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Abstract. Several query federation engines have been proposed for accessing pub-
lic Linked Open Data sources. However, in many domains, resources are sensitive
and access to these resources is tightly controlled by stakeholders; consequently,
privacy is a major concern when federating queries over such datasets. In this paper,
we present SAFE, a SPARQL query federation engine that enables decentralised,
policy-aware access to clinical information represented as RDF data cubes. We
validate the performance of the system with experiments over real-world datasets
provided by three clinical organisations as well as legacy Linked Datasets. In our
evaluation, we show that SAFE enables granular graph-level access control over
distributed clinical RDF data cubes and efficiently reduces the query execution
time when compared with general-purpose SPARQL query federation engine.

1 Introduction

Inspired by the publication of hundreds of Linked Datasets on the Web, researchers have
been investigating federated querying techniques to enable access to this decentralised
content. Query federation aims to offer clients a single-point-of-access through which
distributed data sources can be queried in unison. In the context of Linked Data, various
optimised query federation engines have been proposed that can federate multiple
SPARQL interfaces [2, 10, 14,19, 20].

However, in the context of the Healthcare and Life Sciences (HCLS) domain — where
data-integration is often vital — real-world datasets contain sensitive information: strict
ownership is granted to individuals working in hospitals, research labs, clinical trial
organisers, efc. Therefore, the legal and ethical concerns on (i) preserving the anonymity
of patients (or clinical subjects); and (ii) respecting data ownership through access
control; are key challenges faced by the data analytics community working within the
HCLS domain. Our focus in this paper is on point (ii), i.e., proposing a policy-based
access control mechanism for user-restricted resources residing at different locations.

The key challenges for federated querying are efficient source selection (i.e., deter-
mining which sources are (ir)relevant) and query planning (i.e., determining an efficient
query execution strategy). Query-federation engines often apply source selection at the
level of endpoints, whereas in a controlled environment, a user may only have access



to certain information within an endpoint. Adding an access control layer to existing
SPARQL query federation engines thus adds unique challenges: (i) source selection
should be granular enough to enable effective access control, and (ii) it should be policy-
aware to avoid wasteful requests to unauthorised resources. Therefore, in this paper we
present SAFE, a SPARQL query federation engine that supports policy-based access to
sensitive statistical data. SAFE is motivated by the needs of three clinical organisations
in the context of an EU project who wish to enable controlled federation over statistical
clinical data — such as data from clinical trials — owned and hosted by multiple clinical
sites, represented in the form of data cubes: multi-dimensional arrays of numeric data.

SAFE extends upon the FedX engine [19] with two novel contributions: (i) GRAPH-
LEVEL SOURCE SELECTION in order to enable graph-based access-control and (ii)
OPTIMISATIONS FOR FEDERATING QUERIES OVER STATISTICAL DATA that are repre-
sented using the RDF Data Cube Vocabulary. With these modifications, we show that
when compared with FedX, SAFE can (i) support more granular graph-level access
control on top, and can (ii) efficiently reduce the query execution time when federating
over RDF data cubes. It is important to note that no existing SPARQL query federation
engine supports policy-aware access control over statistical datasets. Therefore, we argue
that a specialised extension is required in general-purpose query federation engines —
like FedX — to address the specific challenges in combining statistical and distributed
datasets with access restrictions.

The rest of the paper is structured as follows: Section 2 discusses our motivational
scenario where data from different clinical locations need to be queried and aggregated.
Section 3 discusses related work. Section 4 presents the three main components of SAFE
query processing. Section 5 presents evaluation of SAFE against internal and external
data sets and Section 6 concludes our work.

2 Motivating Scenario

Our work is motivated by the needs of three clinical organisations: University Hospital
Lausanne (CHUV)!, Cyprus Institute of Neurology and Genetics (CING)?, and ZEIN-
CRO?. These organisations wish to develop a platform for analysing clinical data across
multiple clinical sites, which would allow for increasing the total number of patients
that are included in each analysis, thus increasing the statistical power of conclusions
related to biomarkers, effectiveness and/or side-effects of drugs or combinations of drugs,
correlations between patient groups, efc. The ultimate goal is to enable the collaborative
identification of new drugs and treatments while reducing the high costs associated with
clinical trials.

Use of Linked Data: With these goals in mind, the three clinical organisations mentioned
are partners in the Linked2Safety EU project*. The two main goals of the Linked2Safety
project are (i) the discovery of eligible patient data—also known as subject selection
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Fig. 1: Example (2D) data cubes published by CHUV, CING and ZEINCRO

criteria—that can be recruited for clinical trials from multiple clinical sites; and (ii)
enabling multi-centre epidemiological studies enabling better understanding of rela-
tionships between pathological processes, risk factors, adverse events, and between
genotype and phenotype. Although Linked Data technologies can help enable multi-site
interoperability and integration, the community largely focuses on datasets that can be
made open to the public. In contrast, clinical data is often of an extremely sensitive
nature and there is often strict legislation in place protecting the privacy of patients.

Legal and ethical implications of patient privacy: According to EU Data Protection
Directive 95/46/EC?, clinical studies that involve patient-specific information must ad-
here to data-access restrictions that preserve patient anonymity. More specifically, a data
access mechanism must ensure that patient identity cannot be discovered by any direct
or indirect means using the dataset. Similar legislation exists in other jurisdictions. To
avoid sharing of individual patient records, the Linked2Safety consortium has developed
a data mining approach for transforming original clinical data into statistical summaries
that may aggregate (or indeed redact) multiple dimensions of raw data.

The result is a set of anonymised data cubes whose dimensions correspond to insensi-
tive clinical parameters without personal information [3]. The resulting multidimensional
output contains sufficient granularity to quickly decide if the dataset is relevant for a
given analysis — e.g., to understand the scale and dimensions of the data — and to per-
form high-level meta-analysis of aggregated data. These data cubes are represented in a
standard format — namely RDF Data Cube vocabulary per the recent W3C recommenda-
tion [15] — to enable interoperability (e.g., use of controlled vocabularies for dimensions)
and to allow the later use of Linked Data publishing/access methods.

Although the data considered are aggregated and do not contain personal information
about patients, deanonymisation may still be possible [8]: one cannot open a dataset and
fully guarantee that it will not (indirectly) compromise patient anonymity. Likewise, if a
(bio)medical dataset necessarily involves genetic data, there exist identifying markers
by which patients can be directly deanonymised; thus genetic data can only be pseu-
doanonymised. Given such issues, in practice, sharing clinical datasets — even aggregated
statistics — is often conducted under a strict legal framework between parties.

In order to employ stricter data access restrictions on the anonymised multi-dimensional
RDF data cubes, we then require an access-control-based query-federation approach
that enforces and optimises for restricted user access over these RDF data cubes. To
further illustrate and motivate, we now walk though an example.

Shttp://www.dataprotection.ie/docs/EU-Directive-95-46-EC/89.htm
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PREFIX gb: <http://purl.org/linked-data/cube#>
PREFIX sehr: <http://hcls.deri.ie/I2s/sehr/1.0/>
SELECT ?diabetes ?bmi ?hypertension ?cases
WHERE { ?dataset a gb:DataSet.
?observation gb:dataSet ?dataset;
a gb:Observation; sehr:Diabetes ?diabetes ;
sehr:BMI_Abnormal ?bmi ;
sehr:Hypertension ?hypertension ; sehr:Cases ?cases . }

W N O UV A WN P

Fig. 2: Example subject selection criteria for clinical trials

Figure 1 shows four sample data cubes published by three different clinical sites. Each
observation represents the total number of patients exhibiting a particular adverse event.
For example, the CHUV—-S1 observations describe the total number of patients (in the
Cases column) that exhibit a particular combination of three adverse events: Diabetes,
(Abnormal) BMI_Abnormal (Body Mass Index) and/or Hypertension. The value 0 or
1 indicates if the condition is present or not. For example, the second row in CHUV-S1
shows that there are 26 cases presenting with both Diabetes and Hypertension but
without BMI_Abnormal.

Once the data are published by clinical sites, they should be accessible to clinical
researchers. Figure 2 shows a sample SPARQL query specifying subject-selection criteria,
asking for the counts of cases that involve some combination of diabetes, abnormal BMI,
and hypertension. An answer returned by the query, i.e., number of cases, will play a
major role in deciding the resources (i.e., number of subjects, location, efc. ) required for
conducting a clinical trial. However, answering such a query requires integrating RDF
data cubes with three dimensions — Diabetes, Hypertension, BMI_Abnormal — and
the respective counts originating from multiple clinical sites.

Referring back to Figure 1, only three of the datasets (CHUV-S1, CING-S2 and
ZEINCRO-S3) contain all required dimensions. An answer returned by the query
(Figure 2) should list counts (i.e., cases) from these three RDF data cubes. However,
assuming that the policy restrictions are applied to the user (say James), who wants
to execute the query and has access to CHUV-S1 and CING-S2 RDF data cubes only.
Therefore, the query federation engine should retrieve results only from CHUV-S1 and
CING-S2 and should not consider ZEINCRO-S3 for querying.

Hence, one of the key requirements in the context of the Linked2Safety project is to
support federation of queries over clinical data distributed at multiple clinical sites by
taking into account the data access policies (Figure 3 (c): shows a data access policy)
assigned to the users (Figure 3 (a): shows a user profile for James) executing those
queries. Since RDF data cubes are self-contained entities associated with additional
provenance information (e.g., creator, location, efc.; see Figure 3 (b)), they are modelled
using named graphs [6] as supported in SPARQL: each named graph contains only one
data cube and its provenance information.

In order to publish clinical data cubes as RDF (Figure 1) and describe user profiles
along with their access rights (Figure 3) used within query federation process, the
Linked2Safety consortium has developed two vocabularies: (i) Semantic EHR Model
(prefix “sehr”) describes the clinical terminologies used by the three clinical partners;
and (ii) Access Policy Model (prefix “1mds”) describes the user profiles (their activity,
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@prefix sehr: <http://hcls.deri.ie/I2s/sehr/1.0/>
ﬁUV»S Imds:NamedGraph .
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Fig. 3: Snippets of user profile, access policy and data cube source information

location, organisation, position and role) and their respective access rights (e.g., read,
write). Considering space limitations, further details of these two vocabularies are out of
scope for this paper; we instead refer the readers to dedicated papers on the Semantic
EHR Model [16] and the Access Policy Model [11].

3 Related Work

Various approaches have been proposed to query RDF data in a decentralised manner.
Here, we focus on approaches that look at federating multiple SPARQL endpoints.
Likewise, a number of works have looked at access control over Linked Data. We now
briefly discuss both categories of work in the following.

SPARQL Query Federation: Many query federation engines have been proposed for
SPARQL (e.g., [1,2,4,10,13,14,18-20]). Such engines accept an input query, decompose
it into sub-queries, decide relevance of individual data sources (typically considering
sources at the level of endpoints) for sub-queries, forward the sub-queries to the indi-
vidual endpoints accordingly and merge the final results for the query. Such engines
aim to find and execute optimised query plans that minimise initial latency and total
runtimes. This can be achieved by (i) using accurate source selection to minimise ir-
relevant messages, (ii) implementing efficient join algorithms, (iii) and using caching
techniques to avoid repeated sub-queries. Source selection is typically enabled using a
local index/catalogue and/or probing sources with queries at runtime. The former ap-
proach assumes some knowledge of the content of the underlying endpoints and requires
update/synchronisation strategies. However, the latter approach incurs a higher runtime
cost. Thus, many engines support a hybrid of index and query-based source selection.

Table 1 gives an overview of existing SPARQL query federation engines with respect
to source selection type, physical join operators, use of caching and explicit support for
updates. We also remark on whether code is available for the system.

In this setting, our work builds upon an existing federated engine — FedX — with
support for an access-control layer over statistical data represented as RDF data cubes.



Table 1: Overview of existing SPARQL query federation engines

Systems Source Selection Join Type Code Policy Cache Update
ADERIS [13] index nested loop v X X X
ANAPSID [1] query & index adaptive 4 X X v
Avalanche [4] query & index distributed, merge X X v X
DARQ [14] index nested loop, bind v X X X
DAW [18] query & index based on underlying system X X v X
FedSearch [2] query & index bind, pull-based rank X X v X
FedX [19] query nested loop, bind v X v X
LHD [20] query & index hash, bind v X X X
SPLENDID [10] query & index hash, bind v X X X
SAFE query & index nested loop, bind v v v v

Access Control for SPARQL: Various authors have explored access control models for
SPARQL query engines. Gabillon and Letouzey [9] propose applying access control
over named graphs and views, which are defined as graphs dynamically generated using
SPARQL CONSTRUCT or DESCRIBE queries. Costabello et al. [7] propose SHI3LD:
an access control framework for SPARQL 1.1 query engines that operates on the level of
named graphs where permissions are based on the context of the user in the setting of a
mobile device; permissions are checked using SPARQL ASK queries. Kirrane et al. [12]
propose using stratified Datalog rules to enforce an access control model that operates
over quad patterns, thus offering higher granularity of control.

SAFE is designed specifically to query statistical RDF data cubes in a distributed
setting, where access control is coupled with source selection and both operate on the
same level of granularity: named graphs. Access control — deny or allow access — is
based on user profiles and their access rights.

4 Methodology and Architecture

SAFE’s architecture is summarised in Figure 4, which shows its three main components:
(i) Source Selection: performs multilevel source selection based on the capabilities of
data sources; (ii) Policy Aware Query Planning: filters the selected data sources based on
access rights defined for each user; and (iii) Query Execution: performs the execution of
sub-queries against the selected sources and merges the results returned. In the following,
we describe these components in detail.

4.1 Source Selection:

SAFE performs a tree-based two-level source selection as shown in Figure 5. At Level 1,
like other query federation engines [1, 10, 17,19, 20], we do triple-pattern-wise endpoint
selection, i.e., we identify the set of relevant endpoints that will return non-empty results
for the individual triple pattern in a query. At Level 2 (unlike other query federation
engines), SAFE performs triple-pattern-wise named graph selection, i.e., we identify
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Fig. 6: SAFE data summaries

a set of relevant named graphs containing RDF data cubes for all relevant endpoints
already identified at Level 1. SAFE relies on data summaries to identify relevant named
graphs.

Data Summaries: We assume a set of datasets D where each dataset D € D is a RDF
dataset: D := {(u1,G1),... (un,Gp)}, where each (u;,G;) is a named graph with
(unique) URI u;. In our case, named graphs refer to individual RDF data cubes as we
do not consider a default graph. We denote all graph names by names(D) and a graph
in the dataset by D(u) := G. We denote by preds(G) = {p | 3s,0 : (s,p,0) € G}
the set of all distinct predicates in G and by preds(D) := U, ¢)e p Preds(G) the set
of all distinct predicates in D. For each dataset D € D, SAFE stores the following as
a data summary: (i) the endpoint URL (1mds :endpointUrl), where each endpoint
indexes a dataset D; (ii) the set of all graph names in a dataset D: names(D) where
each graph contains a RDF data cube (1mds : cube/1lmds : graph); and (iii) for each
graph G € D, the set of all predicates in G: preds(G) (1mds : cubeProperties).
We (informally) denote the set of all data summaries for D as S and the data summary
for a particular source as S(D). A snippet of a data summary generated for the sample
RDF data cubes published by three clinical sites (CHUV, CING, ZEINCRO) of Figure 1
is shown in Figure 6, where CHUV contains two RDF data cubes (CHUV—-S1, CHUV-S4),
CING contains one RDF data cube (CING-s2), and ZEINCRO also contains only one
RDF data cube (ZEINCRO-s3). Before explaining the algorithm in the next section,



PREFIX acl: <http://www.w3.org/ns/auth/acl#>

PREFIX Imds: <http://www.linked2safety.eu/Imds#>

ASK WHERE {

?accessPolicy a Imds:AccessPolicy .

?accessPolicy Imds:appliesToNamedGraph ?namedGraph .
?namedGraph Imds:hasGraph :CHUV_S1 .

?accessPolicy Imds:grantsAccess acl:Read_I2s .
?accessPolicy Imds:hasRequesterProfile :James . }

Fig. 7: SPARQL query authenticating a user against a data cube/named graph

we wish to make a formal description of the sets that are calculated on-the-fly by the
algorithm as part of the data summary:

1. The set of all predicates in a dataset D : preds(D). This is the set-union of all preds(G;)
for each G; € D; e.g., preds(CHUV) = {sehr:Diabetes, sehr:BMI.Abnormal,
sehr:Hypertension, sehr:Smoking, sehr:Gender, sehr:Cases } (ref. Fig-
ure 1, Figure 6).

2. The set of unique predicates in a dataset D: upreds(D) = {p € preds(D) | 3D’ € D :
D # D' Ap € preds(D’)}; e.g., upreds(CHUV) = {sehr: Smoking, sehr:Gender}
(ref. Figure 1, Figure 6).

3. The set of unique properties in a graph with name w: upreds(u, D) := {p € preds(D(u)) |
P :u' # uAp € preds(D(u))} (overloading upreds(.,.) for use with graphs also);
e.g., upreds(: CHUV-s1,CHUV) = {sehr:BMI_Abnormal, sehr:Hypertension}
and upreds(:CHUV-s4,CHUV) = {sehr:Smoking, sehr:Gender} (ref. Figure 1,
Figure 6).

4. The set of graph names in D with unique properties: unames(D) = {u € names(D) |
upreds(u, D) # 0}. For example, unames(CHUV) = {: CHUV-s1, : CHUV-s4}.

4.2 Policy-Aware Query Planning and Query Execution:

Once the relevant sources are identified for a SPARQL query, the next step is to further
filter these sources by authenticating the user that is making the request. Policy-Aware
Query Planning is the process of identifying capable sources: relevant sources that the
user has access rights for. Access policies on each source are defined in the access
policy model [11]; for this, we consider graph-level control. The user authorisation
is done by running SPARQL ASK queries encoding information about the user and
the relevant named graphs against the access-policy store. Considering the example
discussed in Section 2, the SPARQL query generated for authenticating the user : Jame s
for accessing the named graph : CHUV-S1 is shown in Figure 7. This query asks if there
is any access policy that grants read access to the user : James for the named graph
: CHUV-S1, returning t rue or false as aresult. As per the Figure 3 (c), this example
will return t rue.

Relevant named graphs that return false will be filtered. Endpoints with capable
named graphs are then queried using standard federation techniques. For this, we use
the FedX query engine [19], amending the query rewriter to append the capable graph
information for each endpoint.



Algorithm 1: Access policy-based triple pattern-wise source and named graph
selection

Data: D = {Dy,...,D,}, BGP ={bgp1,...,bgpm}. S, P, user
/* sources, BGPs of a SPARQL query, SAFE summaries of sources, Access
Policies, User */
1 R« {}; /* initialise relevance set x/
2 for each bgp € BGP do /* for each BGP «/
3 for each t € bgp do /* for each triple pattern in BGP «*/
4 R« {}; /+ initialise set of capable source graphs for t x/
5 s < subj(t), p « pred(t), o < obj(t);
6 if bound(p) then /+ if predicate p is bound =/
7 for each D € D do /+ for each data source in D x/
8 U < upreds(D) ; /* source unique properties read from S(D) */
9 A UD,EDupreds(D/); /+ all unique properties read from S(D’)
*/
10 E «+ preds(D) ; /+ all properties of D x/
11 ifp € E A (|bgp| = 1V (StarJoin(t, bgp, U) V PathJoin(t, bgp, U)) V (!StarJoin(t,
bgp, A\ U) A !PathJoin(t,bgp,A \ U)) then
/* triple pattern-wise named graph selection */
12 UG+ {};
13 for each ug € unames(D) do /+ for each unique cube */
14 if preds(bgp) N upreds(ug, D) # @ then  /+ unique p in bgp */
15 | UG+ UGU{ug}; /+* ug might be relevant =/
16 if UG = () then /* nothing unique so add all =/
17 | R+ RU ({t} X names(D) x {D});
18 elseif [UG| = 1 then /* one unique cube */
19 | R+ RU({t} xUG x {D}):
/+ if |UG| > 1, no source can match the join */
20 else if /bound(p) then
/* triple-pattern-wise source selection using ASK queries */
21 for each D € D do
22 if ASK(D, t) = true then
23 ‘ R <+ RU ({t} x names(D) x {D}); /+ select all graphs =*/
/* do policy-based graph filtering %/
24 for each cg; € R do /+ for each capable graph =/
25 if ASK(D, cg;, P, user) = false then /* Authorise user against graph of a
source using access policies =/
26 \ RemoveGraph(cg;, R) ; /* remove unauthorised graph =/
27 R +— RU{R}
28 return R ; /* return relevant sources and graphs for triple patterns */

4.3 Algorithm:

SAFE’s access policy-based triple-pattern-wise source selection is shown in Algorithm 1.
The algorithm is designed to exploit specific properties of RDF data cubes, particularly
the locality of joins: assuming RDF data cubes are not split over sources, certain types
of joins can only be answered locally. In particular, we define a subject—subject join (s—s
join), where two triple patterns share (only) a subject variable, and a subject—object join
(s—o join), where the join variable appears in the subject position of one triple pattern
and the object of the other. For example, in Figure 2, triple patterns 1-2 (lines 4-5) form
an s—o join and triple patterns 2—7 (lines 5-8) form an s—s join. As per the example, such
joins would have to be answerable by one source/data cube; thus (reasonably) assuming
that RDF data cubes are not split across sources, we can exploit this locality with a



Jjoin-aware strategy that reduces sources considered relevant while ensuring complete
results. For example, in Figure 2, though many sources will match the first triple pattern,
they will not be considered relevant unless they are relevant for later triple patterns also.

The algorithm takes the set of all available datasets D, their data summaries S, the
access policy P, user info, and a SPARQL query containing a set of basic graph patterns®
BGP as input (source selection only refers to BGPs, which may be extracted from
features such as UNION or OPTIONAL, etc.). The algorithm returns the set of relevant
sources and corresponding named graphs for individual triple patterns as output. We
process the individual triple patterns of each BGP separately (lines 1-2 of Algorithm 1).
Given a triple pattern ¢t € bgp € BG P with bound predicate p, for each dataset D € D,
we collect the dataset-unique properties U, all unique properties A, and all dataset
properties E from data summaries (lines 3—10 of Algorithm 1). A dataset D is relevant
for triple pattern ¢ if its predicate is a set member of E and either ¢ forms a star (s—s)
or path join (p—o) with any other triple pattern (in the same query) having a predicate
in U or t does not form both star and path join with set difference A/U (line 11 of
Algorithm 1). Once a relevant source is selected, the next step is to identify the set of
relevant graphs within that relevant dataset (lines 12—19 of Algorithm 1). If triple pattern
t belongs to a unique graph ug in selected data source D then only ugq is selected as
relevant graph (lines 13—15 of Algorithm 1). If there is no unique graph in D then all
graphs in D are selected as relevant (lines 16—19 of Algorithm 1). If a predicate is not
bound in ¢, we fall back to a standard strategy and make use of SPARQL ASK queries
for source selection, i.e., we send a SPARQL ASK request to each of the endpoints (lines
20-23 of Algorithm 1). Once relevant graphs within relevant data sources are selected,
the final step is to further prune the select capable graphs using policy-based filtering
(lines 24-26 of Algorithm 1). A capable graph cg is removed if the user does not have
access (according to policies P) for cg.

As per our running example, consider the triple pattern tp := "?observation
sehr:Diabetes ?diabetes" of the query given in Figure 2. Since the predicate
is bound in tp, the condition given at line 6 of Algorithm 1 holds. For the CHUV dataset,
U = {sehr:Smoking, sehr:Gender}, A = {sehr:Smoking, sehr:Gender,
sehr:HIV},and E = {sehr:Diabetes, sehr:BMI_Abnormal, sehr:Cases,
sehr:Smoking, sehr:Hypertension, sehr:Gender} (line 8~10),and A\ U
= {sehr:HIV}. The predicate sehr:Diabetes € F and tp does not not form a star
join (s—s) or path join (s—o0) with A \ U in the query. Therefore, the condition given at
line 11 of Algorithm 1 holds and the data source CHUV will be selected as relevant for
T P. The next step is to select named graphs within the CHUV data source. For both
named graphs (CHUV-s1, CHUV-s4) the condition given at line 14 is true, therefore
both named graph are selected as relevant. For both CING and ZEINCRO the condition
given at line 11 also hold; therefore they are also selected. Assuming James as the user
who has requested the data, the response of ASK queries (i.e., true or false) will
authorise the user against each capable named graph (line 25). In this example, James’
access will be denied for the named graph ZEINCRO-s 3 and granted for the two other
named graphs as specified in Figure 7(b). Hence ZEINCRO-s 3 will be removed from
the set of capable graphs and only CHUV will be queried to get the desired results.

®http://www.w3.org/TR/sparqlll-query/#BasicGraphPatterns
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Table 2: Overview of experimental datasets

Dataset Type Netrip Neobsv Nesub Nepred Neobj data i.size i.time
CHUV INT 0.8 M 96 K 96 K 36 88 31 MB - -
CING INT 0.1M 17K 17K 21 51 5MB - -
ZEINCRO INT 04M 49K 49K 24 59 15MB - -
Total INT 1.3M 162K 162K 81 198 51MB 8KB  10sec
World Bank  EXT 77TM 10M 10M 58 40K 19 GB - -
IMF EXT 1I8M 1.8M 1.8M 30 3151 3.5GB - -
Eurostat EXT 03M 38K 44K 31 5717 205 MB - -
Trans. Int. EXT 43K 3939 4286 64 5290 9.2MB - -
Total EXT 95 M 12M 2M 183 54 K 23GB 12KB 571 sec

5 Evaluation

This section presents evaluation comparing SAFE against FedX to validate the extensions
we have proposed. The experimental setup (e.g., datasets, queries and metrics) for
evaluation are as follows:

5.1 Experimental Setup

Datasets: We use two groups of datasets exploring two different use cases.

The first group of datasets (INTERNAL) are collected from the three clinical partners
involved in our primary use case as described in Section 2. These datasets contain aggre-
gated clinical data represented as RDF data cubes and are privately owned/restricted.

The second group of datasets (EXTERNAL) are collected from legacy Linked Data
containing sociopolitical and economical statistics (in the form of RDF data cubes)
from the World Bank, IMF (International Monitoring Fund), Eurostat and Transparency
International. The World Bank data contains a comprehensive set of information about
countries around the globe, such as observations on development indicators, financial
statements, climate change, research projects, efc. The IMF data provides a range of time
series data on lending, exchange rates and other economic and financial indicators. The
Eurostat data provides statistical indicators that enable comparison between countries
and regions across Europe. The Transparency International data includes a Corruption
Perceptions Index (CPI), which ranks countries and territories based on how corrupt
their public sector is perceived to be.

Table 2 gives an overview of the experimental datasets (i.size refers to index size and
i.time refers to time taken for index generation). Each dataset was loaded into a different
SPARQL endpoint (using Jena Fuseki) on separate physical machines.

Queries: A total of 12 queries are designed to evaluate and compare the query feder-
ation performance of SAFE against FedX. These queries are of varying complexity and
have varying type of characteristics. For space reasons, the full list of queries is made
available at http://linked2safety.hcls.deri.org:8080/SAFE-Demo/
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Table 3: Summary of query characteristics
Characteristics Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q0 QI QI2

Ne of Triple Patterns 9 7 9 16 7 8 11 10 7 7 3 7
Ne of Sources 3 4 4 3 4 3 3 4 3 3 3 3
Ne of Results 41 50 348 41 62 1983 5 10 1701 19656 570 41
Filters v

More than 9 pattens v v v v v v v

Negation v

LIMIT modifier v v v v

ORDER BY modifier v v v

DISTINCT modifier v v v v v v v v 4 v
REGEX operator v

UNION operator v

Table 4: Sum of triple-pattern-wise sources selected for each query
System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0 QI QI2 Awg

SAFE 8 10 13 16 15 13 15 16 7 7 9 7 11
FedX 9 13 16 24 20 14 16 19 15 17 9 16 16

queries.html. In Table 3, we summarise the characteristics of these queries (follow-
ing similar dimensions to the Berlin SPARQL benchmark [5]), showing their varying
complexity. The row for the number of sources indicates those matched by at least one
triple pattern.

Metrics: For each query type we measured (i) the number of sources selected; (ii)
the average source selection time; (iii) the average query execution time; and (iv) the
number of ASK requests issued to sources. The performance of SAFE and FedX was
compared based on these metrics. All experiments are carried out on a local network, so
that network cost remains negligible. Machines used for experiments have a 2.60 GHz
Core 15 processor, 8 GB of RAM and 500 GB hard disk running a 64-bit Windows 7 OS.
The results produced by FedX and SAFE are the same for all queries.

5.2 Experimental Results

Triple pattern-wise sources selected: Table 4 shows the total number of triple pattern-
wise (TP) sources selected by SAFE and FedX for all the queries. The last column
in Table 4 shows the average number of TP sources selected by each approach. FedX
performs optimal source selection at the triple-pattern-level using ASK queries for each
triple pattern to find out precisely which sources can answer an individual triple pattern.
By using join-aware source selection designed for RDF data cubes, SAFE manages to
filter further potential sources that do not contribute to the end results, thus (as we will
see) reducing response times.

Number of SPARQL ASK requests: Table 5 shows the total number of SPARQL
ASK requests used to perform source selection for each query. FedX is an index-free
approach and performs runtime SPARQL ASK requests during source selection for each
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Table 5: Number of SPARQL ASK requests used for source selection
System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0 QI QI2 Awg

SAFE 0 0 0 0 0 0 0 0 0 0 0 0 0
FedX 36 28 40 64 48 40 44 40 21 21 9 21 35
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triple pattern in query. Conversely, SAFE uses data summaries for source selection,
reverting to SPARQL ASK requests only when there is an unbound predicate in a triple
pattern. None of our evaluation queries have an unbound predicate; hence there are
no SPARQL ASK requests for SAFE. Though flexible in the generic case, index-free
approaches can incur a large cost in terms of SPARQL ASK requests used for source
selection, which can in turn increase overall query execution time.

Source selection time: Figure 8 compares the source selection time of SAFE and
FedX for all queries, where the y-axis is presented in log-scale. The rightmost pair of
bars compares the average source selection time over all queries. As expected, the source
selection time for SAFE is much lower than that of FedX. This is primarily attributable
to SAFE’s use of a domain-specific index for source-selection, which avoids incurring
heavy traffic for ASK queries. The index can typically be pre-loaded into memory before
query execution, which means that the source selection time for the presented use case(s)
will be minimal.

Query execution time: For each query, the average query execution time was
calculated for both approaches by running each query ten times. Figure 9 compares
the overall query execution time of SAFE and FedX for all queries. Again, the y-axis
is logscale and the rightmost pair of bars compares the average query execution times.
The results shows that SAFE has significantly outperformed FedX in all queries in the
context of the presented use cases. In fact, we see that FedX times-out in the case of
three queries (in our experiments, we set queries to timeout after 25 minutes).

There are a number of factors that can influence the overall query execution time
of a query federation engine, such as join type, join order selection, block and buffer
size, etc. However, given that SAFE is based on the FedX architecture, we can attribute
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the observed runtime improvements to three main factors: (i) source selection time is
reduced (as we have seen in the previous sets of results); (ii) fewer sources are queried
meaning less time spent waiting for responses; and (iii) triple patterns are more selective
in SAFE, where, for example, our join-awareness makes it unlikely that all rdf : type
triple patterns will need to be retrieved/queried for all sources but rather only from
sources where such a triple pattern joins with a more selective one. Taken together, these
three main observations explain the time saving observed for our presented use cases.

6 Conclusions and Future Work

In this paper, we have presented SAFE: a query federation engine that enables policy-
based access to sensitive statistical datasets represented as RDF data cubes. The work is
motivated in particular by the needs of three clinical organisations who wish to develop
a platform for collaboratively analysing clinical data that spans multiple clinical sites,
thus improving the statistical power of conclusions that can be drawn (versus one source
alone). Clinical data — even in aggregated form — is of a highly sensitive nature, and thus
query federation engines must take access policies into account.

SAFE is developed as an extension on top of the FedX federation engine to support
two main features: (i) optimisations tailored for federating queries over RDF data cubes;
and (ii) source selection on the level of named graphs that allows for integration with an
existing access control layer. We evaluated these extensions based on our internal data
sets (private data owned by clinical organisations) as well as external data sets (public
data available from the LOD cloud) in order to measure the efficiency of SAFE against
FedX. Our evaluation results show that, for our use-case(s), SAFE outperforms FedX
in terms of fast source selection and query execution time. The source-code (AGPL
License) and a demo for SAFE can be found at http://linked2safety.hcls.
deri.org:8080/SAFE-Demo/.
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