoint

is reached in a finite number of steps:

Theorem 6.13 If P is Datalog, then there exists i < ω such that

1. Amax
P ↑ i is a fixpoint of Amax

P ;

2. Amax
P ↑ j is not a fixpoint of Amax

P , for all 0 ≤ j < i;

3. F :d ∈ opt(P) iff d ∈ Amax
P ↑ i(F).

Proof: If P is Datalog, by Lemma 6.7, for some k < ω, AP ↑ k = lfp(AP); we will now show that Amax
P ↑ k

is a fixpoint as well. By definition

Amax
P (Amax

P ↑ k) = max(AP (Amax
P ↑ k)) ,

by Lemma 6.12, Amax
P ↑ k = max(AP ↑ k), so we have

Amax
P (Amax

P ↑ k) = max(AP (max(AP ↑ k))) .

11One may consider the end of Example 6.3, where instead of applying lfp(AP) if one applies lfp(Amax
P), then all but the

〈2, 2, 2〉 annotation value for A1, A2 and A3 are eventually dominated and thus removed.

108

6.3. Formal Annotation Framework 109

However, as already shown in the proof of Lemma 6.12, for any I, max(AP (max(I))) = max(AP (I)). There-

fore,

Amax
P (Amax

P ↑ k) = max(AP (AP ↑ k)) .

Finally, since AP ↑ k is a fixpoint and reusing Lemma 6.12

Amax
P (Amax

P ↑ k) = max(AP ↑ k) = Amax
P ↑ k .

Thus, Amax
P ↑ k is a fixpoint and hence, by finite regression, there exists an 0 ≤ i ≤ k such that Amax

P ↑ i is a

fixpoint, where for all 0 ≤ j < i, Amax
P ↑ j is not a fixpoint.

Clearly, Amax
P ↑ k = Amax

P ↑ i. Since Amax
P ↑ k = max(AP ↑ k) (Lemma 6.12), we finally have

Amax
P ↑ i = max(lfp(AP)) .

Therefore, d ∈ Amax
P ↑ i iff F :d ∈ max(plain(P)) = opt(P). �

Loosely, since the fixpoint of Amax
P can also be reached by deriving the (known) finite fixpoint of AP and

thereafter removing the dominated annotations (which is known to be equivalent to removing the dominated

annotations at each step) Amax
P also has a finite fixpoint.

Theorem 6.11 ensures that at every step j, Amax
P ↑ j associates each derived atom to a constant maximum

number of annotations that is independent of |P |. By Theorem 6.9, the bottom-up construction based on

Amax
P can be used also to compute optt(P) = opt(P≥t). Informally speaking, this means that if D1, . . . , Dz−1

are finite, then both opt(.) and optt(.) are feasible.

Furthermore, our typical use-case will be to derive optimal non-blacklisted and authoritative inferences;

we can formalise this as the task optt(.) with a threshold t which has z−1 components set to their maximum

possible value, such that each atom can be associated to one optimal annotation (in our use-case, the highest

triple-rank value). For the sake of simplicity, we assume without loss of generality that the threshold elements

set to the maximum value are the first z − 1.

Lemma 6.14 Let t = 〈t1, . . . , tz〉. If ti = >i for 1 ≤ i < z, then for all D′ ⊆ D, |max(D′≥t)| ≤ 1.

Proof: If not empty, all of the annotations in D′≥t are of type 〈>1, . . . ,>z−1, dz〉, thus max selects the one

with the maximal value of dz. �

As a consequence, each atom occurring in optt(P) is associated to one annotation, and the same holds for

the intermediate steps Amax
P≥t
↑ j of the iterative construction of optt(P):

Theorem 6.15 Assume that P is Datalog and that the threshold assumption of Lemma 6.14 again holds.

Let i be the least index such that Amax
P≥t
↑ i is a fixpoint of Amax

P≥t
. Then

1. if {F :d1, F :d2} ⊆ optt(P), then d1 = d2;

2. if {d1,d2} ⊆ Amax
P≥t
↑ j(F) (0 ≤ j ≤ i), then d1 = d2.

Proof: We focus on proving the second assertion (from which the first follows naturally). For j = 0, the

assertion is vacuously true. For j > 0, Amax
P≥t
↑ j(F) = max(AP≥t

(Amax
P≥t
↑ (j − 1))(F)), therefore both d1 and

d2 are maximal (d1 6< d2 and d1 6> d2). But d1 and d2 differ only for the last component z, and since ≤z
is a total order, then d1 = d2. �

The annotated reasoning experiments we will conduct over our corpus belong to this case where, formally,

we define our threshold as

t := 〈>1,>2,⊥3〉 = 〈nb,a, 0〉 ,

109

6.3. Formal Annotation Framework 110

where we derive only non-blacklisted, authoritative inferences, but with any triple-rank value. Accordingly,

the implementation maintains (at most) a single annotation for each rule/fact at each stage; thus, optt(P)

for this threshold has minimal effect on the scalable properties of our classical reasoning algorithm.

An alternative approach

The discussion above shows that, in the general case, scalability problems may arise from the existence

of a polynomial number of maximal annotations for the same atom. Then it may be tempting to force

a total order on annotations and keep for each atom only its (unique) best annotation, in an attempt to

obtain a complexity similar to above-threshold reasoning. In our reference scenario, for example, it would

make sense to order annotation triples lexicographically, thereby giving maximal importance to blacklisting,

medium importance to authoritativeness, and minimal importance to page ranking, so that—for example—

〈nb,na, 0.9〉 ≤ 〈nb,a, 0.8〉. Then interpretations could be restricted by forcing I(F) to be always a singleton,

containing the unique maximal annotation for F according to the lexicographic ordering.

Unfortunately, this idea does not work well together with the standard notion of rule satisfaction intro-

duced before. In general, in order to infer the correct maximal annotation associated to a fact F it may be

necessary to keep some non-maximal annotation, too (therefore the analogue of Lemma 6.12 does not hold

in this setting).

Example 6.7 Consider for example the program:

H ← B : 〈nb,na, 1.0〉
B : 〈nb,na, 0.9〉
B : 〈nb,a, 0.8〉 .

The best proof of H makes use of the first two rules/facts of the program, and gives H the annotation

〈nb,na, 0.9〉 since none of these rules/facts are blacklisted or authoritative, and the least triple-rank is

0.9. However, if we could associate each atom to its best annotation only, then B would be associated to

〈nb,a, 0.8〉, and the corresponding label for H would necessarily be the non-maximal 〈nb,na, 0.8〉 by the

definition of rule satisfaction; therefore these semantics (in conjunction with lexicographic ordering) do not

faithfully reflect the properties of the best proof of H. ♦

Currently we do not know whether any alternative, reasonable semantics can solve this problem, and we

leave this issue as an open question—in any case, we note that this discussion does not affect our intended

use-case of deriving optt(P) for our threshold since, as per Theorem 6.15, we need only consider the total

ordering given by the triple ranks.

6.3.7 Constraints

Our demonstrative use-case for annotations is to compute strengths of derivations such that can be used

for repairing inconsistencies (a.k.a. contradictions) in a non-trivial manner, where we view inconsistency

as the consequence of unintended publishing errors or unforeseen inferencing.12 Thus, in order to detect

inconsistencies, we require a special type of rule, which we call a constraint.

A constraint is a rule without a head, like:

← A1, . . . , An, T1, . . . , Tm (n,m ≥ 0) (6.2)

12We do however acknowledge the possibility of deliberate inconsistency, although we informally claim that such overt

disagreement is not yet prevalent in Linked Data.

110

6.3. Formal Annotation Framework 111

where T1, . . . , Tm are T-atoms and A1, . . . , An are A-atoms. As before, let

Body(R) := {A1, . . . , An, T1, . . . , Tm} ,

and let

TBody(R) := {T1, . . . , Tm} .

We interpret such rules as indicators that instances of the body are inconsistent in and of themselves—as

such, they correspond to a number of OWL 2 RL/RDF rules who have the special propositional symbol

false to indicate contradiction (we leave the false implicit).

Example 6.8 Take the OWL 2 RL/RDF meta-constraint Ccax−dw

← (?c1, owl:disjointWith, ?c2), (?x, a, ?c1),(?x, a, ?c2)

where TBody(Ccax−dw) is again underlined. Any instance of the body of this rule denotes an inconsistency.♦

Classical semantics prescribes that a Herbrand model I satisfies a constraint C iff I satisfies no instance

of Body(C). Consequently, if P is a logic program with constraints, either the least model of P ’s rules

satisfies all constraints in P or P is inconsistent (in this case, under classical semantics, no reasoning can be

carried out with P).

Annotations create an opportunity for a more flexible and reasonable use of constraints for a corpus

collected from unvetted sources. Threshold-based reasoning tasks can be used to ignore the consequences of

constraint violations based on low-quality or otherwise unreliable proofs. In the following, let P = PR ∪PC ,

where PR is a set of rules and PC a set of constraints.

Definition 6.10 (Threshold-consistent) Let t ∈ D. P is t-consistent iff abovet(P
R) satisfies all the

constraints of PC .

For example, if t = 〈nb,a, 0〉 and P is t-consistent, then for all constraints C ∈ PC all the proofs of

Body(C) use either blacklisted facts or non-authoritative rules. This form of consistency can be equivalently

characterised in terms of the alternative threshold task optt which, unlike abovet, will generate annotated

consequences; for all sets of annotated rules and facts Q, let [Q] = {R | R : d ∈ Q}. Then we have:

Proposition 6.16 P is t-consistent iff [optt(P
R)] satisfies all the constraints in PR.

More generally, the following definitions can be adopted for measuring the strength of constraint violations:

Definition 6.11 (Answers) Let G = {A1, . . . , An} be a set of atoms and let P = PR ∪ PC . An answer

for G (from P) is a pair 〈θ,d〉 where θ is a grounding substitution and

1. there exist d1, . . . ,dn ∈ D such that PR |= Aiθ:di ,

2. d = glb{d1, . . . ,dn} .

The set of all answers of G from P is denoted by AnsP (G).13

Definition 6.12 (Annotated constraints, violation degree) We define annotated constraints as ex-

pressions C:d where C is a constraint and d ∈ D. The violation degree of C:d wrt. program P is the

set:

max({glb(d,d′) | 〈θ,d′〉 ∈ AnsP (Body(C))}) .
13One may note a correspondence to conjunctive-query answering, or in the case of RDF, basic-graph pattern matching—

herein however, answers are additionally associated with an annotation, computed as the glb of annotations for facts contributing

to the answer.

111

6.3. Formal Annotation Framework 112

Intuitively, violation degrees provide a way of assessing the severity of inconsistencies by associating each

constraint with the rankings of their strongest violations. Note further that T-split constraints will be

partially evaluated and annotated alongside and analogously to other rules.

Example 6.9 From Example 6.8, take the annotated OWL 2 RL/RDF meta-constraint Ccax−dw:

← (?c1, owl:disjointWith, ?c2), (?x, a, ?c1),(?x, a, ?c2) : 〈>1,>2,>3〉

and consider the following annotated facts:

(foaf:Organization, owl:disjointWith, foaf:Person) : 〈nb,a, 0.6〉
(ex:W3C, a, foaf:Organization) : 〈nb,a, 0.4〉

(ex:W3C, a, foaf:Person) : 〈nb,na, 0.3〉
(ex:TimBL, a, foaf:Organization) : 〈b,na, 0.8〉

(ex:TimBL, a, foaf:Person) : 〈nb,a, 0.7〉

(Note that with respect to authority annotation values, in practice, the non-authoritative facts above can only

be inferred through a non-authoritative rule.)

During the creation of the assertional program (during which rules are partially evaluated with respect to

terminological knowledge) the rule Ccax−dw, together with the first T-fact above, will generate the assertional

annotated constraint:

← (?x, a, foaf:Organization),(?x, a, foaf:Person) : 〈nb,a, 0.6〉

(Note further that for T-ground constraints, we use the same authoritative function for annotation labelling,

where the above rule can only be authoritative if the source providing the first fact is redirected to by ei-

ther foaf:Person or foaf:Organization—the terms substituted for variables appearing in both ABody and

TBody.)

This assertional rule has two answers from the original facts:(
{?x/ex:W3C} , 〈nb,na, 0.3〉

)(
{?x/ex:TimBL} , 〈b,na, 0.6〉

)
The violation degree of Ccax−dw is then {〈nb,na, 0.3〉, 〈b,na, 0.6〉} since neither annotation dominates the

other. ♦

The computation of violation degrees can be reduced to opt by means of a simple program transformation.

Suppose that PC = {C1:d1, . . . , Cn:dn}. Introduce a fresh propositional symbol fi for each Ci (i.e., in the

case of OWL 2 RL/RDF, a symbol representing false specifically for each constraint) and let

P ′ = PR ∪ {fi ← Body(Ci) : di | i = 1, . . . , n}.

Proposition 6.17 An annotation d belongs to the violation degree of Ci:di iff fi:d ∈ opt(P ′).

The computation of violation degrees and thresholds can be combined, picking up only those annotations

that are above threshold. This can be done by selecting all d such that fi:d ∈ optt(P
′)—as such, in our

use-case we will again only be looking for violations above our threshold t := 〈>1,>2,⊥3〉.
Now, one could consider identifying the threshold t such that the program PR is t-consistent and setting

that as the new threshold to ensure consistency; however, in practice, this may involve removing a large,

consistent portion of the program. In fact, in our empirical analysis (which will be presented later in § 6.4.3),

112

6.4. Annotated Linked Data Reasoning 113

we found that the 23rd overall ranked document in our corpus was already inconsistent due to an invalid

datatype; thus, applying this brute-force threshold method would leave us with (approximately) a corpus of

22 documents, with almost four million sources being discarded. Instead, we use our annotations for a more

granular repair of the corpus, where, roughly speaking, if Ci : di is violated, then the members of Body(Ci)θ

with the weakest proof are good candidates for deletion. We will sketch such a repair process in § 6.4.3.

6.4 Annotated Linked Data Reasoning

In this section, we move towards applying the presented methods for annotated reasoning over our evaluation

Linked Data corpus of 1.118b quads, describing our distributed implementation, sketching a process for

repairing inconsistencies, and ultimately reporting on our evaluation. In particular:

1. we begin by briefly describing our implementation of the triple-ranking procedure (§ 6.4.1);

2. along the same lines as the classical reasoning implementation, we detail our distributed methods for

applying annotated reasoning (§ 6.4.2);

3. we sketch our algorithms for repairing inconsistencies using the annotations attached to facts (§ 6.4.3).

Each subsection concludes with evaluation over our Linked Data corpus.

6.4.1 Ranking Triples: Implementation/Evaluation

In this section, we briefly describe and evaluate our distributed methods for applying a PageRank-inspired

analysis of the data to derive rank annotations for facts in the corpus based on the source ranks calculated

in § 4.3, using the summation thereof outlined in § 6.2.3.

Distributed Ranking Implementation

Assuming that the sources ranks are available as a sorted file of context rank pairs of the form (c, r) (§ 4.3),

and that the input data are available pre-distributed over the slave machines and sorted by context (as per

§ 4.3), the distributed procedure (as per the framework in § 3.6) for calculating the triple ranks is fairly

straightforward:

1. run: each slave machine performs a merge-join over the ranks and its segment of the data (sorted by

context), propagating ranks of contexts to individual quadruples and outputing quintuples of the form

(s, p, o, c, r)—the ranked data are subsequently sorted by natural lexicographical order;

2. coordinate: each slave machine splits its segment of sorted ranked data by a hash-function (modulo

slave-machine count) on the subject position, with split fragments sent to a target slave machine; each

slave machine concurrently receives and stores split fragments from its peers;

3. run: each slave machine merge-sorts the subject-hashed fragments it received from its peers, summat-

ing the ranks for triples which appear in multiple contexts while streaming the data.

The result on each slave machine is a flat file of sorted quintuples of the form (s, p, o, c, r), where c denotes

context and r rank, and where ri = rj if (si, pi, oi) = (sj , pj , oj).

113

6.4. Annotated Linked Data Reasoning 114

Ranking Evaluation and Results

Firstly, from § 4.3, the source-level ranking takes 30.3 h. Thereafter, deriving the triple ranks takes 4.2 h,

with the bulk of time consumed as follows: (i) propagating source ranks to triples and hashing/coordinating

and sorting the initial ranked data by subject took 3 h; (ii) merge-sorting and aggregating the ranks for

triples took 1.2 h.

6.4.2 Reasoning: Implementation/Evaluation

Our annotated reasoning implementation closely follows the distributed classical reasoning approach (pre-

sented in § 5.4.1) where we again apply O2R∝A (§ 5.4.1): the A-linear subset of OWL 2 RL/RDF (listed

in Appendix B). Herein, we first recap the high-level distributed reasoning steps—discussing amendments

required for annotated reasoning—and subsequently present evaluation.

Distributed Implementation

As per § 6.3.6, we assume the threshold:

t := 〈>1,>2,⊥3〉 = 〈nb,a, 0〉

for our experiments. Thus, our reasoning task becomes optt(P). By Theorem 6.8, we can filter dominated

facts/rules; by Theorem 6.9, we can filter blacklisted or non-authoritative facts/rules when they are first

encountered.

Again, currently, we do not use the blacklisting annotation. In any case, assuming a threshold for non-

blacklisted annotations, blacklisted rules/facts in the program could simply be filtered in a pre-processing

step.

For the purposes of the authoritativeness annotation—and as per classical reasoning—the authority of

individual terms in ground T-atoms are computed during the T-Box extraction phase. This intermediary

term-level authority is then used by the master machine to annotate T-ground rules with the final authorita-

tive annotation. Recall that all initial ground facts and proper rules O2R∝A are annotated as authoritative,

and that only T-ground rules with non-empty ABody can be annotated as na, and subsequently that ground

atoms can only be annotated with na if produced by such a non-authoritative rule; thus, with respect to

our threshold t, we can immediately filter any T-ground rules annotated na from the assertional program—

thereafter, only a annotations can be encountered.

Thus, in practice, once blacklisted and non-authoritative facts/rules have been removed from the program,

we need only maintain ranking annotations: in fact, following the discussion of § 6.3.6 and the aforementioned

thresholding, we can extend the classical reasoning implementation in a straightforward manner.

As input, all O2R∝A axiomatic triples and meta-rules are annotated with > (the value 1). All other

ground facts in the corpus are pre-assigned a rank annotation by the links-based ranking procedure—we

assume that data (in the form of ranked quintuples containing the RDF triple, context, and rank) are

resident on the slave machines, and are hashed by subject and sorted by lexicographical order (as is the

direct result of the distributed ranking procedure in § 6.4.1). We can then apply the following distributed

approach to our annotated reasoning task, where we use ‘*’ to highlight tasks which are not required in the

classical (non-annotated) reasoning implementation of § 5.4.3:

1. run/gather: identify and separate out the annotated T-Box from the main corpus in parallel on the

slave machines, and subsequently merge the T-Box on the master machine;

2. run: apply axiomatic and “T-Box only” rules on the master machine, ground the T-atoms in rules with

114

6.4. Annotated Linked Data Reasoning 115

non-empty T-body/A-body (throwing away non-authoritative rules and dominated rank annotation

values) and build the linked annotated-rule index;

3. flood/run: send the linked annotated rule index to all slave machines, and reason over the main

corpus in parallel on each machine, producing an on-disk output of rank annotated facts;

4. coordinate:* redistribute the inferred data on the slave machines by hashing on subject, including

the T-Box reasoning results hitherto resident on the master machine;

5. run:* perform a parallel sort of the hashed/inferred data segments;

6. run:* filter any dominated facts using an on-disk merge-join of the sorted and ranked input and

inferred corpora, streaming the final output.

The first step involves extracting and reasoning over the rank-annotated T-Box. Terminological data are

extracted in parallel on the slave machines from the ranked corpus. These data are gathered onto the

master machine. Ranked axiomatic and terminological facts are used for annotated T-Box level reasoning:

internally, we store annotations using a map (alongside the triple store itself), and the semi-näıve evaluation

only considers unique or non-dominated annotated facts in the delta. Inferred annotations are computed

using the glb function as described in Definition 6.7.

Next, rules with non-empty ABody are T-ground. If TBody is not empty, the T-ground rule annotation is

again given by the glb aggregation of the T-ground instance annotations; otherwise, the annotation remains

>. The master machine creates a linked rule index for the assertional program and floods it to all slave

machines, who then begin reasoning.

Since our T-ground rules now only contain a single A-atom (as per the definition of O2R∝A, § 5.4.1),

during assertional reasoning, the glb function takes the annotation of the instance of the A-atom and the

annotation of the T-ground rule to produce the inferred annotation. For the purposes of duplicate removal,

our LRU cache again considers facts with dominated annotations as duplicate.

Finally, since our assertional reasoning procedure is not semi-näıve and can only perform partial duplicate

detection (as per § 5.2.1), we may have duplicates or dominated facts in the output (both locally and globally).

To ensure optimal output—and thus achieve optt(P)—we must finally apply the last three steps (marked

with an asterisk).14 We must split and coordinate the inferred data (by subject) across the slave machines

and subsequently sort these data in parallel—note that the input data are already split and sorted during

ranking, and we assume that the same split function and sorting is used for the inferred data. Subsequently,

each slave machine scans and merges the input and inferred data; during the scan, for removing dominated

annotations, each individual unique triple is kept in memory along with its highest annotation value, which

are output when the next triple group (or the end of the file) is encountered.

Reasoning Evaluation

We again apply our methods over nine machines: eight slave machines and one master machine. Note that we

do not merge rules since we want to avoid associating different atoms in the head with different annotations,

and we do not saturate rules. However, we do remove equivalent/dominated rules, and we again maintain a

linked rule index (as per § 5.3).

In total, the outlined distributed reasoning procedure—including aggregation of the final results—took

14.6 h. The bulk of time was consumed as follows: (i) extracting the T-Box in parallel took 51 min; (ii)

gathering the T-Box locally onto the master machine took 2 min; (iii) locally reasoning over the T-Box took

14One could use a similar approach for removing duplicates for the classical reasoning approach; similarly, one could consider

duplicate removal as unnecessary for certain use-cases.

115

6.4. Annotated Linked Data Reasoning 116

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 2.5e+008

 3e+008

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 in

pu
t/o

ut
pu

t s
ta

te
m

en
ts

 p
ro

ce
ss

ed

time elapsed in minutes

input
output (raw)

Figure 6.1: Input/output throughput during distributed assertional reasoning overlaid for each slave machine

14 min; (iv) locally grounding the T-atoms of the rules with non-empty ABody took 2 min; (v) parallel

assertional reasoning took 6 h; (vi) scattering the results of the T-Box reasoning from the master machine

to the slave machines took 3 min; (vii) sorting and coordinating the reasoned data by subject over the slave

machines took 4.6 h; (viii) aggregating the rank annotations for all triples to produce the final optimal output

(above the given threshold) took 2.7 h. Just over half of the total time is spent in the final aggregation of the

optimal reasoning output. Comparing the performance of the first five steps against their classical equivalent,

notably preparing the T-Box on the master machine took ∼60% longer, and assertional reasoning took ∼3×
longer; we will now look more in-depth at these sub-tasks.

In total, 1.1 million (∼0.1%) T-Box triples were extracted. T-Box level reasoning produced an additional

2.579 million statements. The average rank annotation of the input T-facts was 9.94 × 10−4, whereas the

average rank annotation of the reasoned T-facts was 3.67×10−5. Next, 291 thousand non-equivalent, optimal

T-ground rules were produced for the assertional program, within which, 1.655 million dependency links were

materialised.

In Figure 6.1, we overlay the input/output performance of each slave machine during the assertional

reasoning scan—notably, the profile of each machine is very similar. During assertional reasoning, 2.232

billion raw (authoritative) inferences were created, which were immediately filtered down to 1.879 billion

inferences by removing non-RDF and tautological triples—we see that 1.41×/1.68× (pre-/post-filtering)

more raw inferences are created than for the classical variation. Notably, the LRU cache detected and

filtered a total of 12.036 billion duplicate/dominated statements. Of the 1.879 billion inferences, 1.866 billion

(99.34%) inherited their annotation from an assertional fact (as opposed to a T-ground rule), seemingly since

terminological facts are generally more highly ranked by our approach than assertional facts (cf. Table 4.5).

In the final aggregation of rank annotations, from a total of 2.987 billion input/inferred statements,

1.889 billion (63.2%) unique and optimal triples were extracted; of the filtered, 1.008 billion (33.7%) were

116

6.4. Annotated Linked Data Reasoning 117

duplicates with the same annotation,15 89 million were (properly) dominated reasoned triples (2.9%), and

1.5 million (0.05%) were (properly) dominated asserted triples. The final average rank annotation for the

aggregated triples was 5.29× 10−7.

6.4.3 Repair: Implementation/Evaluation

In this section, we discuss our implementation for handling inconsistencies in the annotated corpus (including

asserted and reasoned data). We begin by describing our distributed approach to detect and extract sets of

annotated facts which together constitute an inconsistency (i.e., a constraint violation). We then continue

by discussing our approach to subsequently repair the annotated corpus.

Detecting Inconsistencies: Implementation

In Table B.6, we provide the list of OWL 2 RL/RDF constraint rules which we use to detect inconsistencies.

The observant reader will note that these rules require assertional joins (have mulitple A-atoms) which we

have thus far avoided in our approach. However, up to a point, we can leverage a similar algorithm to

that presented in the previous section for reasoning. First, we note that the rules are by their nature not

recursive (have empty heads). Second, we postulate that many of the ungrounded atoms will have a high

selectivity (have a low number of ground instances in the knowledge-base). In particular, if we assume that

only one atom in each constraint rule has a low selectivity, such rules are amenable to computation using

the partial-indexing approach: any atoms with high selectivity are ground in-memory to create a set of

(partially) grounded rules, which are subsequently flooded across all machines. Since the initial rules are

not recursive, the set of (partially) grounded rules remains static. Assuming that at most one atom has low

selectivity, we can efficiently apply our single-atom rules in a distributed scan as per the previous section.

However, the second assumption may not always hold: a constraint rule may contain more than one

low-selectivity atom. In this case, we manually apply a distributed on-disk merge-join operation to ground

the remaining atoms of such rules.

Note that during the T-Box extraction in the previous section, we additionally extract the T-atoms for

the constraint rules, and apply authoritative analysis analogously (see Example 6.9).

Thus, the distributed process for extracting constraint violations is as follows:

1. local: apply an authoritative T-grounding of the constraint rules in Table B.6 from the T-Box resident

on the master machine;

2. flood/run: flood the non-ground A-atoms in the T-ground constraints to all slave machines, which

extract the selectivity (number of ground instances) of each pattern for their segment of the corpus,

and locally buffer the instances to a separate corpus;

3. gather: gather and aggregate the selectivity information from the slave machines, and for each T-

ground constraint, identify A-atoms with a selectivity below a given threshold (in-memory capacity);

4. reason: for rules with zero or one low-selectivity A-atoms, run the distributed reasoning process

described previously, where the highly-selective A-atoms can be considered “honourary T-atoms”;

5. run(/coordinate): for any constraints with more than one low-selectivity A-atom, apply a manual

on-disk merge-join operation to complete the process.

The end result of this process is sets of annotated atoms constituting constraint violations distributed

across the slave machines.

15Note that this would include the 171 million duplicate asserted triples from the input.

117

6.4. Annotated Linked Data Reasoning 118

Listing 6.1: Strongest constraint violation

ABox Source - http://rdf.freebase.com/rdf/type/key/namespace

Annotation - <nb,a,0.001616>

(fb:type.key.namespace, fb:type.property.unique, "True"^^xsd:integer)

Detecting Inconsistencies: Evaluation

Distributed extraction of the inconsistencies from the aggregated annotated data took, in total, 2.9 h. Of

this: (i) 2.6 min were spent building the authoritative T-ground constraint rules from the local T-Box on

the master machine; (ii) 26.4 min were spent extracting—in parallel on the slave machines—the cardinalities

of the A-atoms of the T-ground constraint bodies from the aggregated corpus; (iii) 23.3 min were spent

extracting ground instances of the high-selectivity A-atoms from the slave machines; (iv) 2 h were spent

applying the partially-ground constraint rules in parallel on the slave machines.

In total, 301 thousand constraint violations were found; in Table 6.1, we give a breakdown showing the

number of T-ground rules generated, the number of total ground instances (constraint violations found),

and the total number of unique violations found (a constraint may fire more than once over the same data,

where for example in rule cax-dw, ?c1 and ?c2 can be ground interchangeably). Notably, the table is very

sparse: we highlight the constraints requiring new OWL 2 constructs in italics, where we posit that the

observable lack of OWL 2 constraint axioms (and the complete lack of violations) is perhaps due to the fact

that OWL 2 has not yet had enough time to gain traction on the Web (cf. Table 5.2). In fact, all of the

T-ground prp-irp and prp-asyp rules come from one document16, and all cax-adc T-ground rules come from

one directory of documents17. Further, the only two constraint rules with violations in our Linked Data

corpus were dt-not-type (97.6%) and cax-dw (2.4%).

Overall, the average violation rank degree was 1.19×10−7 (vs. an average rank-per-fact of 5.29×10−7 in

the aggregated corpus). The single strongest violation degree is given in Listing 6.1, where the constraint dt-

not-type—which checks for invalid datatype memberships—detects the term "True"^̂ xsd:integer as being

invalid. In fact, the document serving this triple is ranked 23rd overall out of our 3.915 million sources—

indeed, it seems that even highly ranked documents are prone to publishing errors and inconsistencies. Similar

inconsistencies were also found with similar strengths in other documents within the FreeBase domain.18

Thus, only a minute fraction (∼0.0006%) of our corpus is above the consistency threshold.

With respect to cax-dw, we give the top 10 pairs of disjoint classes in Table 6.2, where most are related

to FOAF. The single strongest violation degree for cax-dw is given in Listing 6.2, where we see that the

inconsistency is given by one document, and may be attributable to use of properties without verifying their

defined domain. Arguably, the entity kingdoms:Aa is unintentionally a member of both of the FOAF disjoint

classes, where the entity is explicitly a member of geospecies:KingdomConcept.

Taking a slightly different example, the cax-dw violation involving the strongest assertional fact is provided

in Listing 6.3, where we see a conflict between a statement asserted in thousands of documents, and a

statement inferable from a single document.

Of the cax-dw constraint violations, 3,848 (54.1%) involved two assertional facts with the same annotation

(such as in the former cax-dw example—likely stemming from the same assertional document). All of the

constraint violations were given by assertional data (i.e., an assertional fact represented the weakest element

of each violation).

16http://models.okkam.org/ENS-core-vocabulary#country_of_residence; retr. 2011/01/22
17http://ontologydesignpatterns.org/cp/owl/fsdas/; retr. 2011/01/22
18Between our crawl and time of writing, these errors have been fixed.

118

http://models.okkam.org/ENS-core-vocabulary#country_of_residence
http://ontologydesignpatterns.org/cp/owl/fsdas/

6.4. Annotated Linked Data Reasoning 119

Listing 6.2: Strongest multi-triple constraint violation

TBox Source - foaf: (amongst others)

Annotations - <nb,a,0.024901>

(foaf:primaryTopic, rdfs:domain, foaf:Document)

(foaf:Document, owl:disjointWith, foaf:Agent)

TBox Source - geospecies:

Annotation - <nb,a,0.000052>

(geospecies:hasWikipediaArticle, rdfs:domain, foaf:Person)

ABox Source - kingdoms:Aa?format=rdf

Annotations - <nb,a,0.000038>

(kingdoms:Aa, foaf:primaryTopic, kingdoms:Aa)

(kingdoms:Aa, geospecies:hasWikipediaArticle, wiki:Animal)

Violation

Annotations - <nb,a,0.000038>

(kingdoms:Aa, rdf:type, foaf:Document) # Inferred

(kingdoms:Aa, rdf:type, foaf:Person) # Inferred

Listing 6.3: cax-dw violation involving strongest assertional fact

TBox Source - foaf: (amongst others)

Annotations - <nb,a,0.024901>

(foaf:knows, rdfs:domain, foaf:Person)

(foaf:Organization, owl:disjointWith, foaf:Person)

Comment - dav:this refers to the company OpenLink Software

ABox Source - 5,549 documents including dav:

Annotation - <nb,a,0.000391>

(dav:this, rdf:type, foaf:Organization)

ABox Source - dav: (alone)

Annotation - <nb,a,0.000020>

(dav:this, foaf:knows, vperson:kidehen@openlinksw.com#this)

Violation

Annotation - <nb,a,0.000391>

(dav:this, rdf:type, foaf:Organization)

Annotation - <nb,a,0.000020>

(dav:this, rdf:type, foaf:Person) # Inferred

119

6.4. Annotated Linked Data Reasoning 120

Rule T-ground Violations
eq-diff1 – 0
eq-diff2 – 0
eq-diff3 – 0
eq-irp – 0
prp-irp 10 0
prp-asyp 9 0
prp-pdw 0 0
prp-adp 0 0
prp-npa1 – 0
prp-npa2 – 0
cls-nothing – 0
cls-com 14 0
cls-maxc1 0 0
cls-maxqc1 0 0
cls-maxqc2 0 0
cax-dw 1,772 7,114
cax-adc 232 0
dt-not-type – 294,422

Table 6.1: Number of T-ground rules, violations, and unique violations found for each OWL 2 RL/RDF
constraint rule—rules involving new OWL 2 constructs are italicised

Class 1 Class 2 Violations
1 foaf:Agent foaf:Document 3,842
2 foaf:Document foaf:Person 2,918
3 sioc:Container sioc:Item 128
4 foaf:Person foaf:Project 100
5 ecs:Group ecs:Individual 38
6 skos:Concept skos:Collection 36
7 foaf:Document foaf:Project 26
8 foaf:Organization foaf:Person 7
9 sioc:Community sioc:Item 3

10 ecs:Fax ecs:Telephone 3

Table 6.2: Top 10 disjoint-class pairs

Repairing Inconsistencies: Approach

Given a (potentially large) set of constraint violations, herein we sketch an approach for repairing the corpus

from which they were derived, such that the result of the repair is a consistent corpus as defined in § 6.3.7. In

particular, our repair strategy is contingent on the non-constraint rules containing only one atom in the body

(as is true for our assertional program).19 In particular, we reuse notions from the seminal work of Reiter

[1987] on diagnosing faulty systems.

For the moment—and unlike loosely related works on debugging unsatifiable concepts in OWL

terminologies—we only consider repair of assertional data: all of our constraints involve some assertional

data, and we consider terminological data as correct. Although this entails the possibility of removing atoms

above the degree of a particular violation in order to repair that violation, we recall from our empirical

19Note that a more detailed treatment of repairing inconsistencies on the Web is currently out of scope, and would deserve

a more dedicated analysis in future work. Herein, our aim is to sketch one particular approach feasible in our scenario.

120

6.4. Annotated Linked Data Reasoning 121

analysis that 99.34% of inferred annotations are derived from an assertional fact.20 Thus, we can reduce

our repair to being with respect to the T-ground program P = PC ∪ PR, where PC is the set of proper

T-ground constraint rules, and PR is the set of proper T-ground rules in the assertional program. Again,

given that each of our constraints requires assertional knowledge—i.e., that the T-ground program P only

contains proper constraint rules—P is necessarily consistent.

Moving forward, we introduce some necessary definitions adapted from [Reiter, 1987] for our scenario.

Firstly, we give:

The Principle of Parsimony: A diagnosis is a conjecture that some minimal set of components

are faulty.

—Reiter [1987]

This captures our aim to find a non-trivial (minimal) set of assertional facts which diagnose the inconsistency

of our model. Next, we define a conflict set which denotes a set of inconsistent facts, and give a minimal

conflict set which denotes the least set of facts which preserves an inconsistency with respect to a given

program P (note that we leave rule/fact annotations implicit in the notation):

Definition 6.13 (Conflict set) A conflict set is a Herbrand interpretation C = {F1, . . . , Fn} such that

P ∪ C is inconsistent.

Definition 6.14 (Minimal conflict set) A minimal conflict set is a Herbrand interpretation C =

{F1, . . . , Fn} such that P ∪ C is inconsistent, and for every C ′ ⊂ C, P ∪ C ′ is consistent.

Next, we define the notions of a hitting set and a minimal hitting set as follows:

Definition 6.15 (Hitting set) Let I = {I1, . . . , In} be a set of Herbrand interpretations, and H =

{F1, . . . , Fn} be a single Herbrand interpretation. Then, H is a hitting set for I iff for every Ij ∈ I,

H ∩ Ij 6= ∅.

Definition 6.16 (Minimal hitting set) A minimal hitting set for I is a hitting set H for I such that for

every H ′ ⊂ H, H ′ is not a hitting set for I.

Given a set of minimal conflict sets C, the set of corresponding minimal hitting sets H represents a set of

diagnoses thereof [Reiter, 1987]; selecting one such minimal hitting set and removing all of its members from

each set in C would resolve the inconsistency for each conflict set C ∈ C [Reiter, 1987].

This leaves three open questions: (i) how to compute the minimal conflict sets for our reasoned corpus;

(ii) how to compute and select an appropriate hitting set as the diagnosis of our inconsistent corpus; (iii)

how to repair our corpus with respect to the selected diagnosis.

Computing the (extended) minimal conflict sets

In order to compute the set of minimal conflict sets, we leverage the fact that the program PR does not

contain rules with multiple A-atoms in the body.

First, we must consider the fact that our corpus Γ already represents the least model of Γ∪PR and thus

define an extended minimal conflict set as follows:

20Note also that since our T-Box is also part of our A-Box, we may defeat facts which are terminological, but only based on

inferences possible through their assertional interpretation.

121

6.4. Annotated Linked Data Reasoning 122

Definition 6.17 (Extended minimal conflict set) Let Γ be a Herbrand model such that Γ = lm(Γ∪PR),

and let C = {F1, . . . , Fn}, C ⊆ Γ denote a minimal conflict set for Γ. Let

extend(F) = {F ′ ∈ Γ | F ∈ lm(PR ∪ {F ′})}

be the set of all facts in Γ from which some F can be derived wrt. the linear program PR (clearly F ∈
extend(F)). We define the extended minimal conflict set (EMCS) for C wrt. Γ and PR as a collection of

sets E = {extend(F) | F ∈ C}.

Thus, given a minimal conflict set, the extended minimal conflict set encodes choices of sets of facts that must

be removed from the corpus Γ to repair the violation, such that the original seed fact cannot subsequently

be re-derived by running the program PR over the reduced corpus. The concept of a (minimal) hitting set

for a collection of EMCSs follows naturally and similarly represents a diagnosis for the corpus Γ.

To derive the complete collection of ECMSs from our corpus, we sketch the following process. Firstly,

for each constraint violation detected, we create and load an initial (minimal) conflict set into memory; from

this, we create an extended version representing each member of the original conflict set (seed fact) by a

singleton in the extended set. (Internally, we use a map structure to map from facts to the extended set(s)

that contain it, or or course, null if no such conflict set exists). We then reapply PR over the corpus in

parallel, such that—here using notation which corresponds to Algorithm 5.1—for each input triple t being

reasoned over, for each member tδ of the subsequently inferred set Gn, if tδ is a member of an EMCS, we

add t to that EMCS.

Consequently, we populate the collection of EMCS, where removing all of the facts in one member of

each EMCS constitutes a repair (a diagnosis). With respect to distributed computation of the EMCSs, we

can run the procedure in parallel on the slave machines, and subsequently merge the results on the master

machine to derive the global collection of ECMSs for subsequent diagnosis.21

Preferential strategies for annotated diagnoses

Before we continue, we discuss two competing models for deciding an appropriate diagnosis for subsequent

reparation of the annotated corpus. Consider a set of violations that could be solved by means of removing

one ‘strong’ fact—e.g., a single fact associated with a highly-ranked document—or removing many weak

facts—e.g., a set of facts derived from a number of low-ranked documents: should one remove the strong fact

or the set of weak facts? Given that the answer is non-trivial, we identify two particular means of deciding

a suitable diagnosis: i.e., we identify the characteristics of an appropriate minimal hitting set with respect

to our annotations. Given any such quantitative strategies, selecting the most appropriate diagnosis then

becomes an optimisation problem.

Strategy 1 : we prefer a diagnosis which minimises the number of facts to be removed in the repair.

This can be applied independently of the annotation framework. However, this diagnosis strategy will often

lead to trivial decisions between elements of a minimal conflicting set with the same cardinality; also, we

deem this strategy to be vulnerable to spamming such that a malicious low-ranked document may publish a

number of facts which conflict and defeat a fact in a high-ranked document. Besides spamming, in our repair

process, it may also trivially favour, e.g., memberships of classes which are part of a deep class hierarchy

(the memberships of the super-classes would also need to be removed).

Strategy 2 : we prefer a diagnosis which minimises the strongest annotation to be removed in the repair.

This has the benefit of exploiting the granular information in the annotations, and being computable with

21Note in fact that instead of maintaining a set of ECMSs, to ensure a correct merge of ECMSs gathered from the slave

machines, we require an ordered sequence of conflict sets.

122

6.4. Annotated Linked Data Reasoning 123

the glb/lub functions defined in our annotation framework; however, for general annotations in the domain D

only a partial-ordering is defined, and so there may not exist an unambiguous strongest/weakest annotation—

in our case, with our predefined threshold removing blacklisted and non-authoritative inferences from the

corpus, we need only consider rank annotations for which a total-ordering is present. Also, this diagnosis

strategy may often lead to trivial decisions between elements of a minimal conflicting set with identical

annotations—in our case, most likely facts from the same document which we have seen to be a common

occurrence in our constraint violations (54.1% of the total raw cax-dw violations we empirically observe).

Strategy 3 : we prefer a diagnosis which minimises the total sum of the rank annotation involved in the

diagnosis. This, of course, is domain-specific and also falls outside of the general annotation framework, but

will likely lead to less trivial decisions between equally ‘strong’ diagnoses. In the näıve case, this strategy is

also vulnerable to spamming techniques, where one ‘weak’ document can make a large set of weak assertions

which culminate to defeat a ‘strong’ fact in a more trustworthy source.

In practice, we favour Strategy 2 as exploiting the additional information of the annotations and being

less vulnerable to spamming; when Strategy 2 is inconclusive, we resort to Strategy 3 as a more granular

method of preference, and thereafter if necessary to Strategy 1. If all preference orderings are inconclusive,

we then select an arbitrary syntactic ordering.

Going forward, we formalise a total ordering ≤I over a pair of (annotated) Herbrand interpretations

which denotes some ordering of preference of diagnoses based on the ‘strength’ of a set of facts—a stronger

set of facts (alternatively, a set which is less preferable to be removed) denotes a higher order. The particular

instantiation of this ordering depends on the repair strategy chosen, which may in turn depend on the specific

domain of annotation.

Towards giving our notion of ≤I , let I1 and I2 be two Herbrand interpretations with annotations from the

domain D, and let ≤D denote the partial-ordering defined for D. Starting with Strategy 2 —slightly abusing

notation—if lub({I1}) <D lub({I1}), then I1 <r I2; if lub({I1}) >D lub({I2}), then I1 >I I2; otherwise (if

lub({I1}) =D lub({I2}) or ≤D is undefined for I1,I2), we resort to Strategy 3 to order I1 and I2: we apply

a domain-specific “summation” of annotations (ranks) denoted ΣD and define the order of I1, I2 such that

if ΣD{I1} <D ΣD{I2}, then I1 <I I2, and so forth. If still equals (or uncomparable), we use the cardinality

of the sets, and thereafter consider an arbitrary syntactic order. Thus, sets are given in ascending order of

their single strongest fact (Strategy 2), followed by the order of their rank summation (Strategy 3), followed

by their cardinality (Strategy 1), followed by an arbitrary syntactic ordering. Note that I1 =I I2 iff I1 = I2.

Given ≤I , the functions maxI and minI follow naturally.

Computing and selecting an appropriate diagnosis

Given that we have ∼ 7× 103 non-trivial (extended) conflict sets—i.e., conflict sets with cardinality greater

than one—we would wisely wish to avoid materialising all 27×103

hitting sets. Similarly, we wish to avoid

expensive optimisation techniques [Stuckenschmidt, 2008] for deriving the minimal diagnosis with respect

to ≤I . Instead, we use a heuristic to materialise one hitting set which gives us an appropriate, but possibly

sub-optimal diagnosis. Our diagnosis is again a flat set of facts, which we denote by ∆.

First, to our diagnosis we immediately add the union of all members of singleton (trivial) EMCSs, where

these are necessarily part of any diagnosis. This would include, for example, all facts which must be removed

from the corpus to ensure that no violation of dt-not-type can remain or be re-derived in the corpus.

For the non-trivial EMCSs, we first define an ordering of conflict sets based on the annotations of its

members, and then cumulatively derive a diagnosis by means of a descending iteration of the ordered sets

For the ordered iteration of the ECMS collection, we must define a total ordering ≤E over E which directly

corresponds to minI(E1) ≤I minI(E2)—a comparison of the weakest set in both.

123

6.4. Annotated Linked Data Reasoning 124

We can then apply the following diagnosis strategy: iterate over E in descending order wrt. ≤E , such

that

∀E ∈ E , if @I ∈ E(I ⊆ ∆) then ∆ = ∆ ∪minI(E)

where after completing the iteration, the resulting ∆ represents our diagnosis. Note of course that ∆ may

not be optimal according to our strategy, but we leave further optimisation techniques for a later scope.

Repairing the corpus

Removing the diagnosis ∆ from the corpus Γ will lead to consistency in P ∪ (Γ \∆). However, we also wish

to remove the facts that are inferable through ∆ with respect to P , which we denote as ∆+. We also want

to identify facts in ∆+ which have alternative derivations from the non-diagnosed input data (Γraw \ ∆),

and include them in the repaired output, possibly with a weaker annotation: we denote this set of re-derived

facts as ∆−. Again, we sketch an approach contingent on P only containing proper rules with one atom in

the body.

First, we determine the set of statements inferable from the diagnosis, given as:

∆+ = lm(P ∪∆) \∆ .

Secondly, we scan the raw input corpus Γraw as follows. First, let ∆− := {}. Let

Γ�∆raw := {F :d ∈ Γraw | @d′(F :d′ ∈ ∆)}

denote the set of annotated facts in the raw input corpus not appearing in the diagnosis. Then, scanning

the raw input (ranked) data, for each Fi ∈ Γ�∆raw, let

δ−i := {F ′:d′ ∈ lm(P ∪ {Fi:di}) | ∃dx(F ′:dx ∈ ∆+),@dy ≥ d′(F ′:dy ∈ ∆−)}

denote the intersection of facts derivable from both Fi and ∆+ which are not dominated by a previous

rederivation; we apply ∆−i := max(∆−i−1∪δ
−
i), maintaining the dominant set of rederivations. After scanning

all raw input facts, the final result is ∆−:

∆− = max({F :d ∈ lm(P ∪ Γ�∆raw) | ∃d′(F :d′ ∈ ∆+)})

the dominant rederivations of facts in ∆+ from the non-diagnosed facts of the input corpus.

Finally, we scan the entire corpus Γ and buffer any facts not in ∆ ∪∆+ \∆− to the final output, and if

necessary, weaken the annotations of facts to align with ∆−.22

Distributed implementation

We briefly describe the distributed implementation as follows:

• gather: the set of conflict sets (constraint violations) detected in the previous stages of the process

are gathered onto the master machine;

• flood/run: the slave machines receive the conflict sets from the master machine and reapply the

(positive) T-ground program over the entire corpus; any triple involved in the inference of a member

22One may again note that if there are terminological facts in ∆, the T-Box inferences possible through these facts may

remain in the final corpus, even though the corpus is consistent; if required, removal of all such T-Box inferences would be

possible by rerunning the entire reasoning process over Γraw \∆—the repaired raw corpus.

124

6.5. Related Work 125

of a conflict set is added to an extended conflict set;

• gather: the respective extended conflict sets are merged on the master machine, and the sets are

ordered by ≤E and iterated over—the initial diagnosis ∆ is thus generated; the master machine applies

reasoning over ∆ to derive ∆+ and floods this set to the slave machines;

• flood/run: the slave machines rerun the reasoning over the input corpus to try to find alternate

(non-diagnosed) derivations for facts in ∆+ (which are added to ∆−);

• gather: the set of alternate derivations are gathered and aggregated on the master machine, which

prepares the final ∆− set (maintaining only dominant rederivations in the merge);

• flood/run: the slave machines accept the final diagnosis and scan the entire corpus again, buffering

a repaired (consistent) corpus.

Repair Evaluation

The total time taken for the distributed diagnosis and repair of the corpus was 2.82 h; the bulk of the time

was taken for (i) extracting the extended conflict sets from the input/inferred corpus on the slave machines

which took 24.5 min; (ii) deriving the alternate derivations ∆− over the input corpus which took 18.8 min;

(iii) repairing the corpus which took 1.94 h.23

The initial diagnosis over the extended conflict set contained 316,884 entries, and included 16,733 triples

added in the extension of the conflict set (triples which inferred a member of the original conflict set). 413,744

facts were inferable for this initial diagnosis, but alternate derivations were found for all but 101,018 (24.4%)

of these; additionally, 123 weaker derivations were found for triples in the initial diagnosis. Thus, the entire

repair involved removing 417,912 facts and weakening 123 annotations, touching upon 0.2% of the closed

corpus.

6.5 Related Work

In this section, we introduce related works in the area of (i) the field of annotated programs and annotated

reasoning (§ 6.5.1); and (ii) knowledge-base repair (§ 6.5.2).

6.5.1 Annotated Reasoning

Bistarelli et al. [2008] extend the Datalog language with weights that can represent metainformation relevant

to Trust Management systems, such as costs, preferences and trust levels associated to policies or credentials.

Weights are taken from a c-semiring where the two operations × and + are used, respectively, to compose

the weights associated to statements, and select the best derivation chain. Some example of c-semirings are

provided where weights assume the meaning of costs, probabilities and fuzzy values. In all of these examples,

the operator × is idempotent, so that the c-semiring induces a complete lattice where + is the lub and × is

the glb. In such cases, we can use opt(P) to support their proposed framework using our annotated programs.

The complexity of Weighted Datalog is just sketched—only decidability is proven. Scalability issues are not

tackled and no experimental results are provided.

Flouris et al. [2009] tackle the provenance of inferred RDF data by augmenting triples with a fourth

component named color, representing the collection of the different data sources used to derive a triple.

23Note that for the first two steps, we use an optimisation technique to skip reasoning over triples whose terms do not appear

in ∆ and ∆+ respectively.

125

6.5. Related Work 126

A binary operation + over colours forms a semigroup; the provenance of derived triples is the sum of

the provenance of the supporting triples. This framework can be simulated in our annotated programs by

adopting a flat lattice, where all the elements (representing different provenances) are mutually incomparable.

Then, for each derived atom, plain(P) collects all the provenances employed by Flouris et al. [2009]. Although

the complexity analysis yields an almost linear upper bound, no experimental results are provided.

Straccia [2010] present “SoftFacts”: a top-k retrieval engine which uses an ontological layer to offer ranked

results over a collection of databases—results may also be sourced from inferred knowledge. The database

stores annotated facts in the form of n-ary relations with an associated score in the range [0, 1]; the ontology

layer supports crisp axioms relating to class subsumption and intersection; then, an abstraction layer relates

concepts and relations to physical storage (database tables). The system handles conjunctive queries and

allows for various aggregation functions over ranking scores; top-k processing is optimised (in the absence of

aggregation functions) using their Disjunctive Thresholding Algorithm (DTA). However, their experiments

are limited to an ontology containing 5,115 axioms and 2,550, and data in the order of a hundred-thousand

relations.

Lopes et al. [2010a] present a general annotation framework for RDFS, together with AnQL: a query lan-

guage inspired by SPARQL which includes querying over annotations. Annotations are formalised in terms

of residuated bounded lattices, which can be specialised to represent different types of meta-information

(temporal constraints, fuzzy values, provenance etc.). A general deductive system—based on abstract al-

gebraic structures—has been provided and proven to be offer PTIME complexity. The Annotated RDFS

framework allows for representing a large spectrum of different meta-information. However, the framework

of Lopes et al. [2010a] is strictly anchored to RDFS, while our annotated programs are founded on OWL 2

RL/RDF and hence are transversal with respect to the underlying ontology language. Moreover, our results

place more emphasis on scalability.

6.5.2 Inconsistency Repair

Most legacy works in this area (e.g., see DION and MUPSter [Schlobach et al., 2007] and a repair tool

for unsatisifable concepts in Swoop [Kalyanpur et al., 2006]) focus on debugging singular OWL ontolo-

gies within a Description Logics formalism, in particular focussing on fixing terminologies (T-Boxes) which

include unsatisfiable concepts—not of themselves an inconsistency, but usually indicative of a modelling

error (termed incoherence) in the ontology. Such approaches usually rely on the extraction and analysis of

MUPs (Minimal Unsatisfiability Preserving Sub-terminologies) and MIPs (Minimal Incoherence Preserving

Sub-terminologies), usually to give feedback to the ontology editor during the modelling process. However,

these approaches again focus on debugging terminologies, and have been shown in theory and in practice

to be expensive to compute—please see [Stuckenschmidt, 2008] for a survey (and indeed critique) of such

approaches.

Ferrara et al. [2008] look at resolving inconsistencies brought about by possibly imprecise Description

Logics ontology mappings—in particular, fuzzy values are used to denote a degree of “confidence” in each

mapping. Mappings are then analysed in descending order of fuzzy confidence values, and are tested with

respect to an A-Box to see if they cause inconsistency; if so, the conditions of the inconsistency are used to

lower the mapping confidence by a certain degree. Further, they discuss conflict resolution, where two or

more competing mappings together cause inconsistency; they note that deciding which mappings to preserve

is non-trivial, but choose to adopt an approach which removes the (possibly strong) mappings causing the

most inconsistencies. Again, they seemingly focus on debugging and refining mappings between a small

number of (possibly complex and large) ontologies, and do not present any empirical evaluation.

126

6.6. Critical Discussion and Future Directions 127

6.6 Critical Discussion and Future Directions

In this chapter, we have given a comprehensive discourse on using annotations to track indicators of prove-

nance and trust during Linked Data reasoning. In particular, we track three dimensions of trust-/provenance-

related annotations for data: viz. (i) blacklisting ; (ii) authority ; and (iii) ranking. We presented a formal

annotated reasoning framework for tracking these dimensions of trust and provenance during the reasoning

procedure. We gave various formal properties of the program—some specific to our domain of annotation,

some not—which demonstrated desirable properties relating to termination, growth of the program, and

efficient implementation. Later, we provided a use-case for our annotations involving detection and repair

of inconsistencies. We presented implementation of our methods over a cluster of commodity hardware

and evaluated our techniques with respect to our large-scale Linked Data corpus. As such, we have looked

at non-trivial reasoning procedure which incorporates Linked Data principles, links-based analysis, anno-

tated logic programs, a subset of OWL 2 RL/RDF rules (including the oft overlooked constraint rules), and

inconsistency repair techniques, into a coherent system for scalable, distributed Linked Data reasoning.

However, we identify a number of current shortcomings in our approach which hint at possible future

directions.

Firstly, again we do not support rules with multiple A-atoms in the body—adding support for such rules

would imply a significant revision of our reasoning and inconsistency repair strategies.

Further, one may consider a much simpler approach for deriving ranked inferences: we could pre-filter

blacklisted data from our corpus, apply authoritative reasoning as per the previous chapter—and since our

assertional inferences can only be the result of one fact originating from one document—we can assign each

such inference the context of that document, and propagate ranks through to the inferred data accordingly;

however, we see the annotation framework as offering a more generic and extensible basis for tracking various

metainformation during reasoning, offering insights into the general conditions under which this can be done

in a scalable manner.

Along similar lines, by only considering the strongest evidence for a given derivation, we overlook the

(potentially substantial) cumulative evidence given by many weaker sources: although the ranking of our

input data reflects cumulative evidence, our annotated reasoning does not. However, looking at supporting

a cumulative aggregation of annotations raises a number of non-trivial questions with respect to scalability

and termination. Also, one may have to consider whether pieces of evidence are truly independent so as

to avoid considering the cumulative effect of different “expressions” of the same evidence—as per our input

ranking, this could perhaps be done based on the source of information.

With respect to Linked Data, we note that our inconsistency analysis may only be able to perceive a

small amount of the noise present in the input and inferred data. Informally, we believe that Linked Data

vocabularies are not sufficiently concerned with axiomatising common-sense constraints,24 particularly those

which are clear indicators of noise and are useful for detecting when unintended reasoning occurs—thus,

more granular (possibly domain specific or heuristic) means of diagnosing problems may be required.

Finally, given a sufficient means of identifying errors in the data, it would be interesting to investigate

alternative scalable repair strategies which maximise the utility of the resulting corpus to a consumer;

however, objectively evaluating the desirability of repairs is very much an open question, which may only

become answerable as Linked Data consumer applications (and their requirements) mature.

As the Web of Data expands and diversifies, we believe that the need for reasoning will grow more and

more apparent, as will the implied need for methods of handling and incorporating notions of trust and

24For example, since the time of our crawl, we notice that maintainers of the FOAF vocabulary have removed disjointness

constraints between foaf:Person/foaf:Agent and foaf:Document, citing possible examples where an individual could exist in

both classes. In our opinion, these axioms are (were) clear indicators of noise, which give automated reasoning processes useful

cues for problematic data to repair.

127

6.6. Critical Discussion and Future Directions 128

provenance which scale to large corpora, and which are tolerant to spamming and other malicious activity.

Although there is still much work to do, we feel that the research presented in this chapter offers significant

insights into how the Linked Data reasoning systems can profit from the more established area of General

Annotated Programs in order to handle issues relating to data quality and provenance in a scalable, domain-

independent, extensible and well-defined manner.

128

Chapter 7

Consolidation*

“You can know the name of a bird in all the languages of the world, but when you’re

finished, you’ll know absolutely nothing whatever about the bird... So let’s look at the

bird and see what it’s doing – that’s what counts. I learned very early the difference

between knowing the name of something and knowing something.”

—Richard Feynman

Thus far—and with the exception of (non-recursive) constraints—we have looked at applying reasoning

exclusively over rules which do not require assertional joins, citing computational expense and the potential

for quadratic or cubic growth in materialisation as reasons not to support a fuller profile of OWL 2 RL/RDF

rules. Along these lines, many of the optimised algorithms presented in the previous two chapters rely on

the supported rules containing, at most, one A-atom. However, almost all OWL 2 RL/RDF rules which

support the semantics of equality for resources (individuals) require the computation of assertional joins:

these include rules which can be used to ascertain equality and produce owl:sameAs relations (listed in

Table B.8; viz., prp-fp, prp-ifp, prp-key, cax-maxc2, cls-maxqc3, cls-maxqc4) and rules which axiomatise the

consequences of equality, including the transitivity, symmetry and reflexivity of the owl:sameAs relation, as

well as the semantics of replacement (listed in Table B.8; viz., eq-ref, eq-sym, eq-trans, eq-rep-s, eq-rep-p,

eq-rep-o).

As discussed in the introduction of this thesis (in particular, § 1.1.1), we expect a corpus, such as ours,

collected from millions of Web sources to feature significant coreference—use of different identifiers to signify

the same entity—where the knowledge contribution on that entity is fractured by the disparity in naming.

Consumers of such a corpus may struggle to achieve complete answer for their queries; again, consider a

simple example query:

What are the webpages related to Tim Berners-Lee?

Knowing that Tim uses the URI timblfoaf:i to refer to himself in his personal FOAF profile document,

and again knowing that the property foaf:page defines the relationship from resources to the documents

somehow concerning them, we can formulate the SPARQL query given in Listing 7.1.

However, other publishers use different URIs to identify Tim, where to get more complete answers

across these naming schemes, the SPARQL query must (as per the example at the outset of Chapter 5) use

disjunctive UNION clauses for each known URI; we give an example in Listing 7.2 using identifiers from our

Linked Data corpus.

*Parts of this chapter have been published as [Hogan et al., 2009b, 2010d] with newer results submitted for review as [Hogan

et al., 2010b,e].

129

130

Listing 7.1: Simple query for pages relating to Tim Berners-Lee

SELECT ?page

WHERE {

timblfoaf:i foaf:page ?page .

}

Listing 7.2: Extended query for pages relating to Tim Berners-Lee (sic.)

SELECT ?page

WHERE {

UNION { timblfoaf:i foaf:page ?page . }

UNION { identicauser:45563 foaf:page ?page . }

UNION { dbpedia:Berners-Lee foaf:page ?page . }

UNION { dbpedia:Dr._Tim_Berners-Lee foaf:page ?page . }

UNION { dbpedia:Dr._Tim_Berners_Lee foaf:page ?page . }

UNION { dbpedia:Sir_Timothy_John_Berners-Lee foaf:page ?page . }

UNION { dbpedia:Tim-Berners_Lee foaf:page ?page . }

UNION { dbpedia:TimBL foaf:page ?page . }

UNION { dbpedia:Tim_Berners-Lee foaf:page ?page . }

UNION { dbpedia:Tim_Bernes-Lee foaf:page ?page . }

UNION { dbpedia:Tim_Bernes_Lee foaf:page ?page . }

UNION { dbpedia:Tim_Burners_Lee foaf:page ?page . }

UNION { dbpedia:Tim_berners-lee foaf:page ?page . }

UNION { dbpedia:Timbl foaf:page ?page . }

UNION { dbpedia:Timothy_Berners-Lee foaf:page ?page . }

UNION { dbpedia:Timothy_John_Berners-Lee foaf:page ?page . }

UNION { yago:Tim_Berners-Lee foaf:page ?page . }

UNION { fb:en.tim_berners-lee foaf:page ?page . }

UNION { fb:guid.9202a8c04000641f800000000003b0a foaf:page ?page . }

UNION { swid:Tim_Berners-Lee foaf:page ?page . }

UNION { dblp:100007 foaf:page ?page . }

UNION { avtimbl:me foaf:page ?page . }

UNION { bmpersons:Tim+Berners-Lee foaf:page ?page . }

...

}

In this example, we use (a subset of) real coreferent identifiers for Tim Berners-Lee taken from Linked Data,

where we see disparate URIs not only across data publishers, but also within the same namespace. Thus

(again), the expanded query quickly becomes extremely cumbersome.1

In this chapter, we look at bespoke methods for identifying and processing coreference in a manner such

that the resultant corpus can be consumed as if more complete agreement on URIs was present; in other

words, using standard query-answering techniques, we want the enhanced corpus to return the same answers

for the original simple query as for the latter expanded query.

Towards this goal, we identify three high-level steps:2

1Combined with the terminological permuations for foaf:page exemplified at the outset of Chapter 5—and considering

additional hetereogeneous query patterns such as rdfs:label—this query quickly demonstrates the difficulty of achieving a

comprehensive set of answers over the raw corpus without reasoning. Also, such examples suggest that näıve query rewriting

methods may struggle for large, heterogeneous Linked Data corpora such as ours.
2We note that in theory, disambiguation should come before canonicalisation—one finalises the coreference information

before applying canonicalisation so as to avoid having to later revert parts of this process—however, in practice, our current

disambiguation techniques can only be applied over canonicalised data.

130

131

1. determine coreference between identifiers (i.e., equivalence between resources);

2. canonicalise coreferent identifiers in the corpus;

3. disambiguate by identifying and repairing problematic coreference (e.g., as caused by noisy data),

subsequently reverting canonicalisation where appropriate.

For determining coreference, we will rely on (i) explicit owl:sameAs information provided by publishers, and

(ii) owl:sameAs information additionally inferable through OWL 2 RL/RDF rules; thus, our coreference is

correct (but incomplete) with respect to the semantics of the data. However, given the nature of our corpus,

we realise that some subset of this coreference information may be attributable to noise, näıve publishing,

etc.; thus we include (iii) a disambiguation step to try and pinpoint potentially unintended coreference.

Along these lines, we identify the following requirements for this task in our given scenario:

• the component must give high precision of consolidated results;

• the underlying algorithm(s) must be scalable;

• the approach must be fully automatic;

• the methods must be domain agnostic;

where a component with poor precision will lead to a garbled canonicalised corpus merging disparate entities,

where scalability is required to apply the process over our corpora typically in the order of a billion statements,

where the scale of the corpora under analysis precludes any manual intervention, and where—for the purposes

of the presented thesis at least—the methods should not give preferential treatment to any domain or

vocabulary of data (other than core RDF(S)/OWL terms). Alongside these primary requirements, we also

identify the following secondary criteria:

• the analysis should demonstrate high recall;

• the underlying algorithm(s) should be efficient;

where the consolidation component should identify as many (correct) equivalences as possible, and where the

algorithm should be applicable in reasonable time. Clearly the secondary requirements are also important,

but they are superceded by those given earlier, where a certain trade-off exists: we prefer a system which

gives a high percentage of correct results and leads to a clean consolidated corpus over an approach which

gives a higher percentage of consolidated results but leads to a partially garbled corpus; similarly, we prefer

a system which can handle more data (is more scalable), but may possibly have a lower throughput (is less

efficient).

Along these lines, in this chapter we look at methods for scalable, precise, automatic and domain-agnostic

entity consolidation over large, static Linked Data corpora. Following the precedent (and rationale) laid out

in previous chapters, in order to make our methods scalable, we avoid dynamic on-disk index structures and

instead opt for algorithms which rely on sequential on-disk reads/writes of compressed flat files, again using

operations such as scans, external sorts, merge-joins, and only light-weight or non-critical in-memory indices.

In order to make our methods efficient, we again demonstrate distributed implementations of our methods

over a cluster of shared-nothing commodity hardware, where our algorithms attempt to maximise the portion

of time spent in embarrassingly parallel execution—i.e., parallel, independent computation without need for

inter-machine coordination. In order to make our methods domain-agnostic and fully-automatic, we exploit

the generic formal semantics of the data described in RDF(S)/OWL and also, generic statistics derivable

from the corpus. In order to achieve high recall, we attempt to exploit—insofar as possible—both the

131

7.1. OWL Equality Semantics 132

formal semantics and the statistics derivable from the corpus to identify equivalent entities. Aiming at

high precision, we introduce methods which again exploit the semantics and statistics of the data, but to

conversely disambiguate entities—to defeat equivalences found in the previous step which are unlikely to be

true according to some criteria.

In particular, in this chapter, we:

• discuss aspects of the OWL semantics relating to equality (§ 7.1);

• characterise our evaluation corpus with respect to the (re)use of identifiers across sources (§ 7.2);

• describe and evaluate our distributed base-line approach for consolidation which leverages explicit

owl:sameAs relations (§ 7.3);

• describe and evaluate a distributed approach which extends consolidation to consider richer features

of the OWL semantics useful for consolidation (§ 7.4);

• present a distributed algorithm for determining a form of weighted similarity—which we call concur-

rence—between entities using statistical analysis of predicates in the corpus (§ 7.5/§ D);

• present a distributed approach to disambiguate entities—i.e., detect coreference which is likely to be

erroneous—combining the semantics and statistics derivable from the corpus (§ 7.6);

• render related work (§ 7.7);

• conclude the chapter with discussion (§ 7.8).

Note that we wish to decouple reasoning and consolidation, where a consumer may require using either

or both, depending on the scenario; thus, in this chapter, although we incorporate reasoning techniques from

Chapter 5, we assume that consolidation is to be applied directly over the input corpus as produced by the

crawler. The same methods can be analogously applied over the merge of the (annotated) input and inferred

data (as required).

7.1 OWL Equality Semantics

OWL 2 RL/RDF rules [Grau et al., 2009] support a partial-axiomatisation of the OWL 2 RDF-Based

Semantics of equality, where equality between two resources is denoted by an owl:sameAs relation.

Firstly, in Table B.8, we provide the rules which use terminological knowledge (alongside assertional

knowledge) to directly infer owl:sameAs relations (viz., prp-fp, prp-ifp, prp-key , cax-maxc2, cls-maxqc3 , cls-

maxqc4); we identify rules which require new OWL 2 constructs by italicising the rule label. We note that

applying these rules in isolation may not be sufficient to derive a complete set of owl:sameAs relations: the

bodies of such rules may be (partially) instantiated by inferred facts, such that data inferred through the

reasoning techniques described in the previous two chapters may (typically indirectly) lead to the derivation

of new owl:sameAs data. This will be further discussed in § 7.4.

In this chapter, we will again use the constraint rules for finding inconsistencies (enumerated in Table B.6),

in this case to detect possible incorrect coreference; for example, OWL allows for asserting inequality be-

tween resources through the owl:differentFrom relation, which can be used to disavow coreference: when

owl:sameAs and owl:differentFrom coincide, we err on the side of caution, favouring the latter rela-

tion and revising the pertinent coreference. Similarly, when coreference is found to be the cause of novel

inconsistency—what we call unsatisfiable coreference—we cautiously repair the equality relationships in-

volved. This process will be discussed further in § 7.6.

132

7.2. Corpus: Naming Across Sources 133

In Table B.7, we provide the set of rules which support the (positive) semantics of owl:sameAs, axioma-

tising the reflexivity (eq-ref), symmetry (eq-sym) and transitivity (eq-trans) of the relation, as well as support

for the semantics of replacement (eq-rep-*). Note that we (optionally, and in the case of later evaluation) do

not support eq-ref or eq-rep-p, and provide only partial support for eq-rep-o: (i) although eq-ref will lead to

a large bulk of materialised reflexive owl:sameAs statements, it is not difficult to see that such statements

will not lead to any consolidation or other non-reflexive equality relations; (ii) given that we operate over

unverified Web data—and indeed that there is much noise present in such data—we do not want possibly

imprecise equality relations to affect predicates of triples, where we support inferencing on such “termino-

logical positions” using the reasoning techniques of the previous chapter (we assume that the more specific

owl:equivalentProperty relation is used to denote equality between properties); (iii) for similar reasons,

we do not support replacement for terms in the object position of rdf:type triples (we assume that the more

specific owl:equivalentClass relation is used to denote equality between classes, in line with the spirit of

punning [Golbreich and Wallace, 2009]). Finally, herein we do not consider consolidation of literals; one may

consider useful applications, such as for canonicalising datatype literals (e.g., canonicalising literals such as

"1.0"^̂ xsd:decimal and "1"^̂ xsd:integer which have the same data value, as per OWL 2 RL/RDF rule

dt-eq), but such discussion is out of the current scope where we instead focus on finding coreference between

(skolem) blank-node and URI identifiers which (in our scenario) are directly referent to entities.

Given that the semantics of equality is quadratic with respect to the assertional data, we apply a partial-

materialisation approach which gives our notion of consolidation—instead of materialising all possible infer-

ences given by the semantics of replacement, we instead choose one canonical identifier to represent the set

of equivalent terms. We have used this approach in previous works [Hogan et al., 2007a, 2009b, 2010b], and

it has also appeared in related works in the literature [Kiryakov et al., 2009; Urbani et al., 2010; Kolovski

et al., 2010; Bishop et al., 2011], as a common-sense optimisation for handling data-level equality. To take

an example, in previous works [Hogan et al., 2007a] we found a valid equivalence class (a set of coreferent

identifiers) with 32,390 members; materialising all non-reflexive owl:sameAs statements would infer more

than 1 billion owl:sameAs relations (32,3902 - 32,390 = 1,049,079,710); further assuming that each entity

appeared in, on average, two quadruples, we would infer an additional ∼2 billion statements of massively

duplicated data.

Note that although we only perform partial materialisation—and with the exception of not supporting

eq-ref-p and only partially supporting eq-rep-o—we do not change the semantics of equality: alongside the

partially materialised data, we provide a set of consolidated owl:sameAs relations (containing all of the

identifiers in each equivalence class) which can be used to “backward-chain” the full inferences possible

through replacement (as required).3 Thus, we do not consider the chosen canonical identifier as somehow

‘definitive’ or superceding the other identifiers, but merely consider it as representing the equivalence class.

7.2 Corpus: Naming Across Sources

We now briefly characterise our corpus with respect to the usage of identifiers across data sources, thus

rendering a picture of the morphology of the data which are subject to our consolidation approach. Again,

since we do not consider the consolidation of literals or schema-level concepts, we focus on surveying the

use of terms in a data-level position: viz., non-literal terms in the subject position, or in the object position

of non-rdf:type triples, which typically denote individuals (as opposed to terms in the predicate position

or object position of rdf:type triples which refer to properties and classes respectively—instead, please see

3With respect to eq-ref, one can consider fairly trivial backward-chaining (or query-time) support for said semantics.

133

7.2. Corpus: Naming Across Sources 134

§ 4.2.2 for statistics on these latter two categories of terms).4

We found 286.3 million unique terms, of which 165.4 million (57.8%) were blank-nodes, 92.1 million

(32.2%) were URIs, and 28.9 million (10%) were literals. With respect to literals, each had on average 9.473

data-level occurrences (by definition, all in the object position).

With respect to blank-nodes—which, by definition, cannot be reused across documents (§ 3.1)—each

had on average 5.233 data-level occurrences. Each occurred on average 0.995 times in the object position

of a non-rdf:type triple, with 3.1 million (1.87%) not occurring in the object position; conversely, each

blank-node occurred on average 4.239 times in the subject position of a triple, with 69 thousand (0.04%) not

occurring in the subject position.5 Thus, we surmise that almost all blank-nodes appear in both the subject

position and object position, but occur most prevalently in the former.

With respect to URIs, each had on average 9.41 data-level occurrences (1.8× the average for blank-nodes),

with 4.399 average appearances in the subject position and 5.01 appearances in the object position—19.85

million (21.55%) did not appear in an object position, whilst 57.91 million (62.88%) did not appear in a

subject position.

With respect to reuse across sources, each URI had a data-level occurrence in, on average, 4.7 documents,

and 1.008 PLDs—56.2 million (61.02%) of URIs appeared in only one document, and 91.3 million (99.13%)

only appeared in one PLD. Also, reuse of URIs across documents was heavily weighted in favour of use in

the object position: URIs appeared in the subject position in, on average, 1.061 documents and 0.346 PLDs;

for the object position of non-rdf:type triples, URIs occurred in, on average, 3.996 documents and 0.727

PLDs.

The URI with the most data-level occurrences (1.66 million) was http://identi.ca/, which refers to

the homepage of an open-source micro-blogging platform, and which is commonly given as a value for

foaf:accountServiceHomepage. The URI with the most reuse across documents (appearing in 179.3 thou-

sand documents) was http://creativecommons.org/licenses/by/3.0/, which refers to the Creative Commons At-

tribution 3.0 licence, and which is commonly used (in various domains) as a value for various licensing

properties, such as dct:license, dc:rights, cc:license, mo:license, wrcc:licence, etc. The URI with

the most reuse across PLDs (appearing in 80 different domains) was http://www.ldodds.com/foaf/foaf-a-matic,

which refers to an online application for generating FOAF profiles, and which featured most commonly as

a value for admin:generatorAgent in such FOAF profiles. Although some URIs do enjoy widespread reuse

across different documents and domains, in Figures 7.1 and 7.2 we give the distribution of reuse of URIs

across documents and across PLDs, where a power-law relationship is roughly evident—again, the majority

of URIs only appear in one document (61%) or in one PLD (99%).

From this analysis, we can conclude that with respect to data-level terms in our corpus:

• blank-nodes—which by their very nature cannot be reused across documents—are 1.8× more prevalent

than URIs;

• despite a smaller number of unique URIs, each one is used in (probably coincidentally) on average 1.8×
more triples than as for blank-nodes;

• unlike blank-nodes, URIs commonly only appear in either a subject position or an object position;

• each URI is reused in, on average, 4.7 documents, but usually only within the same domain—most

external reuse is in the object position of a triple;

4It’s worth noting that we may consolidate identifiers in terminological positions, such as the subject and/or object of

rdfs:subClassOf relations. However, when needed, we always source terminological data from the unconsolidated corpus to

ensure that it is unaffected by the consolidation process.
5We note that in RDF/XML syntax—essentially a tree-based syntax—unless rdf:nodeID is used, blank-nodes can only ever

occur once in the object position of a triple, but can occur multiple times in the subject position.

134

http://identi.ca/
http://creativecommons.org/licenses/by/3.0/
http://www.ldodds.com/foaf/foaf-a-matic

7.3. Base-line Consolidation 135

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1 10 100 1000 10000 100000 1e+006

nu
m

be
r

of
 U

R
Is

number of documents mentioning URI

Figure 7.1: Distribution of URIs and the number of
documents they appear in (in a data-position)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1 10 100

nu
m

be
r

of
 U

R
Is

number of PLDs mentioning URI

Figure 7.2: Distribution of URIs and the number of
PLDs they appear in (in a data-position)

• 67.1% of URIs appear in only one document, and 99% of URIs appear in only one PLD.

We can conclude that within our Linked Data corpus, there is only sparse reuse of data-level terms across

sources, and particularly across domains.

7.3 Base-line Consolidation

We now present the “base-line” algorithm for consolidation which leverages only those owl:sameAs relations

which are explicitly asserted in the data.

7.3.1 High-level approach

The approach is straightforward:

1. scan the corpus and separate out all asserted owl:sameAs relations from the main body of the corpus;

2. load these relations into an in-memory index, which encodes the transitive and symmetric semantics

of owl:sameAs;

3. for each equivalence class in the index, choose a canonical term;

4. scan the corpus again, canonicalising non-literal terms in the subject position or object position of a

non-rdf:type triple.

Thus, we need only index a small subset of the corpus—11.93 million statements (1.1%) with the predicate

owl:sameAs—and can apply consolidation by means of two scans. The non-trivial aspects of the algorithm

are given by the in-memory equality index: we provide the details in Algorithm 7.1, where we use a map

which stores a term (involved in a non-reflexive equality relation) as key, and stores a flat set of equivalent

terms (of which the key is a member) as value—thus, we can perform a lookup of any term and retrieve the

set of equivalent terms given by the owl:sameAs corpus.

With respect to choosing a canonical term, we prefer URIs over blank-nodes, thereafter choosing the

term with the lowest lexical ordering:

135

7.3. Base-line Consolidation 136

Algorithm 7.1: Building equivalence map

Require: SameAs Data (On-Disk): SA

1: map := {}
2: for all t ∈ SA do
3: Eqs := map.get(t.s) /* t.s denotes the subject of triple t */
4: if Eqs = ∅ then
5: Eqs := {s}
6: end if
7: Eqo := map.get(t.o) /* t.o denotes the object of triple t */
8: if Eqo = ∅ then
9: Eqo := {o}

10: end if
11: if Eqs 6= Eqo then
12: Eqs∪o := Eqs ∪ Eqo
13: for e ∈ Eqs∪o do
14: map.put(e, Eqs∪o)
15: end for
16: end if

17: end for

Definition 7.1 (Canonical Ordering) Let ≤l denote the total lexical ordering defined (independently)

over the set U and over the set B, and let ci, cj ∈ U ∪ B. Now, we define the canonical ordering as a total

order over the set U ∪ B—denoted ≤c—such that:

ci <c cj ⇔ (ci ∈ U, cj ∈ B) ∨
(
(ci, cj ∈ U ∨ ci, cj ∈ B) ∧ ci <l cj

)
,

ci =c cj ⇔ (ci, cj ∈ U ∨ ci, cj ∈ B) ∧ ci =l cj .

We then define the canonical function—denoted by can—as:

can : 2U∪B → U ∪ B ,

C 7→ c s.t. ∀ci ∈ C : ci ≥c c ,

which returns the lowest canonically-ordered element from a set of URIs and blank-nodes; we call the result

the canonical identifier of that set.

We use this ordering to assign a canonical identifier to each equivalence class indexed by Algorithm 7.1.

Once the equivalence index has been finalised, we rescan the corpus and canonicalise the data as per Algo-

rithm 7.2. (Note that in practice, all Eqx are pre-sorted according to ≤c such that to derive can(Eqx), we

need only poll the first element of the set.)

7.3.2 Distributed approach

Again, distribution of the approach is fairly straightforward, as follows:

1. run: scan the distributed corpus (split over the slave machines) in parallel to extract triples with

owl:sameAs as predicate;

2. gather: gather all owl:sameAs relations onto the master machine, and build the in-memory equivalence

map;

3. flood/run: send the equivalence map (in its entirety) to each slave machine, and apply the consoli-

dation scan in parallel.

As we will see in the next section, the most expensive methods—involving the two scans of the main corpus—

can be conducted in parallel.

136

7.3. Base-line Consolidation 137

Algorithm 7.2: Canonicalising input data

Require: Input Corpus (On-Disk): IN

Require: Output (On-Disk): OUT

Require: Equivalence Map: map /* from Algorithm 7.1 */
1: for all t ∈ IN do
2: t′ := t
3: Eqs := map.get(t.s) /* t.s, t.p, t.o denote subject, predicate & object of t resp. */
4: if Eqs 6= ∅ then
5: t′.s := can(Eqs)
6: end if
7: if t.p 6= rdf:type ∧ t.o /∈ L then
8: Eqo := map.get(t.o)
9: if Eqo 6= ∅ then

10: t′.o := can(Eqo)
11: end if
12: end if
13: output t′ to OUT

14: end for

7.3.3 Performance Evaluation

As per the introduction of this chapter, we apply consolidation over the raw, pre-distributed corpus (as

directly produced by the crawler in Chapter 4). We again use eight slave machines and one master machine.

The entire consolidation process took 63.3 min, with the bulk of time taken as follows: the first scan

extracting owl:sameAs statements took 12.5 min, with an average idle time for the servers of 11 s (1.4%)—

i.e., on average, the slave machines spent 1.4% of the time idly waiting for peers to finish. Transferring,

aggregating and loading the owl:sameAs statements on the master machine took 8.4 min. The second scan

rewriting the data according to the canonical identifiers took in total 42.3 min, with an average idle time of

64.7 s (2.5%) for each machine at the end of the round. The slower time for the second round is attributable

to the extra overhead of rewriting the data to disk, as opposed to just reading.

In Table 7.1, we give a breakdown of the timing for the tasks. Of course, please note that the percentages

are a function of the number of machines where, e.g., a higher number of slave machines will correspond

to a higher percentage of time on the master machine. However, independent of the number of slaves, we

note that the master machine required 8.5 min for coordinating globally-required owl:sameAs knowledge,

and that the rest of the task time is spent in embarrassingly parallel execution (amenable to reduction by

increasing the number of machines). For our setup, the slave machines were kept busy for, on average, 84.6%

of the total task time; of the idle time, 87% was spent waiting for the master to coordinate the owl:sameAs

data, and 13% was spent waiting for peers to finish their task due to sub-optimal load balancing. The master

machine spent 86.6% of the task idle waiting for the slaves to finish.

7.3.4 Results Evaluation

We extracted 11.93 million raw owl:sameAs statements, forming 2.16 million equivalence classes mentioning

5.75 million terms (6.24% of URIs)—an average of 2.65 elements per equivalence class. Of the 5.75 million

terms, only 4,156 were blank-nodes. Figure 7.3 presents the distribution of sizes of the equivalence classes,

where in particular we note that 1.6 million (74.1%) equivalence classes contain the minimum two equivalent

identifiers.

Table 7.2 lists the canonical URIs for the largest 5 equivalence classes, where the largest class contained

8,481 equivalent terms; we also indicate whether or not the results were verified as correct/incorrect by

137

7.3. Base-line Consolidation 138

Category min % Total
Total execution time 63.3 100

Master (Local)
Executing 8.5 13.4
Aggregating owl:sameAs 8.4 13.3
Miscellaneous 0.1 0.1
Idle (waiting for slaves) 54.8 86.6

Slave (Parallel)
Avg. Executing (total) 53.5 84.6
Extract owl:sameAs 12.3 19.5
Consolidate 41.2 65.1
Avg. Idle 9.8 15.4
Waiting for peers 1.3 2
Waiting for master 8.5 13.4

Table 7.1: Breakdown of timing of distributed baseline consolidation

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 10 100 1000 10000

nu
m

be
r

of
 c

la
ss

es

equivalence class size

Figure 7.3: Distribution of sizes of equivalence classes
on log/log scale

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 10 100

nu
m

be
r

of
 c

la
ss

es

number of PLDs in equivalence class

Figure 7.4: Distribution of the number of PLDs per
equivalence class on log/log scale

manual inspection. Indeed, we deemed classes (1) and (2) to be incorrect, due to over-use of owl:sameAs for

linking drug-related entities in the DailyMed and LinkedCT exporters. Results (3) and (5) were verified as

correct consolidation of prominent Semantic Web related authors—respectively, Dieter Fensel and Rudi

Studer—where authors are given many duplicate URIs by the RKBExplorer coreference index.6 Result

(4) contained URIs from various sites generally referring to the United States, mostly from DBPedia and

LastFM. With respect to the DBPedia URIs, these (i) were equivalent but for capitilisation variations or

stop-words, (ii) were variations of abbreviations or valid synonyms, (iii) were different language versions

(e.g., dbpedia:États Unis), (iv) were nicknames (e.g., dbpedia:Yankee land), (v) were related but not

equivalent (e.g., dbpedia:American Civilization), (vi) were just noise (e.g., dbpedia:LOL Dean).7

It is important to note that the largest equivalence classes are not a fair sample of the accuracy of

6For example, see the coreference results given by http://www.rkbexplorer.com/sameAs/?uri=http://acm.rkbexplorer.com/id/

person-53292-22877d02973d0d01e8f29c7113776e7e (retr. 2010/09/14), which at the time of writing correspond to 436 out of the 443

equivalent URIs found for Dieter Fensel.
7Similar examples for problematic owl:sameAs relations from the DBPedia exporter are given by Halpin et al. [2010a].

138

http://www.rkbexplorer.com/sameAs/?uri=http://acm.rkbexplorer.com/id/person-53292-22877d02973d0d01e8f29c7113776e7e
http://www.rkbexplorer.com/sameAs/?uri=http://acm.rkbexplorer.com/id/person-53292-22877d02973d0d01e8f29c7113776e7e

7.4. Extended Reasoning Consolidation 139

Canonical Term (Lexically Lowest in Equivalence Class) Size OK?

1 http://bio2rdf.org/dailymed_drugs:1000 8,481 X
2 http://bio2rdf.org/dailymed_drugs:1042 800 X
3 http://acm.rkbexplorer.com/id/person-53292-22877d02973d0d01e8f29c7113776e7e 443 X
4 http://agame2teach.com/#ddb61cae0e083f705f65944cc3bb3968ce3f3ab59-ge_1 353 X/X
5 http://acm.rkbexplorer.com/id/person-236166-1b4ef5fdf4a5216256064c45a8923bc9 316 X

Table 7.2: Largest 5 equivalence classes

PLD PLD Relations
1 rdfize.com uriburner.com 506,623
2 dbpedia.org freebase.com 187,054
3 bio2rdf.org purl.org 185,392
4 info:lc/authorities8 loc.gov 166,650
5 l3s.de rkbexplorer.com 125,842
6 bibsonomy.org l3s.de 125,832
7 bibsonomy.org rkbexplorer.com 125,830
8 dbpedia.org mpii.de 99,827
9 freebase.com mpii.de 89,610

10 dbpedia.org umbel.org 65,565

Table 7.3: Top 10 PLD pairs co-occurring in the equivalence classes, with number of equivalence classes
they co-occur in

consolidation by explicit owl:sameAs: we conjecture that given some source of noise which incorrectly

asserts coreference between individuals—for example, overly liberal use of owl:sameAs—the transitive and

symmetric nature of equality will ensure that the problematic equivalence class “snowballs” and grows

relatively large, drawing together all resources which are (possibly indirectly) connected by coreference due

to such noise. Along these lines, we also randomly sampled 100 equivalent sets and manually checked for

errors based on label (as an intuitive idea of what the identifier refers to) and type. We verified that all 100

were correct (or, more accurately, were not obviously incorrect).9

In Table 7.3, we give the most frequently co-occurring PLD-pairs in our equivalence classes, where datasets

resident on these domains are “heavily” interlinked with owl:sameAs relations.

With respect to consolidation, identifiers in 78.6 million subject positions (7% of subject positions) and

23.2 million non-rdf:type-object positions (2.6%) were rewritten, giving a total of 101.9 million positions

rewritten (5.1% of total rewritable positions). The average number of documents mentioning each URI rose

slightly from 4.691 to 4.719 (a 0.6% increase) due to consolidation, and the average number of PLDs also

rose slightly from 1.005 to 1.007 (a 0.2% increase).

7.4 Extended Reasoning Consolidation

We now look at extending the baseline, explicit owl:sameAs approach to include more expressive reasoning

capabilities, using OWL 2 RL/RDF rules to infer novel owl:sameAs relations.

9Many were simple ‘syntactic’ equivalences from the opiumfield.com LastFM data exporter; for reference, we’ve published

the 100 sets at http://aidanhogan.com/swse/eqcs-sample-100.txt.

139

http://bio2rdf.org/dailymed_drugs:1000
http://bio2rdf.org/dailymed_drugs:1042
http://acm.rkbexplorer.com/id/person-53292-22877d02973d0d01e8f29c7113776e7e
http://agame2teach.com/#ddb61cae0e083f705f65944cc3bb3968ce3f3ab59-ge_1
http://acm.rkbexplorer.com/id/person-236166-1b4ef5fdf4a5216256064c45a8923bc9
http://aidanhogan.com/swse/eqcs-sample-100.txt

7.4. Extended Reasoning Consolidation 140

Listing 7.3: Example of indirect inference of owl:sameAs

From the FOAF Vocabulary:

foaf:homepage rdfs:subPropertyOf foaf:isPrimaryTopicOf .

foaf:isPrimaryTopicOf owl:inverseOf foaf:primaryTopic .

foaf:isPrimaryTopicOf a owl:InverseFunctionalProperty .

From Example Document A:

exA:axel foaf:homepage <http://polleres.net/> .

From Example Document B:

<http://polleres.net/> foaf:primaryTopic exB:apolleres .

Inferred through prp-spo1:
exA:axel foaf:isPrimaryTopicOf <http://polleres.net/> .

Inferred through prp-inv:
exB:apolleres foaf:isPrimaryTopicOf <http://polleres.net/> .

Subsequently, inferred through prp-ifp:
exA:axel owl:sameAs exB:apolleres .

exB:apolleres owl:sameAs exA:axel .

7.4.1 High-level approach

In Table B.8, we provide the pertinent rules for inferring new owl:sameAs relations from the data. How-

ever, after analysis of our corpus, we observed that no documents used the owl:maxQualifiedCardinality

construct required for the cls-maxqc* rules, and that only one document defined one owl:hasKey axiom10

involving properties with <5 occurrences as predicates in the data (cf. Table 5.2); given the rarity of these

axioms, we leave implementation of these rules for future work and note that these new OWL 2 constructs

have probably not yet had time to find proper traction on the Web. (Note also that the rules prp-key cls-

maxqc3/cls-maxqc4 supporting these axioms do not have a single variable appearing in all A-atoms, and thus

are not supportable through our current implementation which relies on merge-join operations.)

Thus, on top of inferencing involving explicit owl:sameAs, we also infer such relations through the

following four rules, the set of which we denote as O2R=:

1. prp-fp which supports the semantics of properties typed owl:FunctionalProperty;

2. prp-ifp which supports the semantics of properties typed owl:InverseFunctionalProperty;

3. cls-maxc2 which supports the semantics of classes with a specified cardinality of 1 for some defined

property (a class restricted version of the functional-property inferencing); and

4. cls-exc2* which gives an exact cardinality version of cls-maxc2, but is not in OWL 2 RL/RDF.11

However, applying only these rules may lead to incomplete owl:sameAs inferences; for example, consider

the data in Listing 7.3 where we we need OWL 2 RL/RDF rules prp-inv and prp-spo1—handling stan-

dard owl:inverseOf and rdfs:subPropertyOf inferencing respectively—to infer the owl:sameAs relation

entailed by the data.

Thus, we also pre-apply more general OWL 2 RL/RDF reasoning over the corpus to derive more complete

10http://huemer.lstadler.net/role/rh.rdf; retr. 2010/11/27
11Exact cardinalities are disallowed in OWL 2 RL due to their effect on the formal proposition of completeness underlying

the profile, but such considerations are moot in our scenario.

140

http://huemer.lstadler.net/role/rh.rdf

7.4. Extended Reasoning Consolidation 141

Algorithm 7.3: Extended consolidation approach: overview

Require: Input Corpus: IN /* on-disk input */
Require: Output: OUT /* output with canonicalised subjs. and objs. */

1: TBox := TBox(O2R− ∪ O2R=, IN) /* extract T-Box (including sources): see § 5.4 */

2: PA+ := ̂GroundT (O2R−, TBox) /* auth. T-ground rules: see § 5.4.2 */

3: PFP := ̂GroundT ({prp-fp}, TBox) /* auth. T-ground rules: see § 5.4.2 */

4: P IFP := ̂GroundT ({prp-ifp}, TBox) /* auth. T-ground rules: see § 5.4.2 */

5: P card := ̂GroundT ({cax-maxc2, cax-exc2*}, TBox) /* auth. T-ground rules: see § 5.4.2 */
6: TMPFP0 , TMPIFP0 , TMPcard0 , TMPsA0 := {}
7: for all t ∈ IN do
8: I := lm(PA+ ∪ {t}) /* get inferences for triple wrt. PTA: see § 5.2 (note t ∈ I) */
9: for all t′ ∈ I do

10: if t′.p =owl:sameAs then /* if predicate is owl:sameAs */
11: write t′ to TMPsA0
12: end if
13: if ∃R ∈ PFP ,∃A ∈ ABody(R) s.t. A . t′ then
14: write t′ to TMPFP0

15: end if
16: if ∃R ∈ P IFP ,∃A ∈ ABody(R) s.t. A . t′ then
17: write t′ to TMPIFP0

18: end if
19: if ∃R ∈ P card, ∃A ∈ ABody(R) s.t. A . t′ then
20: write t′ to TMPcard0

21: end if
22: end for
23: end for
24: novel := TMPsA0 6= {} ∨ TMPFP0 6= {} ∨ TMPIFP0 6= {} ∨ TMPcard0 6= {}
25: while novel do
26: compute owl:sameAs from TMPFPi , write to TMPsAi /* see Alg. 7.5 */
27: compute owl:sameAs from TMPIFPi , write to TMPsAi /* see Alg. 7.6 */
28: compute owl:sameAs from TMPcardi , write to TMPsAi /* see Alg. 7.7 */
29: compute owl:sameAs closure TMPsAi , write to TMPsAi+1 /* see Alg. 7.8 */
30: novel := TMPsAi 6= TMPsAi+1

31: i++

32: if novel then
33: rewrite subjs. of TMPFPi , TMPcardi , objs. of TMPIFPi , by TMPsAi /* see Alg. 7.9 */
34: end if
35: end while

36: rewrite subjs., objs. of IN by TMPsAi /* see Alg. 7.9 */

owl:sameAs results; in particular, we additionally apply the subset of inference rules from the A-linearO2R∝A

profile (§ 5.4.1) which deals with assertional reasoning, and which is listed in Table B.4—we denote this subset

of O2R∝A as O2R−:

O2R− := {R ∈ O2R∝A : |ABody(R)| = 1}

Note that we also exclude rule eq-sym from O2R−, where the semantics of equality (including symmetry and

transitivity) are supported in a bespoke, optimised manner later in this section. Finally, note that we again

apply authoritative reasoning (§ 5.4.2).

Continuing, Algorithm 7.3 outlines our extended consolidation process, where the high-level approach is

as follows:

1. extract all terminological triples from the corpus which are an instance of a T-atom from the body of

141

7.4. Extended Reasoning Consolidation 142

a rule in O2R= ∪ O2R− (Line 1, Algorithm 7.3);

2. use these data to ground the terminological atoms in the O2R= ∪O2R− rules, creating a larger set of

partially evaluated, assertional rules (Lines 1–5, Algorithm 7.3);

3. apply reasoning using the partially evaluated O2R− rules over the corpus (as per § 5.2), and output

any input or inferred triples which have either (i) owl:sameAs as predicate; or (ii) are an instance of

an atom in the body of a partially evaluated rule from O2R= (Lines 7–23, Algorithm 7.3);

4. compute the least fixpoint of owl:sameAs statements from the consolidation-relevant data extract in

the previous step (Lines 25–35, Algorithm 7.3);

5. apply consolidation over the main corpus, canonicalising identifiers with respect to the closed owl:-

sameAs data (Line 36).

In Step 1, we extract terminological data required for application of both the general and consolidation

rules (in the lingo of § 5.2, this is the T-Box of O2R= ∪O2R− extracted from the corpus). Subsequently, in

Step 2, we produce authoritative T-ground rules by partially evaluating rules in O2R=∪O2R− with respect

to the extracted terminological knowledge (§ 5.2, § 6.2.2). We now briefly illustrate these two steps for two

rules in O2R= by way of example:

Example 7.1 Take the rule prp-ifp:

(?x1, owl:sameAs, ?x2) ← (?p, a, owl:InverseFunctionalProperty), (?x1, ?p, ?y),(?x2, ?p, ?y)

where the T-atom in the body is underlined. Now take the terminological axiom (from the foaf: vocabulary):

(foaf:mbox, a, owl:InverseFunctionalProperty)

This axiom is extracted during Step 1 above since it is an instance of the T-atom of prp-ifp ∈ O2R=. Now,

the above axiom must be served authoritatively for foaf:mbox—i.e., must be served in the document given

by redirs(foaf:mbox)—to be considered for consolidation; this is because in the T-atom of the above rule, the

only variable which also appears in an A-atom is ?p, and foaf:mbox is substituted for this variable (§ 6.2.2).

Since the axiom is served by the FOAF vocabulary—which corresponds to redirs(foaf:mbox)—Step 2 will

generate the following authoritative T-ground rule:

(?x1, owl:sameAs, ?x2) ← (?x1, foaf:mbox, ?y),(?x2, foaf:mbox, ?y) .

Taking a different example, consider rule cls-maxc2:

(?y1, owl:sameAs, ?y2) ← (?x, owl:maxCardinality, 1),(?x, owl:onProperty, ?p), (?u, ?p, ?y1),(?u, ?p, ?y2),(?u, a, ?x)

and the axiom (from the like: vocabulary):

(:x, owl:maxCardinality, 1),(:x, owl:onProperty, rev:rating)

where both triples will be extracted during Step 1. Here, the above axiom must be served authoritatively for

:x or rev:rating; since every document is authoritative for its blank nodes, this axiom must necessarily be

authoritative.12 Thus, the authoritative T-ground rule produced in Step 2 will be:

(?y1, owl:sameAs, ?y2) ← (?u, rev:rating, ?y1),(?u, rev:rating, ?y2),(?u, a, :x) .

12If :x were replaced with a URI ex:x, the axiom would have to be defined in the document given by either redirs(ex:x) or

redirs(rev:rating) to be authoritative.

142

7.4. Extended Reasoning Consolidation 143

Algorithm 7.4: Write equivalence-class to output

Require: Equivalence Class: Eq /* in-memory */
Require: SameAs Output: SA OUT /* on-disk */

1: can := can(Eq)
2: for all c ∈ Eq, c 6= can do
3: write (can, owl:sameAs, c) to SA OUT

4: end for

These T-ground rules are then used to find consolidation-relevant data: triples which can serve as instances

of the atoms in the respective heads (note again that :x is a skolem constant [§ 3.1]). ♦

In Step 3, we apply the T-ground O2R− rules over the corpus (as per Algorithm 5.1), where any input

or inferred statements that are an instance of a body atom from a T-ground O2R= rule—e.g., triples which

match (?x, foaf:mbox, ?y), (?u, rev:rating, ?y), or (?u, a, :x) from Example 7.1—are buffered to a

separate file, including any owl:sameAs statements found. (Note that during O2R− inferencing, we use the

rule-indexing and merging optimisations as described in § 5.3, and we discard inferred data which is not

relevant for consolidation.) We thus extract a focussed sub-corpus from which owl:sameAs relations can be

directly derived using the O2R= inference rules.

Subsequently, in Step 4, we must now compute the canonicalised closure of the owl:sameAs statements.

For the baseline consolidation approach presented in § 7.3 we used an in-memory equality index to support the

semantics of owl:sameAs, to represent the equivalence classes and chosen canonical terms, and to provide the

lookups required during canonicalisation of the corpus. However, by using such an approach, the scalability

of the system is bound by the memory resources of the hardware (which itself cannot be solved by distribution

since—in our approach—all machines require knowledge about all same-as statements). In particular, the

extended reasoning approach will produce a large set of such statements which will require a prohibitive

amount of memory to store.13 Thus, we turn to on-disk methods to handle the transitive and symmetric

closure of the owl:sameAs corpus and to perform the subsequent consolidation of the corpus in Step 5.

In particular, following the same rationale as the previous implementations detailed in this thesis, we

mainly rely upon the following three on-disk primitives: (i) sequential scans of flat files containing line-

delimited tuples;14 (ii) external-sorts where batches of statements are sorted in memory, the sorted batches

written to disk, and the sorted batches merged to the final output; and (iii) merge-joins where multiple

sets of data are sorted according to their required join position, and subsequently scanned in an interleaving

manner which aligns on the join position and where an in-memory join is applied for each individual join

element. Using these primitives to perform the owl:sameAs computation minimises the amount of main

memory required [Hogan et al., 2007a, 2009b].

First, the assertional data specifically relevant for prp-fp (functional properties), prp-ifp inverse-functional

properties and cax-maxc2/cax-exc2* (cardinality-of-one restrictions) are written to three separate on-disk

files. Any owl:sameAs data produced directly by Step 3 are written to a fourth file. We then apply

inferencing over the first three files.

For functional-property and cardinality reasoning, a consistent join variable for the assertional body

atoms is given by the subject position; for inverse-functional-property reasoning, a join variable is given

13Currently, we store entire (uncompressed) strings in memory, using a flyweight pattern (interning) which guarantees unique

references. In future, we may consider lossless string compression techniques over the repetitive URI strings (e.g., see [Michel

et al., 2000; Fernández et al., 2010]) to increase the in-memory capacity.
14These files are G-Zip compressed flat files of N-Triple–like syntax encoding arbitrary length tuples of RDF constants.

143

7.4. Extended Reasoning Consolidation 144

Algorithm 7.5: Computing prp-fp inferences

Require: prp-fp-Input: FP IN /* on-disk input triples sorted lexicographically */
Require: SameAs Output: SA OUT /* on-disk output */

1: sort FP IN by lexicographical (s−p−o) order
2: EqFP := {}; i := 0
3: for all ti ∈ FP IN do
4: if i 6= 0 ∧ (ti.s 6= ti−1.s ∨ ti.p 6= ti−1.p) then
5: if |EqFP | ≥ 2 then
6: write EqFP to SA OUT /* as per Algorithm 7.4 */
7: end if
8: EqFP := {}
9: end if

10: if ti.o /∈ L then
11: EqFP := EqFP ∪ {ti.o}
12: end if
13: i++

14: end for

15: repeat Lines 5–7 for final EqFP

Algorithm 7.6: Computing prp-ifp inferences

Require: prp-ifp-Input: IFP IN /* on-disk input triples */
Require: SameAs Output: SA OUT /* on-disk output */

1: sort IFP IN by inverse (o−p−s) order
2: EqIFP := {}; i := 0
3: for all ti ∈ IFP IN do
4: if i 6= 0 ∧ (ti.o 6= ti−1.o ∨ ti.p 6= ti−1.p) then
5: if |EqIFP | ≥ 2 then
6: write EqIFP to SA OUT /* as per Algorithm 7.4 */
7: end if
8: EqIFP := {}
9: end if

10: EqIFP := EqIFP ∪ {ti.s}
11: i++

12: end for

13: repeat Lines 5–7 for final EqIFP

by the object position.15 Thus, we can sort the former sets of data according to subject and perform a

merge-join by means of a linear scan thereafter; the same procedure applies to the latter file, sorting and

merge-joining on the object position. Applying merge-join scans, we produce new owl:sameAs statements.

These techniques are detailed in Algorithm 7.5 for functional-property inferences, Algorithm 7.6 for inverse-

functional property inferences, and Algorithm 7.7 for cardinality-of-one inferences; note that when writing

owl:sameAs inferences to disk, we write results in a canonical form, briefly outlined in Algorithm 7.4. Also

note that Algorithm 7.7 requires an in-memory map (denoted
p7→C
map) which maps from properties to the set

of cardinality-of-one restrictions it is associated with; i.e.:

p 7→C
map : U → 2U∪B ,

p 7→ {c|(c, owl:onProperty, p), (c, owl:[maxC/c]ardinality, 1)∈ TBox} .

15Although a predicate-position join is also available, we prefer data-position joins which provide smaller batches of data for

the in-memory join.

144

7.4. Extended Reasoning Consolidation 145

Algorithm 7.7: Computing cax-maxc2/cax-exc2* inferences

Require: cax-maxc2/cax-exc2*-Input: CARD IN /* on-disk input triples */
Require: SameAs Output: SA OUT /* on-disk output */

Require:
p7→C
map /* maps a property to its resp. set of (max/exact) cardinality-of-one classes */

1: sort CARD IN by lexicographical (s−p−o) order
2: EqCard := {}; i := 0

3:
p 7→O
map := {} /* maps a property to its set of objects for the resp. subject */

4: O := {} /* current objects */
5: for all ti ∈ CARD IN do
6: if i 6= 0 ∧ (ti.s 6= ti−1.s ∨ ti.p 6= ti−1.p) then

7:
p 7→O
map .put(p,O)

8: if ti.s 6= ti−1.s then
9: for all (p,O) ∈ p 7→O

map do

10: if
p7→C
map .get(p) ∩ p 7→O

map .get(rdf:type) 6= {} then
11: write O to SA OUT /* as per Algorithm 7.4 */
12: end if
13: end for
14:

p 7→O
map := {}

15: end if
16: O := {}
17: end if
18: if ti.o /∈ L then
19: O := O ∪ {ti.o}
20: end if
21: i++

22: end for

23: repeat Lines 9–13 for final
p7→O
map

Both the originally asserted and newly inferred owl:sameAs relations are similarly written to an on-disk

file, over which we now wish to perform the canonicalised symmetric/transitive closure. We apply a similar

method again—using sorts, merge-joins and scans—where the technique is detailed in Algorithm 7.8. Here,

we briefly sketch the procedure, where we use the canonical ordering ≤c from Definition 7.1, we use sA as a

shortcut for owl:sameAs, and use ex to denote members of U ∪ B such that ei <c ej ⇔ i < j. The process

is as follows:

1. we only materialise symmetric equality relations which involve a (possibly intermediary) canonical

term chosen by a lexical ordering: given e2 sA e1, we materialise e1 sA e2; given e1 sA e2 sA e3, we

materialise the relations e1 sA e2, e1 sA e3, and their inverses, but do not materialise e2 sA e3 or its

inverse;

2. a compressed (canonical) form of the transitive/symmetric closure is supported by iterative merge-join

scans:

• in each scan, we load all sA information for each group of triples with the same subject (grouped

by the sort):

– if we find, e.g., e1 sA e2, e1 sA e3, . . .—i.e., the subject is lower than all attached identifiers

(the subject is the canonical identifier)—we infer e2 sA e1, e3 sA e1, . . .; these inferences are

considered repeated ;

– if we find, e.g., e3 sA e2, e3 sA e1, . . .—i.e., the subject is higher than all attached identifiers—

we do nothing;

145

7.4. Extended Reasoning Consolidation 146

Algorithm 7.8: Computing compressed owl:sameAs closure

Require: owl:sameAs-Input: SA IN /* on-disk input triples with the predicate owl:sameAs */
Require: SameAs Output: SA OUT /* on-disk output */

1: r := 0; SA TMPr := {}
2: if SA IN 6= {} then
3: for all t ∈ SA IN do
4: write t and (t.o,owl:sameAs, t.s) to SA TMPr /* write triples and their inverses */
5: end for
6: end := false;
7: end if
8: while !end do
9: sort SA TMPr by lexicographical (s−p−o) order

10: SA TMPr+1 := {}; EqsA := {}; i := 0;
11: end := true
12: for all ti ∈ SA TMPr do
13: if i 6= 0 ∧ ti.s 6= ti−1.s then
14: if ∃e ∈ EqsA s.t. e >c ti−1.s then
15: can := can(EqsA ∪ {ti−1.s})
16: if can 6= ti−1.s then
17: end := false
18: end if
19: for all c ∈ EqsA ∪ {ti−1.s} s.t. c 6= can do
20: write (can, owl:sameAs, c), (c, owl:sameAs, can) to SA TMPr+1

21: end for
22: end if
23: EqsA := {};
24: end if
25: EqsA := EqsA ∪ {ti.o}
26: i++

27: end for
28: repeat Lines 14–22 for final EqsA & ti−1.s
29: r++

30: end while

31: SA OUT := SA TMPr

– if we find, e.g., e3 sA e1, e3 sA e2, e3 sA e4—i.e., the subject is not the canonical identifier,

but is lower than some attached identifiers—we infer e1 sA e2, e1 sA e3, e1 sA e4, and the

inverses e2 sA e1, e3 sA e1, e4 sA e1; these inferences are considered novel ;

• at the end of the scan, the data output by the previous scan are sorted;

• the process is then iterative: in the next scan, if we find e4 sA e1 and e4 sA e5, we infer e1 sA e5

and e5 sA e1;, etc.;

3. the above iterations stop when a fixpoint is reached and no novel inferences are given.

Intuitively, each iteration translates two-hop (a
sA↔ b

sA↔ c) equivalences into one-hop canonical equiv-

alences (a
sA↔ b, a

sA↔, c). The eventual result of this process is a set of canonicalised equality relations

representing the symmetric/transitive closure of owl:sameAs relations. Note that we implement some opti-

misations on top of this process (for clarity, these are omitted from Algorithm 7.8):

• we leave the predicate owl:sameAs implicit, and only handle pairs of identifiers;

• we write repeated inferences (but not the inverses) to a separate file: only novel data (and inverses of

repeated inferences) need to be sorted at the end of each scan, where these data can be subsequently

146

7.4. Extended Reasoning Consolidation 147

Algorithm 7.9: Canonicalising data using on-disk owl:sameAs closure

Require: owl:sameAs-Input: SA IN /* canonicalised owl:sameAs closure (as given by Alg. 7.8) */
Require: Data Input: DATA IN /* on-disk data to be canonicalised */
Require: Can. Data Output: CDATA OUT /* on-disk output for canonicalised data */
Require: Positions: Pos /* positions to canonicalise (e.g. {0, 2} for RDF sub. & obj.) */

1: if SA IN 6= {} ∧ Pos 6= {} ∧ DATA IN 6= {} then
2: SA IN− := {}; i := 0
3: for all t ∈ SA IN, t.s >c t.o do
4: write t to SA IN− /* only write tuples with non-canonical subject */
5: end for
6: CDATA OUTi := DATA IN

7: for all posi ∈ Pos do
8: sort CDATA OUTi to CDATA OUTsi by (posi, . . .) order
9: for all t ∈ Pos do

10: t′ := t
11: if ∃(t.posi,owl:sameAs, can) ∈ SA IN− then /* by external merge-join with SA IN− */
12: t′.posi := can
13: end if
14: write t′ to CDATA OUTi+1

15: end for
16: i++

17: end for
18: CDATA OUT := CDATA OUTi+1

19: else
20: CDATA OUT := DATA IN

21: end if

merge-sorted with the separate repeated-inferences file (which are inherently sorted);

• we use a fixed size, in-memory equivalence map—as described in Algorithm 7.1—as a cache, to store

partial equivalence “chains” and thus accelerate the fixpoint.

With respect to the last item, for each scan, we fill a fresh, in-memory equivalence map until the main-

memory capacity is reached: on the first scan, we attempt to load all data, whereas on subsequent scans,

we only attempt to load novel inferences found. When the capacity of the map is reached, we output the

in-memory equivalences in canonical form (including inverses) and finish the scan using the standard on-disk

merge-join operation, but where we also consult the map at each stage to see if a better (i.e., lower) canonical

identifier is available therein. Note that if all data fit in the map on the first scan, then we need not apply

the iterative process. Otherwise, the in-memory map accelerates the fixpoint, in particular by computing

the small number of long equality chains which would otherwise require sorts and merge-joins over all of the

canonical owl:sameAs data currently derived, and where the number of iterations would otherwise be log(n)

where n is the length of the longest chain.

Now, we briefly describe the process of canonicalising data with respect to this on-disk equality corpus,

where we again use sorts and merge-joins: the procedure is detailed in Algorithm 7.9. First, we prune

the owl:sameAs index to only maintain a (lexicographically) sorted batch of relations s2 SA s1 such that

s2 >c s1—thus, given s2 SA s1, we know that s1 is the canonical identifier, and s2 is to be rewritten. We

then sort the data according to the position which we wish to rewrite, and perform a merge-join over both

the sorted data and the owl:sameAs file—this allows us to find canonical identifiers for the terms in the

join position of the input, and to canonicalise these terms, buffering the (possibly rewritten) triple to an

output file. If we want to rewrite multiple positions of a file of tuples (e.g., subject and object), we must

rewrite one position, sort the intermediary results by the second position, and subsequently rewrite the

147

7.4. Extended Reasoning Consolidation 148

second position.16

Note that in the derivation of owl:sameAs from the consolidation rules O2R=, the overall process may be

iterative. For instance, consider the data in Listing 7.4 from which the conclusion that exA:Axel is the same

as exB:apolleres holds, but requires recursive application of rules: we see that new owl:sameAs relations

(either asserted or derived from the consolidation rules) may in turn “align” terms in the join position of

the consolidation rules, leading to new equivalences.

Listing 7.4: Example requiring recursive equality reasoning

exA:Axel foaf:isPrimaryTopicOf <http://polleres.net/> .

exB:apolleres foaf:isPrimaryTopicOf <http://axel.deri.ie/> .

<http://polleres.net/> owl:sameAs <http://axel.deri.ie/> .

Thus, for deriving the final owl:sameAs, we require a higher-level iterative process as follows (also given

by Lines 25–35, Algorithm 7.3):

1. initially apply the consolidation rules, and append the results to a file alongside the owl:sameAs

statements found in the input and from application of O2R− rules;

2. apply the initial closure of the aggregated owl:sameAs data collected thus far;

3. then, iteratively until no new owl:sameAs inferences are found:

• canonicalise the identifiers in the join positions of the on-disk files containing the data for each

consolidation rule according to the current owl:sameAs data;

• derive new owl:sameAs inferences possible through the previous rewriting for each consolidation

rule;

• re-derive the closure of the owl:sameAs data including the new inferences.

Note that in the above iterative process, at each step we mark the delta given by newly rewritten or inferred

statements, and only consider those inference steps which involve some part of the delta as novel: for brevity,

we leave this implicit in the various algorithms.

The final closed file of owl:sameAs data can then be reused to rewrite the main corpus in two sorts and

merge-join scans over subject and object, following the procedure outlined in Algorithm 7.9—again, note

that we do not rewrite literals, predicates, or values of rdf:type (see § 7.1). Also, we maintain the original

identifiers appearing in the corpus, outputting sextuples of the form:

(s, p, o, c, s′, o′)

where (s, p, o, c) are the quadruples containing possibly canonicalised s and o, and where s′ and o′ are the

original identifiers found in the raw corpus.17 This is not only useful for the repair step sketched in § 7.6, but

16One could consider instead building an on-disk map for equivalence classes and canonical identifiers and follow a consol-

idation procedure similar to the previous section over the unordered corpus: however, we would expect that such an on-disk

index would have a low cache hit-rate given the nature of the data, which would lead to a high number of disk seek opera-

tions. An alternative approach might be to split and hash the corpus according to subject/object and split the equality data

into relevant segments loadable in-memory on each machine: however, this would again require a non-trivial minimum amount

of memory to be available over the given cluster.
17We use syntactic shortcuts in our file to denote when s = s′ and/or o = o′. Maintaining the additional rewrite information

during the consolidation process is trivial, where the output of consolidating subjects gives quintuples (s, p, o, c, s′), which are

then sorted and consolidated by o to produce the given sextuples.

148

7.4. Extended Reasoning Consolidation 149

also potentially useful for consumers of the consolidated data, who may, for example, wish to revert certain

subsets of coreference flagged by users as incorrect.

Finally, we make some remarks with respect to incompleteness, where herein we are interested in deriving

complete owl:sameAs results not involving literals or blacklisted data. Given that we are deliberately

incomplete—e.g., that we do not materialise inferences which do not affect consolidation, and that we do

not support rule eq-rep-p—we are more so interested in how we are indeliberately incomplete with respect

to the derivation of owl:sameAs relations. In particular, we note that recursively applying the entire process

again (as per Algorithm 7.3) over the output may lead to the derivation of new equivalences: i.e., we have

not reached a fixpoint, and we may find new equivalences in subsequent applications of the consolidation

process.

First, following from the discussion of § 5.2, equivalences which affect the Herbrand universe of the

terminology of the data—i.e., the set of RDF constants appearing in some terminological triples—may cause

incompleteness in our T-split approach. Aside from the cases of incompleteness provided in Example 5.4—

where we are now also deliberately incomplete with respect to the case involving triples (1a–9a) since we do

not support eq-rep-p—we demonstrate a novel example of how incompleteness can occur.

Example 7.2 Take the following terminological axioms:

1. (:woman, owl:hasValue, ex:female)

2. (:woman, owl:onProperty, ex:gender)

3. (:woman, rdfs:subClassOf, :person)

4. (:person, owl:maxCardinality, 1)

5. (:person, owl:onProperty, ex:gender)

along with the following assertional data:

6. (ex:female, owl:sameAs, ex:baineann)

7. (ex:Marie, ex:gender, ex:baineann)

8. (ex:Marie, ex:gender, ex:femme)

where, by eq-rep-o/eq-sym we can infer:

9. (ex:Marie, ex:gender, ex:female)

Now, by rules cls-hv2 and cax-sco respectively, we should infer:

10. (ex:Marie, a, :woman)

11. (ex:Marie, a, :person)

but we miss these inferences since cls-hv2 is not applied over the consolidated data, and in any case, our

canonicalisation would select ex:baineann over ex:female, where only the latter constant would allow for

unification with the terminological axiom. Further, note that from triples (7), (8) & (11) and rule cax-maxc2,

we should also infer:

12. (ex:baineann, owl:sameAs, ex:femme)

13. (ex:femme, owl:sameAs, ex:baineann)

where we miss these owl:sameAs relations by missing triples (10) & (11). Note (i) that if we were to rerun

the consolidation process, we would find these latter equivalences in the second pass, and (ii) the equivalences

in this example only involve assertional identifiers and not any members of a meta-class—more specifically,

we have an equivalence involving an assertional identifier which appears in the terminology as a value for

the owl:hasValue meta-property. ♦

149

7.4. Extended Reasoning Consolidation 150

Aside from equivalences involving identifiers in the terminology of the corpus, we may also experience

incompleteness if a given variable appears twice in the A-atom(s) of a rule in O2R−. We now present such

an example of incompleteness for a rule with a single assertional atom—one could imagine similar examples

for rules with multiple assertional atoms.

Example 7.3 Let prp-hs2 denote a rule which partially axiomatises the semantics of owl:hasSelf as follows:

(?u, a, ?x) ← (x, owl:hasSelf, true),(x, owl:onProperty, ?p), (?u, ?p, ?u) .

(Note that this rule is valid with respect to OWL 2/RDF Based Semantics, but is not included in OWL

2 RL(/RDF).) Here, we see that ?u appears twice in the A-body of the rule. Now, take the following

terminological axioms:

1. (:narcissist, owl:hasSelf, true)

2. (:narcissist, owl:onProperty, ex:loves)

3. (:narcissist, rdfs:subClassOf, :egomaniac)

4. (:egomaniac, owl:maxCardinality, 1)

5. (:egomaniac, owl:onProperty, ex:loves)

and the assertional axioms:

6. (ex:freddy, ex:loves, ex:Fredrick)

7. (ex:freddy, ex:loves, ex:fred)

8. (ex:freddy, owl:sameAs, ex:Fredrick)

where by eq-rep-o we can infer:

9. (ex:freddy, ex:loves, ex:freddy) .

Now, by triples (1), (2), and (9), and rule prp-hs2, we should infer:

10. (ex:freddy, a, :narcissist)

but this would require prp-hs2 to be applied after consolidation. Thus, in a similar manner to Example 7.2,

we would subsequently miss:

11. (ex:freddy, a, :egomaniac)

12. (ex:fred, owl:sameAs, ex:Fredrick)

13. (ex:Fredrick, owl:sameAs, ex:fred)

By rerunning our consolidation process a second time, we would infer triple (10)—from triple (9) and rule

prp-hs2—and then find the latter owl:sameAs relations. ♦

Although we could consider recursively rerunning the consolidation process until fixpoint, we currently

do not see this as worthwhile since: (i) we do not want owl:sameAs to affect the terminology of the data; (ii)

our rules do not have “assertional join-variables” as per the latter example. Acknowledging the possibility

of indeliberate incompleteness, we move on to discuss our distributed implementation.

7.4.2 Distributed approach

The distributed approach follows quite naturally from the previous discussion. As before, we assume that

the input data are evenly pre-distributed over the slave machines (in any arbitrary ordering), where we can

then apply the following process:

150

7.4. Extended Reasoning Consolidation 151

1. run: scan the distributed corpus (split over the slave machines) in parallel to extract relevant termi-

nological knowledge;

2. gather: gather terminological data onto the master machine and thereafter ground the terminological

atoms of the general/consolidation rules;

3. flood: flood the rules for reasoning and the consolidation-relevant patterns to all slave machines;

4. run: apply reasoning and extract consolidation-relevant statements from the input and inferred data;

5. gather: gather all consolidation statements onto the master machine, then in parallel:

• local: compute the closure of the consolidation rules and the owl:sameAs data on the master

machine;

• run: each slave machine sorts its fragment of the main corpus according to natural order (s, p, o, c);

6. flood: send the closed owl:sameAs data to the slave machines once the distributed sort has been

completed;

7. run: each slave machine then rewrites the subjects of their segment of the corpus, subsequently sorts

the rewritten data by object, and then rewrites the (non-literal) objects (of non-rdf:type triples) with

respect to the closed owl:sameAs data.

7.4.3 Performance Evaluation

Applying the above process to our 1.118 billion quadruple corpus took 12.34 h: we note that this is signifi-

cantly more time-consuming than the baseline approach (1.06 h)—and even than the reasoning approach of

Chapter 5 (3.35 h)—due to the large amount of on-disk sorts, scans and merge-joins required.

Extracting the terminological data took 1.14 h with an average idle time of 19 min (27.7%).Merging

and aggregating the terminological data took roughly ∼1 min. Applying the reasoning and extracting the

consolidation relevant statements took 2.34 h, with an average idle time of 2.5 min (1.8%). Aggregating

and merging the consolidation relevant statements took 29.9 min. Thereafter, locally computing the closure

of the consolidation rules and the equality data took 3.52 h, with the computation requiring two iterations

overall (the minimum possible—the second iteration did not produce any new results); concurrent to the

previous step, the parallel sort of remote data by natural order took 2.33 h with an average idle time of 6 min

(4.3%). Subsequent parallel consolidation of the data took 4.8 h with 10 min (3.5%) average idle time—of

this, ∼19% of the time was spent consolidating the pre-sorted subjects, ∼60% of the time was spent sorting

the rewritten data by object, and ∼21% of the time was spent consolidating the objects of the data.

As before, Table 7.4 summarises the timing of the task, where the master machine requires 4.06 h to

coordinate global knowledge, constituting the lower bound on time possible for the task to execute with

respect to increasing machines in our setup—in future it may be worthwhile to investigate distributed

strategies for computing the owl:sameAs closure (which takes 28.5% of the total computation time), but

for the moment we mitigate the cost by concurrently running a sort on the slave machines, thus keeping

the slaves busy for 63.4% of the time taken for this local aggregation step.18 The slave machines were, on

average, busy for 80.9% of the total task time; of the idle time, 73.3% was spent waiting for the master

machine to aggregate the consolidation relevant data and to finish the closure of owl:sameAs data, and the

balance (26.7%) was spent waiting for peers to finish (mostly during the extraction of terminological data).

Briefly, we also ran the consolidation without the general reasoning rules (Table B.4) motivated earlier.

18In future, parallelising the underlying sort operations may be sufficient to greatly enhance efficiency.

151

7.4. Extended Reasoning Consolidation 152

Category min % Total
Total execution time 740.4 100

Master (Local)
Executing 243.6 32.9
Aggregate Consolidation Relevant Data 29.9 4
Closing owl:sameAs 211.2 28.5
Miscellaneous 2.5 0.3
Idle (waiting for slaves) 496.8 67.1

Slave (Parallel)
Avg. Executing (total) 599.1 80.9
Extract Terminology 49.4 6.7
Extract Consolidation Relevant Data 137.9 18.6
Initial Sort (by subject) 133.8 18.1
Consolidation 278 37.5
Avg. Idle 141.3 19.1
Waiting for peers 37.5 5.1
Waiting for master 103.8 14

Table 7.4: Breakdown of timing of distributed extended consolidation with reasoning, where the two italicised
tasks run concurrently on the master and slaves

With respect to performance, the main variations were given by (i) the extraction of consolidation rele-

vant statements—this time directly extracted from explicit statements as opposed to explicit and inferred

statements—which took 15.4 min (11% of the time taken including the general reasoning) with an average

idle time of less than one minute (6% average idle time); (ii) local aggregation of the consolidation relevant

statements took 17 min (56.9% of the time taken previously); (iii) local closure of the owl:sameAs data took

3.18 h (90.4% of the time taken previously). The total time saved equated to 2.8 h (22.7%), where 33.3 min

were saved from coordination on the master machine, and 2.25 h were saved from parallel execution on the

slave machines.

7.4.4 Results Evaluation

Note that in this section, we present the results of the consolidation which included the general reasoning

step in the extraction of consolidation-relevant statements. In fact, we found that the only major variation

between the two approaches was in the amount of consolidation-relevant statements collected (discussed

presently), where other variations were in fact negligible (<0.1%). Thus, for our corpus, extracting only

asserted consolidation-relevant statements offered a very close approximation of the extended reasoning

approach.19

Extracting the terminological data, we found authoritative declarations of 434 functional properties, 57

inverse-functional properties, and 109 cardinality restrictions with a value of 1.

As per the baseline consolidation approach, we again gathered 11.93 million owl:sameAs statements, as

well as 52.93 million memberships of inverse-functional properties, 11.09 million memberships of functional

properties, and 2.56 million cardinality-of-one relevant triples. Of these, respectively 22.14 million (41.8%),

1.17 million (10.6%) and 533 thousand (20.8%) were asserted—however, in the resulting closed owl:sameAs

data derived with and without the extra reasoned triples, we detected a variation of less than 12 thousand

terms (0.08%), where only 129 were URIs, and where other variations in statistics were less than 0.1% (e.g.,

19At least in terms of pure quantity. However, we do not give an indication of the quality or importance of those few

equivalences we miss with this approximation, which may be application specific.

152

7.4. Extended Reasoning Consolidation 153

Blacklisted Term Occurrences

1 empty literals 584,735
2 <http://null> 414,088
3 <http://www.vox.com/gone/> 150,402
4 "08445a31a78661b5c746feff39a9db6e4e2cc5cf" 58,338
5 <http://www.facebook.com> 6,988
6 <http://facebook.com> 5,462
7 <http://www.google.com> 2,234
8 <http://www.facebook.com/> 1,254
9 <http://google.com> 1,108
10 <http://null.com> 542

Table 7.5: Top ten most frequently occurring blacklisted values

there were 67 less equivalence classes when the reasoned triples were included).

From previous experience [Hogan et al., 2007a], we were aware of certain values for inverse-functional

properties and functional properties which are erroneously published by exporters and which cause mas-

sive incorrect consolidation. We thus blacklist statements featuring such values from our consolidation

processing, where we give the top 10 such values encountered for our corpus in Table 7.5—this black-

list is the result of trial and error, manually inspecting large equivalence classes and the most common

values for (inverse-)functional properties. Empty literals are commonly exported (with and without lan-

guage tags) as values for inverse-functional-properties (particularly FOAF “chat-ID properties”). The literal

"08445a31a78661b5c746feff39a9db6e4e2cc5cf" is the SHA-1 hash of the string ‘mailto:’, commonly

assigned as a foaf:mbox sha1sum value to users who don’t specify their email in some input form. The

remaining URIs are mainly user-specified values for foaf:homepage, or values automatically assigned for

users that don’t specify such.20

During the computation of the owl:sameAs closure, we found zero inferences through cardinality

rules, 106.8 thousand raw owl:sameAs inferences through function-property reasoning, and 8.7 million raw

owl:sameAs inferences through inverse-functional-property reasoning. The final canonicalised, closed, and

non-symmetric owl:sameAs index (such that s1 SA s2, s1 > s2, and s2 is a canon) contained 12.03 million

statements.

From this data, we generated 2.82 million equivalence classes (an increase of 1.31× from baseline consol-

idation) mentioning a total of 14.86 million terms (an increase of 2.58× from baseline—5.77% of all URIs

and blank-nodes), of which 9.03 million were blank-nodes (an increase of 2173× from baseline—5.46% of all

blank-nodes) and 5.83 million were URIs (an increase of 1.014× from baseline—6.33% of all URIs). Thus, we

see a large expansion in the amount of blank-nodes consolidated, but only minimal expansion in the set of

URIs referenced in the equivalence classes. With respect to the canonical identifiers, 641 thousand (22.7%)

were blank-nodes and 2.18 million (77.3%) were URIs.

Figure 7.5 contrasts the equivalence class sizes for the baseline approach (seen previously in Figure 7.3),

and for the extended reasoning approach. Overall, there is an observable increase in equivalence class sizes,

where we see the average equivalence class size grow to 5.26 entities (1.98× baseline), the largest equivalence

class size grow to 33,052 (3.9× baseline) and the percentage of equivalence classes with the minimum size 2

drop to 63.1% (from 74.1% in baseline).

In Table 7.6, we update the five largest equivalence classes. Result 2 carries over from the baseline

consolidation. The rest of the results are largely intra-PLD equivalences, where the entity is described using

thousands of blank-nodes, with a consistent (inverse-)functional property value attached. Result 1 refers to a

20Our full blacklist contains forty-one such values, and can be found at http://aidanhogan.com/swse/blacklist.txt.

153

http://aidanhogan.com/swse/blacklist.txt

7.4. Extended Reasoning Consolidation 154

Canonical Term (Lexically Lowest in Equivalence Class) Size OK?

1 bnode37@http://a12iggymom.vox.com/profile/foaf.rdf 33,052 X
2 http://bio2rdf.org/dailymed_drugs:1000 8,481 X
3 http://ajft.org/rdf/foaf.rdf#_me 8,140 X
4 bnode4@http://174.129.12.140:8080/tcm/data/association/100 4,395 X
5 bnode1@http://aaa977.vox.com/profile/foaf.rdf 1,977 X

Table 7.6: Largest 5 equivalence classes after extended consolidation

meta-user—labelled Team Vox—commonly appearing in user-FOAF exports on the Vox blogging platform.21

Result 3 refers to a person identified using blank-nodes (and once by URI) in thousands of RDF documents

resident on the same server. Result 4 refers to the Image Bioinformatics Research Group in the University of

Oxford—labelled IBRG—where again it is identified in thousands of documents using different blank-nodes,

but a consistent foaf:homepage. Result 5 is similar to Result 1, but for a Japanese version of the Vox user.

Figure 7.6 presents a similar analysis to Figure 7.5, this time looking at identifiers on a PLD-level

granularity. Interestingly, the difference between the two approaches is not so pronounced, initially indicating

that many of the additional equivalences found through the consolidation rules are “intra-PLD”. In the

baseline consolidation approach, we determined that 57% of equivalence classes were inter-PLD (contain

identifiers from more that one PLD), with the plurality of equivalence classes containing identifiers from

precisely two PLDs (951 thousand, 44.1%); this indicates that explicit owl:sameAs relations are commonly

asserted between PLDs. In the extended consolidation approach (which of course subsumes the above

results), we determined that the percentage of inter-PLD equivalence classes dropped to 43.6%, with the

majority of equivalence classes containing identifiers from only one PLD (1.59 million, 56.4%). The entity

with the most diverse identifiers (the observable outlier on the x-axis in Figure 7.6) was the person “Dan

Brickley”—one of the founders and leading contributors of the FOAF project—with 138 identifiers (67 URIs

and 71 blank-nodes) minted in 47 PLDs; various other prominent community members and some country

identifiers also featured high on the list.

In Table 7.7, we compare the consolidation of the top five ranked identifiers in the SWSE system

(see [Hogan et al., 2010b]). The results refer respectively to (1) the (co-)founder of the Web “Tim Berners-

Lee”; (2) “Dan Brickley” as aforementioned; (3) a meta-user for the micro-blogging platform StatusNet

which exports RDF; (4) the “FOAF-a-matic” FOAF profile generator (linked from many diverse domains

hosting FOAF profiles it created); and (5) “Evan Prodromou”, founder of the identi.ca/StatusNet micro-

blogging service and platform. We see a significant increase in equivalent identifiers found for the first two

results; however, we also noted that after reasoning consolidation, Dan Brickley was conflated with a second

person.22

Note that the most frequently co-occurring PLDs in our equivalence classes remained unchanged from

Table 7.3.

During the rewrite of the main corpus, terms in 151.77 million subject positions (13.58% of all subjects)

and 32.16 million object positions (3.53% of non-rdf:type objects) were rewritten, giving a total of 183.93

million positions rewritten (1.8× the baseline consolidation approach). In Figure 7.7, we compare the reuse

of terms across PLDs before consolidation, after baseline consolidation, and after the extended reasoning

consolidation. Again, although there is an increase in reuse of identifiers across PLDs, we note that: (i) the

vast majority of identifiers (about 99%) still only appear in one PLD; (ii) the difference between the baseline

21This site shut down on 2010/09/30.
22Domenico Gendarmi with three URIs—one document assigns one of Dan’s foaf:mbox sha1sum values (for danbri@w3.org)

to Domenico: http://foafbuilder.qdos.com/people/myriamleggieri.wordpress.com/foaf.rdf; retr. 2010/11/27.

154

http://a12iggymom.vox.com/profile/foaf.rdf
http://bio2rdf.org/dailymed_drugs:1000
http://ajft.org/rdf/foaf.rdf#_me
http://174.129.12.140:8080/tcm/data/association/100
http://aaa977.vox.com/profile/foaf.rdf
http://foafbuilder.qdos.com/people/myriamleggieri.wordpress.com/foaf.rdf

7.5. Statistical Concurrence Analysis (Synopsis) 155

Canonical Term BL# R#
1 <http://www4.wiwiss.fu-berlin.de/dblp/resource/person/Tim Berners-Lee> 26 50
2 <genid:danbri> 10 138
3 <http://update.status.net/> 0 0
4 <http://www.ldodds.com/foaf/foaf-a-matic> 0 0
5 <http://update.status.net/user/1#acct> 0 6

Table 7.7: Equivalence class sizes for top five SWSE-ranked identifiers with respect to baseline (BL#) and
reasoning (R#) consolidation

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 10 100 1000 10000 100000

nu
m

be
r

of
 c

la
ss

es

equivalence class size

baseline consolidation
reasoning consolidation

Figure 7.5: Distribution of the number of identifiers
per equivalence classes for baseline consolidation and
extended reasoning consolidation [log/log]

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 10 100

nu
m

be
r

of
 c

la
ss

es

number of PLDs in equivalence class

baseline consolidation
reasoning consolidation

Figure 7.6: Distribution of the number of PLDs per
equivalence class for baseline consolidation and ex-
tended reasoning consolidation [log/log]

and extended reasoning approach is not so pronounced. The most widely referenced consolidated entity—in

terms of unique PLDs—was “Evan Prodromou” as aformentioned, referenced with six equivalent URIs in

101 distinct PLDs.

In summary, we see that applying the consolidation rules with respect to only asserted data—i.e., not

considering the inferences given by O2R−—is a good approximation for our Linked Data corpus, and that in

comparison to the baseline consolidation over explicit owl:sameAs, (i) the additional consolidation rules offer

a large bulk of intra-PLD consolidation of blank-nodes with large equivalence-class sizes, which we believe

to be due to publishing practices whereby a given exporter uses consistent inverse-functional property values

instead of URIs to uniquely identify entities across local documents; and (ii) where there is only a minor

expansion (1.014×) in the number of URIs involved in the consolidation.

7.5 Statistical Concurrence Analysis (Synopsis)

In Appendix D, we present an approach for deriving a statistical measure which quantifies a form of similarity

between entities based on the number (and selectivity) of inlinks and outlinks they share (including literal-

valued attributes); we call this measure concurrence. In fact, we initially investigated this approach as a

means of deriving coreference (and associated confidence values) based on statistical measures, but where

the results were inconclusive [Hogan et al., 2010d].23 However, we do see the approach as a useful similarity

23From the results presented in § D.4, clearly those entity pairs with the highest concurrence value are not coreferent.

155

7.6. Entity Disambiguation 156

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1 10 100

nu
m

be
r

of
 te

rm
s

number of PLDs mentioning blank-node/URI term

baseline consolidated
raw data

reasoning consolidated

Figure 7.7: Distribution of number of PLDs terms are referenced by, for the raw, baseline consolidated, and
reasoning consolidated data (log/log)

measure for entities in Linked Data, which can be derived in a scalable, distributed and domain-agnostic

manner. In the following section, we use concurrence values for repairing unsatisifiable equivalence classes

(equivalence classes which provoke inconsistency), and refer the interested reader to Appendix D for more

detail on how these measures are computed.24 However, for the purposes of the next chapter, it is sufficient

to intuitively consider concurrence as a similarity measure which is computed based on the nature of the

edges shared between two entities.

7.6 Entity Disambiguation

We have already seen that—even by only exploiting the formal logical consequences of the data through

reasoning—consolidation may already be imprecise. Herein, we sketch and demonstrate an initial approach

to identify ‘incorrect’ consolidation by means of inconsistency analysis, and a subsequent repair strategy based

on statistical concurrence scores previously outlined. We note at the outset that evaluation of this preliminary

disambiguation approach against our corpus only identified a small amount of incorrect coreference.

7.6.1 High-level Approach

The high-level approach is to see if the consolidation of any entities conducted in § 7.4.4 lead to any novel

inconsistencies, and subsequently recant the equivalences involved; thus, it is important to note that our

aim is not to repair inconsistencies in the data—as presented in Chapter 6—but instead to repair incorrect

consolidation symptomised by inconsistency; further, we take a different approach to that of Chapter 6 since

we now deal with rules involving more than one A-atom, and we wish to offer more specific optimisations

24We provide this (somewhat lengthy) discussion in the appendix—and not directly herein—so as to avoid breaking the

logical flow of the chapter: baseline consolidation → extended consolidation → disambiguation.

156

7.6. Entity Disambiguation 157

in-tune with our consolidation approach.

Moving forward, herein we aim to (i) describe what forms of inconsistency we detect; (ii) characterise

how inconsistencies can be caused by consolidation using examples from our corpus where possible; and (iii)

sketch our proposal for repairing equivalence classes which have been determined to cause inconsistency.

First, recall from § 7.4.4 that we output sextuples of the form:

(s, p, o, c, s′, o′)

where (s, p, o, c) denote the consolidated quadruple containing canonical identifiers in the subject/object

position as appropriate, and where s′ and o′ track the input identifiers prior to consolidation.

To detect inconsistencies in the consolidated corpus, we again use the OWL 2 RL/RDF rules with the

false consequent [Grau et al., 2009] as listed in Table B.6, and which we again call constraints (see § 6.3.7).

We italicise the labels of rules requiring new OWL 2 constructs, where we expect few such axioms to appear

on the Web: as per Table 5.2, one document provides 8 owl:AsymmetricProperty and 10 owl:Irreflex-

iveProperty axioms25, and one directory gives 9 owl:AllDisjointClasses axioms26, and where we found

no other OWL 2 axioms relevant to the rules in Table B.6. In any case, we include all constraints with the

exception this time of cls-maxqc1, eq-diff2, eq-diff3, prp-npa1 and prp-npa2, where as we will see in § 7.6.2,

these constraints are incompatible with our current implementation which requires a consistent assertional

join variable for computing a merge-join operation. Note that we found no owl:maxQualifiedCardinality

axioms for cls-maxqc1 in our corpus (cf. Table 5.2), no negative property assertion axioms for prp-npa*,

although we did find 68 owl:AllDifferentFrom axioms for eq-diff*.

We also consider an additional constraint, whose semantics are indirectly axiomatised by the OWL 2

RL/RDF rules (through prp-fp, dt-diff and eq-diff1), but which we must support directly since we do not

consider consolidation of literals:

← (?p, a, owl:FunctionalProperty), (?x, ?p, ?l1),(?x, ?p, ?l2),(?l1, owl:differentFrom, ?l2)

[?l1,?l2 ∈ L]

where we underline the terminological atom; we denote this rule by prp-fp2. To illustrate, we present an

example from our corpus in Listing 7.5. (Note that for the examples presented herein, we will use the

original identifiers, but will underline those considered coreferent by consolidation; we also endeavour to

use real examples from our corpus wherever possible.) Here we see two very closely related models of

cars consolidated in the previous step, but where we now identify that they have two different values for

dbo:length—a functional-property—and thus consolidation raises an inconsistency.

Listing 7.5: Inconsistent functional datatype values

Terminological [http://dbpedia.org/data3/length.rdf]

dbo:length rdf:type owl:FunctionalProperty .

Assertional [http://dbpedia.org/data/Fiat_Nuova_500.xml]

dbpedia:Fiat Nuova 500 dbo:length "3.546"^^xsd:double .

Assertional [http://dbpedia.org/data/Fiat_500.xml]

dbpedia:Fiat Nuova dbo:length "2.97"^^xsd:double .

Further, note that we do not expect owl:differentFrom assertions to be materialised, but instead intend

25http://models.okkam.org/ENS-core-vocabulary#country_of_residence; retr. 2010/11/27
26http://ontologydesignpatterns.org/cp/owl/fsdas/; retr. 2010/11/27

157

http://models.okkam.org/ENS-core-vocabulary#country_of_residence
http://ontologydesignpatterns.org/cp/owl/fsdas/

7.6. Entity Disambiguation 158

a rather more relaxed semantics based on a heurisitic comparison: given two (distinct) literals substituted

for ?l1 and ?l2, we flag an inconsistency iff (i) the data values of the two literals are not equal (standard

OWL semantics); and (ii) their lower-case lexical values (i.e., the literal strings without language-tags and

datatypes) are not equal. In particular, this relaxation is inspired by the definition of the FOAF (datatype)

functional properties foaf:age, foaf:gender, and foaf:birthday, where the range of these properties

is rather loosely defined: a generic range of rdfs:Literal is formally defined for these properties, with

informal recommendations to use male/female as gender values, and MM-DD syntax for birthdays, but not

giving recommendations for datatype or language-tags—our relaxation means that we would not flag an

inconsistency in the illustrative example presented in Listing 7.6, and that we conservatively underestimate

such inconsistency which may be caused by simple, innocuous syntactic variation in literals across published

documents.

Listing 7.6: Example which is consistent when using heuristic literal matching

Terminological [http://xmlns.com/foaf/spec/index.rdf]

foaf:Person owl:disjointWith foaf:Document .

Assertional [fictional]

ex:Ted foaf:age 25 .

ex:Ted foaf:age "25" .

ex:Ted foaf:gender "male" .

ex:Ted foaf:gender "Male"@en .

ex:Ted foaf:birthday "25-05"^^xsd:gMonthDay .

ex:Ted foaf:birthday "25-05" .

With respect to the constraints, we assume the terminological data to be sound, but only consider

authoritative terminological axioms.27

For each grounding of a constraint, we wish to analyse the join positions to determine whether or not

the given inconsistency is caused by consolidation; we are thus only interested in join variables which appear

at least once in a data-level position (§ 7.2—in the subject position or object position of a non-rdf:type

triple) and where the join variable is “intra-assertional” (exists twice in the assertional atoms). Thus, we

are not interested in the constraint cls-nothing:

← (?x, rdf:type, owl:Nothing)

since it cannot be caused directly by consolidation: any grounding of the body of this rule must also exist

(in non-canonical form) in the input data. For similar reasons, we also omit the constraint dt-not-type which

looks for ill-typed literals: such literals must be present prior to consolidation, and thus the inconsistency

detected by this constraint is not directly caused by consolidation—we see such constraints as unsuitable for

detecting/diagnosing problems with coreference (they echo a pre-existing condition).

Moving forward, first note that owl:sameAs atoms—particularly in rule eq-diff1—are implicit in

the consolidated data; e.g., consider the example of Listing 7.7 where an inconsistency is implicitly

given by the owl:sameAs relation that holds between the consolidated identifiers wikier:wikier and

eswc2006p:sergio-fernandez. In this example, there are two Semantic Web researchers, respectively

named “Sergio Fernández”28 and “Sergio Fernández Anzuola”29 who both participated in the ESWC 2006

27In any case, we always source terminological data from the raw unconsolidated corpus.
28http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fern=aacute=ndez:Sergio.html; retr. 2010/11/27
29http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Anzuola:Sergio_Fern=aacute=ndez.html; retr. 2010/11/27

158

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fern=aacute=ndez:Sergio.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Anzuola:Sergio_Fern=aacute=ndez.html

7.6. Entity Disambiguation 159

conference, and who were subsequently conflated in the “DogFood” export.30 The former Sergio subsequently

added a counter-claim in his FOAF file, asserting the above owl:differentFrom statement.

Listing 7.7: Different-from assertion

Assertional [http://www.wikier.org/foaf.rdf]

wikier:wikier owl:differentFrom eswc2006p:sergio-fernandez .

Other inconsistencies do not involve explicit owl:sameAs atoms, a subset of which may require “positive”

reasoning to be detected; we provide an example from our corpus in Listing 7.8 where we found the description

of the W3C organisation to be inconsistent as follows: (i) two W3C resources are initially consolidated due

to sharing the value http://www.w3.org/ for the inverse-functional property foaf:homepage; (ii) the W3C

is stated to be a foaf:Organization in one document, and is inferred to be a person from its identi.ca

profile through rule prp-dom (due to having foaf:knows links attached); finally, (iii) the W3C is a member

of two disjoint classes, forming an inconsistency detectable by rule cax-dw.31

Listing 7.8: The W3C is inconsistent

Terminological [http://xmlns.com/foaf/spec]

foaf:Person owl:disjointWith foaf:Organization .

foaf:knows rdfs:domain foaf:Person .

Assertional [http://identi.ca/w3c/foaf]

identica:48404 foaf:knows identica:45563 .

Assertional [inferred by prp-dom]

identica:48404 a foaf:Person

Assertional [http://data.semanticweb.org/organization/w3c/rdf]

sworg:w3c a foaf:Organization .

In order to resolve such inconsistencies, we make three simplifying assumptions:

1. the steps involved in the consolidation can be rederived with knowledge of direct inlinks and outlinks

of the consolidated entity, or reasoned knowledge derived therefrom;

2. inconsistencies are caused by pairs of consolidated identifiers;

3. we repair individual equivalence classes and do not consider the case where repairing one such class

may indirectly repair another (i.e., we do not guarantee a “globally minimal” set of repairs, but only

consider repair options for each individual equivalence class).

With respect to the first item, our current implementation performs a repair of the equivalence class

based on knowledge of direct inlinks and outlinks, available through a simple merge-join as used in the

previous section; this thus precludes repair of consolidation found through rules eq-diff2, eq-diff3, prp-npa1,

prp-npa2 and cls-maxqc2, which also require knowledge about assertional triples not directly associated with

the consolidated entity (cf. § 7.4.1)—for example, cls-maxqc2 also requires information about the class

memberships of the resources linked to by the consolidated entity.

30http://data.semanticweb.org/dumps/conferences/eswc-2006-complete.rdf; retr. 2010/11/27
31Note that this also could be viewed as a counter-example for using inconsistencies to recant consolidation, where arguably

the two entities are coreferent from a practical perspective, even if “incompatible” from a symbolic perspective.

159

http://data.semanticweb.org/dumps/conferences/eswc-2006-complete.rdf

7.6. Entity Disambiguation 160

With respect to the second item, we assume that inconsistencies are caused by pairs of identifiers, such

that we only consider inconsistencies caused by what we call “unsatisfiable coreference” and do not consider

the case where the alignment of more than two identifiers are required to cause a single inconsistency (not

possible in our rules) where such a case would again lead to a disjunction of repair strategies.

With respect to the third item, it is possible to resolve a set of inconsistent equivalence classes by repairing

one; for example, consider rules with multiple “intra-assertional” join-variables (prp-irp, prp-asyp) which can

have explanations involving multiple consolidated identifiers, as demonstrated in the example of Listing 7.9

where both equivalences together—(ex:A, owl:sameAs, ex:a), (ex:B, owl:sameAs, ex:b)—constitute an

inconsistency. Repairing one equivalence class would repair the inconsistency detected for both: we give no

special treatment to such a case, and resolve each equivalence class independently, In any case, we find no

such incidences in our corpus: these inconsistencies require (i) axioms new in OWL 2 (rules prp-irp, prp-asyp,

prp-pdw and prp-adp); (ii) alignment of two consolidated sets of identifiers in the subject/object positions.

Note that such cases can also occur given the recursive nature of our consolidation—consolidating one set

of identifiers may lead to alignments in the join positions of the consolidation rules in the next iteration—

however, we did not encounter such recursion during the consolidation phase (cf. 7.4.3). Thus, our third

simplifying assumption (and its implications) has no bearing for our current corpus, where we observe that

repairing one equivalence class cannot lead to the repair of another.

Listing 7.9: Example of an ambiguous inconsistency

Terminological

ex:made owl:propertyDisjointWith ex:maker .

Assertional

ex:A ex:maker ex:B .

ex:a ex:made ex:b .

Thereafter, the high-level approach to repairing unsatisfiable coreference involves examining each consol-

idated entity—both its inlinks and outlinks—independently, looking for inconsistency, isolating the pairs of

identifiers that cause said inconsistency, and thereafter repairing the equivalence class, revising the consolida-

tion to reflect the repairs. For repairing the equivalence class, our approach is to deconstruct the equivalence

class into a set of singletons, and thereafter begin to reconstruct a new set of equivalence classes from these

singletons by iteratively merging the most “strongly linked” intermediary equivalence classes which will not

contain incompatible identifiers: i.e., the equivalence classes for which the strongest evidence for coreference

exists between its members. In more detail, the process of repairing each equivalence class is as follows:

1. use the constraints to discover pairs of identifiers which together cause inconsistency and must be

separated;

2. assign each identifier in the original equivalence class into a consistent singleton equivalence class;

3. starting with the singletons, iteratively merge consistent equivalence classes, which do not together

contain a pair of incompatible identifiers, and between which the strongest evidence for coreference

exists, based on:

(a) the number of different proofs (sets of input triples which infer) coreference between the equiva-

lence classes;

(b) if tied, use a concurrence score between the new identifier and the (merged) equivalence class (cf.

Appendix D).

160

7.6. Entity Disambiguation 161

Following these intuitions, we can sketch a formalism of the repair thus: we denote the graph of non-

transitive equivalences for a given equivalence class as a weighted graph G = (V,E, ω) such that V ⊂ B ∪ U

is the set of vertices, E ⊂ B∪U×B∪U is the set of edges, and ω : E 7→ N×R is a weighting function for the

edges. Our edge weights are pairs (d, c) where d is the number of sets of input triples in the corpus which

allow to directly derive the given equivalence relation by means of a direct owl:sameAs assertion (in either

direction), or a shared inverse-functional object, or functional subject—loosely, the independent evidences for

the relation given by the input graph, excluding transitive owl:sameAs semantics; c is the concurrence score

derivable between the unconsolidated entities and is used to resolve ties (we would expect many strongly

connected equivalence graphs where, e.g., the entire equivalence class is given by a single shared value for

a given inverse-functional property, and thus require the additional granularity of concurrence for repairing

the data in a non-trivial manner). We define a total lexicographical order over these pairs.

Given an equivalence class Eq ⊂ U ∪ B which we perceive to cause a novel inconsistency—i.e., an

inconsistency derivable by the alignment of incompatible identifiers—by application of the constraints over

the inlinks and outlinks of the consolidated entity, we first derive a collection of sets C = {C1, . . . , Cn},
C ⊂ 2U∪B, such that ∀Ci ∈ C, |Ci| = 2, Ci ⊆ Eq, and where each Ci contains two incompatible identifiers.

Note that C encodes the pairs of identifiers which cannot appear together in the repaired equivalence class:

those elements of Eq not involved in inconsistency will not be contained within C.
We then apply a simple consistent clustering of the equivalence class, loosely following the notions of a

minimal cutting (see, e.g., [Stoer and Wagner, 1997]). For Eq, we create an initial set of singleton sets E0,

each containing an individual identifier in the equivalence class (a partition).

Now let Ω(Ei, Ej) denote the aggregated weight of the edge considering the merge of the nodes of Ei
and the nodes of Ej in the graph: the pair (d, c) such that d denotes the number of unique evidences for

equivalence relations between all nodes in Ei and all nodes in Ej and such that c denotes the concurrence

score considering the merge of entities in Ei and Ej—intuitively, the same weight as before, but applied as

if the identifiers in Ei and Ej were consolidated in the graph. We can apply the following clustering:

• for each pair of sets Ei, Ej ∈ En such that @{a, b} ∈ C : a ∈ Ei, b ∈ Ej (i.e., consistently mergeable

subsets) identify the weights of Ω(Ei, Ej) and order the pairings;

• in descending (lexicographical) order with respect to the above weights, merge Ei, Ej pairs—such that

neither Ei or Ej have already been merged in this iteration—producing En+1 at iteration’s end;

• iterate over n until fixpoint: i.e., until no more classes in En can be consistently merged.

The result of this process is a set of equivalence classes E—a partition of the original Eq—such that no

element of E contains incompatible identifiers. We can subsequently revise the consolidated data to reflect

E .

7.6.2 Implementing Disambiguation

The implementation of the above disambiguation process can be viewed on two levels: the macro level which

identifies and collates the information about individual equivalence classes and their respectively consolidated

inlinks/outlinks, and the micro level which repairs individual equivalence classes.

On the macro level, the task assumes input data sorted by both subject (s, p, o, c, s′, o′) and object

(o, p, s, c, o′, s′), again such that s, o represent canonical identifiers and s′, o′ represent the original identifiers

(as per § 7.4.1). Note that we also require the asserted owl:sameAs relations encoded likewise. Given that all

of the required information about the equivalence classes (their inlinks, outlinks, derivable equivalences and

original identifiers) are gathered under the canonical identifiers, we can apply a straightforward merge-join

161

7.6. Entity Disambiguation 162

on s-o over the sorted stream of data, batching together the data (inlinks, outlinks and original identifiers)

for each consolidated entity.

On a micro level, we buffer each individual consolidated segment into an in-memory index; currently, these

segments fit in memory, where for the largest equivalence classes we note that inlinks/outlinks are commonly

duplicated—if this were not the case, one could consider using an on-disk index which should be feasible given

that only small batches of the corpus are under analysis at each given time. We additionally require access

to the relevant terminological knowledge required for reasoning, and the predicate-level statistics derived

during from the concurrence analysis. We apply scan-reasoning and inconsistency detection over each batch,

and for efficiency, skip over batches which do not contain incompatible identifiers.

For equivalence classes containing incompatible identifiers, we first determine the full set of such pairs

through application of the inconsistency detection rules: usually, each detection gives a single pair, where we

ignore pairs containing the same identifier (i.e., detections which would equally apply over the unconsolidated

data). We check the pairs for a trivial solution: if all identifiers in the equivalence class appear in some pair,

we check whether (i) no pair of identifiers can be consistently merged, in which case, the equivalence class

must necessarily be completely disbanded; or (ii) one identifier appears in all pairs of incompatible identifiers

in the equivalence class, and is incompatible with all other identifiers, in which case this problematic identifier

can be removed from the equivalence class to derive the repair.

For non-trivial repairs, we begin with the set of singletons and then apply the iterations described in the

previous section, where at the beginning of each iteration, we derive the evidences for equivalence between

all remaining pairs of sets in the partition which can be consistently merged—based on explicit owl:sameAs

relations, and those inferable from the consolidation rules—and merge the pairs of sets accordingly. In the

case of a tie, we perform the concurrence analysis, which derives a form of similarity.

In the final step, we encode (only) the repaired equivalence classes in memory, and perform a final scan

of the corpus (in natural sorted order), revising identifiers according to their repaired canonical term.

7.6.3 Distributed Implementation

Distribution of the task becomes straightforward, assuming that the slave machines have knowledge of

terminological data, predicate-level statistics, and already have the consolidation encoding sextuples sorted

and coordinated by hash on s and o. (Note that all of these data are present on the slave machines from

previous tasks.)

Thus, we are left with two steps:

• run: each slave machine performs the above process on it’s segment of the corpus, applying a merge-

join over the data sorted by (s, p, o, c, s′o′) and (o, p, s, c, o′, s′) to derive batches of consolidated data,

which are subsequently analysed, diagnosed, and a repair derived in memory;

• gather/run: the master machine gathers all repair information from all slave machines, and floods

the merged repairs to the slave machines; the slave machines subsequently perform the final repair of

the corpus.

7.6.4 Performance Evaluation

The total time taken for inconsistency-based disambiguation was 3.91 h. The inconsistency and equivalence

class repair analysis took 2.87 h, with a significant average idle time of 24.4 min (14.16%): in particular,

certain large batches of consolidated data took significant amounts of time to process, particularly to reason

162

7.7. Related Work 163

Category min % Total
Total execution time 234.8 100

Master (Local)
Executing 1 0.4
Miscellaneous 1 0.4
Idle (waiting for slaves) 99.6 99.6

Slave (Parallel)
Avg. Executing (total exc. idle) 205.5 87.5
Identify inconsistencies and repairs 147.8 62.9
Repair Corpus 57.7 24.6
Avg. Idle 29.3 12.5
Waiting for peers 28.3 12.1
Waiting for master 1 0.4

Table 7.8: Breakdown of timing of distributed disambiguation and repair

over.32 Subsequently repairing the corpus took 1.03 h, with an average idle time of 3.9 min.

In Table 7.8, we again summarise the timing of the task. Note that the aggregation of the repair

information took a negligible amount of time, and where only a total of one minute is spent on the slave

machine. Most notably, load-balancing is somewhat of an issue, causing slave machines to be idle for, on

average, 12.5% of the total task time, mostly waiting for peers. This percentage—and the general load-

balancing characteristic—would likely increase further, given more machines, or a higher scale of data.

7.6.5 Results Evaluation

As alluded to at the outset of this section, our discussion of inconsistency repair has been somewhat academic:

from the total of 2.82 million consolidated batches to check, we found 523 equivalence classes (0.019%) causing

novel inconsistency. Of these, 23 were detected through owl:differentFrom assertions, 94 were detected

through distinct literal values for inverse-functional properties, and 406 were detected through disjoint-class

constraints. We list the top five functional-properties given non-distinct literal values in Table 7.9 and the

top five disjoint classes in Table 7.10—note that the dbo: functional-properties gave identical detections,

and that the class foaf:Person is a subclass of foaf:Agent, and thus an identical detection is given twice.33

All equivalence classes were broken into two repaired sub-equivalence class—furthermore, all had a trivial

repair given by separating a single identifier appearing in each incompatible pair (with all original identifiers

appearing in some pair). Thus, for the moment, our repair strategy is purely academic.34

7.7 Related Work

Work relating to entity consolidation has been researched in the area of databases for a number of years,

aiming to identify and process co-referent signifiers, with works under the titles of record linkage, record

fusion, merge-purge, instance fusion, and duplicate identification, and (ironically) a plethora of variations

32The additional expense is due to the relaxation of duplicate detection: we cannot consider duplicates on a triple level, but

must consider uniqueness based on the entire sextuple to derive the information required for repair. Thus, we must apply many

duplicate inferencing steps.
33Further, note again that between the time of the crawl and the time of writing, the FOAF vocabulary has removed

disjointness constraints between the foaf:Document and foaf:Person/foaf:Agent classes.
34We also considered a dual form of the concurrence to detect incorrect equivalence classes: for example, to use the quasi-

functional nature of foaf:name to repair consolidated entities with multiple such values. However, we noted in preliminary

results that such analysis gave poor results for our corpus, where we noticed, for example, that (indeed, highly ranked) persons

with multiple foaf:weblog values—itself measured to be a quasi-functional property—would be identified as incorrect.

163

7.7. Related Work 164

Functional Property Detections
1 foaf:gender 56
2 foaf:age 32
3 dbo:height/dbo:height/dbo:wheelbase/dbo:width 4
4 atomowl:body 1
5 loc:address 1

Table 7.9: Breakdown of inconsistency detections for functional-properties, where dbo: properties gave
identical detections

Disjoint Class 1 Disjoint Class 2 Detections
1 foaf:Document foaf:Person(/foaf:Agent) 312
2 ecs:Group ecs:Individual 37
3 foaf:Organization foaf:Person 24
4 foaf:Document foaf:Agent 23
5 foaf:Person foaf:Project 7

Table 7.10: Breakdown of inconsistency detections for disjoint-classes

thereupon; see [Newcombe et al., 1959; Michalowski et al., 2003; Chen et al., 2005; Bernstein et al., 2005],

etc., and a survey by Elmagarmid et al. [2007]. Unlike our approach which leverages the declarative semantics

of the data in order to be domain agnostic, such systems usually operate given closed schemas—similarly,

they typically focus on string-similarity measures and statistical analysis. Haas et al. [2009] note that:

“[...] in relational systems where the data model does not provide primitives for making same-as

assertions [...] there is a value-based notion of identity”

—[Haas et al., 2009]

However, we note that some works have focussed on leveraging semantics for such tasks in relation databases;

e.g., Fan et al. [2009] leverage domain knowledge to match entities, where interestingly they state:

“Real life data is typically dirty... [thus] it is often necessary to hinge on the semantics of the

data”

—[Fan et al., 2009]

Some other works—more related to Information Retrieval and Natural Language Processing—focus on

extracting coreferent entity names from unstructured text in order to align the results of Named Entity

Recognition where for example, Singh et al. [2010] present an approach to identify coreferences from a

corpus of 3 million natural language “mentions” of persons, where they build compound “entities” out of

the individual mentions.

With respect to RDF, one area of research also goes by the name instance matching : for example, in

2009, the Ontology Alignment Evaluation Initiative35 introduced a new test track on instance matching.

Nikolov et al. [2008] present the KnoFuss architecture for aligning data on an assertional level; they

identify a three phase process involving coreferencing (finding equivalent individuals), conflict detection

(finding inconsistencies caused by the integration), and inconsistency resolution. For the coreferencing, the

authors introduce and discuss approaches incorporating string similarity measures and class-based machine

learning techniques. Although the high-level process is similar to our own, the authors do not address

scalability concerns.

35OAEI. http://oaei.ontologymatching.org/; retr. 2010/11/27

164

http://oaei.ontologymatching.org/

7.7. Related Work 165

Scharffe et al. [2009] identify four steps in aligning datasets: align, interlink, fuse and post-process.

The align process identifies equivalences between entities in the two datasets, the interlink process materi-

alises owl:sameAs relations between the two datasets, the aligning step merges the two datasets (on both

a terminological and assertional level, possibly using domain-specific rules), and the post-processing phase

subsequently checks the consistency of the output data. Although parts of this process echoes our own, they

have yet to demonstrate large-scale evaluation, focussing on datasets containing 2.5 thousand entities.

Noessner et al. [2010] present an approach for aligning two A-Boxes described using the same T-Box; in

particular they leverage similarity measures introduced by Stuckenschmidt [2009], and define an optimisation

problem to identify the alignment which generates the most highest weighted similarity between the two A-

Boxes under analysis: they use Integer Linear Programming to generate the optimal alignment, encoding

linear constraints to enforce valid (i.e., consistency preserving), one-to-one, functional mappings. Although

they give performance results, they do not directly address scalability. Their method for comparing entities

is similar in practice to ours: they measure the “overlapping knowledge” between two entities, counting how

many assertions are true about both. The goal is to match entities such that: (i) the resulting consolidation

is consistent; and (ii) the measure of overlap is maximal.

Like us, Castano et al. [2008] approach instance matching from two distinct perspectives: (i) determine

coreferent identifiers; and (ii) detect similar individuals based on the data they share. Much of their work

is similar in principle to ours: in particular, they use reasoning for identifying equivalences and use a

statistical approach for identifying properties “with high identification power”. They do not consider use of

inconsistency detection for disambiguating entities, and perhaps more critically, only evaluate with respect

to a dataset containing ∼15 thousand entities.

With respect to URI naming on the Web, Bouquet et al. [2006] argue for a centralised naming architecture

for minting URI signifiers for the Web; we see such a centralised “‘naming authority” as going against the

ad-hoc, decentralised, scale-free nature of the Web.

The Sindice and Sig.ma search systems internally use inverse-functional properties to find equivalent

identifiers [Tummarello et al., 2007, 2009]. Sindice investigates some bespoke “schema-level” reasoning

to identify a wider range of inverse-functional properties [Tummarello et al., 2007]; however, compared

to our approach, they (i) do not use functional properties or cardinality constraints; (ii) would still miss

equivalences where identifiers use the same value with different inverse-functional properties, and where,

e.g., those properties are in an equivalence or subsumption relationship.

Online systems RKBExplorer [Glaser et al., 2008, 2009]36, <sameAs>37 and ObjectCoref [Cheng and

Qu, 2009]38 offer on-demand querying for owl:sameAs relations found for a given input URI, which they

internally compute and store; the former focus on publishing owl:sameAs relations for authors and papers in

the area of scientific publishing, with the latter two systems offering more general owl:sameAs relationships

between Linked Data identifiers. In fact, many of the owl:sameAs relations we consume are published as

Linked Data by the RKBExplorer system.

Volz et al. [2009] present the Silk framework for creating and maintaining inter-linkage between domain-

specific RDF datasets; in particular, this framework provides publishers with a means of discovering and

creating owl:sameAs links between data sources using domain-specific rules and parameters. Thereafter,

publishers can integrate discovered links into their exports, enabling better linkage of the data and subsequent

consolidation by data consumers: this framework goes hand-in-hand with our approach, producing the

owl:sameAs relations which we consume.

36http://www.rkbexplorer.com/sameAs/; retr. 2011/01/22
37http://sameas.org/; retr. 2011/01/22
38http://ws.nju.edu.cn/objectcoref/; retr. 2011/01/22

165

http://www.rkbexplorer.com/sameAs/
http://sameas.org/
http://ws.nju.edu.cn/objectcoref/

7.7. Related Work 166

Popitsch and Haslhofer [2010] present discussion on the problem of broken links in Linked Data, identi-

fying structurally broken links (the Web of Data’s version of a “deadlink”) and semantically broken links,

where the original meaning of an identifier changes after a link has been remotely asserted. The authors

subsequently present the DSNotify system, which monitors dynamicity over a given subset of Linked Data

and can detect and act upon changes—e.g., to notify another agent or correct broken links—and can also

be used to indirectly link the dynamic target.

Various authors have looked at applying consolidation over domain-specific RDF corpora: e.g., Sleeman

and Finin [2010] look at using machine learning techniques to consolidate FOAF personal profile information;

Shi et al. [2008] similarly look at FOAF-specific alignment techniques using inverse-functional properties and

fuzzy string matching; Jentzsch et al. [2009] examine alignment of published drug data;39 Raimond et al.

[2009] look at interlinking RDF from the music-domain; Monaghan and O’Sullivan [2007] apply consolidation

to photo annotations expressed in RDF.

Salvadores et al. [2009] present the LinksB2N system which aims to perform scalable integration of

RDF data, particularly focussing on evaluation over corpora from the marketing domain; however, their

methods are not specific to this domain. They do not leverage the semantics of the data for performing

consolidation, instead using similarity measures, based on the idea that “the unique combination of RDF

predicates associated with RDF resources is what defines their existence as unique” [Salvadores et al., 2009].

This is a similar intuition to that behind our concurrence analysis, but we again question the validity of

such an assumption for consolidation, particularly given incomplete data and the Open World Assumption

underlying RDF(S)/OWL—we view an RDF resource as a description of something signified, and would

wish to avoid conflating unique signifiers, even if they match precisely with respect to their description.

Halpin et al. [2010a] discuss the semantics and current usage of owl:sameAs in Linked Data, discussing

issues relating to identity, and providing four categories of owl:sameAs usage to relate entities which are

closely related, but for which the semantics of owl:sameAs—particularly substitution—does not quite hold;

in fact, the discussion of Halpin et al. [2010a] serves as a counterpoint to those aforementioned related works

which translate weighted similarities into weighted equivalences. Needless to say, we do not discount such

approaches—they may of course of course derive useful and correct alignments not possible through a purely

symbolic analysis—but we would be cautious when considering using such an approach over arbitrary Linked

Data, particularly given the inherent difficulties in evaluating the precision thereof.

Cudré-Mauroux et al. [2009] present the idMesh system, which leverages user-defined associations and

probabalistic methods to derive entity-level relationships, including resolution of conflicts; they also delineate

entities based on “temporal discrimination”, whereby coreferent entities may predate or postdate one another,

capturing a description thereof at a particular point in time. The idMesh system itself is designed over a peer-

to-peer network with centralised coordination. However, evaluation is over synthetic data, where they only

demonstrate a maximum scale involving 8,000 entities and 24,000 links over 400 machines: the evaluation of

performance focusses on network traffic and message exchange as opposed to time.

In the works of Kiryakov et al. [2009], Urbani et al. [2010] and Kolovski et al. [2010]—already discussed in

Chapter 5—the authors incorporate rules dealing with equality in their reasoning engines, and also use opti-

misations similar to our canonicalisation as a necessary means of avoiding the quadratic nature of traditional

replacement semantics for owl:sameAs.

39In fact, we believe that this work generates the incorrect results observable in Table 7.2; cf. http://groups.google.com/group/

pedantic-web/browse_thread/thread/ad740f7052cc3a2d (retr. 2011/01/22).

166

http://groups.google.com/group/pedantic-web/browse_thread/thread/ad740f7052cc3a2d
http://groups.google.com/group/pedantic-web/browse_thread/thread/ad740f7052cc3a2d

7.8. Critical Discussion and Future Directions 167

7.8 Critical Discussion and Future Directions

In this section, we provide critical discussion of our approach, following the dimensions of the requirements

listed at the outset.

With respect to scale, on a high level, our primary means of organising the bulk of the corpus is

external-sorts, characterised by the linearithmic time complexity O(nlog(n)); external-sorts do not have a

critical main-memory requirement, and are efficiently distributable. Our primary means of accessing the

data is via linear scans. With respect to the individual tasks:

• our current baseline consolidation approach relies on an in-memory owl:sameAs index: however we

demonstrate an on-disk variant in the extended consolidation approach;

• the extended consolidation currently loads terminological data into memory, which is required by all

machines: if necessary, we claim that an on-disk terminological index would offer good performance

given the distribution of class and property memberships, where we posit that a high cache-hit rate

would be enjoyed;

• for the entity concurrency analysis, the predicate level statistics required by all machines are small in

volume—for the moment, we do not see this as a serious factor in scaling-up;

• for the inconsistency detection, we identify the same potential issues with respect to terminological data;

also, given large equivalence classes with a high number of inlinks and outlinks, we would encounter

main-memory problems, where we posit that an on-disk index could be applied assuming a reasonable

upper limit on batch sizes.

With respect to efficiency:

• the on-disk aggregation of owl:sameAs data for the extended consolidation has proven to be a

bottleneck—for efficient processing at higher levels of scale, distribution of this task would we a prior-

ity, which should be feasible given that again, the primitive operations involved are external sorts and

scans, with non-critical in-memory indices to accelerate reaching the fixpoint;

• although we typically observe terminological data to constitute a small percentage of Linked Data

corpora (<0.1% in our corpus; cf. older results in [Hogan et al., 2009b, 2010c]) at higher scales, aggre-

gating the terminological data for all machines may become a bottleneck, and distributed approaches to

perform such would need to be investigated; similarly, as we have seen, large terminological documents

can cause load-balancing issues;40

• for the concurrence analysis and inconsistency detection, data are distributed according to a modulo-

hash function on the subject and object position, where we do not hash on the objects of rdf:type

triples—although we demonstrated even data distribution by this approach for our current corpus, this

may not hold in the general case;

• as we have already seen for our corpus and machine count, the complexity of repairing consolidated

batches may become an issue given large equivalence class sizes;

• there is some notable idle time for our machines, where the total cost of running the pipeline could be

reduced by interleaving jobs.

40We reduce terminological statements on a document-by-document basis according to unaligned blank-node positions: for

example, we prune RDF collections identified by blank-nodes which do not join with, e.g., an owl:unionOf axiom.

167

7.8. Critical Discussion and Future Directions 168

With the exception of our manually derived blacklist for values of (inverse-)functional-properties, the

methods presented herein have been entirely domain-agnostic and fully automatic.

One major open issue is the question of precision and recall. Given the nature of the tasks—particularly

the scale and diversity of the datasets—we posit that deriving an appropriate gold standard is currently

infeasible:

• the scale of the corpus precludes manual or semi-automatic processes;

• any automatic process for deriving the gold standard would make redundant the approach to test;

• results derived from application of the methods on subsets of manually verified data would not be

equatable to the results derived from the whole corpus;

• even assuming a manual approach were feasible, oftentimes there is no objective criteria for determining

what precisely signifies what—the publisher’s original intent is often ambiguous.

Thus, we prefer symbolic approaches to consolidation and disambiguation which are predicated on the formal

semantics of the data, where we can appeal to the fact that incorrect consolidation is due to erroneous data,

not an erroneous approach. Without a formal means of sufficiently evaluating the results, we currently only

employ statistical methods for applications where precision is not a primary requirement. In general, we

posit that for the corpora we target, such research can only find it’s real litmus test when integrated into a

system with a critical user-base.

Finally, we have only briefly discussed issues relating to Web-tolerance: e.g., spamming or conflicting

data. With respect to such consideration, we currently (i) derive and use a blacklist for common void

values; (ii) consider authority for terminological data; and (iii) try to detect erroneous consolidation through

consistency verification. With respect to (iii), an interesting research direction would be to investigate

statistical approaches for identifying additional malignant coreference given by methods such as ours, in

corpora such as ours. Further research into the benefits of different repair strategies for such coreference is

also warranted: for example, empirical analysis may demonstrate that coreference given by direct owl:sameAs

is, in the general case, more reliable than coreference given by inverse-functional properties—or perhaps vice-

versa—which could lead to new repair strategies which define more trust in different types of coreference

“proofs”. Also, unlike our general repair of inconsistencies in Chapter 6, we have not considered leveraging

the ranking scores of data-sources or triples in the repair; further investigation along these lines may also

lead to more granular repair strategies.

Again broaching on the topic of Web-tolerance, our approach (näıvely) trusts all equivalences asserted

or derived from the data until they are found to cause inconsistency: as such, we assume good faith on the

part of the publishers, and deem all coreference as innocent until proven guilty—this is inarguably näıve for

Web data, especially given that our current methods for diagnosing problematic coreference are quite coarse-

grained. Acknowledging that our coreference is fallible, we track the original pre-consolidation identifiers—

encoded in sextuples of the form (s, p, o, c, s′, o′)—which can be used by consumers to revert erroneous

consolidation. In fact, similar considerations can be applied more generally to the reuse of identifiers across

sources: giving special consideration to the consolidation of third party data about an entity is somewhat

fallacious without also considering the third party contribution of data using a consistent identifier. In both

cases, we track the context of (consolidated) statements which at least can be used to verify or post-process

sources.41 Currently, the corpus we evaluate our methods against does not exhibit any significant deliberate

spamming, but rather indeliberate noise—we leave more mature means of handling spamming for future

work (as required).

41Although it must be said, we currently do not track the steps used to derive the equivalences involved in consolidation,

which would be expensive to materialise and maintain.

168

7.8. Critical Discussion and Future Directions 169

To wrap up this chapter, we have provided a comprehensive discussion on scalable and distributed

methods for consolidating, matching, and disambiguating entities present in a large static Linked Data

corpus. Throughout, we have focussed on the scalability and practicalities of applying our methods over real,

arbitrary Linked Data in a domain agnostic and (almost entirely) automatic fashion. We have shown how

to use explicit owl:sameAs relations in the data to perform consolidation, and subsequently expanded this

approach, leveraging the declarative formal semantics of the corpus to materialise additional owl:sameAs

relations. We also presented (albeit indirectly in Appendix D) a scalable approach to identify weighted

entity concurrences: entities which share many inlinks, outlinks, and attribute values—we note that those

entities demonstrating the highest concurrence were not coreferent. Next, we presented an approach using

inconsistencies to disambiguate entities and subsequently repair equivalence classes: we found that this

approach currently derives few diagnoses, where the granularity of inconsistencies within Linked Data is not

sufficient for accurately pinpointing all incorrect consolidation. Finally, we tempered our contribution with

critical discussion, particularly focussing on scalability and efficiency concerns.

We believe that consolidation and disambiguation—particularly as applied to large scale Linked Data

corpora—is of particular significance given the rapid growth in popularity of Linked Data publishing. As the

scale and diversity of the Web of Data expands, scalable and precise data integration technique will become

of vital importance, particularly for data warehousing applications—we see the work presented herein as a

significant step in the right direction.

169

Chapter 8

Discussion and Conclusion

“You have your way. I have my way. As for the right way, the correct way, and

the only way, it does not exist.”

—Friedrich Nietzsche

There has been a recent and encouraging growth in heterogeneous RDF documents published on the Web.

Acting as a catalyst for this burgeoning adoption, the Linked Data community and the Linking Open Data

project have advocated the tangible benefits of RDF and related Semantic Web technologies for publishing

and interlinking open data on the Web in a standardised manner. The result is a novel Web of Data, which

poses new challenges and research directions with respect to how this heterogeneous, unvetted and potentially

massive corpus (or some interesting subset thereof) can be integrated in a manner propitious to subsequent

consumers. Indeed, inherent heterogeneity poses significant obstacles with respect to how such data can be

processed and queried, where scale and intrinsic noise preclude the applicability (and often the desirability)

of standard reasoning techniques to smooth out this heterogeneity—this has been the motivating premise of

this thesis.

Summary of Contributions

We now give a summary of the primary contributions of this thesis, as given by Chapters 4–7.

Crawling, Corpus and Ranking

With respect to our core contributions, we began in Chapter 4 by briefly describing a distributed crawling

architecture for attaining a (generic) corpus of RDF data from the Web, exploiting Linked Data principles

to discover new documents; we ran this crawler for 52.5 h over nine machines to retrieve 1.118 billion

quadruples of RDF data from 3.985 million Web documents, constituting the evaluation corpus used for the

later chapters. As such, we presented a scalable method for consumers to acquire a large corpus of RDF data

from the Web, thus documenting the means by which our evaluation corpus was achieved, and thereafter

presenting some high-level statistics to help characterise the corpus.

Thereafter, we applied a PageRank-inspired analysis of the sources in the corpus, deriving a set of ranking

scores for documents which quantifies their (Eigenvector) centrality within the Web of Data (in 30.3 h using

nine machines). These ranks are used in later chapters for (i) giving insights into the importance of various

RDFS and OWL primitives based on a summation of the ranks of documents which use them in our corpus;

and (ii) for computing and associating ranks with individual triples, which then serve as input into the

170

171

annotated reasoning system. We noted that the core (RDF/RDFS/OWL) vocabularies and other popular

(DC/FOAF/SKOS) vocabularies constituted the highest ranked documents.

Reasoning

In Chapter 5, we then described our method for performing reasoning—in particular, forward-chaining

materialisation—with respect to a subset of OWL 2 RL/RDF rules which we deem suitable for scalable

implementation.

We first discussed standard reasoning techniques and why they are unsuitable for our scenario, also moti-

vating our choice of rule-based materialisation. We then introduced the newly standardised OWL 2 RL/RDF

ruleset, discussing the computational expense and the potential of quadratic or cubic materialisation associ-

ated with certain rules, thus initially motivating the selection of a subset.

Continuing, we introduced the rationale and basis for distinguishing and processing terminological data

separately during the reasoning process, formalising soundness and conditional completeness results and

presenting a two-stage inferencing procedure which (i) derives a terminological closure and partially evaluates

the program (ruleset) with respect to terminological data; (ii) applies the partially evaluated (assertional)

program against the bulk of the corpus. We detailed and initially evaluated a number of novel optimisations

for applying the assertional program, enabled by the partial evaluation with respect to terminological data.

Reuniting with our use-case, we introduced our notion of “A-linear” reasoning involving rules with only

one assertional atom, giving a maximal size for materialised data possible therefrom; we identified the A-linear

subset of OWL 2 RL/RDF as being suitable for our scenario, enabling linear complexity and materialisation

with respect to the assertional data and—as also demonstrated by related approaches [Weaver and Hendler,

2009; Urbani et al., 2009]—enabling a straightforward distribution strategy whereby terminological knowl-

edge is effectively made global across all machines, allowing these machines to perform assertional reasoning

independently, and in parallel. Acknowledging the possibility of impudent terminological contributions by

third parties on the Web, we introduced our approach for authoritative reasoning which conservatively

considers only those terminological axioms offered by unambiguously trustworthy sources.

Finally, we presented evaluation of the above methods against our Linked Data corpus, providing an

analysis of the terminological axioms used therein, validating our authoritative reasoning approach, analysing

the proposed assertional program optimisations, presenting the size of the materialised data, and measuring

the timing of the distributed tasks; in particular, using nine machines, we infer 1.58 billion raw triples (of

which 962 million are novel and unique) in 3.35 h.

Annotated Reasoning

Recognising the possibility of noisy inferences being generated, in Chapter 6 we investigated an annotation

framework for tracking metainformation about the input and inferred data during the reasoning process—

metainformation which encodes some quantification of trust, provenance or data quality, and which is trans-

formed and aggregated by the framework during reasoning. In particular, our primary use-case is to track

ranking annotations for individual triples, which are subsequently used to repair detected inconsistencies

in a parsimonious manner; additionally, we incorporate annotations for blacklisting malignant data or data

sources, and metadata relating to authoritative reasoning.

As such, we first outlined our method for deriving ranks for individual triples in the input corpus: we

loosely follow the approach of [Harth et al., 2009] whereby the rank of a triple is the summation of the ranks

of documents in which it appears.

Continuing, we then formalised a generic annotated reasoning framework, presenting a number of rea-

soning tasks one might consider within such a framework, discussing various aspects of the framework and

171

172

associated tasks with respect to scalability and growth of annotated materialisations—here, we eventually

appealed to specific characteristics of our annotation domain which enable scalable implementation. We also

introduced and discussed OWL 2 RL/RDF constraint rules which are used to detect inconsistency.

Moving towards our use-case, we used the ranks of document (computed above) to annotate triples with

aggregated ranking scores—using nine machines, this process took 4.2 h. We then discussed extension of

our distributed reasoning engine to incorporate annotations: using the same setup, annotated reasoning

took 14.6 h including aggregation of the final results, producing 1.889 billion unique, optimal, annotated

triples merged from input and inferred data. Concluding the chapter, we sketched a strategy for detecting

and repairing inconsistencies (in particular, using the rank annotations) and discussed a distributed imple-

mentation thereof: using the same setup, detecting and repairing 301,556 inconsistencies—97.6% of which

were ill-typed literals, with the remaining 2.4% given by memberships of disjoint classes—in the aggregated

annotated corpus took 5.72 h.

Consolidation

Finally, in Chapter 7, we looked at identifying coreferent individuals in the corpus—individuals which signify

the same real-world entity, but which are given different identifiers, often by different publishers. Given that

thus far our reasoning procedures focussed on application of rules with only one assertional atom, and that

rules supporting equality in OWL 2 RL/RDF contain multiple such atoms, we presented bespoke methods

for handling the semantics of owl:sameAs in a scalale manner.

Firstly, we discussed the standard semantics of equality, and motivated our omission of owl:sameAs rules

which affect terminology; we also motivated our canonicalisation approach, whereby one identifier is chosen

from each coreferent set and used to represent the individual in the consolidated corpus—in particular,

consolidation bypasses the quadratic materialisation mandated by the standard semantics of replacement,

and can be viewed as a partial materialisation approach. We also presented statistics of our corpus related

to naming, highlighting sparse reuse of identifiers across data sources.

We then began by detailing our distributed baseline approach whereby we only consider explicit

owl:sameAs relationships in the data, which we load into memory and send to all machines; for our corpus,

this approach found 2.16 million coreferent sets containing 5.75 million terms, and took 1.05 h on eight slave

machines (including the consolidation step).

We extended this approach to include inference of additional owl:sameAs relationships using the reasoning

approach of Chapter 5, as well as (inverse-)functional properties and certain cardinality constraints; this

approach requires more on-disk processing and took 12.3 h on eight machines, identifying 2.82 million

coreferent sets containing 14.86 million terms (unlike the baseline approach, a high percentage of these

[60.8%] were blank-nodes).

Finally, acknowledging that some of the coreference we identify may be unintended despite the fact that

our methods rely on the formal semantics of the data—i.e., that some subset of the identified coreference may

be attributable to the inherent noise in the corpus or to unanticipated inferencing—we investigated using

inconsistencies as indicators of defective consolidation, and sketched a bespoke method for repairing “unsat-

isfiable” sets of coreferent identifiers. Using eight slave machines, locating and repairing 523 unsatisfiable

coreferent sets—and reflecting the reparations in the consolidated corpus—took 3.91 h.

Critique of Hypothesis

In light of what we have seen thus far, we take this opportunity to critically review the central hypothesis

of this thesis as originally introduced in § 1.2:

172

173

Given a heterogeneous Linked Data corpus, the RDFS and OWL semantics of

the vocabularies it contains can be (partially) leveraged in a domain-agnostic, scal-

able, Web-tolerant manner for the purposes of (i) automatically translating between

(possibly remote) terminologies; and (ii) automatically resolving (possibly remote)

coreferent assertional identifiers.

Herein, Chapters 5 & 6 have translating assertional data between terminologies, and Chapter 7 has dealt

with the resolution of coreference between assertional identifiers. We now discuss how the presented methods

handle the three explicit requirements: (i) domain agnosticism, (ii) scalability, and (iii) Web-tolerance.

Domain Agnosticism

All of the methods presented in this thesis rely on a-priori knowledge from the RDF [Manola et al., 2004],

RDFS [Hayes, 2004] and OWL (2) standards [Hitzler et al., 2009], as well as Linked Data principles [Berners-

Lee, 2006]. As such, we show no special regard to any domain, vocabulary or data provider, with one

exception: for consolidation, we require a manual blacklist of values for inverse-functional properties (see

Table 7.5); although many of these could be considered domain-agnostic—for example, empty literals—values

such as the SHA1 sum of mailto: are designed to counter-act malignant data within specific domains (in

this case, values for the property foaf:mbox sha1sum). Indeed, this blacklist constitutes additional a-priori

knowledge outside of the remit of the hypothesis, although we view this as a minor transgression. However,

our blacklist is a reminder that as Linked Data diversifies—and as the motivation and consequences of active

spamming perhaps become more apparent—mature consumers may necessarily have to resort to heuristic

and domain-specific counter-measures to ensure the effectiveness of their algorithms, analogously to how

Google (apparently) counteracts deliberate spamming on the current Web.

Similarly, Linked Data consumers may find it useful to enhance the generic “core” of their system with

domain-specific support for common or pertinent vocabularies. In our own primary use-case—the Semantic

Web Search Engine (SWSE)1—we have manually added some popular properties (from which rdfs:label

values cannot be inferred) to denote labels for entities, including, for example, dc:title.2 Likewise, the

Sig.ma search interface [Tummarello et al., 2009] avoids displaying the values of selected properties—e.g.,

foaf:mbox sha1sum—which it deems to be unsightly to users. Aside from user-interfaces, for example, Shi

et al. [2008] and Sleeman and Finin [2010] have looked at FOAF-specific heuristics for consolidating of data,

Kiryakov et al. [2009] manually select what they deem to be an interesting subset of Linked Data, etc.

Clearly, domain agnosticism may not be a strict requirement for many Linked Data consumers, and

especially in the current “bootstrapping” phase, more convincing results can be achieved with domain-

specific tweaks. However, for popular, large-scale consumers of heterogeneous Linked Data, neutrality may

become an important issue: showing special favour to certain publishers or vocabularies may be looked upon

unfavourably by the community. On a less philosophical level, improving results by domain agnostic means

is more flexible to changes in publishing trends and vocabularies. In any case, as more appealing applications

emerge for Linked Data, publishers will naturally begin tailoring their data to suit such applications; similarly,

one can imagine specific, high-level domain vocabularies—such as the Fresnel vocabulary [Pietriga et al.,

2006] which allows for publishing declarative instructions on how RDF should be rendered—emerging to

meet the needs of these applications.

1An online prototype is available at http://swse.deri.org/.
2Much like the blacklist, we do this with some reluctance—within SWSE, we wish to strictly adhere to domain-independent

processing of data.

173

http://swse.deri.org/

174

Scalability

To ensure reasonable scale, we implement selected subsets of standard reasoning profiles, and use non-

standard optimisations and techniques—such as separating terminological data from assertional data, and

canonicalising equivalent identifiers—to make our methods feasible at scale. Our implementations rely pri-

marily on lightweight in-memory data structures and on-disk batch processing techniques involving merge-

sorts, scans, and merge-joins. Also, all of our methods are designed to run on a cluster of commodity

hardware, enabling some horizontal scale: adding more machines typically allows for more data to be pro-

cessed in shorter time. We have demonstrated all of our methods to be feasible over a corpus of 1.118 billion

quadruples recently crawled from Linked Data.

With respect to reasoning in general, our scalability is predicated on the segment of terminological data

being relatively small and efficient to process and access; note that for our corpus, we found that ∼0.1% of

our corpus was what we considered to be terminological. Since all machines currently must have access to

all of the terminology—in one form or another, be it the raw triples or partially evaluated rules—increasing

the number of machines in our setup does not increase the amount of terminology the system can handle

efficiently. Similarly, the terminology is very frequently accessed, and thus the system must be able to service

lookups against it in a very efficient manner; currently, we store the terminology/partially-evaluated rules

in memory, and with this approach, the scalability of our system is a function of how much terminology can

be fit on the machine with the smallest main-memory in the cluster. However, in situations where there is

insufficient main memory to compute the task in this manner, we believe that given the apparent power-law

distribution for class and property memberships (see Figures 4.6(b) & 4.6(c)), a cached on-disk index would

work sufficiently well, enjoying a high-cache hit rate and thus a low average lookup time.

Also, although we know that the size of the materialised data is linear with respect to the assertional

data, another limiting factor for scalability is how much materialisation the terminology mandates—or, put

another way, how deep the taxonomic hierarchies are under popularly instantiated classes and properties.

For the moment, with some careful pruning, the volume of materialised data roughly mirrors the volume of

input data; however, if, for example, the FOAF vocabulary today added ten subclasses of foaf:Person, the

volume of authoritatively materialised data would dramatically increase.

Also related to the terminology, we currently use a master machine to coordinate global knowledge which

may become a bottleneck in the distributed execution of the task, depending on the nature and volume of

the data involved; one notable example of this was for the distributed ranking, where the PageRank analysis

of the source-level graph on the master machine proved to be a significant bottleneck. Admittedly—and

appealing to the current exploratory scope—our methods currently do not make full use of the cluster,

where many of the operations currently done by the master machine could be further parallelised (such as

the PageRank iterations; e.g., see [Gleich et al., 2004]). We consider this as potential future work.

Some of our algorithms require hashing on specific triple elements to align the data required for joins

on specific machines; depending on the distribution of the input identifiers, hash-based partitioning of data

across machines may lead to load balancing issues. In order to avoid such issues, we do not hash on the

predicate position of triples or on the object of rdf:type triples given the distribution of their usage (see

Figures 4.6(b) & 4.6(c)—particularly the x-axes): otherwise, for example, the slave machine that receives

triples with the predicate rdf:type or object foaf:Person would likely have significantly more data to

process than its peers (see Table 4.4). Although elements in other positions of triples also demonstrate a

power-law like distribution (see Figure 4.6(a)), the problem of load-balancing is not so pronounced—even

still, this may become an issue if, for example, the number of machines is significantly increased.

Relatedly, many of our methods also rely on external merge-sorts, which have a linearithmic complexity

O(n ∗ log(n)); moving towards Web-scale, the log(n) factor can become conspicuous with respect to per-

formance. From a practical perspective, performance can also depreciate as the number of on-disk sorted

174

175

batches required for external merge-sorts increases, which in turn increases the movement of the mechanical

disk arm from batch to batch—at some point, a multi-pass merge-sort may become more effective, although

we have yet to investigate low-level optimisations of this type. Similarly, many operations on a micro-level—

for example, operations on individual entities or batches of triples satisfying a join—are of higher complexity;

typically, these batches are processed in memory, which may not be possible given a different morphology of

data to that of our current corpus.

Finally, we note that we have not addressed dynamicity of data: our methods are primarily based on

batch processing techniques and currently assume that the corpus under analysis remains static. In our

primary use-case SWSE (§ 2.4), we envisage a cyclic-indexing paradigm whereby a fresh index is being

crawled, processed and indexed on one cluster of machines whilst a separate cluster offers live queries over

the most recent complete index. Still, our assumption of static data may be contrary to the requirements

of many practical consumer applications wishing to consume dynamic sources of information, for which our

current performance and scalability results may not directly translate. However, we still believe that our

work is relevant for such a scenario, subject to further research; for example, assuming that the majority

of data remain static, a consumer application could use our batch processing algorithms for this portion

of the corpus, and handle dynamic information using smaller-scale data structures. Similarly, for example,

assuming that the terminological data is sufficiently static, our classical reasoning engine can easily support

the addition of new assertional information. Still, the applicability of our work for dynamic environments is

very much an open (and interesting) research question.

Web Tolerance

With respect to Web-tolerance, we (i) only consider authoritative terminology, (ii) consider the source-level

graph when performing ranking, (iii) blacklist common vacuous values for inverse-functional properties, (iv)

avoid letting consolidation affect terminology, predicates and values of rdf:type, and (v) use PageRank and

concurrence similarity-measures to debug and repair detected inconsistencies. We have demonstrated these

techniques to make non-trivial forms of materialisation and consolidation feasible over our corpus (collected

from 3.985 million sources).

However, we are not tolerant to all forms of publishing errors and spamming. In particular, we are still

ill-equipped to handle noise on an assertional-level, where we mainly rely on inconsistency to pinpoint such

problems, and where many types of noise may not be symptomised by inconsistency. In fact, we found only

modest amounts of inconsistency in the corpus, mainly due to invalid datatypes and some memberships of

disjoint classes—many noisy (but consistent) inferences and coreference relations can persist through to the

final output.

Similarly, we do not directly tackle the possibility of deliberate spamming on an assertional level—needless

to say that considering all information provided about a given entity from all sources is vulnerable to the

spamming of popular entities with impertinent contributions. However, we do track the source of data, which

can subsequently be passed on to the consumer application.3 Thereafter, a consumer application can consider

using bespoke techniques—perhaps based on something similar to our notion of authority, or the presented

links-based ranking—to make decisions on the value and trustworthiness of individual contributions.

In summary, it is very difficult to pre-empt all possible forms of noise and spamming, and engines such

as Google have adopted a more reactive approach to Web-tolerance, constantly refining their algorithms to

better cope with the inherent challenges of processing Web data. Along similar lines, we have demonstrated

reasoning and consolidation methods which can cope with many forms of noise present on today’s Web of

3For rules with only one assertional patten (as per our selected subset of OWL 2 RL/RDF) we can optionally assign each

assertional inference the context of the assertional fact from which it is entailed.

175

176

Data, perhaps serving as a foundation upon which others can build in the future (as necessary).

Future Directions

In this thesis, we have demonstrated that non-trivial reasoning and consolidation techniques are feasible over

large-scale corpora of current Linked Data in the order of a billion triples. We now look at what we feel to

be important future directions arising from the work presented in this thesis. In particular, we identify a

number of high-level areas for future works which we believe to be:

1. of high-impact, particularly with respect to Linked Data publishing;

2. relevant for integrating heterogeneous Linked Data corpora;

3. feasible for large-scale, highly-heterogeneous corpora collected from unvetted sources;

4. challenging and novel, and thus suitable for further study in a research setting.

The five areas we identify are as follows:

1. identifying a “sweet-spot” of reasoning expressivity, taking into account computational feasibility

as well as adoption in Linked Data publishing;

2. exploring the possibility of publishing rules within Linked Data, where rules offer a more succinct

and intuitive paradigm for axiomatising many forms of entailment when compared with RDFS/OWL;

3. investigating more robust/conservative criteria for trustworthiness of assertional data, where we

see a need for further algorithms which tackle impudent third-party instance data, or, e.g., erroneous

owl:sameAs mappings;

4. researching statistical or machine learning approaches for performing reasoning and consolidation

over Linked Data, which leverage the ever increasing wealth of RDF Web data becoming available;

5. designing, creating and deploying better evaluation frameworks for realistic and heterogeneous

Linked Data.

Reasoning Expressivity: Finding the “Sweet-spot”

With respect to reasoning expressivity, there are thus two primary dimensions to consider: (i) how compu-

tationally feasible is that expressivity of reasoning; (ii) what expressivity is commonly used by (and/or is

useful for) Linked Data vocabularies.

With respect to computational feasibility, in this thesis we apply materialisation with respect to a scalable

subset of OWL 2 RL/RDF rules which enables an efficient and distributable inference strategy based on a

separation of terminological knowledge. In particular, we restrict our rules to those which have zero or one

assertional atoms in the body of the rule, which (i) ensures that the amount of materialised data stays linear

with respect to the assertional data in the corpus, and (ii) allows for a distribution strategy requiring little

co-ordination between machines. With respect to extending our approach to support a fuller subset of OWL

2 RL/RDF, we note that certain rules which have multiple assertional atoms in the body do not affect our

current guarantees on how much data are materialised: these are rules where each atom in the head contains

at most one variable not appearing in any T-atom, where an example is cls-svf1:

(?u, a, ?x)←(?x, owl:someValuesFrom, ?y),(?x, owl:onProperty, ?p), (?u, ?p, ?v),(?v, a, ?y) .

176

177

Since the head variable ?x also appears in the T-atoms of the rule, ?u is the only head variable not appearing

in a T-atom, and so the number of inferences given by this rule is bounded by the number of groundings

for the pattern (?u, ?p, ?v), and so is bounded by the amount of assertional data. However, such rules

would still require amendment to how we distribute our reasoning, perhaps following the works of Urbani

et al. [2010] or Oren et al. [2009b], etc. However, rules for other OWL primitives—such as owl:Transit-

iveProperty—introduce the immutable possibility of quadratic (or even cubic) growth in materialisation.

Thus, a pure materialisation approach to such inferencing is perhaps not appropriate, where, instead, partial

materialisation may prove more feasible in the general case: for example, one could consider an approach

which materialises the partial closure of transitive chains in the data, and applies backward-chaining at

runtime to complete the chains.4 Generalising the problem, an interesting direction for future research

is to investigate coherent cost models with respect to supporting inferences by means of forward-chaining

and backward-chaining, thus allowing to optimise the inferencing strategy of a given system in its native

environment.

Aside from computational feasibility, the “sweet-spot” in expressivity is also predicated on the use of

RDFS and OWL within popular Linked Data vocabularies. For example, we currently support primitives—

such as owl:hasValue, owl:intersectionOf, etc.—which we found to have scarce adoption amongst the

vocabularies in our corpus; similarly, for consolidation we support owl:cardinality and owl:maxCardin-

ality axioms which allow for inference of owl:sameAs relations and which add an additional computational

expense to our methods, but which gave no results for our corpus. In general, our survey of Linked Data

vocabularies showed an inclination towards using those RDFS and OWL primitives whose axioms are ex-

pressible in a single triple, and—with the possible exception of owl:unionOf—a disinclination to use OWL

primitives whose axioms require multiple triples, such as complex class descriptions using RDF lists, or those

involving OWL restrictions, etc. We believe that there is now sufficient adoption of RDFS and OWL in the

Wild to be able to derive some important insights into what parts of the RDFS and OWL standards are

being used, and to what effect. Having provided some initial results in this thesis, we would welcome further

investigation of RDFS and OWL adoption, with the possible goal of identifying a subset of (lightweight)

primitives recommended for use in Linked Data, along with associated best practices and rationale backed

by the empirical analyses.

Thus, the sweet-spot in expressivity should consider computational feasibility (including ease of imple-

mentation to support the required inferencing) and the needs of publishers. In this thesis, we have contributed

some empirical evidence which already suggests that publishers favour the use of those lightweight primitives

which are supported by our scalable subset of OWL 2 RL/RDF.

Terminology vs. Rules

In our scenario, consistency cannot be expected: thus, we claim that tableau-based approaches are not

naturally well-suited to our requirements. Along these lines, our framework is based on monotonic rules,

where we compile Linked Data vocabularies into T-ground rules, such as:

(?x, a, foaf:Agent) ← (?x, a, foaf:Person) .

Accordingly, our framework is also compatible with generic RDF rules such that can be expressed in a number

of declarative Semantic Web rule languages, including N3 [Berners-Lee, 1998a], SWRL [Horrocks et al., 2004]

or RIF Core [Boley et al., 2010].5 Interestingly, such rule languages cover a number of “blind-spots” in OWL

expressivity; for example, the inferencing encoded by the rule:

4Note that, in effect, we use such a “partial-materialisation” approach for our consolidation.
5By generic RDF rules, we mean Horn clauses which only use RDF atoms and whose variables are range-restricted. Note

that the stated rule languages can express more complex forms of rules which we do not explicitly discuss here.

177

178

(?x, ex:hasYoungerSister, ?y) ← (?x, ex:olderThan, ?y),(?x, ex:hasSister, ?y)

is not expressible in OWL 2 DL.6 Many other forms of inference are much more easily encoded as rules,

rather than RDFS/OWL; for example, consider the rule:

(?x, ex:hasBrother, ?y) ← (?x, ex:hasSibling, ?y),(?y, a, ex:Male) .

whose inferences can only be modelled in OWL 2 using the following prolix terminology:

(ex:Male, rdfs:subClassOf, :hasSelfMale),

(:hasSelfMale, owl:hasValue, "true"^̂ xsd:boolean),

(:hasSelfMale, owl:onProperty, ex:selfMale),

(ex:hasBrother, owl:propertyChainAxiom, :listOne),

(:listOne, rdf:first, ex:hasSibling), (:listOne, rdf:rest, :listTwo),

(:listTwo, rdf:first, ex:selfMale), (:listTwo, rdf:rest, rdf:nil) .

or, in more legible Turtle syntax:

ex:Male rdfs:subClassOf [owl:hasSelf true, owl:onProperty ex:selfMale] .

ex:hasBrother owl:propertyChainAxiom (ex:hasSibling ex:selfMale) .

We note that the required terminology is unintuitive with respect to its intention, and must encode some

“auxiliary” definitions to achieve the desired inferences. In general, we believe that the simple IF-THEN

structure of rules is a more direct and intuitive formalism than the RDFS and OWL languages, and would

thus be more amenable to adoption by a wider community of practitioners.

This begs the question: would a pure rule-based paradigm better suit the Linked Data community

than the current RDFS and OWL paradigm of publishing the semantics of terms in vocabularies? On

the other side of the argument, we note that RDFS and OWL are descriptive as well as prescriptive: as

well as prescribing the entailments possible through a given set of terms, the RDFS and OWL languages

also allow for giving a direct and rich RDF description of those terms and their inter-relations. Similarly,

owl:sameAs (and owl:differentFrom) offer a terse relation for asserting (or rejecting) coreference such that

can be directly embedded into the given RDF data. In addition, the semantics of more expressive constructs

such as owl:disjointUnionOf or classes with high-cardinality restrictions may prescribe entailments which

require complex rulesets to axiomatise, although we note that the use of such primitives is uncommon in

current Linked Data.

Still however, it seems that rules and vocabularies offer complementary approaches—as was the motiva-

tion behind various proposals such as SWRL, DLP [Grosof et al., 2004], Datalog± [Cal̀ı et al., 2010] and

OWL 2 RL [Grau et al., 2009]—although the focus thus far for Linked Data has largely been on vocab-

ularies. Notably, rule-based approaches such as SHOE [Heflin et al., 1999], N3 and SWRL pre-date the

Linked Data principles, but, to the best of our knowledge, have yet to see significant adoption on the Web;

similarly, various proposals for encoding rules as SPARQL Construct queries [Polleres, 2007; Schenk and

Staab, 2008; Bizer and Schultz, 2010] or for encoding constraints as SPARQL Ask queries7, have yet to

see adoption in the Wild. In particular, whilst there are various best-practices regarding how to publish

vocabularies on the Web [Miles et al., 2006], there are few guidelines available regarding how to publish rules

on the Web. Although there is ongoing work in the W3C on an initial proposal for publishing RIF rules as

RDF [Hawke, 2010], and community proposals for describing SPARQL/SPIN rules as RDF8, the resulting

6This inference involves role conjunction (a.k.a. property/role intersection) whose inclusion into OWL 2 DL would lead to

a higher complexity class (see, e.g., [Glimm and Kazakov, 2008]).
7http://www.spinrdf.org/; retr. 2011/02/16
8For example, see http://www.spinrdf.org/spin.html#spin-constraint-ask; retr. 2011/02/16

178

http://www.spinrdf.org/
http://www.spinrdf.org/spin.html#spin-constraint-ask

179

documents (necessarily) require use of complex nested RDF structures and thus are rather unintuitive and

difficult to read.

In summary, we see that there is clear motivation to publish rules on the Web—possibly alongside

traditional vocabularies—where there are already some existing proposals in the area, but as of yet no

notable adoption. Along these lines, an interesting research direction would be to look at use of rules in the

Wild, and to investigate how declarative rules can be encoded, published and shared across the Web in a

manner propitious to the Linked Data community. Various non-trivial questions then arise with respect to

how vocabularies and published rules interplay, what expressivity rules should allow, what form of negation

should be supported [Wagner, 2003; Polleres et al., 2006], whether or not rules should follow the Open World

Assumption and the lack of a Unique Name Assumption as per OWL [de Bruijn et al., 2005a, 2006; Motik

et al., 2009a],9 how rules can be trusted or interlinked, etc. Although there is already a significant body of

literature (partially) tackling these questions, we feel that further research within a realistic Linked Data

setting would have considerable practical impact.

Assertional Authority

Currently, although we critically examine the source of terminological data using our notion of authority,

we assume a certain level of good-faith with respect to the provision of assertional data in our corpus. For

example, we would consider any “consistency-preserving” owl:sameAs relation as grounds for consolidating

two resources, no matter where the relation is given. Even where such mappings are given “in earnest”—and

as we have seen ourselves in this thesis, and as has been discussed in detail by Halpin et al. [2010a]—overly

liberal (mis)use of owl:sameAs can often occur, leading to noise. Further still, given sufficient commercial

adoption of Linked Data, motivation for spamming becomes more substantive, and our assumption of good

faith quickly becomes näıve.

Hence, we believe that different forms or interpretations of owl:sameAs relations are needed; in particu-

lar, non-symmetric owl:sameAs relations (or interpretation of owl:sameAs relations as being non-symmetric)

would offer a directional “import” mechanism whereby one resource description imports the data for an equiv-

alent resource provided by another source. This would result in entities having different “views” depending

on which source is trusted, and which descriptions are recursively imported: again, such a version of owl:-

sameAs would naturally reduce the ability for ad-hoc alignment of resources across the Web, but would

offer better tolerance to impudent third-party contributions. Along these lines, McCusker and McGuinness

[2010] have discussed eight granular variants of owl:sameAs which are alternatively reflexive/non-reflexive,

symmetric/non-symmetric, transitive/non-transitive.

However, the challenge of what assertional data should be trusted extends beyond owl:sameAs, where

third-parties can still simply re-use external URIs to provide spurious claims about arbitrary resources.

Hence, tracking the source of information is of vital importance, allowing users to verify the results pre-

sented to them. However, oftentimes, tracking the combination of sources of intermediary data involved

in generating a given result may be computationally infeasible, and may be difficult for a user to review

or verify. Thus, automated processes for immediately identifying and rejecting untrustworthy data are of

vital importance, in particular for lightening or removing the burden of result-verification for users. Our

annotated reasoning approach offers some initial results in this direction, and we would again welcome more

focussed research into this area—not necessarily restricted to inferencing, but also looking at other specific

areas such as querying, or perhaps looking at the general problem of computing, combining and tracking

notions of provenance and trust, perhaps building upon the related works discussed in § 6.5.

9These issues are particularly relevant when discussing constraints in a (semi-)closed setting, where often publishers want

to check for missing data (a task complicated by the OWA), or for setting a maximum number of values that can be assigned

to a given property (a task complicated by the lack of UNA).

179

180

Statistical Reasoning/Consolidation Methods

Herein, we have primarily focussed on symbolic approaches to perform reasoning and consolidation. However,

given that we deal with vast amounts of often loosely co-ordinated Web data, such algorithms can also

be informed by patterns observable in the data, rather than considering explicit formal assertions alone.

Along these lines, we currently employ links-analysis techniques for determining a level of “trustworthiness”

for triples (§ 6.2.3), and have introduced a “concurrence measure” which quantifies a form of pair-wise

similarity between resources based on a statistical model (§ D). However, we envisage other areas in which

statistical approaches can complement our symbolic approach for reasoning and consolidation, in particular

(but not solely), to complement inconsistency detection for identifying noisy inferences, or for disambiguating

resources initially found to be coreferent according to the formal semantics of the data. More ambitiously,

inductive reasoning or consolidation approaches—which attempt to learn and apply new rules from observed

macro-patterns in the data—may prove fruitful: for example, machine learning approaches for reasoning or

consolidation could use the results given by symbolic approaches as training sets for building generic models

useful for finding novel results and improving recall.

Such approaches largely echo the viewpoint of Halevy et al. [2009]:

“Problems that involve interacting with humans [...] have not proven to be solvable by concise,

neat formulas like F = ma. Instead, the best approach appears to be to embrace the complexity

of the domain and address it by harnessing the power of data: if other humans engage in the

tasks and generate large amounts of unlabeled, noisy data, new algorithms can be used to build

high-quality models from the data.”

—[Halevy et al., 2009]

In summary, given enough raw data, seemingly complex problems can be solved by building models which fit

the data, and thereafter applying these models to specific instances of the problem. However, with respect

to the current Web of Data, we identify two major high-level challenges faced by any such approach.

Firstly, although the current Web of Data contains (at least) tens of billions of statements, these are

provided by relatively few domains, where in our crawl we found 783 domains hosting RDF/XML—currently,

the bulk of RDF documents comprising the Web of Data come from a relatively small number of high-volume

exporters. Although more and more data-providers are emerging, in our experience, statistical models

must reflect the current skew in RDF provided by different exporters: otherwise, models will be heavily

influenced by the nature of the data given by those few very large exporters and will not accurately reflect

the nature of the data given by many small exporters. For example, consider an approach for disambiguating

resources which looks at how functional certain properties are, where from the data we observe that people

have on average 1.0001 values for foaf:weblog—now, if we find a consolidated entity with two values for

foaf:weblog, we may consider this anomalous and decide that the consolidation was incorrect. However, the

value 1.0001 is heavily influenced by large, highly-uniform FOAF exporters which only allow one weblog to be

assigned to each of its users; conversely, the few most influential and richly described entities in the data may

have multiple weblogs (e.g., work, personal, new location, etc.), where the model is no longer appropriate, and

where disambiguation should not be applied. Therefore, we believe that a statistical approach should either

(i) build and apply individual models for different contexts (e.g., different PLDs or groups of exporters); or

(ii) build and apply one global model whereby each context has a limited influence. Thus, aside from looking

at specific statistical techniques for reasoning and consolidation, high-level research on contextually scoping

and combining generic statistical models for Linked Data could potentially be very interesting.

Secondly, there are inherent difficulties with respect to how the precision and/or recall of such an approach

can be evaluated. This ties in with the next area of research with respect to how systems operating over

180

181

realistic Linked Data can be evaluated in a meaningful manner, particularly with respect to the quality of

results achieved.

Evaluation Framework for Linked Data

The evaluation of the quality of our results is still an open question, especially given that the current

proliferation of Linked Data is a relatively new phenomenon, where gold standards and objective benchmarks

have yet to be defined.10 Most Semantic Web research currently relies on synthetic evaluation frameworks,

including the Lehigh University Benchmark [Guo et al., 2005], the University Ontology Benchmark [Ma et al.,

2006], SP2Bench [Schmidt et al., 2009b], the Berlin SPARQL Benchmark [Bizer and Schultz, 2009], etc.,

which define a correct, clean, homogeneous, artificial and simplistic terminology and associated assertional

data according to generative algorithms which result in uniform and predictable morphology; thereafter,

a small set of target queries are manually selected based on generic criteria. Thus, we believe that such

benchmarks are not representative of the complexity and noise inherent in real-world Linked Data, and

results achieved using such synthetic frameworks—in terms of scalability, performance, precision, recall,

quality of results, etc.—do not necessarily translate into those that would be achieved for scenarios such

as ours. Conversely, when using real-world Linked Data for evaluation, in the absence of a gold standard

we often rely on subjective experience, manual inspection of small samples, analysing prominent examples,

looking at secondary measures and related statistics, etc., to gain insights into the effectiveness of our

algorithms.

The methods we present in this thesis are heavily rooted in the Semantic Web standards and on the

Linked Data principles, and as such are predicated on the correct use of said by the publishers contributing

to the corpus under analysis. However, the assumption of correctness is admittedly näıve, where we have

shown that the inherent noise present in such data sometimes leads to incorrect or unintended consequences

in our reasoning and consolidation approaches. As such, we have incorporated analyses which critically

examine the source of data during reasoning. We have also presented methods to detect and repair inconsis-

tencies caused by our methods, but have also shown that Linked Data vocabularies currently only provide

sparse axiomatisations of what they consider to be inconsistent: besides trivially invalid datatype literals,

we find relatively few detections of inconsistency (further, we note that FOAF have recently removed dis-

jointness axioms between foaf:Person and foaf:Document which gave many of the inconsistency detections

encountered in our evaluation).

In general, we currently cannot pinpoint the precision of our methods, whereby we cannot directly

ascertain which inferences could be considered noise, or which consolidated resources are incorrect. Similarly,

we cannot determine an accurate figure for recall, whereby we cannot know the percentage of inferences we

find, or the percentage of coreferent resources which we cannot detect. Hitzler and van Harmelen [2010] have

also argued for applying measures of precision and recall for reasoning systems, noting that soundness and

completeness with respect to the RDF(S)/OWL standards is often infeasible, where, instead, approximate

and/or incomplete reasoning approaches may offer appealing performance benefits: however, they view

sound and complete reasoning with respect to RDF(S)/OWL as a “gold standard”, thus again implicitly

assuming that the data are correctly published according to those standards, and that reasoning will give all

possible desirable results. However, we believe that purely quantitative precision and recall measures are not

sufficient, particularly for materialisation where many consequences could be considered purely inflationary

and expensive for a consumer application to support. Thus, we believe that qualitative measures are also

of vital importance—with respect to the importance of the inferences a system includes/excludes or the

10A promising initiative in this direction is the new SEALS EU infrastructures project http://www.seals-project.eu/ which

deals with benchmarking and evaluating Semantic Web tools—the project is still in its ramp-up phase, and we hope to see

benchmarks specifically targeting Linked Data use-cases.

181

http://www.seals-project.eu/

182

importance of the coreference a system finds/misses—where a system which returns fewer but higher-quality

results may often be preferred.

Looking towards the (near) future, we thus see a great need for more realistic Linked Data evaluation

frameworks to test the quality of results produced by systems such as ours. Such frameworks will enable

higher-quality and more relevant research for real-world Linked Data, perhaps leading to new results or

insights on current wisdom and standard approaches, or perhaps also allowing for more convincing research

into speculative and non-standard approaches, such as the statistical methods previously discussed.

The creation and maintenance of such a benchmark is indeed a rich research challenge in and of itself;

it is difficult to see how a synthetic benchmark can appropriately reflect the complexities of real-world Web

data, whereby it may be more shrewd to simply use an agreed upon corpus of real-world data. In fact, for

the past three years we have been crawling the data for ISWC’s Billion Triple Challenge: a show-case for

scalable tools that must operate over the given corpus. Although the intent of these datasets has not been

academic, they have been used in a number of scientific papers [Erling and Mikhailov, 2009; Hogan et al.,

2009b; Urbani et al., 2009; Schenk et al., 2009] to demonstrate scale or applicability of methods for realistic

data. Thus, the demand for a normative and agreed-upon benchmark of realistic Linked Data seemingly

already exists.

A major challenge thereafter is defining the various gold standards needed for different algorithms to

evaluate their results; with respect to reasoning and consolidation, we acknowledge that in many cases,

whether certain inferences or coreferences are considered correct or incorrect, or of high or low quality, is

often inherently subjective [Halpin et al., 2010a], difficult to quantify, and can vary according to the end

consumer application. As such, the notion of a “universal gold standard” may not even exist, let alone be

computable; creating a gold-standard for a small sample of realistic data may be sufficient for certain types

of algorithms, but may not be suitable for techniques relying on statistical analyses or some form of inductive

learning—that is, techniques which require large amounts of data upon which to build their models.

One straight-forward solution for estimating the precision of a system is to randomly sample results,

and have the sample be manually verified by human experts. More ambitiously, a system could investigate

using the “wisdom of crowds” to verify results, the challenge here being to attract a critical mass of users

to interact with the system (a general challenge facing Linked Data systems), perhaps using games or other

impetuses known from the social and behavioural sciences.

Measuring recall and quality in such settings is also an intrinsically difficult task. One possible solution

is to use a common benchmark dataset and create a framework for comparing the results of systems with

similar goals; thus, although no gold-standard is made available, different approaches can be effectively

compared by analysing the observed deltas in computed results, manually sampling and verifying a small

subset of the relevant deltas.

Although an inherently challenging area, by removing the reliance on synthetic benchmarks, we believe

that a suitable framework for benchmarking over realistic data will foster a higher volume of more ambitious,

high-quality research, relevant to the current requirements of Linked Data practitioners, and as such, is of

critical importance moving forward.

Concluding Remarks

For my final remarks, I present some personal opinions and subjective observations.

At the time of writing, the Semantic Web community has been around in one form or another for just over

a decade. Born in a primordial soup of vision statements—by the likes of Berners-Lee [1998b], van Harmelen

and Fensel [1999] Decker et al. [2000], Motta [2000], Berners-Lee et al. [2001], Finin and Joshi [2002]–and

research works—by the likes of Heflin et al. [1999], Hendler and McGuinness [2000], Staab et al. [2000],

182

183

Fensel et al. [2001], Sintek and Decker [2002]—the Semantic Web has long taken a “top-down” approach,

epitomised by the prevalence of the ethereal Semantic Web layercake: a macro-level vision of a Web that

can gracefully overcome the current information overload experienced by its users, represented as a stack of

components.11 In antithesis to this approach, Gall’s Law states that:

“A complex system that works is invariably found to have evolved from a simple system that

worked. The inverse proposition also appears to be true: A complex system designed from scratch

never works and cannot be made to work. You have to start over, beginning with a working simple

system.”

—Gall’s Law

Perhaps in line with this (informal) hypothesis, appearances of the layercake are becoming more and more

rare—perhaps it has merely served its purpose.

In any case, the Linked Data community has had success taking a different tack by actively promot-

ing a simpler, more “bottom-up” approach focussing on lower levels of the layercake’s stack. In terms of

evangelism—and again antithetical to the layercake—the Linked Data principles and Linked Open Data star

scheme emphasise the micro over the macro, with the principles giving individual publishers clear guidelines

to follow, and the star scheme giving a tangible bottom-up rationale for publishing Linked Data. Thereafter,

proponents hope that adoption of the micro principles will self-organise into a usable and useful macro Web

of Data in a form of emergence.

Indeed, as we have seen, this Web of Data has already been partially realised, and represents an excellent

foundation upon which to build. Moving forward, it seems that the most important ingredient currently

missing is consumers: we need applications to actively demonstrate the unique potential of this new pub-

lishing paradigm, and in particular, the benefit of having interlinked and decentralised data, demonstrating

that the Web of Data is greater than the sum of its parts. Without such consumers, there is the danger that

Linked Data will lose its current momentum and stagnate; without the latter two elements—and although

RDF may become a popular standardised data-model for exchange—there will be no incentive for publishers

to link to external sources, or perhaps even to use agreed-upon vocabularies, and the Web of Data may

devolve into an “Archipelago of Datasets”. Conversely, the advent of such applications will not only refine

the requirements for future Linked Data publishing and research, but will also incentivise the publication

of higher-quality and more voluminous Linked Data, and perhaps ultimately engage mainstream adoption.

To a certain extent, publishing and consuming can only float upwards together: they are inherently teth-

ered to each other. Although early adopters and consumers are emerging—in the form of various online

communities, corporations, governmental agencies, etc.—there is still much work to be done.

In the short term, the Semantic Web research community should not only build upon its successes in get-

ting further Linked Data published and current Linked Data improved, but also focus on lowering the barriers

of entry for applications to consume the resulting Web of Data. Along these lines, research initiatives—such

as the recent Consuming Linked Data Workshop [Hartig et al., 2010] and the more established Semantic

Web Challenges and Billion Triple Challenges at ISWC12— and less research-oriented events—such as various

11One can quickly get an idea of the layer-cake variants by typing “‘semantic web layer cake” into any popular Web search

engine for images: perusing the various visions for the future of the Web, one may encounter a 3-dimensional “cake” com-

plete with a peripheral Linked Data tower (http://bnode.org/media/2009/07/08/semantic_web_technology_stack_small.png), an actual

“cake” replete with icing (http://leirdal.net/blog/wp-content/uploads/2010/06/semanticcake2.jpg), and a rather more dystopian

view of the matter (http://www.flickr.com/photos/danbri/428172848/lightbox/); all retr. 2011/01/22. One may also note the lack

of components for newer technologies such as RDFa or GRDDL [Hendler, 2009].
12See http://challenge.semanticweb.org/; retr. 2010/12/28

183

http://bnode.org/media/2009/07/08/semantic_web_technology_stack_small.png
http://leirdal.net/blog/wp-content/uploads/2010/06/semanticcake2.jpg
http://www.flickr.com/photos/danbri/428172848/lightbox/
http://challenge.semanticweb.org/

184

(Linked) Open Data Hackathons13—are very much pertinent, and will hopefully give rise to new techniques

and software to aid or inspire consumers.

Interestingly, the bottom-up Linked Data approach and top-down traditional Semantic Web approach

are due to meet somewhere in the layercake: Linked Data will—in its own time—find its own motivation for

incorporating techniques from the higher strata of the stack. As motivated in this thesis, there is already

a palpable need for RDFS/OWL reasoning when querying (or otherwise consuming) heterogeneous Linked

Data corpora; thus, research into scalable reasoning techniques—applicable over real-world Linked Data—

may help remove some of the current barriers to adoption and enable new applications. I can only hope

that the work presented in this thesis will represent a valuable contribution to this area—it is important to

note that the motivation, requirements, and directions of the research presented herein have been practically

informed by our SWSE use-case for searching and browsing Linked Data.

As the bottom-up and top-down efforts begin to mingle, discussions with respect to refining the Seman-

tic Web standards may again be informed by future developments; here, Sowa’s Law of Standards feels

(informally) appropriate:

“Whenever a major organization develops a new system as an official standard for X, the primary

result is the widespread adoption of some simpler system as a de facto standard for X.”

—Sowa’s Law of Standards

If we are to engage the broader Web community, we will need to provide more laconic standards, which are

more intuitive to developers, and more tangible to publishers—perhaps the greatest enemy currently facing

adoption is our tendency to try and do too much all at once. Along these lines, discussions on possibly revising

or simplifying RDF [Wood et al., 2010] are of huge important in light of recent developments. Further down

the road, we may be in a better position to cast a critical eye at the RDFS and OWL standards—more

succinct standards may emerge, informed by previous theoretical works and perhaps exploratory works such

as this, but with emphasis on terseness as appropriate for Linked Data adopters.

In conclusion, thanks to the bottom-up efforts of the Linked Data community, the future of the Semantic

Web looks bright. Although we have yet to achieve mainstream adoption, it certainly seems a lot more

realisable than two or three years ago. In order to get there, we may have to wander some ways from

the envisaged Semantic Web road-map and abandon to ruin some parts of the towering layercake, we may

have to deprecate parts of the familiar standards and compromise our academic ideologies in favour of

pragmatic results, we may have to adapt and we may have to get our hands dirty. In any case, we need to

continue the trend of getting the Semantic Web out of the research labs and back on the Web, where history

has demonstrated that given a sufficient spark, truly extraordinary things can happen for often ordinary

reasons—finding such reasons might be our greatest challenge yet.

13See http://www.opendataday.org/; retr. 2010/12/28

184

http://www.opendataday.org/

“If we wait for the moment when everything, absolutely everything is ready, we

shall never begin.”

—Ivan Turgenev

185

Bibliography

Adida, B. and Birbeck, M. (2008). RDFa Primer. W3C Working Group Note. http://www.w3.org/TR/

xhtml-rdfa-primer/.

Alani, H., Brewster, C., and Shadbolt, N. (2006). Ranking ontologies with AKTiveRank. In 5th International

Semantic Web Conference, pages 1–15.

Alani, H., Dasmahapatra, S., O’Hara, K., and Shadbolt, N. (2003). Identifying communities of practice

through ontology network analysis. IEEE Intelligent Systems, 18(2):18–25.

Allemang, D. and Hendler, J. A. (2008). Semantic Web for the Working Ontologist: Effective Modeling in

RDFS and OWL. Morgan Kaufmann/Elsevier.

Alvestrand, H. (2001). Tags for the Identification of Languages. RFC 3066. http://www.ietf.org/rfc/rfc3066.

txt.

Anklesaria, F., McCahill, M., Lindner, P., Johnson, D., Torrey, D., and Alberti, B. (1993). The Internet

Gopher Protocol (a distributed document search and retrieval protocol). RFC 1436. http://tools.ietf.

org/html/rfc1436.

Anyanwu, K., Maduko, A., and Sheth, A. (2005). SemRank: ranking complex relationship search results on

the semantic web. In 14th International Conference on World Wide Web, pages 117–127.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F. (2002). The Description

Logic Handbook: Theory, Implementation and Application. Cambridge University Press.

Balmin, A., Hristidis, V., and Papakonstantinou, Y. (2004). Objectrank: authority-based keyword search in

databases. In Proceedings of the 13th International Conference on Very Large Data Bases, pages 564–575.

Barabási, A. L. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286:509–512.

Batsakis, S., Petrakis, E. G. M., and Milios, E. (2009). Improving the performance of focused web crawlers.

Data Knowl. Eng., 68(10):1001–1013.

Bechhofer, S. and Volz, R. (2004). Patching Syntax in OWL Ontologies. In International Semantic Web

Conference, volume 3298 of Lecture Notes in Computer Science, pages 668–682. Springer.

Beckett, D. (2010). RDF Syntaxes 2.0. In W3C Workshop on RDF Next Steps, Stanford, Palo Alto, CA,

USA.

Beckett, D. and Berners-Lee, T. (2008). Turtle – Terse RDF Triple Language. W3C Team Submission.

http://www.w3.org/TeamSubmission/turtle/.

186

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3066.txt
http://tools.ietf.org/html/rfc1436
http://tools.ietf.org/html/rfc1436
http://www.w3.org/TeamSubmission/turtle/

BIBLIOGRAPHY 187

Beckett, D. and McBride, B. (2004). RDF/XML Syntax Specification (Revised). W3C Recommendation.

http://www.w3.org/TR/rdf-syntax-grammar/.

Belnap, N. (1977). A Useful Four-Valued Logic. Modern Uses of Multiple-Valued Logic, pages 5–37.

Berners-Lee, T. (1980). The ENQUIRE System – Short Description (1.1). Technical report, European

Organisation for Nuclear Research. Available at http://www.w3.org/History/1980/Enquire/manual/; ed. Sean

B. Palmer; retr. 2010/10/26.

Berners-Lee, T. (1993). A Brief History of the Web. W3C Design Issues. From http://www.w3.org/DesignIssues/

TimBook-old/History.html; retr. 2010/10/27.

Berners-Lee, T. (1998a). Notation 3 – Ideas about Web architecture. W3C Design Issues. http://www.w3.org/

DesignIssues/Notation3.html.

Berners-Lee, T. (1998b). Semantic Web Road map. http://www.w3.org/DesignIssues/Semantic.html.

Berners-Lee, T. (2006). Linked Data. W3C Design Issues. From http://www.w3.org/DesignIssues/LinkedData.

html; retr. 2010/10/27.

Berners-Lee, T. (2010). The Future of RDF. W3C Design Issues. From http://www.w3.org/DesignIssues/

RDF-Future.html; retr. 2010/10/28.

Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., and Sheets, D.

(2006). Tabulator: Exploring and Analyzing linked data on the Semantic Web. In The 3rd International

Semantic Web User Interaction Workshop (SWUI06) workshop.

Berners-Lee, T., Fielding, R. T., and Masinter, L. (2005). Uniform Resource Identifier (URI): Generic

Syntax. RFC 3986. http://tools.ietf.org/html/rfc3986.

Berners-Lee, T. and Fischetti, M. (1999). Weaving the Web: The Original Design and Ultimate Destiny of

the World Wide Web by its Inventor. Harper.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web. Scientific American, 284(5):34–43.

Bernstein, P. A., Melnik, S., and Mork, P. (2005). Interactive Schema Translation with Instance-Level

Mappings. In VLDB, pages 1283–1286.

Birbeck, M. and McCarron, S. (2009). CURIE Syntax 1.0 – A syntax for expressing Compact URIs. W3C

Recommendation. http://www.w3.org/TR/curie/.

Biron, P. V. and Malhotra, A. (2004). XML Schema Part 2: Datatypes Second Edition. W3C Recommen-

dation. http://www.w3.org/TR/xmlschema-2/.

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., and Velkov, R. (2011). OWLIM: A

family of scalable semantic repositories. Semantic Web Journal. In press; available at http://www.

semantic-web-journal.net/sites/default/files/swj97_0.pdf.

Bistarelli, S., Martinelli, F., and Santini, F. (2008). Weighted datalog and levels of trust. In Proceedings of

the The Third International Conference on Availability, Reliability and Security, ARES 2008, March 4-7,

2008, Technical University of Catalonia, Barcelona, Spain, pages 1128–1134.

Bizer, C., Cyganiak, R., and Heath, T. (2008). How to Publish Linked Data on the Web. linkeddata.org

Tutorial. http://linkeddata.org/docs/how-to-publish.

187

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/History/1980/Enquire/manual/
http://www.w3.org/DesignIssues/TimBook-old/History.html
http://www.w3.org/DesignIssues/TimBook-old/History.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/RDF-Future.html
http://www.w3.org/DesignIssues/RDF-Future.html
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/curie/
http://www.w3.org/TR/xmlschema-2/
http://www.semantic-web-journal.net/sites/default/files/swj97_0.pdf
http://www.semantic-web-journal.net/sites/default/files/swj97_0.pdf
http://linkeddata.org/docs/how-to-publish

BIBLIOGRAPHY 188

Bizer, C., Heath, T., and Berners-Lee, T. (2009a). Linked Data - The Story So Far. Int. J. Semantic Web

Inf. Syst., 5(3):1–22.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hellmann, S. (2009b).

DBpedia - A crystallization point for the Web of Data. J. Web Sem., 7(3):154–165.

Bizer, C. and Schultz, A. (2009). The Berlin SPARQL Benchmark. Int. J. Semantic Web Inf. Syst., 5(2):1–24.

Bizer, C. and Schultz, A. (2010). The R2R Framework : Publishing and Discovering Mappings on the Web.

In Consuming Linked Data (COLD) Workshop.

Boldi, P., Codenotti, B., Santini, M., Vigna, S., and Vigna, S. (2002). UbiCrawler: a scalable fully distributed

web crawler. Software: Practice and Experience, 34:2004.

Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., and Reynolds, D. (2010). RIF Core Dialect.

W3C Recommendation. http://www.w3.org/TR/rif-core/.

Bonatti, P. A., Hogan, A., Polleres, A., and Sauro, L. (2011). Robust and Scalable Linked Data Reasoning

Incorporating Provenance and Trust Annotations. Journal of Web Semantics (Provisionally Accepted).

http://sw.deri.org/~aidanh/docs/saor_ann_jws_si.pdf.

Bouquet, P., Stoermer, H., Mancioppi, M., and Giacomuzzi, D. (2006). OkkaM: Towards a Solution to the

“Identity Crisis” on the Semantic Web. In Proceedings of SWAP 2006, the 3rd Italian Semantic Web

Workshop, volume 201 of CEUR Workshop Proceedings.

Breslin, J. G., Passant, A., and Decker, S. (2009). The Social Semantic Web. Springer.

Brickley, D. and Guha, R. (2004). RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recom-

mendation. http://www.w3.org/TR/rdf-schema/.

Brickley, D., Guha, R., and Layman, A. (1998). Resource Description Framework (RDF) Schemas. W3C

Working Draft. http://www.w3.org/TR/1998/WD-rdf-schema-19980409/.

Brin, S. and Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer

Networks, 30(1-7):107–117.

Bush, V. (1945). As We May Think. Atlantic Magazine. Available at http://www.theatlantic.com/magazine/

archive/1945/07/as-we-may-think/3881/; retr. 2010/10/27.

Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., and Pieris, A. (2010). Datalog±: A Family of Logical

Knowledge Representation and Query Languages for New Applications. In LICS, pages 228–242.

Castano, S., Ferrara, A., Montanelli, S., and Lorusso, D. (2008). Instance Matching for Ontology Population.

In SEBD, pages 121–132.

Castillo, R. and Leser, U. (2010). Selecting Materialized Views for RDF Data. In ICWE Workshops, pages

126–137.

Chakrabarti, S., van den Berg, M., and Dom, B. (1999). Focused Crawling: A New Approach to Topic-

Specific Web Resource Discovery. Computer Networks, 31(11-16):1623–1640.

Chen, Z., Kalashnikov, D. V., and Mehrotra, S. (2005). Exploiting relationships for object consolidation. In

IQIS ’05: Proceedings of the 2nd international workshop on Information quality in information systems,

pages 47–58, New York, NY, USA. ACM Press.

188

http://www.w3.org/TR/rif-core/
http://sw.deri.org/~aidanh/docs/saor_ann_jws_si.pdf
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/1998/WD-rdf-schema-19980409/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/

BIBLIOGRAPHY 189

Cheng, G., Ge, W., and Qu, Y. (2008a). Falcons: searching and browsing entities on the semantic web. In

World Wide Web, pages 1101–1102.

Cheng, G., Ge, W., Wu, H., and Qu, Y. (2008b). Searching Semantic Web Objects Based on Class Hierarchies.

In Proceedings of Linked Data on the Web Workshop.

Cheng, G. and Qu, Y. (2008). Term Dependence on the Semantic Web. In International Semantic Web

Conference, pages 665–680.

Cheng, G. and Qu, Y. (2009). Searching Linked Objects with Falcons: Approach, Implementation and

Evaluation. Int. J. Semantic Web Inf. Syst., 5(3):49–70.

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data.

SIAM Rev., 51:661–703.

Cock, M. D. and Kerre, E. E. (2003). On (un)suitable fuzzy relations to model approximate equality. Fuzzy

Sets and Systems, 133(2):137–153.

Cosmadakis, S. S., Gaifman, H., Kanellakis, P. C., and Vardi, M. Y. (1988). Decidable Optimization

Problems for Database Logic Programs (Preliminary Report). In STOC, pages 477–490.

Cudré-Mauroux, P., Haghani, P., Jost, M., Aberer, K., and de Meer, H. (2009). idMesh: Graph-Based

Disambiguation of Linked Data. In WWW, pages 591–600.

d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., and Motta, E. (2007). Characterizing

Knowledge on the Semantic Web with Watson. In 5th International Workshop on Evaluation of Ontologies

and Ontology-based Tools, pages 1–10.

d’Aquin, M., Sabou, M., Motta, E., Angeletou, S., Gridinoc, L., Lopez, V., and Zablith, F. (2008). What

Can be Done with the Semantic Web? An Overview Watson-based Applications. In 5th Workshop on

Semantic Web Applications and Perspectives.

de Bruijn, J., Eiter, T., Polleres, A., and Tompits, H. (2006). On Representational Issues About Combinations

of Classical Theories with Nonmonotonic Rules. In KSEM, pages 1–22.

de Bruijn, J. and Heymans, S. (2007). Logical foundations of (e)rdf(s): Complexity and reasoning. In

ISWC/ASWC, pages 86–99.

de Bruijn, J., Lara, R., Polleres, A., and Fensel, D. (2005a). OWL DL vs. OWL flight: conceptual modeling

and reasoning for the semantic Web. In International Conference on World Wide Web, pages 623–632.

de Bruijn, J., Polleres, A., Lara, R., and Fensel, D. (2005b). OWL−. Final draft d20.1v0.2, WSML.

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters. In OSDI,

pages 137–150.

Decker, S., Erdmann, M., Fensel, D., and Studer, R. (1998). Ontobroker: Ontology Based Access to Dis-

tributed and Semi-Structured Information. In DS-8: IFIP TC2/WG2.6 Eighth Working Conference on

Database Semantics, pages 351–369, Deventer, The Netherlands, The Netherlands. Kluwer, B.V.

Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M. C. A., Broekstra, J., Erdmann, M., and

Horrocks, I. (2000). The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing,

4(5):63–74.

189

BIBLIOGRAPHY 190

Delbru, R., Polleres, A., Tummarello, G., and Decker, S. (2008). Context Dependent Reasoning for Semantic

Documents in Sindice. In Proc. of 4th SSWS Workshop.

Delbru, R., Toupikov, N., Catasta, M., and Tummarello, G. (2010a). A Node Indexing Scheme for Web

Entity Retrieval. In Proceedings of the Extended Semantic Web Conference (ESWC 2010).

Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., and Decker, S. (2010b). Hierarchical Link Analysis

for Ranking Web Data. In ESWC (2), pages 225–239.

Diligenti, M., Coetzee, F., Lawrence, S., Giles, C. L., and Gori, M. (2000). Focused Crawling Using Context

Graphs. In VLDB ’00: Proceedings of the 26th International Conference on Very Large Data Bases, pages

527–534, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Ding, L. and Finin, T. (2006). Characterizing the Semantic Web on the Web. In International Semantic

Web Conference, pages 242–257.

Ding, L., Finin, T. W., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari, P., Doshi, V., and Sachs, J.

(2004). Swoogle: a search and metadata engine for the semantic web. In CIKM, pages 652–659.

Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., and Kolari, P. (2005). Finding and ranking knowledge on

the Semantic Web. In 4th International Semantic Web Conference, pages 156–170.

Dong, H., Hussain, F. K., and Chang, E. (2009). State of the Art in Semantic Focused Crawlers. In ICCSA

’09: Proceedings of the International Conference on Computational Science and Its Applications, pages

910–924, Berlin, Heidelberg. Springer-Verlag.

Ehrig, M. and Maedche, A. (2003). Ontology-focused crawling of Web documents. In SAC ’03: Proceedings

of the 2003 ACM Symposium on Applied Computing, pages 1174–1178. ACM.

Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S. (2007). Duplicate Record Detection: A Survey.

IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16.

Engelbart, D. (1962). Augmenting Himan Intellect: A Conceptual Framework. Summary Report

AFOSR-3233. Available at http://www.invisiblerevolution.net/engelbart/full_62_paper_augm_hum_int.html;

retr. 2010/10/27.

Engelbart, D. (1968). Study for the development of Human Augmentation Techniques. Final Report

NAS1-5904. Available at http://sloan.stanford.edu/MouseSite/Archive/Post68/FinalReport1968/study68index.

html; retr. 2010/10/27.

Erling, O. and Mikhailov, I. (2009). RDF Support in the Virtuoso DBMS. In Networked Knowledge –

Networked Media, volume 221 of Studies in Computational Intelligence, pages 7–24. Springer.

Fan, W., Jia, X., Li, J., and Ma, S. (2009). Reasoning about Record Matching Rules. PVLDB, 2(1):407–418.

Feigenbaum, L. (2010). Cambridge Semantics Position. In W3C Workshop on RDF Next Steps, Stanford,

Palo Alto, CA, USA.

Fensel, D. and van Harmelen, F. (2007). Unifying Reasoning and Search to Web Scale. IEEE Internet

Computing, 11(2):96, 94–95.

Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., and Patel-Schneider, P. F. (2001). OIL: An

Ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2):38–45.

190

http://www.invisiblerevolution.net/engelbart/full_62_paper_augm_hum_int.html
http://sloan.stanford.edu/MouseSite/Archive/Post68/FinalReport1968/study68index.html
http://sloan.stanford.edu/MouseSite/Archive/Post68/FinalReport1968/study68index.html

BIBLIOGRAPHY 191

Fernández, J. D., Gutierrez, C., and Mart́ınez-Prieto, M. A. (2010). RDF compression: basic approaches.

In WWW, pages 1091–1092.

Ferrara, A., Lorusso, D., Stamou, G. B., Stoilos, G., Tzouvaras, V., and Venetis, T. (2008). Resolution of

Conflicts Among Ontology Mappings: a Fuzzy Approach. In OM.

Fielding, R. T., Gettys, J., Mogul, J. C., Frystyk, H., Masinter, L., Leach, P. J., and Berners-Lee, T. (1999).

Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. http://www.ietf.org/rfc/rfc2616.txt.

Finin, T. W. and Joshi, A. (2002). Agents, Trust, and Information Access on the Semantic Web. SIGMOD

Record, 31(4):30–35.

Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., and Christophides, V. (2009). Coloring RDF Triples

to Capture Provenance. In The Semantic Web - ISWC 2009, 8th International Semantic Web Conference,

ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings, pages 196–212.

Franz, T., Schultz, A., Sizov, S., and Staab, S. (2009). TripleRank: Ranking Semantic Web Data by Tensor

Decomposition. In International Semantic Web Conference, pages 213–228.

Ghanem, T. M. and Aref, W. G. (2004). Databases Deepen the Web. IEEE Computer, 37(1):116–117.

Ghilardi, S., Lutz, C., and Wolter, F. (2006). Did i damage my ontology? a case for conservative extensions

in description logics. In Proceedings of the Tenth International Conference on Principles of Knowledge

Representation and Reasoning, pages 187–197.

Glaser, H., Jaffri, A., and Millard, I. C. (2009). Managing Co-reference on the Semantic Web. In 3rd

International Workshop on Linked Data on the Web (LDOW2009).

Glaser, H., Millard, I., and Jaffri, A. (2008). RKBExplorer.com: A knowledge driven infrastructure for linked

data providers. In ESWC Demo, Lecture Notes in Computer Science, pages 797–801. Springer.

Gleich, D., Zhukov, L., and Berkhin, P. (2004). Fast Parallel PageRank: A Linear System Approach.

Technical Report YRL-2004-038, Yahoo! Research Labs. http://www.stanford.edu/~dgleich/publications/

prlinear-dgleich.pdf.

Glimm, B. and Kazakov, Y. (2008). Role conjunctions in expressive description logics. In LPAR, pages

391–405.

Glimm, B. and Rudolph, S. (2010). Status QIO: Conjunctive Query Entailment Is Decidable. In KR.

Golbreich, C. and Wallace, E. K. (2009). OWL 2 Web Ontology Language: New Features and Rationale.

W3C Recommendation. http://www.w3.org/TR/owl2-new-features/.

Grant, J. and Beckett, D. (2004). RDF Test Cases. W3C Recommendation. http://www.w3.org/TR/

rdf-testcases/.

Grau, B. C. (2007). OWL 1.1 Web Ontology Language Tractable Fragments. WebOnt Editor’s Draft.

http://www.webont.org/owl/1.1/tractable.html.

Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., and Sattler, U. (2008). OWL 2: The

next step for OWL. J. Web Sem., 6(4):309–322.

Grau, B. C., Motik, B., Wu, Z., Fokoue, A., and Lutz, C. (2009). OWL 2 Web Ontology Language: Profiles.

W3C Recommendation. http://www.w3.org/TR/owl2-profiles/.

191

http://www.ietf.org/rfc/rfc2616.txt
http://www.stanford.edu/~dgleich/publications/prlinear-dgleich.pdf
http://www.stanford.edu/~dgleich/publications/prlinear-dgleich.pdf
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TR/rdf-testcases/
http://www.webont.org/owl/1.1/tractable.html

BIBLIOGRAPHY 192

Grosof, B., Horrocks, I., Volz, R., and Decker, S. (2004). Description Logic Programs: Combining Logic

Programs with Description Logic. In 13th International Conference on World Wide Web.

Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base systems. J. Web

Sem., 3(2-3):158–182.

Haas, L. M., Hentschel, M., Kossmann, D., and Miller, R. J. (2009). Schema AND Data: A Holistic Approach

to Mapping, Resolution and Fusion in Information Integration. In ER, pages 27–40.

Halevy, A. Y., Norvig, P., and Pereira, F. (2009). The Unreasonable Effectiveness of Data. IEEE Intelligent

Systems, 24(2):8–12.

Halpin, H., Hayes, P. J., McCusker, J. P., McGuinness, D. L., and Thompson, H. S. (2010a). When

owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data. In International Semantic Web

Conference (1), pages 305–320.

Halpin, H., Herman, I., and Hayes, P. (2010b). When owl:sameAs isn’t the Same: An Analysis of Identity

Links on the Semantic Web. In Linked Data on the Web WWW2010 Workshop (LDOW2010).

Harth, A. (2009). VisiNav: Visual Web Data Search and Navigation. In DEXA, pages 214–228.

Harth, A. (2010). Exploring Linked Data at Web Scale. PhD thesis, Digital Enterprise Research Institute,

National University of Ireland, Galway.

Harth, A. and Gassert, H. (2005). On Searching and Displaying RDF Data from the Web. In ESWC demo

session.

Harth, A., Kinsella, S., and Decker, S. (2009). Using Naming Authority to Rank Data and Ontologies for

Web Search. In International Semantic Web Conference, pages 277–292.

Harth, A., Umbrich, J., and Decker, S. (2006). MultiCrawler: A Pipelined Architecture for Crawling and

Indexing Semantic Web Data. In 5th International Semantic Web Conference, pages 258–271.

Harth, A., Umbrich, J., Hogan, A., and Decker, S. (2007). YARS2: A Federated Repository for Querying

Graph Structured Data from the Web. In 6th International Semantic Web Conference, 2nd Asian Semantic

Web Conference, pages 211–224.

Hartig, O., Harth, A., and Sequeda, J., editors (2010). Proceedings of the First International Workshop on

Consuming Linked Data, Workshop at ISWC2010, Shanghai, China, November 8, volume 665 of CEUR

Workshop Proceedings. CEUR-WS.org.

Hawke, S. (2010). RIF In RDF. W3C Working Draft. http://www.w3.org/TR/rif-in-rdf/.

Hayes, P. (2004). RDF Semantics. W3C Recommendation. http://www.w3.org/TR/rdf-mt/.

Heflin, J., Hendler, J., and Luke, S. (1999). SHOE: A Knowledge Representation Language for Internet

Applications. Technical Report CS-TR-4078, Dept. of Computer Science, University of Maryland.

Hendler, J. and McGuinness, D. L. (2000). The DARPA Agent Markup Language. IEEE Intelligent Systems,

15(6):67–73.

Hendler, J. A. (2009). Tonight’s Dessert: Semantic Web Layer Cakes. In ESWC, page 1.

Hepp, M. (2009). Product Variety, Consumer Preferences, and Web Technology: Can the Web of Data

Reduce Price Competition and Increase Customer Satisfaction? In EC-Web, page 144.

192

http://www.w3.org/TR/rif-in-rdf/

BIBLIOGRAPHY 193

Heydon, A. and Najork, M. (1999). Mercator: A Scalable, Extensible Web Crawler. World Wide Web,

2:219–229.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S. (2009). OWL 2 Web Ontology

Language Primer. W3C Recommendation. http://www.w3.org/TR/owl2-primer/.

Hitzler, P. and van Harmelen, F. (2010). A Reasonable Semantic Web. Semantic Web Journal – Interoper-

ability, Usability, Applicability, 1(1).

Hogan, A. and Decker, S. (2009). On the Ostensibly Silent ’W’ in OWL 2 RL. In Third International

Conference on Web Reasoning and Rule Systems, (RR2009), pages 118–134.

Hogan, A., Harth, A., and Decker, S. (2006). ReConRank: A Scalable Ranking Method for Semantic Web

Data with Context. In 2nd Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2006).

Hogan, A., Harth, A., and Decker, S. (2007a). Performing Object Consolidation on the Semantic Web Data

Graph. In 1st I3 Workshop: Identity, Identifiers, Identification Workshop.

Hogan, A., Harth, A., Passant, A., Decker, S., and Polleres, A. (2010a). Weaving the Pedantic Web. In 3rd

International Workshop on Linked Data on the Web (LDOW2010), Raleigh, USA.

Hogan, A., Harth, A., and Polleres, A. (2008). SAOR: Authoritative Reasoning for the Web. In 3rd Asian

Semantic Web Conference (ASWC), volume 5367, pages 76–90, Bankok, Thailand.

Hogan, A., Harth, A., and Polleres, A. (2009a). Scalable Authoritative OWL Reasoning for the Web.

International Journal on Semantic Web and Information Systems, 5(2).

Hogan, A., Harth, A., and Polleres, A. (2009b). Scalable Authoritative OWL Reasoning for the Web. Int.

J. Semantic Web Inf. Syst., 5(2).

Hogan, A., Harth, A., Umbrich, J., and Decker, S. (2007b). Towards a Scalable Search and Query Engine

for the Web. In 16th International Conference on World Wide Web (poster proc.).

Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., and Decker, S. (2010b). Searching and Browsing

Linked Data with SWSE: the Semantic Web Search Engine. Technical Report DERI-TR-2010-07-23,

Digital Enterprise Research Institute, Galway. http://www.deri.ie/fileadmin/documents/DERI-TR-2010-07-23.

pdf (Under Review for the Journal of Web Semantics).

Hogan, A., Pan, J. Z., Polleres, A., and Decker, S. (2010c). SAOR: Template Rule Optimisations for

Distributed Reasoning over 1 Billion Linked Data Triples. In International Semantic Web Conference.

Hogan, A., Polleres, A., Umbrich, J., and Zimmermann, A. (2010d). Some entities are more equal than

others: statistical methods to consolidate Linked Data. In 4th International Workshop on New Forms of

Reasoning for the Semantic Web: Scalable and Dynamic (NeFoRS2010).

Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., and Decker, S. (2010e). Scalable and Distributed

Methods for Resolving, Consolidating, Matching and Disambiguating Entities in Linked Data Corpora.

Journal of Web Semantics (Under Review). http://sw.deri.org/~aidanh/docs/entcons_jws_2010.pdf.

Horrocks, I. and Patel-Schneider, P. F. (2004). Reducing OWL entailment to description logic satisfiability.

Journal of Web Semamtics, 1(4):345–357.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean, M. (2004). SWRL: A

193

http://www.deri.ie/fileadmin/documents/DERI-TR-2010-07-23.pdf
http://www.deri.ie/fileadmin/documents/DERI-TR-2010-07-23.pdf
http://sw.deri.org/~aidanh/docs/entcons_jws_2010.pdf

BIBLIOGRAPHY 194

Semantic Web Rule Language Combining OWL and RuleML. W3C Recommendation. http://www.w3.org/

Submission/SWRL/.

Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F. (2002). Reviewing the Design of DAML+OIL:

An Ontology Language for the Semantic Web. In AAAI/IAAI, pages 792–797.

Hu, W., Chen, J., Cheng, G., and Qu, Y. (2010). ObjectCoref and Falcon-AO: Results for OAEI 2010. In

Fifth International Workshop on Ontology Matching.

Huang, Z. and van Harmelen, F. (2008). Using Semantic Distances for Reasoning with Inconsistent Ontolo-

gies. In International Semantic Web Conference, pages 178–194.

Jacobs, I. and Walsh, N. (2004). Architecture of the World Wide Web, Volume One. http://www.w3.org/TR/

webarch/.

Jentzsch, A., Zhao, J., Hassanzadeh, O., Cheung, K.-H., Samwald, M., and Andersson, B. (2009). Linking

Open Drug Data. In International Conference on Semantic Systems (I-SEMANTICS?09).

Jérôme Euzenat, P. S. (2007). Ontology matching. Springer.

Jiménez-Ruiz, E., Grau, B. C., Sattler, U., Schneider, T., and Llavori, R. B. (2008). Safe and economic

re-use of ontologies: A logic-based methodology and tool support. In Proceedings of the 21st International

Workshop on Description Logics (DL2008).

Jones, N. D., Gomard, C. K., Sestoft, P., Andersen, L. O., and Mogensen, T. (1993). Partial Evaluation and

Automatic Program Generation. Prentice Hall International.

Kalyanpur, A., Parsia, B., Sirin, E., and Grau, B. C. (2006). Repairing Unsatisfiable Concepts in OWL

Ontologies. In ESWC, pages 170–184.

Kifer, M. and Subrahmanian, V. S. (1992). Theory of Generalized Annotated Logic Programming and its

Applications. J. Log. Program., 12(3&4).

Kiryakov, A., Ognyanoff, D., Velkov, R., Tashev, Z., and Peikov, I. (2009). LDSR: a Reason-able View to

the Web of Linked Data. In Semantic Web Challenge (ISWC2009).

Kiryakov, A., Ognyanov, D., and Manov, D. (2005). OWLIM - A Pragmatic Semantic Repository for OWL.

In Web Information Systems Engineering Workshops, LNCS, pages 182–192, New York, USA.

Klawonn, F. (2003). Should fuzzy equality and similarity satisfy transitivity? comments on the paper by m.

de cock and e. kerre. Fuzzy Sets and Systems, 133(2):175–180.

Kleinberg, J. M. (1999). Authoritative Sources in a Hyperlinked Environment. Journal of the ACM,

46(5):604–632.

Klyne, G. and Carroll, J. J. (2004). Resource Description Framework (RDF): Concepts and Abstract Syntax.

W3C Recommendation. http://www.w3.org/TR/rdf-concepts/.

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., and Lee, R. (2009).

Media Meets Semantic Web - How the BBC Uses DBpedia and Linked Data to Make Connections. In

ESWC, pages 723–737.

Kolovski, V., Wu, Z., and Eadon, G. (2010). Optimizing Enterprise-scale OWL 2 RL Reasoning in a

Relational Database System. In International Semantic Web Conference.

194

http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/rdf-concepts/

BIBLIOGRAPHY 195

Komorowski, H. J. (1982). Partial Evaluation as a Means for Inferencing Data Structures in an Applicative

Language: A Theory and Implementation in the Case of Prolog. In POPL, pages 255–267.

Lassila, O. and Swick, R. R. (1999). Resource Description Framework (RDF) Model and Syntax Specification.

W3C Recommendation. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

Lee, H.-T., Leonard, D., Wang, X., and Loguinov, D. (2008). IRLbot: scaling to 6 billion pages and beyond.

In WWW, pages 427–436.

Lei, Y., Uren, V., and Motta, E. (2006). Semsearch: A search engine for the semantic web. In 14th

International Conference on Knowledge Engineering and Knowledge Management, pages 238–245.

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., and Savo, D. F. (2010). Inconsistency-Tolerant Semantics

for Description Logics. In RR, pages 103–117.

Liu, B. and Hu, B. (2005). An evaluation of rdf storage systems for large data applications. In SKG, page 59.

Lloyd, J. W. (1987). Foundations of Logic Programming (2nd edition). Springer-Verlag.

Lloyd, J. W. and Shepherdson, J. C. (1991). Partial Evaluation in Logic Programming. J. Log. Program.,

11(3&4):217–242.

Lopes, N., Polleres, A., Straccia, U., and Zimmermann, A. (2010a). AnQL: SPARQLing Up Annotated

RDFS. In The Semantic Web - ISWC 20010, 9th International Semantic Web Conference, ISWC 2010,

Shangai, Cina, November 7-11, to appear. Proceedings.

Lopes, N., Zimmermann, A., Hogan, A., Lukacsy, G., Polleres, A., Straccia, U., and Decker, S. (2010b).

RDF Needs Annotations. In W3C Workshop on RDF Next Steps, Stanford, Palo Alto, CA, USA.

Lu, J., Ma, L., 0007, L. Z., Brunner, J.-S., Wang, C., Pan, Y., and Yu, Y. (2007). Sor: A practical system

for ontology storage, reasoning and search. In VLDB, pages 1402–1405.

Luke, S., Spector, L., Rager, D., and Hendler, J. A. (1997). Ontology-based Web Agents. In Agents, pages

59–66.

Lutz, C., Walther, D., and Wolter, F. (2007). Conservative extensions in expressive description logics.

In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pages

453–458.

Ma, L., Yang, Y., Qiu, Z., Xie, G. T., Pan, Y., and Liu, S. (2006). Towards a Complete OWL Ontology

Benchmark. In ESWC, pages 125–139.

Ma, Y. and Hitzler, P. (2009). Paraconsistent Reasoning for OWL 2. In RR, pages 197–211.

Maier, F. (2010). Extending Paraconsistent SROIQ. In RR, pages 118–132.

Manola, F., Miller, E., and McBride, B. (2004). RDF Primer. W3C Recommendation. http://www.w3.org/TR/

rdf-primer/.

Martin, M., Unbehauen, J., and Auer, S. (2010). Improving the Performance of Semantic Web Applications

with SPARQL Query Caching. In ESWC (2), pages 304–318.

McCusker, J. P. and McGuinness, D. L. (2010). Towards Identity in Linked Data. In In Proc. of OWL:

Experience and Directions, San Francisco, USA.

195

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/

BIBLIOGRAPHY 196

McGuinness, D. L., Fikes, R., Hendler, J. A., and Stein, L. A. (2002). DAML+OIL: An Ontology Language

for the Semantic Web. IEEE Intelligent Systems, 17(5):72–80.

McGuinness, D. L. and van Harmelen, F. (2004). OWL Web Ontology Language Overview. W3C Recom-

mendation. http://www.w3.org/TR/owl-features/.

Michalowski, M., Thakkar, S., and Knoblock, C. A. (2003). Exploiting Secondary Sources for Automatic

Object Consolidation. In Proceeding of 2003 KDD Workshop on Data Cleaning, Record Linkage, and

Object Consolidation.

Michel, B. S., Nikoloudakis, K., Reiher, P. L., and Zhang, L. (2000). URL Forwarding and Compression in

Adaptive Web Caching. In INFOCOM, pages 670–678.

Miles, A., Baker, T., and Swick, R. (2006). Best Practice Recipes for Publishing RDF Vocabularies. http:

//www.w3.org/TR/2006/WD-swbp-vocab-pub-20060314/l. Superceded by Berrueta and Phipps: http://www.w3.org/

TR/swbp-vocab-pub/.

Monaghan, F. and O’Sullivan, D. (2007). Leveraging ontologies, context and social networks to automate

photo annotation. In SAMT, pages 252–255.

Motik, B. (2004). Web Ontology Reasoning with Logic Databases. PhD thesis, AIFB, Karlsruhe, Germany.

Motik, B., Horrocks, I., and Sattler, U. (2009a). Bridging the gap between OWL and relational databases.

J. Web Sem., 7(2):74–89.

Motik, B., Patel-Schneider, P. F., and Grau, B. C. (2009b). OWL 2 Web Ontology Language Direct Seman-

tics. W3C Recommendation. http://www.w3.org/TR/owl2-direct-semantics/.

Motik, B., Patel-Schneider, P. F., and Parsia, B. (2009c). OWL 2 Web Ontology Language Structural

Specification and Functional-Style Syntax. W3C Recommendation. http://www.w3.org/TR/owl2-syntax/.

Motta, E. (2000). Enabling Knowledge Creation, Sharing and Reuse on the World-Wide-Web. In AIMSA,

pages 358–361.

Muñoz, S., Pérez, J., and Gutiérrez, C. (2007). Minimal Deductive Systems for RDF. In ESWC, pages

53–67.

Muñoz, S., Pérez, J., and Gutierrez, C. (2009). Simple and Efficient Minimal RDFS. J. Web Sem., 7(3):220–

234.

Najork, M. and Wiener, J. L. (2001). Breadth-First Search Crawling Yields High-Quality Pages. In In Proc.

10th International World Wide Web Conference, pages 114–118.

Nelson, T. H. (1965). Complex information processing: a file structure for the complex, the changing and

the indeterminate. In ACM Annual Conference/Annual Meeting.

Neumann, T. and Weikum, G. (2010). The RDF-3X engine for scalable management of RDF data. VLDB

J., 19(1):91–113.

Newcombe, H. B., Kennedy, J. M., Axford, S. J., and James, A. P. (1959). Automatic Linkage of Vital

Records: Computers can be used to extract ”follow-up” statistics of families from files of routine records.

Science, 130:954–959.

Nikolov, A., Uren, V. S., Motta, E., and Roeck, A. N. D. (2008). Integration of Semantically Annotated

Data by the KnoFuss Architecture. In EKAW, pages 265–274.

196

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2006/WD-swbp-vocab-pub-20060314/l
http://www.w3.org/TR/2006/WD-swbp-vocab-pub-20060314/l
http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/

BIBLIOGRAPHY 197

Noessner, J., Niepert, M., Meilicke, C., and Stuckenschmidt, H. (2010). Leveraging terminological structure

for object reconciliation. In ESWC (2), pages 334–348.

Olson, M. A., Bostic, K., and Seltzer, M. I. (1999). Berkeley DB. In USENIX Annual Technical Conference,

FREENIX Track, pages 183–191.

O’Reilly, T. (2006). Web 2.0 Principles and Best Practices. O’Reilly Media.

Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., and Tummarello, G. (2008). Sindice.com:

a document-oriented lookup index for open linked data. IJMSO, 3(1):37–52.

Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., and van Harmelen, F. (2009a). Marvin:

Distributed reasoning over large-scale Semantic Web data. J. Web Sem., 7(4):305–316.

Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., and van Harmelen, F. (2009b). Marvin:

Distributed reasoning over large-scale Semantic Web data. J. Web Sem., 7(4):305–316.

Oren, E. and Tummarello, G. (2007). A Lookup Index for Semantic Web Resources. In Workshop on

Scripting for the Semantic Web (SFSW).

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The PageRank Citation Ranking: Bringing Order

to the Web. Technical report, Stanford Digital Library Technologies Project.

Pant, G. and Srinivasan, P. (2005). Learning to crawl: Comparing classification schemes. ACM Trans. Inf.

Syst., 23(4):430–462.

Pietriga, E., Bizer, C., Karger, D. R., and Lee, R. (2006). Fresnel: A Browser-Independent Presentation

Vocabulary for RDF. In International Semantic Web Conference, pages 158–171.

Polleres, A. (2007). From SPARQL to rules (and back). In WWW, pages 787–796.

Polleres, A., Feier, C., and Harth, A. (2006). Rules with Contextually Scoped Negation. In ESWC, pages

332–347.

Polleres, A., Hogan, A., and Harth, A. (2010). Can we ever catch up with the Web? Semantic Web Journal

– Interoperability, Usability, Applicability, 1(1).

Popitsch, N. and Haslhofer, B. (2010). DSNotify: handling broken links in the web of data. In WWW, pages

761–770.

Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL Query Language for RDF. W3C Recommendation.

http://www.w3.org/TR/rdf-sparql-query/.

Raimond, Y., Sutton, C., and Sandler, M. B. (2009). Interlinking Music-Related Data on the Web. IEEE

MultiMedia, 16(2):52–63.

Ramakrishnan, R., Srivastava, D., and Sudarshan, S. (1990). Rule Ordering in Bottom-Up Fixpoint Evalu-

ation of Logic Programs. In Proc. of 16th VLDB, pages 359–371.

Reiter, R. (1987). A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95.

Sabou, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Motta, E., d’Aquin, M., and Dzbor, M. (2007).

WATSON: A Gateway for the Semantic Web. In ESWC 2007 poster session.

Salvadores, M., Correndo, G., Rodriguez-Castro, B., Gibbins, N., Darlington, J., and Shadbolt, N. R. (2009).

Linksb2n: Automatic data integration for the semantic web. In OTM Conferences (2), pages 1121–1138.

197

http://www.w3.org/TR/rdf-sparql-query/

BIBLIOGRAPHY 198

Scharffe, F., Liu, Y., and Zhou, C. (2009). RDF-AI: an Architecture for RDF Datasets Matching, Fusion

and Interlink. In IJCAI 2009 Workshop on Identity, Reference, and Knowledge Representation (IR-KR).

Schenk, S., Saathoff, C., Staab, S., and Scherp, A. (2009). SemaPlorer - Interactive semantic exploration of

data and media based on a federated cloud infrastructure. J. Web Sem., 7(4):298–304.

Schenk, S. and Staab, S. (2008). Networked graphs: a declarative mechanism for SPARQL rules, SPARQL

views and RDF data integration on the web. In WWW, pages 585–594.

Schlobach, S., Huang, Z., Cornet, R., and van Harmelen, F. (2007). Debugging Incoherent Terminologies.

J. Autom. Reasoning, 39(3):317–349.

Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C. (2009a). SP2Bench: A SPARQL Performance Bench-

mark. In ICDE, pages 222–233.

Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C. (2009b). SP2Bench: A SPARQL Performance

Benchmark. In ICDE, pages 222–233.

Schmidt-Schauß, M. and Smolka, G. (1991). Attributive Concept Descriptions with Complements. Artif.

Intell., 48(1):1–26.

Schneider, M. (2009). OWL 2 Web Ontology Language RDF-Based Semantics. W3C Recommendation.

http://www.w3.org/TR/owl2-rdf-based-semantics/.

Shi, L., Berrueta, D., Fernández, S., Polo, L., and Fernández, S. (2008). Smushing RDF instances: are Alice

and Bob the same open source developer? In PICKME Workshop.

Singh, S., Wick, M. L., and McCallum, A. (2010). Distantly Labeling Data for Large Scale Cross-Document

Coreference. CoRR, abs/1005.4298.

Sintek, M. and Decker, S. (2002). TRIPLE - A Query, Inference, and Transformation Language for the

Semantic Web. In 1st International Semantic Web Conference, pages 364–378.

Sleeman, J. and Finin, T. (2010). Learning Co-reference Relations for FOAF Instances. In Poster and Demo

Session at ISWC.

Smith, M. K., Welty, C., and McGuinness, D. L. (2004). OWL Web Ontology Language Guide. W3C

Recommendation. http://www.w3.org/TR/owl-guide/.

Staab, S., Angele, J., Decker, S., Erdmann, M., Hotho, A., Maedche, A., Schnurr, H.-P., Studer, R., and

Sure, Y. (2000). Ai for the web - ontology-based community web portals. In AAAI/IAAI, pages 1034–1039.

Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., and Reynolds, D. (2008). SPARQL basic graph pattern

optimization using selectivity estimation. In WWW, pages 595–604.

Stoer, M. and Wagner, F. (1997). A simple min-cut algorithm. J. ACM, 44(4):585–591.

Stonebraker, M. (1986). The Case for Shared Nothing. IEEE Database Eng. Bull., 9(1):4–9.

Straccia, U. (2010). SoftFacts: A Top-k Retrieval Engine for Ontology Mediated Access to Relational

Databases. In SMC, pages 4115–4122.

Stuckenschmidt, H. (2008). Debugging owl ontologies - a reality check. In EON.

198

http://www.w3.org/TR/owl-guide/

BIBLIOGRAPHY 199

Stuckenschmidt, H. (2009). A Semantic Similarity Measure for Ontology-Based Information. In FQAS ’09:

Proceedings of the 8th International Conference on Flexible Query Answering Systems, pages 406–417,

Berlin, Heidelberg. Springer-Verlag.

ter Horst, H. J. (2005a). Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity.

In 4th International Semantic Web Conference, pages 668–684.

ter Horst, H. J. (2005b). Completeness, decidability and complexity of entailment for RDF Schema and a

semantic extension involving the OWL vocabulary. Journal of Web Semantics, 3:79–115.

Thelwall, M. and Stuart, D. (2006). Web crawling ethics revisited: Cost, privacy, and denial of service.

Journal of the American Society for Information Science and Technology, 57:1771–1779.

Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., and Decker, S. (2009). Sig.ma: Live views on

the Web of Data. In Semantic Web Challenge (ISWC2009).

Tummarello, G., Delbru, R., and Oren, E. (2007). Sindice.com: Weaving the Open Linked Data. In

ISWC/ASWC, pages 552–565.

Ullman, J. D. (1989). Principles of Database and Knowledge Base Systems. Computer Science Press.

Umbrich, J., Harth, A., Hogan, A., and Decker, S. (2008). Four heuristics to guide structured content

crawling. In Proceedings of the 2008 Eighth International Conference on Web Engineering-Volume 00,

pages 196–202. IEEE Computer Society.

Umbrich, J., Villazón-Terrazas, B., and Hausenblas, M. (2010). Dataset Dynamics Compendium: A Com-

parative Study. In Consuming Linked Data (COLD) Workshop.

Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., and Bal, H. E. (2010). OWL Reasoning with

WebPIE: Calculating the Closure of 100 Billion Triples. In ESWC (1), pages 213–227.

Urbani, J., Kotoulas, S., Oren, E., and van Harmelen, F. (2009). Scalable Distributed Reasoning Using

MapReduce. In International Semantic Web Conference, pages 634–649.

van Harmelen, F. and Fensel, D. (1999). Practical Knowledge Representation for the Web. In Intelligent

Information Integration.

Vanderbei, R. J. (2008). Linear Programming: Foundations and Extensions, 3rd ed. Springer Verlag.

Volz, J., Bizer, C., Gaedke, M., and Kobilarov, G. (2009). Discovering and Maintaining Links on the Web

of Data. In International Semantic Web Conference, pages 650–665.

Vrandeč́ıc, D., Krötzsch, M., Rudolph, S., and Lösch, U. (2010). Leveraging Non-Lexical Knowledge for the

Linked Open Data Web. Review of April Fool’s day Transactions (RAFT), 5:18–27.

Wagner, G. (2003). Web rules need two kinds of negation. In PPSWR, pages 33–50.

Wang, S.-Y., Guo, Y., Qasem, A., and Heflin, J. (2005). Rapid Benchmarking for Semantic Web Knowledge

Base Systems. In International Semantic Web Conference, pages 758–772.

Wang, T. D., Parsia, B., and Hendler, J. A. (2006a). A Survey of the Web Ontology Landscape. In

International Semantic Web Conference, pages 682–694.

Wang, T. D., Parsia, B., and Hendler, J. A. (2006b). A Survey of the Web Ontology Landscape. In

199

BIBLIOGRAPHY 200

Proceedings of the 5th International Semantic Web Conference (ISWC 2006), pages 682–694, Athens, GA,

USA.

Weaver, J. and Hendler, J. A. (2009). Parallel Materialization of the Finite RDFS Closure for Hundreds of

Millions of Triples. In International Semantic Web Conference (ISWC2009), pages 682–697.

Wood, D., Decker, S., and Herman, I., editors (2010). Proceedings of the W3C Workshop – RDF Next Steps,

Stanford, Palo Alto, CA, USA, June 26-27. Online at http://www.w3.org/2009/12/rdf-ws/.

Wu, C. H., Apweiler, R., Bairoch, A., Natale, D. A., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger,

E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Mazumder, R., O’Donovan, C., Redaschi, N.,

and Suzek, B. E. (2006). The Universal Protein Resource (UniProt): an expanding universe of protein

information. Nucleic Acids Research, 34(Database-Issue):187–191.

Wu, Z., Eadon, G., Das, S., Chong, E. I., Kolovski, V., Annamalai, M., and Srinivasan, J. (2008). Imple-

menting an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle. In ICDE,

pages 1239–1248.

Yardeni, E. and Shapiro, E. Y. (1991). A Type System for Logic Programs. J. Log. Program.,

10(1/2/3&4):125–153.

Zadeh, L. A., Klir, G. J., and Yuan, B. (1996). Fuzzy Sets, Fuzzy Logic, Fuzzy Systems. World Scientific

Press.

Zhang, X., Xiao, G., and Lin, Z. (2009). A Tableau Algorithm for Handling Inconsistency in OWL. In

ESWC, pages 399–413.

Zhou, J., Ma, L., Liu, Q., 0007, L. Z., Yu, Y., and Pan, Y. (2006). Minerva: A scalable owl ontology storage

and inference system. In ASWC, pages 429–443.

200

http://www.w3.org/2009/12/rdf-ws/

Appendix A

Prefixes

Herein, we enumerate the prefixes used throughout this thesis to abbreviate URIs. In Table A.1, we list the

prefixes used for instance URIs; in Table A.2, we list the prefixes used for class or property URIs.

Prefix URI
avtimbl: http://www.advogato.org/person/timbl/foaf.rdf#
bmpersons: http://www4.wiwiss.fu-berlin.de/bookmashup/persons/
dav: http://www.openlinksw.com/dataspace/organization/dav#
dblpperson: http://www4.wiwiss.fu-berlin.de/dblp/resource/person/
dbpedia: http://dbpedia.org/resource/
enwiki: http://en.wikipedia.org/wiki/
ex*: arbitrary example namespace
eswc2006p: http://www.eswc2006.org/people/#
fb: http://rdf.freebase.com/ns/
identicauser: http://identi.ca/user/45563
kingdoms: http://lod.geospecies.org/kingdoms/
macs: http://stitch.cs.vu.nl/alignments/macs/
sw: http://data.semanticweb.org/id/
swid: http://semanticweb.org/id/
sworg: http://data.semanticweb.org/organization/
swpaper1: http://data.semanticweb.org/conference/iswc/2006/paper-
swpaper2: http://data.semanticweb.org/conference/iswc-aswc/2007/tracks/research/papers/
swpaper3: http://data.semanticweb.org/conference/iswc/2009/paper/research/
swperson: http://data.semanticweb.org/person/
vperson: http://virtuoso.openlinksw.com/dataspace/person/
wikier: http://www.wikier.org/foaf.rdf#

Table A.1: Used “data” prefixes

201

http://www.advogato.org/person/timbl/foaf.rdf#
http://www4.wiwiss.fu-berlin.de/bookmashup/persons/
http://www.openlinksw.com/dataspace/organization/dav#
http://www4.wiwiss.fu-berlin.de/dblp/resource/person/
http://dbpedia.org/resource/
http://en.wikipedia.org/wiki/
http://www.eswc2006.org/people/#
http://rdf.freebase.com/ns/
http://identi.ca/user/45563
http://lod.geospecies.org/kingdoms/
http://stitch.cs.vu.nl/alignments/macs/
http://data.semanticweb.org/id/
http://semanticweb.org/id/
http://data.semanticweb.org/organization/
http://data.semanticweb.org/conference/iswc/2006/paper-
http://data.semanticweb.org/conference/iswc-aswc/2007/tracks/research/papers/
http://data.semanticweb.org/conference/iswc/2009/paper/research/
http://data.semanticweb.org/person/
http://virtuoso.openlinksw.com/dataspace/person/
http://www.wikier.org/foaf.rdf#

202

Prefix URI
aifb: http://www.aifb.kit.edu/id/
atomowl: http://bblfish.net/work/atom-owl/2006-06-06/#
b2r: http://bio2rdf.org/bio2rdf:
b2r2008: http://bio2rdf.org/bio2rdf-2008.owl#
b2rns: http://bio2rdf.org/ns
b2rr: http://bio2rdf.org/bio2rdf_resource:
bill: http://www.rdfabout.com/rdf/schema/usbill/
cc: http://creativecommons.org/ns#
contact: http://www.w3.org/2000/10/swap/pim/contact#
dbo: http://dbpedia.org/ontology/
dbp: http://dbpedia.org/property/
dbtropes: http://dbtropes.org/resource/Main/
dc: http://purl.org/dc/elements/1.1/
dcmit: http://purl.org/dc/dcmitype/
dct: http://purl.org/dc/terms/
doap: http://usefulinc.com/ns/doap#
drugbank: http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/
ecs: http://rdf.ecs.soton.ac.uk/ontology/ecs#
esns: http://ontologycentral.com/2009/01/eurostat/ns#
estoc: http://ontologycentral.com/2009/01/eurostat/table_of_contents#
ex*: arbitrary example namespace
factbook: http://www4.wiwiss.fu-berlin.de/factbook/ns#
fb: http://rdf.freebase.com/ns/
foaf: http://xmlns.com/foaf/0.1/
frbr: http://purl.org/vocab/frbr/core#
geonames: http://www.geonames.org/ontology#
geospecies: http://rdf.geospecies.org/ont/geospecies#
gr: http://purl.org/goodrelations/v1#
kwa: http://knowledgeweb.semanticweb.org/heterogeneity/alignment#
like: http://ontologi.es/like#
lldegene: http://linkedlifedata.com/resource/entrezgene/
lldlifeskim: http://linkedlifedata.com/resource/lifeskim/
lldpubmed: http://linkedlifedata.com/resource/pubmed/
loc: http://sw.deri.org/2006/07/location/loc#
ludopinions: http://skipforward.net/skipforward/resource/ludopinions/
mo: http://purl.org/ontology/mo/
movie: http://data.linkedmdb.org/resource/movie/
mu: http://www.kanzaki.com/ns/music#
mvcb: http://webns.net/mvcb/
opencyc: http://sw.opencyc.org/2008/06/10/concept/
opiumfield: http://rdf.opiumfield.com/lastfm/spec#
oplweb: http://www.openlinksw.com/schemas/oplweb#
opwn: http://www.ontologyportal.org/WordNet.owl#
owl: http://www.w3.org/2002/07/owl#
own16: http://www.ontologydesignpatterns.org.it/ont/own/own16.owl#
po: http://purl.org/ontology/po/
plink: http://buzzword.org.uk/rdf/personal-link-types#
pres: http://www.w3.org/2004/08/Presentations.owl#
ptime: http://pervasive.semanticweb.org/ont/2004/06/time#
quaffing: http://purl.org/net/schemas/quaffing/
rail: http://ontologi.es/rail/vocab#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
rev: http://purl.org/stuff/rev#
rss: http://purl.org/rss/1.0/
sc: http://umbel.org/umbel/sc/
skipinions: http://skipforward.net/skipforward/resource/seeder/skipinions/
skos: http://www.w3.org/2004/02/skos/core#
sumo: http://www.ontologyportal.org/SUMO.owl#
swrc: http://swrc.ontoware.org/ontology#
uniprot: http://purl.uniprot.org/core/
vote: http://www.rdfabout.com/rdf/schema/vote/
wgs84: http://www.w3.org/2003/01/geo/wgs84_pos#
wn: http://xmlns.com/wordnet/1.6/
wrcc: http://web.resource.org/cc
xfn: http://vocab.sindice.com/xfn#
yago: http://dbpedia.org/class/yago/
yagor: http://www.mpii.de/yago/resource/

Table A.2: Used “vocabulary” prefixes

202

http://www.aifb.kit.edu/id/
http://bblfish.net/work/atom-owl/2006-06-06/#
http://bio2rdf.org/bio2rdf:
http://bio2rdf.org/bio2rdf-2008.owl#
http://bio2rdf.org/ns
http://bio2rdf.org/bio2rdf_resource:
http://www.rdfabout.com/rdf/schema/usbill/
http://creativecommons.org/ns#
http://www.w3.org/2000/10/swap/pim/contact#
http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://dbtropes.org/resource/Main/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/dcmitype/
http://purl.org/dc/terms/
http://usefulinc.com/ns/doap#
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/
http://rdf.ecs.soton.ac.uk/ontology/ecs#
http://ontologycentral.com/2009/01/eurostat/ns#
http://ontologycentral.com/2009/01/eurostat/table_of_contents#
http://www4.wiwiss.fu-berlin.de/factbook/ns#
http://rdf.freebase.com/ns/
http://xmlns.com/foaf/0.1/
http://purl.org/vocab/frbr/core#
http://www.geonames.org/ontology#
http://rdf.geospecies.org/ont/geospecies#
http://purl.org/goodrelations/v1#
http://knowledgeweb.semanticweb.org/heterogeneity/alignment#
http://ontologi.es/like#
http://linkedlifedata.com/resource/entrezgene/
http://linkedlifedata.com/resource/lifeskim/
http://linkedlifedata.com/resource/pubmed/
http://sw.deri.org/2006/07/location/loc#
http://skipforward.net/skipforward/resource/ludopinions/
http://purl.org/ontology/mo/
http://data.linkedmdb.org/resource/movie/
http://www.kanzaki.com/ns/music#
http://webns.net/mvcb/
http://sw.opencyc.org/2008/06/10/concept/
http://rdf.opiumfield.com/lastfm/spec#
http://www.openlinksw.com/schemas/oplweb#
http://www.ontologyportal.org/WordNet.owl#
http://www.w3.org/2002/07/owl#
http://www.ontologydesignpatterns.org.it/ont/own/own16.owl#
http://purl.org/ontology/po/
http://buzzword.org.uk/rdf/personal-link-types#
http://www.w3.org/2004/08/Presentations.owl#
http://pervasive.semanticweb.org/ont/2004/06/time#
http://purl.org/net/schemas/quaffing/
http://ontologi.es/rail/vocab#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://purl.org/stuff/rev#
http://purl.org/rss/1.0/
http://umbel.org/umbel/sc/
http://skipforward.net/skipforward/resource/seeder/skipinions/
http://www.w3.org/2004/02/skos/core#
http://www.ontologyportal.org/SUMO.owl#
http://swrc.ontoware.org/ontology#
http://purl.uniprot.org/core/
http://www.rdfabout.com/rdf/schema/vote/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://xmlns.com/wordnet/1.6/
http://web.resource.org/cc
http://vocab.sindice.com/xfn#
http://dbpedia.org/class/yago/
http://www.mpii.de/yago/resource/

Appendix B

Rule Tables

This appendix lists Turtle-syntax rules for OWL 2 RL/RDF (§ B.1); for reference, we also include rules for

RDF(S) (§ B.2) and pD* (§ B.3). Note that we highlight all authoritative variables (§ 5.4.2) in bold for all

rulesets, and that we italicise the labels of OWL 2 RL/RDF rules which use features new to OWL 2.

B.1 OWL 2 RL/RDF Rules

Herein, we list the rule tables categorising supported OWL 2 RL/RDF rules [Grau et al., 2009] according to

terminological and assertional arity of atoms in the body.

We begin with the rules supported in Chapter 5; these include:

• rules with no set body, which are roughly equivalent to (sometimes infinite) axiomatic triples (Ta-

ble B.1);

• rules with only terminological atoms (Table B.2);

• rules with no terminological atoms and one assertional atom (Table B.3);

• and rules with terminological atom(s) and one assertional atom (Table B.4).

We deliberately do not support crossed-out rules as per discussion in Chapter 5. Further, as mentioned in

Chapter 5, Table B.5 gives an indication as to how the least model of the assertional program can be complete

even if the inferences from rules in Table B.2 (rules with only T-atoms) are omitted from the T-Box.

We then present all of the OWL 2 RL/RDF constraint rules—rules with the special false keyword as

head—in Table B.6. These rules are used in Chapters 6 & 7 to detect noise.

In Table B.7, we list the rules used to support the semantics of equality, as required for consolidation

presented in Chapter 7; Table B.8 lists the rules which can directly and only infer owl:sameAs relations.

Note that in these rulesets, we denote rules that we omit by choice using double-cross-out, and thereafter,

rules that we cannot currently support using single-cross out.

Finally, in Table B.9, we list the remaining OWL 2 RL/RDF rules which we currently do not support by

any means.

203

B.1. OWL 2 RL/RDF Rules 204

Body(R) = ∅
ID Head Notes

prp-ap ?p a owl:AnnotationProperty .
For each built-in
annotation property

cls-thing owl:Thing a owl:Class . -
cls-nothing owl:Nothing a owl:Class . -
dt-type1 ?dt a rdfs:Datatype . For each built-in datatype

dt-type2 ?l a ?dt .
For all ?l in the value
space of datatype ?dt

dt-eq ?l1 owl:sameAs ?l2 .
For all ?l1 and ?l2 with
the same data value

dt-diff ?l1 owl:differentFrom ?l2 .
For all ?l1 and ?l2 with
different data values

Table B.1: Rules with empty body

TBody(R) 6= ∅,ABody(R) = ∅

ID
Body

Head
terminological

cls-oo ?c owl:oneOf (?x1...?xn) . ?x1...?xn a ?c .

scm-cls ?c a owl:Class .

?c rdfs:subClassOf ?c ;
rdfs:subClassOf owl:Thing ;
owl:equivalentClass ?c .

owl:Nothing rdfs:subClassOf ?c .

scm-sco
?c1 rdfs:subClassOf ?c2 .

?c1 rdfs:subClassOf ?c3 .
?c2 rdfs:subClassOf ?c3 .

scm-eqc1 ?c1 owl:equivalentClass ?c2 .
?c1 rdfs:subClassOf ?c2 .
?c2 rdfs:subClassOf ?c1 .

scm-eqc2
?c1 rdfs:subClassOf ?c2 .

?c1 owl:equivalentClass ?c2 .
?c2 rdfs:subClassOf ?c1 .

scm-op ?p a owl:ObjectProperty .
?p rdfs:subPropertyOf ?p .
?p owl:equivalentProperty ?p .

scm-dp ?p a owl:DatatypeProperty .
?p rdfs:subPropertyOf ?p .
?p owl:equivalentProperty ?p .

scm-spo
?p1 rdfs:subPropertyOf ?p2 .

?p1 rdfs:subPropertyOf ?p3 .
?p2 rdfs:subPropertyOf ?p3 .

scm-eqp1 ?p1 owl:equivalentProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .
?p2 rdfs:subPropertyOf ?p1 .

scm-eqp2
?p1 rdfs:subPropertyOf ?p2 .

?p1 owl:equivalentProperty ?p2 .
?p2 rdfs:subPropertyOf ?p1 .

scm-dom1
?p rdfs:domain ?c1 .

?p rdfs:domain ?c2 .
?c1 rdfs:subClassOf ?c2 .

scm-dom2
?p2 rdfs:domain ?c .

?p1 rdfs:domain ?c .
?p1 rdfs:subPropertyOf ?p2 .

scm-rng1
?p rdfs:range ?c1 .

?p rdfs:range ?c2 .
?c1 rdfs:subClassOf ?c2 .

scm-rng2
?p2 rdfs:range ?c .

?p1 rdfs:range ?c .
?p1 rdfs:subPropertyOf ?p2 .

scm-hv

?c1 owl:hasValue ?i ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p1 .

?c2 owl:hasValue ?i ;
owl:onProperty ?p2 .

?p1 rdfs:subPropertyOf ?p2 .

scm-svf1

?c1 owl:someValuesFrom ?y1 ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p .

?c2 owl:someValuesFrom ?y2 ;
owl:onProperty ?p .

?y1 rdfs:subClassOf ?y2 .

scm-svf2

?c1 owl:someValuesFrom ?y ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p1 .

?c2 owl:someValuesFrom ?y ;
owl:onProperty ?p2 .

?p1 rdfs:subPropertyOf ?p2 .

scm-avf1

?c1 owl:allValuesFrom ?y1 ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p .

?c2 owl:allValuesFrom ?y2 ;
owl:onProperty ?p .

?y1 rdfs:subClassOf ?y2 .

scm-avf2

?c1 owl:allValuesFrom ?y ;

?c1 rdfs:subClassOf ?c2 .
owl:onProperty ?p1 .

?c2 owl:allValuesFrom ?y ;
owl:onProperty ?p2 .

?p1 rdfs:subPropertyOf ?p2 .
scm-int ?c owl:intersectionOf (?c1...?cn) . ?c rdfs:subClassOf ?c1...?cn .
scm-uni ?c owl:unionOf (?c1...?cn) . ?c1...?cn rdfs:subClassOf ?c .

Table B.2: Rules containing only T-atoms in the body

204

B.1. OWL 2 RL/RDF Rules 205

ABody(R) 6= ∅,TBody(R) = ∅

ID
Body

Head
assertional

eq-ref ?s ?p ?o .
?s owl::sameAs ?s .
?p owl::sameAs ?p .
?o owl::sameAs ?o .

eq-sym ?x owl::sameAs ?y . ?y owl::sameAs ?x .

Table B.3: Rules with no T-atoms but precisely one A-atom in the body

TBody(R) 6= ∅ and |ABody(R)| = 1

ID
Body

Head
terminological assertional

prp-dom ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .
prp-rng ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .
prp-symp ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp1 ?p1 owl:equivalentProperty ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp2 ?p1 owl:equivalentProperty ?p2 . ?x ?p2 ?y . ?x ?p1 ?y .
prp-inv1 ?p1 owl:inverseOf ?p2 . ?x ?p1 ?y . ?y ?p2 ?x .
prp-inv2 ?p1 owl:inverseOf ?p2 . ?x ?p2 ?y . ?y ?p1 ?x .
cls-int2 ?c owl:intersectionOf (?c1 ... ?cn) . ?x a ?c . ?x a ?c1...?cn .
cls-uni ?c owl:unionOf (?c1...?ci...?cn) . ?x a ?ci ?x a ?c .

cls-svf2
?x owl:someValuesFrom owl:Thing ;

?u ?p ?v . ?u a ?x .
owl:onProperty ?p .

cls-hv1
?x owl:hasValue ?y ;

?u a ?x . ?u ?p ?y .
owl:onProperty ?p .

cls-hv2
?x owl:hasValue ?y ;

?u ?p ?y . ?u a ?x .
owl:onProperty ?p .

cax-sco ?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc1 ?c1 owl:equivalentClass ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc2 ?c1 owl:equivalentClass ?c2 . ?x a ?c2 . ?x a ?c1 .

Table B.4: Rules containing some T-atoms and precisely one A-atom in the body

ID partially covered by recursive rule(s)
scm-cls incomplete for owl:Thing membership inferences
scm-sco cax-sco
scm-eqc1 cax-eqc1, cax-eqc2
scm-eqc2 cax-sco
scm-op no unique assertional inferences
scm-dp no unique assertional inferences
scm-spo prp-spo1
scm-eqp1 prp-eqp1, prp-eqp2
scm-eqp2 prp-spo1
scm-dom1 prp-dom, cax-sco
scm-dom2 prp-dom, prp-spo1
scm-rng1 prp-rng, cax-sco
scm-rng2 prp-rng, prp-spo1
scm-hv prp-rng, prp-spo1
scm-svf1 incomplete: cls-svf1, cax-sco
scm-svf2 incomplete: cls-svf1, prp-spo1
scm-avf1 incomplete: cls-avf, cax-sco
scm-avf2 incomplete: cls-avf, prp-spo1
scm-int cls-int2
scm-uni cls-uni

Table B.5: Enumeration of the coverage of inferences in case of the omission of rules in Table B.2 wrt.
inferencing over assertional knowledge by recursive application of rules in Table B.4: underlined rules are
not supported, and thus we would encounter incompleteness wrt. assertional inference (would not affect a
full OWL 2 RL/RDF reasoner which includes the underlined rules).

205

B.1. OWL 2 RL/RDF Rules 206

Head(R) = ⊥

ID
Body

terminological assertional

eq-diff1 -
?x owl:sameAs ?y .
?x owl:differentFrom ?y .

eq-diff2 -
?x a owl:AllDifferent ;

owl:members (?z1...?zn) .
?z i owl:sameAs ?z j . (i6=j)

eq-diff3 -
?x a owl:AllDifferent ;

owl:distinctMembers (?z1...?zn) .
?z i owl:sameAs ?z j . (i6=j)

eq-irp* - ?x owl:differentFrom ?x .
prp-irp ?p a owl:IrreflexiveProperty . ?x ?p ?x .
prp-asyp ?p a owl:AsymmetricProperty ?x ?p ?y . ?y ?p ?x .
prp-pdw ?p1 owl:propertyDisjointWith ?p2 . ?x ?p1 ?y ; ?p2 ?y .

prp-adp
?x a owl:AllDisjointProperties .

?u ?pi ?y ; ?pj ?y . (i6=j)
?x owl:members (?p1...?pn) .

prp-npa1 -

?x owl:sourceIndividual ?i1 .
?x owl:assertionProperty ?p .
?x owl:targetIndividual ?i2 .
?i1 ?p ?i2 .

prp-npa2 -

?x owl:sourceIndividual ?i .
?x owl:assertionProperty ?p .
?x owl:targetValue ?lt .
?i ?p ?lt .

cls-nothing2 - ?x a owl:Nothing .
cls-com ?c1 owl:complementOf ?c2 . ?x a ?c1 , ?c2 .

cls-maxc1
?x owl:maxCardinality 0 .

?u a ?x ; ?p ?y .
?x owl:onProperty ?p .

cls-maxqc1
?x owl:maxQualifiedCardinality 0 .

?u a ?x ; ?p ?y . ?y a ?c .?x owl:onProperty ?p .
?x owl:onClass ?c .

cls-maxqc2
?x owl:maxQualifiedCardinality 0 .

?u a ?x ; ?p ?y .?x owl:onProperty ?p .
?x owl:onClass owl:Thing .

cax-dw ?c1 owl:disjointWith ?c2 . ?x a ?c1 , ?c2 .

cax-adc
?x a owl:AllDisjointClasses .

?z a ?ci , ?cj . (i6=j)
?x owl:members (?c1...?cn) .

dt-not-type* - ?s ?p ?lt . [for ?lt an ill-typed literal]

Table B.6: Constraint Rules

ID
Body

Head
assertional

eq-ref ?s ?p ?o .
?s owl:sameAs ?s .
?p owl:sameAs ?p .
?o owl:sameAs ?o .

eq-sym ?x owl:sameAs ?y . ?y owl:sameAs ?x .
eq-trans ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .
eq-rep-s ?s owl:sameAs ?s′ . ?s ?p ?o . ?s′ ?p ?o .
eq-rep-p ?p owl:sameAs ?p′ . ?s ?p ?o . ?s ?p′ ?o .
eq-rep-o ?o owl:sameAs ?o′ . ?s ?p ?o . [?p 6= rdf:type] ?s ?p ?o′ .

Table B.7: Rules that support the positive semantics of owl:sameAs

ID
Body

Head
terminological assertional

prp-fp ?p a owl:FunctionalProperty . ?x ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2 .
prp-ifp ?p a owl:InverseFunctionalProperty . ?x1 ?p ?y . ?x2 ?p ?y . ?x1 owl:sameAs ?x2 .

prp-key ?c owl:hasKey (?p1 ... ?pn)

?x ?p1 ?z1 ; ... ;

?x owl:sameAs ?y .
?pn ?zn , a ?c .

?y ?p1 ?z1 ; ... ;
?pn ?zn , a ?c .

cls-maxc2 ?x owl:maxCardinality 1 ; owl:onProperty ?p . ?u a ?x ; ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2 .

cls-maxqc3
?x owl:maxQualifiedCardinality 1 . ?u a ?x .

?y1 owl:sameAs ?y2?x owl:onProperty ?p . ?u ?p ?y1 , ?y2 .
?x owl:onClass ?c . ?y1 a ?c . ?y2 a ?c .

cls-maxqc4
?x owl:maxQualifiedCardinality 1 .

?u a ?x .
?y1 owl:sameAs ?y2?x owl:onProperty ?p .

?u ?p ?y1 , ?y2 .
?x owl:onClass owl:Thing .

Table B.8: OWL 2 RL/RDF rules that directly produce owl:sameAs relations

206

B.1. OWL 2 RL/RDF Rules 207

ID
Body

Head
terminological assertional

prp-trp ?p a owl:TransitiveProperty . ?x ?p ?y . ?y ?p ?z . ?x ?p ?z

prp-spo2 ?p owl:propertyChainAxiom (?p1 ... ?pn) .
?u1 ?p1 ?u2 .

?u1 ?p ?un+1 .?u2 ?p2 ?u3 .
... ?un ?pn ?un+1 .

cls-int1 ?c owl:intersectionOf (?c1 ... ?cn) . ?y a ?c1 , ... ?cn . ?y a ?c .
cls-svf1 ?x owl:someValuesFrom ?y ; owl:onProperty ?p . ?u ?p ?v . ?v a ?y . ?u a ?x .
cls-avf ?x owl:allValuesFrom ?y ; owl:onProperty ?p . ?u ?p ?v ; a ?x . ?v a ?y .

Table B.9: Remaining OWL 2 RL/RDF rules which we currently do not support

207

B.2. RDF(S) Rules 208

B.2 RDF(S) Rules

Herein, for reference, we list the various RDFS-related rulesets available at [Hayes, 2004]. We start with

two simple entailment rules and the two variants thereof (lg/gl) used in RDF and RDFS (Table B.10). We

then list the RDF axiomatic triples (Table B.11) and the RDF entailment rules (Table B.12), followed by

the RDFS axiomatic triples (Table B.13) and the RDFS entailment rules (Table B.14). Finally, we also

list the Extensional RDFS (eRDFS) entailment rules (Table B.15) and the Datatype (D) Entailment rules

(Table B.16).

Note that for RDFS and pD*, we do not transcribe syntactic restrictions on what type of RDF constant

can enter which position of a triple—such restrictions become moot when one considers (even intermediary)

generalised triples.

ID
Body

Head
assertional

se1 ?u ?b ?x . ?u ?b :n .
se2 ?u ?b ?x . :n ?b ?x .

lg ?u ?b ?l . ?u ?b :l . (:l a surrogate for literal ?l)
gl ?u ?b :l . ?u ?b ?l . (:l a surrogate for literal ?l)

Table B.10: Simple entailment rules [Hayes, 2004]

rdf:type rdf:type rdf:Property . rdf:subject rdf:type rdf:Property .
rdf:subject rdf:type rdf:Property . value rdf:type rdf:Property .
rdf:predicate rdf:type rdf:Property . rdf: 1 rdf:type rdf:Property .
rdf:object rdf:type rdf:Property
rdf:first rdf:type rdf:Property . rdf:nil rdf:type rdf:List .
rdf:rest rdf:type rdf:Property .

Table B.11: RDF axiomatic triples [Hayes, 2004]

ID
Body

Head
assertional

rdf1 ?u ?b ?y . ?b a rdf:Property.
rdf2 ?u ?b ?l . :l a rdf:XMLLiteral . (by lg for ?l a valid rdf:XMLLiteral)

includes RDF axiomatic triples and simple-entailment rules lg/gl

Table B.12: RDF entailment rules [Hayes, 2004]

208

B.2. RDF(S) Rules 209

rdf:type rdfs:domain rdfs:Resource . rdf:first rdfs:range rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property . rdf:rest rdfs:range rdf:List .
rdfs:range rdfs:domain rdf:Property . rdfs:seeAlso rdfs:range rdfs:Resource .
rdfs:subPropertyOf rdfs:domain rdf:Property . rdfs:isDefinedBy rdfs:range rdfs:Resource .
rdfs:subClassOf rdfs:domain rdfs:Class . rdfs:comment rdfs:range rdfs:Literal .
rdf:subject rdfs:domain rdf:Statement . rdfs:label rdfs:range rdfs:Literal .
rdf:predicate rdfs:domain rdf:Statement . rdfs:value rdfs:range rdfs:Resource .
rdf:object rdfs:domain rdf:Statement . rdf:Alt rdfs:subClassOf rdfs:Container .
rdfs:member rdfs:domain rdfs:Resource . rdf:Bag rdfs:subClassOf rdfs:Container .
rdf:first rdfs:domain rdf:List . rdf:Seq rdfs:subClassOf rdfs:Container .
rdf:rest rdfs:domain rdf:List . rdfs:ContainerMembershipProperty
rdfs:seeAlso rdfs:domain rdfs:Resource . rdfs:subClassOf rdf:Property .
rdfs:isDefinedBy rdfs:domain rdfs:Resource . rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .
rdfs:comment rdfs:domain rdfs:Resource . rdf:XMLLiteral rdf:type rdfs:Datatype .
rdfs:label rdfs:domain rdfs:Resource . rdf:XMLLiteral rdfs:subClassOf rdfs:Literal .
rdf:value rdfs:domain rdfs:Resource . rdfs:Datatype rdfs:subClassOf rdfs:Class .
rdf:type rdfs:range rdfs:Class . rdf: 1 rdf:type
rdfs:domain rdfs:range rdfs:Class . rdfs:ContainerMembershipProperty .
rdfs:range rdfs:range rdfs:Class . rdf: 1 rdf:domain rdfs:Resource .
rdfs:subPropertyOf rdfs:range rdf:Property . rdf: 1 rdfs:range rdfs:Resource .
rdfs:subClassOf rdfs:range rdfs:Class . rdf: 2 rdfs:type
rdf:subject rdfs:range rdfs:Resource . rdfs:ContainerMembershipProperty .
rdf:predicate rdfs:range rdfs:Resource . rdf: 2 rdfs:domain rdfs:Resource .
rdf:object rdfs:range rdfs:Resource . rdf: 2 rdfs:range rdfs:Resource .
rdfs:member rdfs:range rdfs:Resource

Table B.13: RDFS axiomatic triples [Hayes, 2004]

ID
Body

Head
terminological assertional

rdfs1 ?u ?b ?l .
:l a rdfs:Literal .

(by lg for ?l a plain literal)
rdfs2 ?v rdfs:domain ?x . ?u ?v ?y . ?u a ?x .
rdfs3 ?b rdfs:range ?x . ?u ?b ?v . ?v a ?x .
rdfs4a ?u ?b ?x . ?u a rdfs:Resource .
rdfs4b ?u ?b ?v . ?v a rdfs:Resource .

rdfs5
?u rdfs:subPropertyOf ?v .

?u rdfs:subPropertyOf ?x .
?v rdfs:subPropertyOf ?x .

rdfs6 ?u a rdf:Property. ?u rdfs:subPropertyOf ?u .
rdfs7 ?b rdfs:subPropertyOf ?c . ?u ?b ?y . ?u ?c ?y .
rdfs8 ?u a rdfs:Class. ?u rdfs:subClassOf rdfs:Resource.
rdfs9 ?u rdfs:subClassOf ?x . ?v a ?u . ?v a ?x .
rdfs10 ?u a rdfs:Class. ?u rdfs:subClassOf ?u .

rdfs11
?u rdfs:subClassOf ?v .

?u rdfs:subClassOf ?x .
?v rdfs:subClassOf ?x .

rdfs12 ?u a rdfs:ContainerMembershipProperty . ?u rdfs:subPropertyOf rdfs:member .
rdfs13 ?u a rdfs:Datatype . ?u rdfs:subClassOf rdfs:Literal .

includes RDF(S) axiomatic triples, RDF-entailment rules and rules lg/gl

Table B.14: RDFS entailment [Hayes, 2004]

ID
Body

Head
terminological

ext1
?u rdfs:domain ?v .

?u rdfs:domain ?z .
?v rdfs:subClassOf ?z .

ext2
?u rdfs:range ?v .

?u rdfs:range ?z .
?v rdfs:subClassOf ?z .

ext3
?u rdfs:domain ?v .

?w rdfs:domain ?v .
?w rdfs:subPropertyOf ?u .

ext4
?u rdfs:range ?v .

?w rdfs:range ?v .
?w rdfs:subPropertyOf ?u .

ext5
a rdfs:subPropertyOf ?w .

rdfs:Resource rdfs:subClassOf ?v .
?w rdfs:domain ?v .

ext6
rdfs:subClassOf rdfs:subPropertyOf ?w .

rdfs:Class rdfs:subClassOf ?v .
?w rdfs:domain ?v .

ext7
rdfs:subPropertyOf rdfs:subPropertyOf ?w .

rdf:Property rdfs:subClassOf ?v .
?w rdfs:domain ?v .

ext8
rdfs:subClassOf rdfs:subPropertyOf ?w .

rdfs:Class rdfs:subClassOf ?v .
?w rdfs:range ?v .

ext9
rdfs:subPropertyOf rdfs:subPropertyOf ?w .

rdf:Property rdfs:subClassOf ?v .
?w rdfs:range ?v .

Table B.15: Extensional RDFS entailment [Hayes, 2004]

209

B.2. RDF(S) Rules 210

ID
Body

Head
assertional

rdfD1
?d a rdfs:Datatype.

:l a ?d . (by lg for ?l a datatype literal)
?u ?b ?l ˆ̂ ?d .

rdfD2
?d a rdfs:Datatype.

?u ?b ?m ˆ̂ ?d . (where ?l ˆ̂ ?d = ?m ˆ̂ ?d)
?u ?b ?l ˆ̂ ?d

rdfD3
?d a rdfs:Datatype.

?u ?b ?m ˆ̂ ?e . (where ?l ˆ̂ ?d = ?m ˆ̂ ?e)?e a rdfs:Datatype.
?u ?b ?l ˆ̂ ?d .

xsd 1a ?u ?b “s” . ?u ?b “s”ˆ̂ xsd:string .
xsd 1b ?u ?b “s”ˆ̂ xsd:string . ?u ?b “s” .

Table B.16: Datatype entailment rules [Hayes, 2004]

210

B.3. pD* Rules 211

B.3 pD* Rules

Finally, we list the additional P-axiomatic triples (Table B.17) and P-entailment rules (Table B.18) proposed

by ter Horst [2005b] to extend RDFS.

owl:FunctionalProperty rdfs:subClassOf rdf:Property . owl:equivalentProperty rdfs:range rdf:Property .
owl:InverseFunctionalProperty rdfs:subClassOf rdf:Property . owl:Restriction rdfs:subClassOf rdfs:Class .
owl:SymmetricProperty rdfs:subClassOf rdf:Property . owl:onProperty rdfs:domain owl:Restriction .
owl:TransitiveProperty rdfs:subClassOf rdf:Property . owl:onProperty rdfs:range rdf:Property .
owl:sameAs rdf:type rdf:Property . owl:hasValue rdfs:domain owl:Restriction .
owl:inverseOf rdf:type rdf:Property . owl:someValuesFrom rdfs:domain owl:Restriction .
owl:inverseOf rdfs:domain rdf:Property . owl:someValuesFrom rdfs:range rdfs:Class .
owl:inverseOf rdfs:range rdf:Property . owl:allValuesFrom rdfs:domain owl:Restriction .
owl:equivalentClass rdf:type rdf:Property . owl:allValuesFrom rdfs:range rdfs:Class .
owl:equivalentProperty rdf:type rdf:Property . owl:differentFrom rdf:type rdf:Property .
owl:equivalentClass rdfs:domain rdfs:Class . owl:disjointWith rdfs:domain rdfs:Class .
owl:equivalentProperty rdfs:domain rdf:Property . owl:disjointWith rdfs:range rdfs:Class .

Table B.17: P-axiomatic triples [Hayes, 2004]

ID
Body

Head
terminological assertional

rdfp1 ?p a owl:FunctionalProperty . ?x ?p ?y , ?z . ?y owl:sameAs ?z .
rdfp2 ?p a owl:InverseFunctionalProperty . ?x ?p ?z . ?y ?p ?z . ?x owl:sameAs ?y .
rdfp3 ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
rdfp4 ?p a owl:TransitiveProperty . ?x ?p ?y . ?y ?p ?z . ?x ?p ?z .
rdfp5a ?x ?p ?y . ?x owl:sameAs ?x .
rdfp5b ?x ?p ?y . ?y owl:sameAs ?y .
rdfp6 ?x owl:sameAs ?y . ?y owl:sameAs ?x .

rdfp7
?x owl:sameAs ?y .

?x owl:sameAs ?z .
?y owl:sameAs ?z .

rdfp8a ?p owl:inverseOf ?q . ?x ?p ?y . ?y ?q ?x .
rdfp8b ?p owl:inverseOf ?q . ?x ?q ?y . ?y ?p ?x .
rdfp9 ?c a owl:Class . ?c owl:sameAs ?d . ?c rdfs:subClassOf ?d .
rdfp10 ?p a owl:Property . ?p owl:sameAs ?q . ?p rdfs:subPropertyOf ?q .

rdfp11
?x owl:sameAs ?x′ .

?x′ ?p ?y′ .?y owl:sameAs ?y′ .
?x ?p ?y .

rdfp12a ?c owl:equivalentClass ?d . ?c rdfs:subClassOf ?d .
rdfp12b ?c owl:equivalentClass ?d . ?d rdfs:subClassOf ?c .

rdfp12c
?c rdfs:subClassOf ?d .

?c owl:equivalentClass ?d .
?d rdfs:subClassOf ?c .

rdfp13a ?p owl:equivalentProperty ?q . ?p rdfs:subPropertyOf ?q .
rdfp13b ?p owl:equivalentProperty ?q . ?q rdfs:subPropertyOf ?p .

rdfp13c
?p rdfs:subPropertyOf ?q .

?p owl:equivalentProperty ?q .
?q rdfs:subPropertyOf ?p .

rdfp14a ?c owl:hasValue ?y ; owl:onProperty ?p . ?x ?p ?y . ?x a ?c .
rdfp14b ?c owl:hasValue ?y ; owl:onProperty ?p . ?x a ?c . ?x ?p ?y .
rdfp15 ?c owl:someValuesFrom ?d ; owl:onProperty ?p . ?x ?p ?y . ?y a ?d . ?x a ?c .
rdfp16 ?c owl:allValuesFrom ?d ; owl:onProperty ?p . ?x a ?c; ?p ?y . ?y a ?d .

includes RDFS entailment and P-axiomatic triples

Table B.18: P-entailment rules [ter Horst, 2005b]

211

Appendix C

Ranking Algorithms

Herein, we provide the detailed algorithms used for extracting, preparing and ranking the source level graph

as used in Chapter 6. In particular, we provide the algorithms for parallel extraction and preparation of the

sub-graphs on the slave machines: (i) extracting the source-level graph (Algorithm C.1); (ii) rewriting the

graph with respect to redirect information (Algorithm C.2); (iii) pruning the graph with respect to the list

of valid contexts (Algorithm C.3). Subsequently, the subgraphs are merge-sorted onto the master machine,

which calculates the PageRank scores for the vertices (sources) in the graph as follows: (i) count the vertices

and derive a list of dangling-nodes (Algorithm C.4); (ii) perform the power iteration algorithm to calculate

the ranks (Algorithm C.5).

The algorithms are heavily based on on-disk operations: in the algorithms, we use typewriter font to

denote on-disk operations and files. In particular, the algorithms are all based around sorting/scanning and

merge-joins: a merge-join requires two or more lists of tuples to be sorted by a common join element, where

the tuples can be iterated over in sorted order with the iterators kept “aligned” on the join element; we mark

use of merge-joins in the algorithms using “m-join” in the comments.

Algorithm C.1: Extract raw sub-graph

Require: Quads: Q /* 〈s, p, o, c〉0...n sorted by c */
1: links← {}, L← {}
2: for all 〈s, p, o, c〉i ∈ Q do
3: if ci 6= ci−1 then
4: write(links, L)
5: links← {}
6: end if
7: for all u ∈ U | u ∈ {si, pi, oi} ∧ u 6= ci do
8: links← links ∪ {〈ci, u〉}
9: end for

10: end for
11: write(links, L)

12: return L /* unsorted on-disk outlinks */

212

213

Algorithm C.2: Rewrite graph wrt. redirects

Require: Raw Links: L /* 〈u, v〉0...m unsorted */
Require: Redirects: R /* 〈f, t〉0...n sorted by unique f */
Require: Max. Iters.: I /* typ. I ← 5 */

1: R− ← sortUnique−(L) /* sort by v */
2: i← 0; G−δ ← G−

3: while G−δ 6= ∅ ∧ i < I do
4: k ← 0; G−i ← {}; G

−
tmp ← {}

5: for all 〈u, v〉j ∈ G−δ do
6: if j = 0 ∨ vj 6= vj−1 then
7: rewrite← ⊥
8: if ∃〈f, t〉k ∈ R | fk = vj then /* m-join */
9: rewrite← tk

10: end if
11: end if
12: if rewrite = ⊥ then
13: write(〈u, v〉j ,G−i)
14: else if rewrite 6= uj then
15: write(〈uj , rewrite〉,G−tmp)
16: end if
17: end for
18: i++; G−δ ← G−tmp;
19: end while
20: G−r ← mergeSortUnique({G−0 , . . . , G

−
i−1})

21: return G−r /* on-disk, rewritten, sorted inlinks */

Algorithm C.3: Prune graph by contexts

Require: New Links: G−r /* 〈u, v〉0...m sorted by v */
Require: Contexts: C /* 〈c1, . . . , cn〉 sorted */

1: G−p ← {}
2: for all 〈u, v〉i ∈ G−r do
3: if i = 0 ∨ ci 6= ci−1 then
4: write← false
5: if cj ∈ C then /* m-join */
6: write← true
7: end if
8: end if
9: if write then

10: write(〈u, v〉i, G−p)
11: end if
12: end for

13: return G−p /* on-disk, pruned, rewritten, sorted inlinks */

213

214

Algorithm C.4: Analyse graph

Require: Out-Links: G /* 〈u, v〉0...n sorted by u */
Require: In-Links: G− /* 〈w, x〉0...n sorted by x */

1: V ← 0 /* vertex count */
2: u−1 ← ⊥
3: for all 〈u, v〉i ∈ G do
4: if i = 0 ∨ ui 6= ui−1 then
5: V++
6: for all 〈w, x〉j ∈ G− | ui−1<xj< ui do /* m-join */
7: V++; write(xj , DANGLE)
8: end for
9: end if

10: end for
11: for all 〈w, x〉j ∈ G− | xj > un do /* m-join */
12: V++; write(xj , DANGLE)
13: end for
14: return DANGLE /* sorted, on-disk list of dangling vertices */

15: return V /* number of unique vertices */

214

215

Algorithm C.5: Rank graph

Require: Out-Links: G /* 〈u, v〉0...m sorted by u */
Require: Dangling: DANGLE /* 〈y0, . . . yn〉 sorted */
Require: Max. Iters.: I /* typ. I ← 10 */
Require: Damping Factor: D /* typ. D ← 0.85 */
Require: Vertex Count: V

1: i← 0; initial← 1
V

; min← 1−D
V

2: dangle← D ∗ initial ∗ |DANGLE|
3: /* GENERATE UNSORTED VERTEX/RANK PAIRS ... */
4: while i < I do
5: mini ← min+ dangle

V
; PRtmp ← {};

6: for all zj ∈ DANGLE do /* zj has no outlinks */
7: write(〈zj ,mini〉, PRtmp)
8: end for
9: outj ← {}; rank ← initial

10: for all 〈u, v〉j ∈ G do /* get ranks thru strong links */
11: if j 6= 0 ∧ uj 6= uj−1 then
12: write(〈uj−1,mini〉, PRtmp)
13: if i 6= 0 then
14: rank ← getRank(uj−1, PRi) /* m-join */
15: end if
16: for all vk ∈ out do
17: write(〈vk, rank|out| 〉, PRtmp)
18: end for
19: end if
20: outj ← outj ∪ {vj}
21: end for
22: do lines 12-18 for last uj−1 ← um
23: /* SORT/AGGREGATE VERTEX/RANK PAIRS ... */
24: PRi+1 ← {}; dangle← 0
25: for all 〈z, r〉j ∈ sort(PRtmp) do
26: if j 6= 0 ∧ zj 6= zj−1 then
27: if zj−1 ∈ DANGLE then /* m-join */
28: dangle← dangle+ rank
29: end if
30: write(〈zj−1, rank〉, PRi+1)
31: end if
32: rank ← rank + rj
33: end for
34: do lines 27-30 for last zj−1 ← zl
35: i++ /* iterate */
36: end while

37: return PRI /* on-disk, sorted vertex/rank pairs */

215

Appendix D

Concurrence Analysis

In this chapter, we introduce methods for deriving a weighted concurrence score between entities in the

Linked Data corpus: we define entity concurrence as the sharing of outlinks, inlinks and attribute values,

denoting a specific form of similarity. We use these concurrence measures to materialise new links between

such entities, and will also leverage the concurrence measures in § 7.6 for disambiguating entities. The

methods described herein are based on preliminary works we presented in [Hogan et al., 2010d], where we:

• investigated domain-agnostic statistical methods for performing consolidation and identifying equiva-

lent entities;

• formulated an initial small-scale (5.6 million triples) evaluation corpus for the statistical consolidation

using reasoning consolidation as a best-effort “gold-standard”.

The evaluation we presented in [Hogan et al., 2010d] provided mixed results, where we found some

correlation between the reasoning consolidation and the statistical methods, but we also found that our

methods gave incorrect results at high degrees of confidence for entities that were clearly not equivalent, but

intuitively shared many links and attribute values in common. This of course highlights a crucial fallacy

in our speculative approach: in almost all cases, even the highest degree of similarity/concurrence does not

necessarily indicate equivalence or co-reference (cf. [Halpin et al., 2010b, § 4.4]). Similar philosophical issues

arise with respect to handling transitivity for the weighted “equivalences” derived [Cock and Kerre, 2003;

Klawonn, 2003].

However, deriving weighted concurrence measures has applications other than approximative consolida-

tion: in particular, we can materialise named relationships between entities which share a lot in common,

thus increasing the level of inter-linkage between entities in the corpus. Also, as we see in § 7.6, we can

leverage the concurrence metrics to “rebuild” erroneous equivalence classes found during the disambiguation

step. Thus, we present a modified version of the statistical analysis presented in [Hogan et al., 2010d],

describe a scalable and distributed implementation thereof, and finally evaluate the approach with respect

to finding highly-concurring entities in our 1 billion triple Linked Data corpus.

Note that we will apply our concurrence analysis over the consolidated corpus, as generated by the extended

consolidation approach of § 7.4.

D.1 High-level Approach

Our statistical concurrence analysis inherits similar primary requirements to that imposed for consolidation:

the approach should be scalable, fully automatic, and domain agnostic to be applicable in our scenario.

216

D.1. High-level Approach 217

Similarly, with respect to secondary criteria, the approach should be efficient to compute, should give

high precision, and should give high recall. Compared to consolidation, high precision is not as critical

for our statistical use-case: for example, taking SWSE as our use-case, we aim to use concurrency measures

as a means of suggesting additional navigation steps for users browsing the entities—if the suggestion is

uninteresting, it can be ignored, whereas incorrect consolidation will often lead to conspicuously garbled

results, aggregating data on multiple disparate entities.

Thus, our requirements (particularly for scale) preclude the possibility of complex analyses or any form

of pair-wise comparison, etc. Instead, we aim to design lightweight methods implementable by means of

distributed sorts and scans over the corpus. Our methods are designed around the following intuitions and

assumptions:

1. the concurrency of entities is measured as a function of their shared pairs, be they predicate-subject

(loosely, inlinks), or predicate-object pairs (loosely, outlinks or attribute values);

2. the concurrence measure should give a higher weight to exclusive shared-pairs—pairs which are typically

shared by few entities, for edges (predicates) which typically have a low in-degree/out-degree;

3. with the possible exception of correlated pairs—where pairs might not be independent—each additional

shared pair should increase the concurrency of the entities: we assume that a shared pair cannot reduce

the measured concurrency of the sharing entities;

4. a small set of strongly exclusive property-pairs should be more influential than a large set of weakly

exclusive pairs: i.e., a few rarely-shared pairs should be rewarded a higher concurrence value than

many frequently-shared pairs;

5. correlation may exist between shared pairs—e.g., two entities may share an inlink and an inverse-

outlink to the same node (e.g., foaf:depiction, foaf:depicts), or may share a large number of

shared pairs for a given property (e.g., two entities co-authoring one paper are more likely to co-author

subsequent papers)—where we wish to dampen the cumulative effect of correlation in the concurrency

analysis.

In fact, the concurrency analysis follows a similar principle to the consolidation presented in §§ 7.3 & 7.4,

where instead of considering crisp functional and inverse-functional properties as given by the semantics of

the data, we attempt to identify properties which are quasi-functional, quasi-inverse-functional, or what we

more generally term exclusive: we determine the degree to which the values of properties (here abstracting

directionality) are unique to an entity or set of entities.1 The concurrency between two entities then becomes

an aggregation of the weights for the property-value pairs they share in common.

To take a simple running example, consider the data in Listing D.1 where we want to determine the level

of (relative) concurrency between three colleagues: ex:Alice, ex:Bob and ex:Claire: i.e., how much do

they coincide/concur with respect to exclusive shared pairs.

D.1.1 Quantifying Concurrence

First, we want to characterise the uniqueness of properties; thus, we analyse their observed cardinality and

inverse-cardinality as found in the corpus (in contrast to their defined cardinality as possibly given by the

formal semantics):

Definition D.1 (Observed Cardinality) Let G be an RDF graph, p be a property used as a predicate in

G and s be a subject in G. The observed cardinality (or henceforth in this section, simply cardinality) of p

1We note that a high exclusivity roughly corresponds to a high selectivity, and vice-versa.

217

D.1. High-level Approach 218

Listing D.1: Running example for concurrence measures

dblp:AliceB10 foaf:maker ex:Alice .

dblp:AliceB10 foaf:maker ex:Bob .

ex:Alice foaf:gender "female" .

ex:Alice foaf:workplaceHomepage <http://deri.ie/> .

ex:Bob foaf:gender "male" .

ex:Bob foaf:workplaceHomepage <http://deri.ie/> .

ex:Claire foaf:gender "female" .

ex:Claire foaf:workplaceHomepage <http://deri.ie/> .

wrt s in G, is given as follows:

CardG(p, s) := |{o ∈ C : (s, p, o) ∈ G}| .

Definition D.2 (Observed Inverse-Cardinality) Let G and p be as before, and let o be an object in G.

The observed inverse-cardinality (or henceforth in this chapter, simply inverse-cardinality) of p wrt o in G,

is given as follows:

ICardG(p, o) := |{s ∈ U ∪ B : (s, p, o) ∈ G}| .

Thus, loosely, the observed cardinality of a property-subject pair is the number of unique objects it

appears with in the graph (or unique triples it appears in); letting Gex denote our example graph, then,

e.g., CardGex(foaf:maker, dblp:AliceB10) = 2. We see this value as a good indicator of how exclusive

(or selective) a given property-subject pair is, where sets of entities appearing in the object position of

low-cardinality pairs are considered to concur more than those appearing with high-cardinality pairs. The

observed inverse-cardinality of a property-object pair is the number of unique subjects it appears with in the

graph—e.g., ICardGex(foaf:gender, ′′female′′) = 2. Both directions are considered analogous for deriving

concurrence scores—note however that we do not consider concurrence for literals (i.e., we do not derive

concurrence for literals which share a given predicate-subject pair; we do of course consider concurrence for

subjects with the same literal value for a given predicate).

To avoid unnecessary duplication, we henceforth focus on describing only the inverse-cardinality statistics

of a property, where the analogous metrics for plain-cardinality can be derived by switching subject and

object (that is, switching directionality)—we choose the inverse direction as perhaps being more intuitive,

indicating concurrence of entities in the subject position based on predicate-object pairs they share.

Definition D.3 (Average Inverse-Cardinality) Let G be an RDF graph, and p be a property used as

a predicate in G. The average inverse-cardinality of p, written AICG(p), is the average of the non-zero

inverse-cardinalities of p in the graph G. Formally:

AICG(p) =
|{(s, o) | (s, p, o) ∈ G}|
|{o | ∃s : (s, p, o) ∈ G}|

.

The average cardinality of a property is defined analogously. Note that the (inverse-)cardinality value of

any term appearing as a predicate in the graph is necessarily greater-than or equal-to one: the numerator is

by definition greater-than or equal-to the denominator.

218

D.1. High-level Approach 219

Example D.1 Referring back to the example graph in Listing D.1, AICGex(foaf:gender) = 1.5, which can be

viewed equivalently as the average non-zero cardinalities of foaf:gender (1 for "male" and 2 for "female"),

or the number of triples with predicate foaf:gender divided by the number of unique values appearing in the

object position of such triples (3
2). ♦

Informally, we call a property p for which we observe AICG(p) ≈ 1, a quasi-inverse-functional property with

respect to the graph G, and analogously properties for which we observe ACG(p) ≈ 1 as quasi-functional

properties. We see the values of such properties—in their respective directions—as being very exceptional:

very rarely shared by entities. Thus, we would expect a property such as foaf:gender to have a high

AICG(p) since there are (typically) only two object-values ("male", "female") shared by a large number of

entities, whereas we would expect a property such as foaf:workplaceHomepage to have a lower AICG(p)

since there are arbitrarily many values to be shared amongst the entities; given such an observation, we then

surmise that a shared foaf:gender value represents a weaker “indicator” of concurrence than a shared value

for foaf:workplaceHomepage.

Given that we deal with incomplete information under the Open World Assumption underlying

RDF(S)/OWL, we also wish to weight the average (inverse) cardinality values for properties with a low num-

ber of observations towards a global mean—consider a fictional property ex:maritalStatus for which we

only encounter a few predicate-usages in a given graph, and consider two entities given the value "married":

given sparse inverse-cardinality observations, we may näıvely over-estimate the significance of this property-

object pair as an indicator for concurrence. Thus, we use a credibility formula as follows to weight properties

with few observations towards a global mean (as per the intuition for the cur score in § 4.1.5:

Definition D.4 (Adjusted Average Inverse-Cardinality) Let p be a property appearing as a predicate

in the graph G. The adjusted average cardinality of p with respect to G is then

AAICG(p) =
AICG(p)× |G−→p |+ AICG × |G→|

|G−→p |+ |G→|
(D.1)

where |G−→p | is the number of distinct objects that appear in a triple with p as a predicate (the denomi-

nator of Definition D.3), AICG is the average inverse-cardinality for all predicate-object pairs (formally,

AICG = |G|
|{(p,o)|∃s:(s,p,o)∈G}|), and |G→| is the average number of distinct objects for all predicates in the

graph (formally, |G→| = |{(p,o)|∃s:(s,p,o)∈G}|
|{p|∃s,∃o:(s,p,o)∈G}|)

Some reduction is possible, following AICG(p) × |G−→p | = |{(s, o) | (s, p, o) ∈ G}| denoting the number of

triples for which p appears as a predicate in graph G, and AICG × |G→| = |G|
|{p|∃s,∃o:(s,p,o)∈G}| , denoting the

average number of triples per predicate. We maintain Equation D.1 in the given unreduced form as it more

clearly corresponds to the structure of a standard credibility formula: the reading (AICG(p)) is dampened

towards a mean (AICG) by a factor determined by the size of the sample used to derive the reading (|G−→p |)
relative to the average sample size (|G→|).

Now, we move towards combining these metrics to determine the concurrency of entities who share a

given non-empty set of property-value pairs. To do so, we combine the adjusted average (inverse) cardinality

values which apply generically to properties, and the (inverse) cardinality values which apply to a given

property-value pair. For example, take the property foaf:workplaceHomepage: entities that share a value

referential to a large company—e.g., http://google.com/—should not gain as much concurrence as entities

that share a value referential to a smaller company—e.g., http://deri.ie/ (we will see this in Example D.2).

Conversely, consider a fictional property ex:citizenOf—which relates a citizen to its country—for which

we find many observations in our corpus, returning a high AAIC value, and consider that only two entities

219

D.1. High-level Approach 220

share the value ex:Vanuatu for this property: given that our data are incomplete, we can use the high AAIC

value of ex:citizenOf to determine that the property is usually not exclusive, and that it is generally not

a good indicator of concurrence.2

We start by assigning a coefficient to each pair (p, o) and each pair (p, s) that occur in the dataset, where

the coefficient is an indicator of how exclusive that pair is:

Definition D.5 (Concurrence Coefficients) The concurrence-coefficient of a predicate-subject pair

(p, s) with respect to a graph G is given as:

CG(p, s) =
1

CardG(p, s)× AACG(p)

and the concurrence-coefficient of a predicate-object pair (p, o) with respect to a graph G is analogously given

as:

ICG(p, o) =
1

ICardG(p, o)× AAICG(p)

Again, please note that these coefficients fall into the interval]0, 1] since the denominator, by definition, is

necessarily greater than one.

Example D.2 Let pwh = foaf:workplaceHomepage and say that we compute AAICG(pwh) = 7 from a large

number of observations, indicating that each workplace homepage in the graph G is linked to by, on average,

seven employees. Further, let og = http://google.com/ and assume that og occurs 2,000 times as a value

for pwh: ICardG(pwh, og) = 2, 000; now, ICG(pwh, og) = 1
2,000×7 = 0.00007. Also, let od = http://deri.ie/

such that ICardG(pwh, od) = 3; now, ICG(pwh, od) = 1
100×7 ≈ 0.00143. Here, sharing DERI as a workplace

will indicate a higher level of concurrence than analogously sharing Google (although both values are relatively

low). ♦

Finally, we require some means of aggregating the coefficients of the set of pairs that two entities share

to derive the final concurrence measure.

Definition D.6 (Aggregated Concurrence Score) Let Z = (z1, . . . zn) be a tuple such that for each i =

1, . . . , n, zi ∈]0, 1]. The aggregated concurrence value aggn is computed iteratively: starting with agg0 = 0,

then for each k = 1 . . . n, aggk = zk + aggk−1 − zk × aggk−1.

The computation of the agg value is the same process as determining the probability of two independent

events occurring—P (A∨B) = P (A)+P (B)−P (A×B)—which is by definition commutative and associative,

and thus computation is independent of the order of the elements in the tuple. It may be more accurate

to view the coefficients as fuzzy values, and the aggregation function as a disjunctive combination in some

extensions of fuzzy logic [Zadeh et al., 1996].

Example D.3 Let Za := (0.5, 0.3) denote two concurrence coefficients for highly-exclusive pairs shared by

two entities, where

agg(Za) = 0.5 + (1− 0.5)× 0.3 = 0.65 .

Now, Let Zb := (0.3, 0.25, 0.15, 0.1) denote a set of concurrence coefficients for three less exclusive pairs,

where
2Here, we try to distinguish between property-value pairs which are exclusive in reality (i.e., on the level of what’s signi-

fied) and those which are exclusive in the given graph. Admittedly, one could think of counter-examples where not includ-

ing the general statistics of the property may yield a better indication of weighted concurrence, particularly for generic prop-

erties which can be applied in many contexts; for example, consider the exclusive predicate-object pair (dcterms:subject,

category:Koenigsegg vehicles) given for a non-exclusive property.

220

D.1. High-level Approach 221

agg1(Zb) = 0 + (1− 0)× 0.3 = 0.3

agg2(Zb) = 0.3 + (1− 0.3)× 0.25 = 0.475

agg3(Zb) = 0.475 + (1− 0.475)× 0.15 = 0.55375

agg(Zb) = agg4(Zb) = 0.55375 + (1− 0.55375)× 0.1 = 0.598375

Although ΣZa = ΣZb, we see that the agg gives a higher score to Za: although Za has fewer coefficients, it

has stronger coefficients. ♦

However, we acknowledge that the underlying coefficients may not be derived from strictly independent

phenomena: there may indeed be correlation between the property-value pairs that two entities share. To

illustrate, we reintroduce a relevant example from [Hogan et al., 2010d] shown in Figure D.1, where we see

two researchers that have co-authored many papers together, have the same affiliation, and are based in the

same country.

swperson:stefan-
decker

swperson:andreas-
harth

swpaper1:40

swpaper2:221

swpaper3:403

dbpedia:Ireland

sworg:nui-
galway

sworg:deri-
nui-galway

foaf:made

swrc:affiliaton

foaf:based_near

dc:creator
swrc:author
foaf:maker

foaf:made

dc:creator
swrc:author
foaf:maker

foaf:made
dc:creator

swrc:author
foaf:maker

foaf:member

foaf:member

swrc:affiliaton

Figure D.1: Example of same-value, inter-property and intra-property correlation for shared inlink/outlink
pairs, where the two entities under comparison are highlighted in the dashed box

This example illustrates three categories of concurrence correlation:

1. same-value correlation where two entities may be linked to the same value by multiple predicates in

either direction (e.g., foaf:made, dc:creator, swrc:author, foaf:maker);

2. intra-property correlation where two entities which share a given property-value pair are likely to share

further values for the same property (e.g., co-authors sharing one value for foaf:made are more likely

to share further values);

3. inter-property correlation where two entities sharing a given property-value pair are likely to share

further distinct but related property-value pairs (e.g., having the same value for swrc:affiliation

and foaf:based near).

Ideally, we would like to reflect such correlation in the computation of the concurrence between the two

entities.

Regarding same-value correlation, for a value with multiple edges shared between two entities, we choose

the shared predicate edge with the lowest AA[I]C value and disregard the other edges: i.e., we only consider

the most exclusive property used by both entities to link to the given value and prune the other edges.

Regarding intra-property correlation, we apply a lower-level aggregation for each predicate in the set of

shared predicate-value pairs. Instead of aggregating a single tuple of coefficients, we generate a bag of tuples

221

D.1. High-level Approach 222

Z = {Zp1 , . . . , Zpn , Zp′1 , . . . , Zp′n}, where each element Zpi represents the tuple of (non-pruned) coefficients

generated for inlinks by the predicate pi, and where each element Zp′i represents the coefficients generated

for outlinks with the predicate pi.
3

We then aggregate this bag as follows:

agg(Z) = agg

(
agg(Zp1)

AAC(p1)
, . . . ,

agg(Zpn)

AAC(pn)
,

agg(Zp′1)

AAIC(p1)
, . . . ,

agg(Zp′n)

AAIC(pn)

)

Thus, the total contribution possible through a given predicate (e.g., foaf:made) has an upper-bound set

as its 1
AA[I]C value, where each successive shared value for that predicate (e.g., each successive co-authored

paper) contributes positively (but increasingly less) to the overall concurrence measure. We illustrate with

an example:

Example D.4 Assume that we are deriving the concurrence of the two entities depicted in Figure D.1, and

(for brevity) that we have knowledge of the edges on the right hand side of the figure; i.e.:

1. (swperson:x , foaf:based near, dbpedia:Ireland) 0.00002

2. (swperson:x , swrc:affiliation, sworg:nui-galway) 0.001

3. (sworg:nui-galway, foaf:member, swperson:x) 0.003

4. (swperson:x , swrc:affiliation, sworg:deri-nui-galway) 0.02

5. (sworg:deri-nui-galway, foaf:member, swperson:x) 0.05

where swperson:x refers to both swperson:andreas-harth and swperson:stefan-decker , and where the

value on the right hand side denotes the concurrence coefficient associated with that edge. First, we prune

edges (2) and (4) since edge (3) represents a stronger edge to sworg:nui-galway and (5) represents a stronger

edge to sworg:deri-nui-galway.

1. (swperson:x , foaf:based near, dbpedia:Ireland) 0.00002

3. (sworg:nui-galway, foaf:member, swperson:x) 0.003

5. (sworg:deri-nui-galway, foaf:member, swperson:x) 0.05

Further, let pa denote foaf:based near and pb denote foaf:member; now we have:

Z := {Zpa , Zpb , Z ′pa , Z
′
pb
} = {(0), (0.003, 0.05), (0.00002), (0)}

now, letting AAIC(pa) = 1, 000, AAC(pb) = 10, we have:

agg(Z) = agg

(
0,

agg
(
(0.003, 0.05)

)
10

,
agg
(
(0.00002)

)
1, 000

, 0

)
= agg

(
(0, 0.005285, 0.0000002, 0)

)
= ∼ 0.005285018943

♦

Finally, we note three issues with this approach:

• the absolute values are significantly reduced due to the additional AA[I]C denominators in the agg

calculation—however, absolute values are not important in our scenario, where we are more interested

in relative values for comparison;

3For brevity, we omit the graph subscript.

222

D.1. High-level Approach 223

Algorithm D.1: Computing AAC/AAIC values

Require: prp-ifp-Input: IN /* on-disk input triples */
1: sort IN by lexiographical (s−p−o) order to IN+s
2: O := {}; i := 0;
3: disto := {} /* a distrib. of obj. counts for each pred.; e.g., px 7→ {(1, 700), (2, 321), . . .} */
4: for all ti ∈ IN+s do
5: if i 6= 0 ∧ (ti.s 6= ti−1.s ∨ ti.p 6= ti−1.p) then
6: disto(ti−1.p)(|O|)++

7: O := {}
8: end if
9: O := O ∪ {ti.o}

10: i++

11: end for
12: repeat Line 6 for final t.p, O
13: compute AAC() values from disto /* as per Definition D.4 (switching direction) */
14: sort IN by inverse (o−p−s) order to IN−s
15: S := {}; i := 0;
16: dists := {} /* a distrib. of subj. counts for each pred. */
17: for all ti ∈ IN−s do
18: if i 6= 0 ∧ (ti.o 6= ti−1.o ∨ ti.p 6= ti−1.p) then
19: dists(ti−1.p)(|S|)++

20: S := {}
21: end if
22: S := S ∪ {ti.s}
23: i++

24: end for
25: repeat Line 19 for final t.p, S

26: compute AAIC() values from dists /* as per Definition D.4 */

• we may prune correlated edges with different predicates, which may affect the agg result in unintuitive

ways: taking the previous example, if (3) and (4) were pruned instead, then edges (2) and (5) would

have different predicates, and would not be aggregated together in the same manner as for (3) and (5)

in the example, leading to a higher agg result;

• along similar lines, our pruning and agg derivation do not detect or counter-act inter-property correla-

tion, which is perhaps a more difficult issue to address.

Having acknowledged the latter two weaknesses of our approach, we leave these issues open.

D.1.2 Implementing Entity-concurrence Analysis

We aim to implement the above methods using sorts and scans, and wish to avoid any form of complex

indexing, or pair-wise comparison. Given that there are 23 thousand unique predicates found in the input

corpus, we assume that we can fit the list of predicates and their associated statistics in memory—if such

were not the case, one could consider an on-disk map with an in-memory LRU cache, where we would expect

a high cache hit-rate based on the distribution of property occurrences in the data (cf. § 4.2).

Firstly, we wish to extract the statistics relating to the (inverse-)cardinalities of the predicates in the

data; this process is outlined in Algorithm D.1 for reference. We first sort the data according to natural

order (s, p, o), and then scan the data, computing the cardinality (number of distinct objects) for each (s, p)

pair, and maintaining the distribution of object counts for each p found. For inverse-cardinality scores, we

apply the same process, sorting instead by (o, p, s) order, counting the number of distinct subjects for each

223

D.1. High-level Approach 224

Algorithm D.2: Computing concurrence values

Require: Input (Lex. Order): IN+s /* on-disk triples sorted by s−p−o (from Alg. D.1) */
Require: Input (Inv. Order): IN−s /* on-disk triples sorted by o−p−s (from Alg. D.1) */
Require: AAC/AAIC Maps: AAC/AAIC /* in-memory: px 7→ AA[I]C(px) (from Alg. D.1) */
Require: Concurrence Output: CON OUT /* on-disk output */

1: Ops := {}; i := 0; CON OUT TMP := {}
2: for all ti ∈ IN+s do
3: if i 6= 0 ∧ (ti.s 6= ti−1.s ∨ ti.p 6= ti−1.p) then
4: compute CG(p, s) from AAC and |Ops| /* as per Definition D.5 */
5: for all (oi, oj) : oi, oj ∈ (Ops \ L), oi <c oj do
6: write (oi, oj ,CG(p, s), p, s,−) to CON OUT TMP

7: end for
8: end if
9: Ops := Ops ∪ {ti.o}

10: i++

11: end for
12: repeat Lines 4–7 for final t, Ops
13: Spo := {}; i := 0;
14: for all ti ∈ IN−s do
15: if i 6= 0 ∧ (ti.o 6= ti−1.o ∨ ti.p 6= ti−1.p) then
16: compute ICG(p, o) from AAIC and |Spo| /* as per Definition D.5 */
17: for all (si, sj) : si, sj ∈ Spo, si <c sj do
18: write (si, sj , ICG(p, o), p, o,+) to CON OUT TMP

19: end for
20: end if
21: Spo := Spo ∪ {ti.s}
22: i++

23: end for
24: repeat Lines 16–19 for final t, Spo
25: /* CON OUT TMP contains tuples of the form (ea, eb, c, p, v,±): compared entities (ea, eb) , edge

coefficient c, and edge (p, v, ±) [predicate/value/direction] */
26: Edges := {}
27: for all tupi ∈ CON OUT TMP do
28: if i 6= 0 ∧ (tupi.ea 6= tupi−1.ea ∨ tupi.eb 6= tupi−1.eb) then
29: create Z from Edges /* as per Example D.4 */
30: compute agg(Z) using AAC/AAIC /* as per Example D.4 */
31: write (tupi−1.ea, tupi−1.eb, agg(Z)) to CON OUT

32: write (tupi−1.eb, tupi−1.ea, agg(Z)) to CON OUT

33: end if
34: Edges := Edges ∪ {(tupi.c, tupi.p, tupi.v, tupi.±)}
35: i++

36: end for

37: repeat Lines 29–32 for final ea, eb, Edges

(p, o) pair, and maintaining the distribution of subject counts for each p. After each scan, the statistics of

the properties are adjusted according to the credibility formula in Definition D.4.

Thereafter, the process for generating the concurrence values is outlined in Algorithm D.2.

First, we scan the data sorted in lexicographical order, and for each (s, p) pair, for each set of objects

Ops found thereon, and for each pair in

{(oi, oj) | oi, oj ∈ (Ops \ L), oi <c oj}

224

D.2. Distributed Implementation 225

(where <c denotes the canonical order of Definition 7.1) we output the following sextuple to an on-disk file:

(oi, oj ,C(p, s), p, s,−)

where C(p, s) = 1
|Ops|×AAC(p) . We apply the same process for the other direction, outputting analogous

sextuples of the form:

(si, sj , IC(p, o), p, o,+)

We call the sets Ops are their analogues Spo concurrence classes, denoting sets of entities which share the

given predicate-subject/predicate-object pair respectively. Here, note that the ‘+’ and ‘−’ elements simply

demarcate and track the directionality from which the tuple was generated, required for the final aggregation

of the co-efficient scores. Similarly, we do not immediately materialise the symmetric concurrence scores,

where we instead do so at the end so as to forego duplication of intermediary processing.

Once generated, we can sort the two files of tuples by their natural order, and perform a merge-join on

the first two elements—generalising the directional oi/si to simply ei, each (ei, ej) pair denotes two entities

which share some predicate-value pairs in common, where we can scan the sorted data and aggregate the final

concurrence measure for each (ei, ej) pair using the information encoded in the respective tuples. We can

thus generate (trivially sorted) tuples of the form (ei, ej , s), where s denotes the final aggregated concurrence

score computed for the two entities; optionally, we can also write the symmetric concurrence tuples (ej , ei, s)

which can be sorted separately as required.

Note that the number of tuples generated is quadratic with respect to the size of the respective concurrence

class, which becomes a major impediment for scalability given the presence of large such sets—for example,

consider a corpus containing 1 million persons sharing the value "female" for the property foaf:gender,

where we would have to generate 106×2−106

2 ≈ 500 billion non-reflexive, non-symmetric concurrence tuples.

However, we can leverage the fact that such sets can only invoke a minor influence on the final concurrence

of their elements, given that the magnitude of the set—e.g., |Spo|—is a factor in the denominator of the

computed C(p, o) score, such that C(p, o) ∝ 1
|Sop| . Thus, in practice, we implement a maximum-size threshold

for the Spo and Ops concurrence classes: this threshold is selected based on a practical upper limit for raw

similarity tuples to be generated, where the appropriate maximum class size can trivially be determined

alongside the derivation of the predicate statistics. For the purpose of evaluation, we choose to keep the

number of raw tuples generated at around ∼1 billion, and so set the maximum concurrence class size at 38:

we arrive at this latter figure using an empirical analysis of the data presented in § D.4.

D.2 Distributed Implementation

Given the previous discussion, our distributed implementation is fairly straightforward as follows:

1. coordinate: the slave machines split their segment of the corpus according to a modulo-hash func-

tion on the subject position of the data, sort the segments, and send the split segments to the peer

determined by the hash-function; the slaves simultaneously gather incoming sorted segments, and

subsequently perform a merge-sort of the segments;

2. coordinate: the slave machines apply the same operation, this time hashing on object—triples with

rdf:type as predicate are not included in the object-hashing; subsequently the slaves merge-sort the

segments ordered by object;

3. run: the slave machines then extract predicate-level statistics, and statistics relating to the

concurrence-class-size distribution which are used to decide upon the class size threshold;

225

D.3. Performance Evaluation 226

4. gather/flood/run: the master machine gathers and aggregates the high-level statistics generated by

the slave machines in the previous step and sends a copy of the global statistics back to each machine;

the slaves subsequently generate the raw concurrence-encoding sextuples (as described in the previous

section) from a scan of the data in both orders;

5. coordinate: the slave machines coordinate the locally generated sextuples according to the first

element (join position) as before;

6. run: the slave machines aggregate the sextuples coordinated in the previous step, and produce the

final non-symmetric concurrence tuples;

7. run: the slave machines produce the symmetric version of the concurrence tuples, and coordinate and

sort on the first element.

Here, we make heavy use of the coordinate function to align data according to the join position required

for the subsequent processing step—in particular, aligning the raw data by subject and object, and then the

concurrence tuples analogously.

Note that we do not hash on the object position of rdf:type triples: our raw corpus contains 206.8

million such triples, and given the distribution of class memberships, we assume that hashing these values

will lead to uneven distribution of data, and subsequently uneven load balancing—e.g., 79.2% of all class

memberships are for foaf:Person, hashing on which would send 163.7 million triples to one machine, which

alone is greater than the average number of triples we would expect per machine (139.8 million). In any

case, given that our corpus contains 105 thousand unique values for rdf:type, we would expect the average-

inverse-cardinality to be approximately 1,970—even for classes with two members, the potential effect on

concurrence is negligible.

D.3 Performance Evaluation

We apply our concurrence analysis over the consolidated corpus derived in § 7.4. The total time taken was

13.9 h. Sorting, splitting and scattering the data according to subject on the slave machines took 3.06 h,

with an average idle time of 7.7 min (4.2%). Subsequently merge-sorting the sorted segments took 1.13 h,

with an average idle time of 5.4 min (8%). Analogously sorting, splitting and scattering the non-rdf:type

statements by object took 2.93 h, with an average idle time of 11.8 min (6.7%). Merge sorting the data

by object took 0.99 h, with an average idle time of 3.8 min (6.3%). Extracting the predicate statistics

and threshold information from data sorted in both orders took 29 min, with an average idle time of 0.6

min (2.1%). Generating the raw, unsorted similarity tuples took 69.8 min with an average idle time of 2.1

min (3%). Sorting and coordinating the raw similarity tuples across the machines took 180.1 min, with an

average idle time of 14.1 min (7.8%). Aggregating the final similarity took 67.8 min, with an average idle

time of 1.2 min (1.8%).

Table D.1 presents a breakdown of the timing of the task. Although this task requires some aggregation

of global knowledge by the master machine, the volume of data involved is minimal: a total of 2.1 minutes is

spent on the master machine performing various minor tasks (initialisation, remote calls, logging, aggregation

and broadcast of statistics). Thus, 99.7% of the task is performed in parallel on the slave machine. Although

there is less time spent waiting for the master machine compared to the previous two tasks, deriving the

concurrence measures involves three expensive sort/coordinate/merge-sort operations to redistribute and

sort the data over the slave swarm. The slave machines were idle for, on average, 5.8% of the total task

time; most of this idle time (99.6%) was spent waiting for peers. We note that the master machine was idle

for almost the entire task (99.7%).

226

D.4. Results Evaluation 227

Category min % Total
Total execution time 835.4 100

Master (Local)
Executing 2.1 0.3
Miscellaneous 2.1 0.3
Idle (waiting for slaves) 833.3 99.7

Slave (Parallel)
Avg. Executing (total exc. idle) 786.6 94.2
Split/sort/scatter (subject) 175.9 21.1
Merge-sort (subject) 62.4 7.5
Split/sort/scatter (object) 164 19.6
Merge-sort (object) 55.6 6.6
Extract High-level Statistics 28.4 3.3
Generate Raw Concurrence Tuples 67.7 8.1
Cooordinate/Sort Concurrence Tuples 166 19.9
Merge-sort/Aggregate Similarity 66.6 8
Avg. Idle 48.8 5.8
Waiting for peers 46.7 5.6
Waiting for master 2.1 0.3

Table D.1: Breakdown of timing of distributed concurrence analysis

D.4 Results Evaluation

With respect to data distribution, after hashing on subject we observed an average absolute deviation

(average distance from the mean) of 176 thousand triples across the slave machines, representing an average

0.13% deviation from the mean: near-optimal data distribution. After hashing on the object of non-rdf:type

triples, we observed an average absolute deviation of 1.29 million triples across the machines, representing

an average 1.1% deviation from the mean; in particular, we note that one machine was assigned 3.7 million

triples above the mean (an additional 3.3% above the mean). Although not optimal, the percentage of data

deviation given by hashing on object is still within the natural variation in run-times we have seen for the

slave machines during most parallel tasks.

First, we empirically motivate our cut-off for the maximum equivalence class size we allow; for exam-

ple, generating all pairwise concurrence tuples between the subjects which share the predicate-object edge

(rdf:type, foaf:Person) would be completely infeasible, and where the concurrence coefficients would in

any case have negligible value (see § D.1.2). Along these lines, in Figures D.2(a) and D.2(b), we illustrate

the effect of including increasingly large concurrence classes on the number of raw concurrence tuples gen-

erated. Note that the count of concurrence class size reflects the number of edges that were attached to

the given number of entities: for example, for predicate-object pairs, a concurrence class size of two reflects

the number of predicate-object edges which had two subjects. Thereafter, the number of (non-reflexive,

non-symmetric) concurrence tuples generated for each class size is calculated as tupx = cx × x2+x
2 , where

x denotes the concurrence class size, and where cx denotes the count of classes of that size. Next, the

cumulative count of concurrence tuples is given as t̂upx =
∑
i≤x

tupi, giving the number of tuples required

to represent all concurrence classes up to that size. Finally, we show our cut-off (max = 38) intended to

keep the total number of concurrence tuples at ∼1 billion: i.e., max is chosen as the lowest possible value

for x such that t̂uppox + t̂upspx > 109 holds, where t̂uppox /t̂up
ps
x denotes the cumulative count (up to x) for

predicate-object/predicate-subject concurrence classes respectively. With max = 38, we measure ̂tuppomax to

227

D.4. Results Evaluation 228

give 721 million concurrence tuples, and ̂tuppsmax to give 303 million such tuples.

For the predicate-object pairs, we observe an apparent power-law relationship between the size of the con-

currence class and the number of such classes observed. Second, we observe that the number of concurrences

generated for each increasing concurrence class size initially remains fairly static—i.e., larger concurrence

class sizes give quadratically more concurrences, but occur polynomially less often—until the point where

the largest classes which generally only have one occurrence is reached, and the number of concurrences

begins to increase quadratically. Also shown is the cumulative count of concurrence tuples generated for

increasing class sizes, where we initially see rapid growth, which subsequently begins to flatten as the larger

concurrence classes become more sparse (although more massive).

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

classes
conc. tups.

conc. tups. (cu.)

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

(a) Predicate-object pairs

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

classes
conc. tups.

conc. tups. (cu.)

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

(b) Predicate-subject pairs

Figure D.2: For predicate-subject edges and predicate-object edges (resp.), and for increasing sizes of gen-
erated concurrence classes, we show [in log/log] the count of (i) concurrence classes at that size [#classes];
(ii) concurrence tuples needed to represent all class at that size [conc. tups.]; and (iii) concurrence tuples
needed to represent all classes up to that size [#conc. tups. (cu.)]; finally, we also show the concurrence
class-size cut-off we implement to keep the total number of concurrence tuples at ∼ 1 billion [dotted line]

For the predicate-subject pairs, the same roughly holds true, although we see fewer of the very

largest concurrence classes: the largest concurrence class given by a predicate-subject pair was 79 thou-

sand, versus 1.9 million for the largest predicate-object pair, respectively given by the pairs (kwa:map,

macs:manual rameau lcsh) and (opiumfield:rating, ""). Also, we observe some “noise” where for mile-

stone concurrence class sizes (esp., at 50, 100, 1,000, 2,000) we observe an unusual amount of classes. For

example, there were 72 thousand concurrence classes of precisely size 1,000 (versus 88 concurrence classes at

size 996)—the 1,000 limit was due to a FOAF exporter from the hi5.com which seemingly enforces that limit

on the total “friends count” of users, translating into many users with precisely 1,000 values for foaf:knows.4

Also for example, there were 5.5 thousand classes of size 2,000 (versus 6 classes of size 1,999)—almost all

of these were due to an exporter from the bio2rdf.org domain which puts this limit on values for the

bio2rdf:linkedToFrom property.5 We also encountered unusually large numbers of classes approximating

these milestones, such as 73 at 2,001. Such phenomena explain the staggered “spikes”and “discontinuities”

in Figure D.2(b), which can be observed to correlate with such milestone values (in fact, similar but less

noticeable spikes are also present in Figure D.2(a)).

With respect to the statistics of predicates, for the predicate-subject pairs, each predicate had an average

4cf. http://api.hi5.com/rest/profile/foaf/100614697; retr. 2011/09/22
5cf. http://bio2rdf.org/mesh:D000123Q000235; retr. 2011/09/22

228

http://api.hi5.com/rest/profile/foaf/100614697
http://bio2rdf.org/mesh:D000123Q000235

D.4. Results Evaluation 229

of 25,229 unique objects for 37,953 total triples, giving an average cardinality of ∼1.5. We give the five

predicates observed to have the lowest adjusted average cardinality in Table D.2; note that two of these

properties will not generate any concurrences since they are perfectly unique to a given object (they have the

same number of objects and triples), and that the values shown for AAC are approximate. For the predicate-

object pairs, there was an average of 11,572 subjects for 20,532 triples, giving an average inverse-cardinality

of ∼2.64; We give the five predicates observed to have the lowest adjusted average inverse cardinality in

Table D.3; again, four of these properties will not generate any concurrences since they are perfectly unique

to a given subject (they have the same number of subjects and triples), and again values shown for AAIC

are approximate..

Predicate Objects Triples ∼AAC
1 foaf:nick 150,433,035 150,437,864 1.000
2 lldpubmed:journal 6,790,426 6,795,285 1.003
3 rdf:value 2,802,998 2,803,021 1.005
4 eurostat:geo 2,642,034 2,642,034 1.005
5 eurostat:time 2,641,532 2,641,532 1.005

Table D.2: Top five predicates with respect to lowest adjusted average cardinality (AAC)

Predicate Subjects Triples ∼AAIC
1 lldpubmed:meshHeading 2,121,384 2,121,384 1.009
2 opiumfield:recommendation 1,920,992 1,920,992 1.010
3 fb:type.object.key 1,108,187 1,108,187 1.017
4 foaf:page 1,702,704 1,712,970 1.017
5 skipinions:hasFeature 1,010,604 1,010,604 1.019

Table D.3: Top five predicates with respect to lowest adjusted average inverse-cardinality (AAIC)

Aggregation produced a final total of 636.9 million weighted concurrence pairs, with a mean concurrence

weight of ∼0.0159. Of these pairs, 19.5 million involved a pair of identifiers from different PLDs (3.1%),

whereas 617.4 million involved identifiers from the same PLD; however, the average confidence value for

an intra-PLD pair was 0.446, versus 0.002 for inter-PLD pairs—although fewer intra-PLD concurrences are

found, they typically have higher confidences.6

Entity Label 1 Entity Label 2 Shar. Edges
1 New York City New York State 791
2 London England 894
3 Tokyo Japan 900
4 Toronto Ontario 418
5 Philadelphia Pennsylvania 217

Table D.4: Top five concurrent entities and the number of edges they share

In Table D.4, we give the labels of top five most concurrent entities, including the number of pairs they

share—the confidence score for each of these pairs was >0.9999999. We note that they are all locations,

where particularly on WikipediA (and thus filtering through to DBpedia), properties with location val-

6Note that we apply this analysis over the consolidated data, and thus this is an approximative reading for the purposes of

illustration: we extract the PLDs from canonical identifiers, which are choosen based on arbitrary lexical ordering.

229

D.4. Results Evaluation 230

ues are typically duplicated (e.g., dbp:deathPlace, dbp:birthPlace, dbp:headquarters—properties that

are quasi-functional); for example, New York City and New York State are both the dbp:deathPlace of

dbpedia:Isacc Asimov, etc.

Ranked Entity #Con. “Closest” Entity Val.
1 Tim Berners-Lee 908 Lalana Kagal 0.83
2 Dan Brickley 2,552 Libby Miller 0.94
3 update.status.net 11 socialnetwork.ro 0.45
4 FOAF-a-matic 21 foaf.me 0.23
5 Evan Prodromou 3,367 Stav Prodromou 0.89

Table D.5: Breakdown of concurrences for top five ranked entities, ordered by rank, with, respectively,
entity label, number of concurrent entities found, the label of the concurrent entity with the largest degree,
and finally the degree value

In Table D.5, we give a description of the top concurrent entities found for the top-five ranked entities

in our corpus—for brevity, again we show entity labels. In particular, we note that a large amount of

concurrent entities are identified for the highly-ranked persons. With respect to the strongest concurrences:

(i) Tim and his former student Lalana share twelve primarily academic links, coauthoring six papers; (ii)

Dan and Libby, co-founders of the FOAF project, share 87 links, primarily 73 foaf:knows relations to and

from the same people, as well as a co-authored paper, occupying the same professional positions, etc.;7

(iii) update.status.net and socialnetwork.ro share a single foaf:accountServiceHomepage link from a

common user; (iv) similarly, the FOAF-a-matic and foaf.me services share a single mvcb:generatorAgent

inlink; (v) finally, Evan and Stav share 69 foaf:knows inlinks and outlinks exported from the identi.ca

service.

We note that none of these prominent/high-confidence results indicate coreference.

7Notably, Leigh Dodds (creator of the FOAF-a-matic service) is linked by the property quaffing:drankBeerWith to both.

230

List of Algorithms

4.1 Algorithm for crawling . 33

5.1 Reason over the A-Box . 67

7.1 Building equivalence map . 136

7.2 Canonicalising input data . 137

7.3 Extended consolidation approach: overview . 141

7.4 Write equivalence-class to output . 143

7.5 Computing prp-fp inferences . 144

7.6 Computing prp-ifp inferences . 144

7.7 Computing cax-maxc2/cax-exc2* inferences . 145

7.8 Computing compressed owl:sameAs closure . 146

7.9 Canonicalising data using on-disk owl:sameAs closure . 147

C.1 Extract raw sub-graph . 212

C.2 Rewrite graph wrt. redirects . 213

C.3 Prune graph by contexts . 213

C.4 Analyse graph . 214

C.5 Rank graph . 215

D.1 Computing AAC/AAIC values . 223

D.2 Computing concurrence values . 224

231

List of Figures

3.1 Abstract distributed interface . 29

4.1 Total time (mins.) and average percentage of CPU idle time for crawling 1,000 URIs with a

varying number of threads . 35

4.2 Number of HTTP lookups per crawl hour. 41

4.3 Breakdown of HTTP lookups per crawl hour. 41

4.4 Breakdown of PLDs per crawl hour. 41

4.5 Breakdown of RDF/XML PLDs per crawl hour. 41

4.6 Distributions for number of triples per (a) subject, (b) predicate (properties), (c) value of

rdf:type (classes) [log/log]. 43

5.1 Detailed throughput performance for application of assertional program using the fastest ap-

proach: PIM . 89

6.1 Input/output throughput during distributed assertional reasoning overlaid for each slave machine116

7.1 Distribution of URIs and the number of documents they appear in (in a data-position) 135

7.2 Distribution of URIs and the number of PLDs they appear in (in a data-position) 135

7.3 Distribution of sizes of equivalence classes on log/log scale . 138

7.4 Distribution of the number of PLDs per equivalence class on log/log scale 138

7.5 Distribution of the number of identifiers per equivalence classes for baseline consolidation and

extended reasoning consolidation [log/log] . 155

7.6 Distribution of the number of PLDs per equivalence class for baseline consolidation and ex-

tended reasoning consolidation [log/log] . 155

7.7 Distribution of number of PLDs terms are referenced by, for the raw, baseline consolidated,

and reasoning consolidated data (log/log) . 156

D.1 Example of same-value, inter-property and intra-property correlation for shared inlink/outlink

pairs, where the two entities under comparison are highlighted in the dashed box 221

D.2 For predicate-subject edges and predicate-object edges (resp.), and for increasing sizes of

generated concurrence classes, we show [in log/log] the count of (i) concurrence classes at

that size [#classes]; (ii) concurrence tuples needed to represent all class at that size [conc.

tups.]; and (iii) concurrence tuples needed to represent all classes up to that size [#conc.

tups. (cu.)]; finally, we also show the concurrence class-size cut-off we implement to keep

the total number of concurrence tuples at ∼ 1 billion [dotted line] 228

232

List of Tables

4.1 Useful ratio (ur) and credible useful ratio (cur) for the top five most often polled/skipped

PLDs . 37

4.2 Time taken for a crawl performing lookups on 100 thousand URIs, and average percentage of

time each queue had to enforce a politeness wait, for differing numbers of machines 38

4.3 Top twenty-five PLDs and number of quads they provide. 42

4.4 Top twenty-five (i) predicates by number of triples they appear in; (ii) values for rdf:type

by number of triples they appear in; and (iii) namespaces by number of triples the contained

predicates or values for rdf:type appear in; (iv) namespaces by unique predicates or values

for rdf:type that they contain. 44

4.5 Top 10 ranked documents . 49

5.1 Details of reasoning for LUBM(10)—containing 1.27M assertional triples and 295 terminolog-

ical triples—given different reasoning configurations (the most favourable result for each row

is highlighted in bold) . 73

5.2 Counts of T-ground OWL 2 RL/RDF rules containing non-empty TBody and ABody from our

corpus and count of documents serving the respective axioms 82

5.3 Top ten largest providers of terminological axioms . 83

5.4 Top ten largest providers of terminological documents . 83

5.5 Summary of ranks of documents in our corpus serving terminological axioms pertaining to

OWL 2 RL/RDF rules with non-empty TBody and ABody . 85

5.6 Legend for notable documents (pos.< 10, 000) whose rank positions are mentioned in Table 5.5 86

5.7 Summary of authoritative inferences vs. non-authoritative inferences for core properties,

classes, and top-ten most frequently asserted classes and properties: given are the number

of asserted memberships of the term n, the number of unique inferences (which mention an

“individual name”) possible for an arbitrary membership assertion of that term wrt. the au-

thoritative T-ground program (a), the product of the number of assertions for the term and

authoritative inferences possible for a single assertion (n * a), respectively, the same statistics

excluding inferences involving the top-level concepts rdfs:Resource and owl:Thing (a− | n
* a−), statistics for non-authoritative inferencing (na | n * na) and also non-authoritative

inferences minus inferences through a top-level concept (na− | n * na−) 87

5.8 Breakdown of non-authoritative and authoritative inferences for foaf:Person, with number

of appearances as a value for rdf:type in the raw data . 88

5.9 Performance for reasoning over 1.1 billion statements on one machine for all approaches . . . 89

5.10 Distributed reasoning in minutes using PIM for 1, 2, 4 & 8 slave machines 89

233

LIST OF TABLES 234

6.1 Number of T-ground rules, violations, and unique violations found for each OWL 2 RL/RDF

constraint rule—rules involving new OWL 2 constructs are italicised 120

6.2 Top 10 disjoint-class pairs . 120

7.1 Breakdown of timing of distributed baseline consolidation . 138

7.2 Largest 5 equivalence classes . 139

7.3 Top 10 PLD pairs co-occurring in the equivalence classes, with number of equivalence classes

they co-occur in . 139

7.4 Breakdown of timing of distributed extended consolidation with reasoning, where the two

italicised tasks run concurrently on the master and slaves . 152

7.5 Top ten most frequently occurring blacklisted values . 153

7.6 Largest 5 equivalence classes after extended consolidation . 154

7.7 Equivalence class sizes for top five SWSE-ranked identifiers with respect to baseline (BL#)

and reasoning (R#) consolidation . 155

7.8 Breakdown of timing of distributed disambiguation and repair 163

7.9 Breakdown of inconsistency detections for functional-properties, where dbo: properties gave

identical detections . 164

7.10 Breakdown of inconsistency detections for disjoint-classes . 164

A.1 Used “data” prefixes . 201

A.2 Used “vocabulary” prefixes . 202

B.1 Rules with empty body . 204

B.2 Rules containing only T-atoms in the body . 204

B.3 Rules with no T-atoms but precisely one A-atom in the body 205

B.4 Rules containing some T-atoms and precisely one A-atom in the body 205

B.5 Enumeration of the coverage of inferences in case of the omission of rules in Table B.2 wrt.

inferencing over assertional knowledge by recursive application of rules in Table B.4: under-

lined rules are not supported, and thus we would encounter incompleteness wrt. assertional

inference (would not affect a full OWL 2 RL/RDF reasoner which includes the underlined

rules). 205

B.6 Constraint Rules . 206

B.7 Rules that support the positive semantics of owl:sameAs . 206

B.8 OWL 2 RL/RDF rules that directly produce owl:sameAs relations 206

B.9 Remaining OWL 2 RL/RDF rules which we currently do not support 207

B.10 Simple entailment rules [Hayes, 2004] . 208

B.11 RDF axiomatic triples [Hayes, 2004] . 208

B.12 RDF entailment rules [Hayes, 2004] . 208

B.13 RDFS axiomatic triples [Hayes, 2004] . 209

B.14 RDFS entailment [Hayes, 2004] . 209

B.15 Extensional RDFS entailment [Hayes, 2004] . 209

B.16 Datatype entailment rules [Hayes, 2004] . 210

B.17 P-axiomatic triples [Hayes, 2004] . 211

B.18 P-entailment rules [ter Horst, 2005b] . 211

D.1 Breakdown of timing of distributed concurrence analysis . 227

D.2 Top five predicates with respect to lowest adjusted average cardinality (AAC) 229

234

LIST OF TABLES 235

D.3 Top five predicates with respect to lowest adjusted average inverse-cardinality (AAIC) 229

D.4 Top five concurrent entities and the number of edges they share 229

D.5 Breakdown of concurrences for top five ranked entities, ordered by rank, with, respectively,

entity label, number of concurrent entities found, the label of the concurrent entity with the

largest degree, and finally the degree value . 230

235

Listings

5.1 Simple query for all pages relating to ex:resource . 51

5.2 Extended query for all pages relating to ex:resource . 52

6.1 Strongest constraint violation . 118

6.2 Strongest multi-triple constraint violation . 119

6.3 cax-dw violation involving strongest assertional fact . 119

7.1 Simple query for pages relating to Tim Berners-Lee . 130

7.2 Extended query for pages relating to Tim Berners-Lee (sic.) 130

7.3 Example of indirect inference of owl:sameAs . 140

7.4 Example requiring recursive equality reasoning . 148

7.5 Inconsistent functional datatype values . 157

7.6 Example which is consistent when using heuristic literal matching 158

7.7 Different-from assertion . 159

7.8 The W3C is inconsistent . 159

7.9 Example of an ambiguous inconsistency . 160

D.1 Running example for concurrence measures . 218

236

“I have made this letter longer than usual, only because I have not had the time to

make it shorter.”

—Blaise Pascal

237

	Introduction
	Problem Statement
	Incomplete Agreement on Assertional Identifiers
	Use of Analogous Terminologies

	Hypothesis
	Contribution and Thesis Structure
	Impact

	Background
	The World Wide Web
	The Semantic Web
	Resource Description Framework
	RDF Schema
	Web Ontology Language

	RDF Web Publishing and Linked Data
	RDF Search Engines

	Notation and Core Concepts
	RDF
	Turtle Syntax
	Linked Data Principles and Provenance
	Atoms and Rules
	Terminological Data: RDFS/OWL
	Distribution Framework

	Crawling, Corpus and Ranking
	Crawler
	Breadth-first Crawling
	Incorporating Politeness
	On-disk Queue
	Multi-threading
	Crawling RDF/XML
	Distributed Approach
	Related Work
	Critical Discussion and Future Directions

	Evaluation Corpus
	Crawl Statistics
	Corpus Statistics
	Related Work
	Critical Discussion and Future Directions

	Ranking
	Rationale and High-level Approach
	Creating and Ranking the Source Graph
	Distributed Ranking Implementation
	Ranking Evaluation and Results
	Related Work
	Critical Discussion and Future Directions

	Reasoning
	Linked Data Reasoning: Overview
	Incomplete Reasoning: Rationale
	Rule-based Reasoning
	Forward Chaining
	OWL 2 RL/RDF Scalability

	Distinguishing Terminological Data
	Implementing T-split Inferencing

	Optimising the Assertional Program
	Merging Equivalent T-ground Rules
	Rule Index
	Rule Saturation
	Preliminary Performance Evaluation

	Towards Linked Data Reasoning
	``A-linear'' OWL 2 RL/RDF
	Authoritative Reasoning
	Distributed Reasoning
	Linked Data Reasoning Evaluation

	Related Work
	Scalable/Distributed Reasoning
	Web Reasoning

	Critical Discussion and Future Directions

	Annotated Reasoning
	Generalised Annotated Programs
	Use-case Annotations
	Blacklisting
	Authoritative Analysis
	Triple Ranks

	Formal Annotation Framework
	Annotation Domains
	(Specialised) Annotated Programs
	Least Fixpoint and Decidability
	Seeding Annotations
	T-split Annotated Programs
	Annotated Reasoning Tasks
	Constraints

	Annotated Linked Data Reasoning
	Ranking Triples: Implementation/Evaluation
	Reasoning: Implementation/Evaluation
	Repair: Implementation/Evaluation

	Related Work
	Annotated Reasoning
	Inconsistency Repair

	Critical Discussion and Future Directions

	Consolidation
	OWL Equality Semantics
	Corpus: Naming Across Sources
	Base-line Consolidation
	High-level approach
	Distributed approach
	Performance Evaluation
	Results Evaluation

	Extended Reasoning Consolidation
	High-level approach
	Distributed approach
	Performance Evaluation
	Results Evaluation

	Statistical Concurrence Analysis (Synopsis)
	Entity Disambiguation
	High-level Approach
	Implementing Disambiguation
	Distributed Implementation
	Performance Evaluation
	Results Evaluation

	Related Work
	Critical Discussion and Future Directions

	Discussion and Conclusion
	Prefixes
	Rule Tables
	OWL 2 RL/RDF Rules
	RDF(S) Rules
	pD* Rules

	Ranking Algorithms
	Concurrence Analysis
	High-level Approach
	Quantifying Concurrence
	Implementing Entity-concurrence Analysis

	Distributed Implementation
	Performance Evaluation
	Results Evaluation

