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Abstract. In these lecture notes, we provide an overview of some of the
high-level research directions and open questions relating to knowledge
graphs. We discuss six high-level concepts relating to knowledge graphs:
data models, queries, ontologies, rules, embeddings and graph neural net-
works. While traditionally these concepts have been explored by different
communities in the context of graphs, more recent works have begun to
look at how they relate to one another, and how they can be unified. In
fact, at a more foundational level, we can find some surprising relations
between the different concepts. The research questions we explore mostly
involve combinations of these concepts.

1 Introduction

Knowledge graphs have been gaining more and more attention in recent years,
particularly in settings that involve integrating and making sense of diverse data
at large scale. Much of this attention stems from the 2012 announcement of the
Google Knowledge Graph [64], which was later followed by further announce-
ments of knowledge graphs by eBay, Facebook, IBM, Microsoft [53], and many
more besides [35]. These enterprise knowledge graphs are typically internal to
a company, where they aim to serve – per the words of Noy et al. [53] – as a
common substrate of knowledge within the organisation, expanding and evolving
over time. Other open knowledge graphs – such as BabelNet [49], DBpedia [44],
Freebase [14], Wikidata [67], YAGO [33] – are made available to the public.

On a more technical level, there are varying perspectives about how knowl-
edge graphs should be formally defined (if at all) [35]. This stems from the
diversity of communities and organisations that have adopted the phrase. How-
ever, underlying all such perspectives is the foundational idea of representing
knowledge using a graph abstraction, with nodes representing entities of interest
in a given domain, and edges representing relations between those entities. Typ-
ically a knowledge graph will model different types of relations, which can be
captured by labelled edges, with a different label used for each type of relation.
Knowledge can consist of simple assertions, such as Charon orbits Pluto, which
can be represented as directed labelled edges in a graph. Knowledge may also
consist of quantified assertions, such as all stellar planets orbit stars, which require
a more expressive formalism to capture, such as an ontology or rule language.

A reader familiar with related concepts may then question: what is the dif-
ference between a graph database and a knowledge graph, or an ontology and a
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knowledge graph? Per the previous definition, both graph databases1 and ontolo-
gies can be considered knowledge graphs. It is then natural to ask: what, then, is
new about knowledge graphs? What distinguishes research on knowledge graphs
from research on graph databases, or ontologies, etc.?

If we so wish, we can choose to see the “vagueness” surrounding knowledge
graphs as a feature not a bug: this vagueness offers flexibility for different com-
munities to adapt the concept to their interests. No single research community
can “lay claim” to the topic. Knowledge graphs can then become a commons for
researchers from different areas to share and exchange techniques relating to the
use of graphs to represent data and knowledge. In any case, most of the different
choices – what graph model to use, what graph query language to use, whether
to use rules or ontologies – end up being quite superficial choices.

Anecdotally, many of the most influential papers on knowledge graphs have
emerged from the machine learning community, particularly relating to two main
techniques: knowledge graph embeddings [68] and graph neural networks [71]
(which we will discuss later). These works are not particularly related to graph
databases (they do not consider regular expressions on paths, graph pattern
matching, etc.) nor are they particularly related to ontologies (they do not con-
sider interpretations, entailments, etc.), but by exploiting knowledge in the con-
text of large-scale graph-structured data, they are related to knowledge graphs.
Subsequently, one can find relations between these ostensibly orthogonal tech-
niques; for example, while graph neural networks are used to inductively classify
nodes in the graph based on numerical methods, ontologies can be used to de-
ductively classify nodes in the graph based on symbolic methods, which raises
natural questions about how they might compare.

Knowledge graphs, if we so choose, can be seen as an opportunity for re-
searchers to bring together traditionally disparate techniques – relating to the
use of graphs to represent and exploit knowledge – from different communities of
Computer Science: to share and discuss them, to compare and contrast them, to
unify and hybridise them. The goal of these notes will be to introduce examples
of some of the principal directions along which such research may follow.

Recently we have published a tutorial paper online that offers a much more
extensive (and generally less technical, more example-based) introduction to
knowledge graphs than would be possible here, to which we refer readers new
to the topic [35].2 In the interest of keeping the current notes self-contained,
and in order to establish notation, we will re-introduce some of the key concepts
underlying knowledge graphs. However, our focus herein is to introduce specific
open questions that we think may become of interest for knowledge graphs in the
coming years. Specifically, we introduce six main concepts underlying knowledge
graphs: data models, queries, ontologies, rules, embeddings and graph neural
networks. Most of the questions we introduce intersect these topics.

1 We intend to refer to the data model known as graph databases [9], not graph
database systems [2].

2 An abridged version of [35] is currently under review for ACM CSUR.
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2 Data Model

Knowledge graphs assume a graph-structured data model. The high-level bene-
fits of modelling data as graphs are as follows:

– Graphs offer a more intuitive abstraction of certain domains than alternative
data models; for example, metro maps, flight routes, social networks, protein
pathways, etc., are often visualised as graphs.

– When compared with (normalised) relational schemas, graphs offer a simpler
and more flexible way to represent diverse, incomplete, evolving data, which
can be defined independently of a particular schema.

– Graphs from different sources can be initially combined by taking the union
of the constituent elements (nodes, edges, etc.).

– Unlike other semi-structured data models based on trees, graphs allow for
representing and working with cyclic relations and do not assume a hierarchy.

– Graphs offer a more intuitive representation for querying and working with
paths that represent indirect relations between entities.

A number of graph data models have become popular in practice, principally
directed edge-labelled graphs, and property graphs [4]. The simpler of the two
models is that of directed edge-labelled graphs, or simply del graphs henceforth.
To build a del graph we will assume a set of constants C.

Definition 1 (Directed edge-labelled graph). A directed edge-labelled gr-
aph (or del graph) is a set of triples G ⊆ C×C×C.

We provide an example of a del graph in Figure 1, describing various astro-
nomic bodies. The data are incomplete, but more data can be added incremen-
tally by adding new nodes and edges. Each triple (s, p, o) ∈ G denotes a directed
labelled edge of the form s

p−→ o. Nodes in the graph denote entities of interest,
and edges between them denote (binary) relations. We see both directed and
undirected cycles formed from the relationships present between the entities.

The property graph model is more ornate, and allows for adding labels and
property–value pairs on both nodes and edges [4].

Definition 2 (Property graph). A property graph G is a tuple

G := (V,E,L, P, U, e, l, p)

where V ⊆ C is a set of node ids, E ⊆ C is a set of edge ids, L ⊆ C is a set of
labels, P ⊆ C is a set of properties, U ⊆ C is a set of values, e : E → V × V
maps an edge id to a pair of node ids, l : V ∪ E → 2L maps a node or edge id
to a set of labels, and p : V ∪ E → 2P×U maps a node or edge id to a set of
property–value pairs.

In Figure 2 we provide an example of a property graph alongside a del graph
representing analogous information. The graph is defined as follows:
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Fig. 1. Del graph describing astronomic bodies
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Fig. 2. Del graph (above) and property graph (below) with analogous information
describing a planet orbiting Proxima Centauri

– V := {Alpha Centauri, Proxima b, Proxima Centauri}
– E := {Pb orbit, Pb system, PC system}
– L := {Exoplanet, Red Dwarf, Star System, child, system}
– P := {distance, mass, spectral}
– U := {0.05 AU, 0.1221 M�, 1.172 M⊕, M5.5Ve, }
– e(Pb orbit) := (Proxima Centauri, Proxima b),

e(Pb system) := (Proxima b, Alpha Centauri),
e(PC system) := (Proxima Centauri, Alpha Centauri)

– l(Alpha Centauri) := {Star System}, l(Proxima b) := {Exoplanet},
l(Proxima Centauri) := {Red Dwarf}, l(Pb orbit) := {child},
l(Pb system) := {system}, l(PC system) := {system}

– p(Alpha Centauri) := {} , p(Proxima b) := {(mass, 1.172 M⊕)},
p(Proxima Centauri) := {(mass, 0.1221 M�), (spectral, M5.5Ve)},
p(Pb orbit) := {(distance, 0.05 AU)}, p(Pb system) := {}, p(PC system) := {}

While del graphs form the basis of the RDF data model [18], property graphs
are used in a variety of popular graphs databases systems, such as Neo4j [48].
Comparing del graphs and property graphs, we can say that del graphs are sim-
pler, but property graphs are more flexible, particularly in terms of the ability
to add property–value pairs to edges. However, property graphs can be repre-
sented as del graphs (and vice versa) as illustrated in Figure 2, where edges with
property–value pairs in the property graph can be converted to nodes in the del
graph, as seen for Pb orbit; edges without property–value pairs in the property
graph can be represented directly as edges in the del graph.

We identify two particular topics relating to modelling data as graphs.
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While graphs allow for representing many domains of data in an
intuitive and concise manner, other forms of data are not so straightfor-
ward to represent. Being based on sets of elements, graphs are inherently
unordered, which raises the question of how ordered data (lists, tuples,
arrays, etc.) should be represented. Likewise statistical data are often as-
sociated with particular datatypes (integer, decimal, temporal, etc.), par-
ticular units (kilograms, pounds, seconds, hours, etc.), particular levels of
precision (error bounds, rounding, etc.). An important topic then relates
to modelling more complex forms of real-world data as graphs.

Thus far we have assumed graphs to be populated with a generic set
of constants C. However, knowledge graphs in practice may be populated
with diverse terms; for example, Proxima b is an identifier for a planet,
while 0.1221 M� is a complex numerical quantity with an associated unit
of measure (Solar masses). Recognising this, the RDF data model, based
on del graphs, supports the following terms:

– Internationalized Resource Identifiers (IRIs) serve as identifiers for
nodes and edge labels, which can be linked to from across the Web.

– Literals represent datatype values, such as strings (optionally with lan-
guage tags), numeric values, booleans, dates, times, durations, etc.

– Blank nodes are not strictly speaking constants, but rather represent
existential terms, used to represent entities known to exist but whose
values are unknown, or for enabling syntactic shortcuts [34].

Still there are open questions regarding how units – such as M⊕ (Earth
masses), MJ (Jupiter masses), M� (Solar masses) – can be represented, or
how levels of precision should be handled. Although proposals have been
made to represent units and precision in graphs [16, 43], often knowledge
graphs will adopt an ad hoc representation. There are also open questions
regarding how to perform querying and reasoning over statistical data, with
automatic translation of units and handling of precision.

Likewise for ordered data, although a number of proposals have been
made for representing lists as a graph, these proposals are quite verbose [46].

A more general question arises: how should graph models be extended
(if at all) in order to be able to concisely, intuitively and comprehensively
model diverse, real-world data? Should we allow only simple terms and
use complex graph structures to model such data, or should we support
complex terms – e.g., allowing tuples, arrays, tables, trees, edges, graphs,
etc., as nodes – to simplify the graph structure? How can we explore such
trade-offs and evaluate different proposals? How can we apply querying,
reasoning, machine learning, etc., on these different representations?

Topic 2.1: Representing complex data
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Fig. 3. Del graph pattern looking for trinary star systems related to Sol

While the semantics of del graphs have long been explored, the
semantics of property graphs are less well understood. In reference to Fig-
ure 2, for example, we might ask if the child relation between Proxima
Centauri and Proxima b holds. Intuitively we might assume that it does,
but we should keep in mind that we may have property–value pairs on
the edge that state deprecated = true, or probability = 0.1, for ex-
ample. An open research question then relates to defining the semantics
of property graphs, taking into consideration the semantics of labels and
property–value pairs on nodes and edges. (We refer the interested reader to
Attributed Description Logics [39], which make progress in this direction.)

Topic 2.2: Semantics of property graphs

Henceforth we will focus on del graphs, as the simpler of the two models.

3 Queries

We may wish to pose questions over the data represented by the graph. While
a range of query languages have been proposed for querying graphs – including
SPARQL for RDF graphs [29]; Cypher [23], Gremlin [57], and G-CORE [3] for
property graphs – the same foundational elements underlie all such languages:
graph patterns, relational algebra, and path expressions [4]. Herein we will assume
data represented as a del graph, though the concepts we present generalise quite
straightforwardly to other graph models, as appropriate [35].

At the core of graph queries is the notion of graph patterns. The most basic
form of graph pattern is a graph that additionally allows variables to replace
constants in any position. We refer to the set of variables as V. We refer to the
union of constants C and variables V as terms, denoted T (i.e., T = C ∪V).

Definition 3 (Directed edge-labelled graph pattern). A directed edge-
labelled graph pattern (or del graph pattern) is a set of triples Q ⊆ T×T×T.

We provide an example in Figure 3 of a del graph pattern looking for trinary
star systems related (in some way) to Sol. Variables are prefixed with “?”. A
graph pattern is then evaluated over a data graph by mapping the variables of
the graph pattern to constants such that the image of the graph pattern under



8 Aidan Hogan

Table 1. Evaluation of the del graph pattern of Figure 3 over the del graph of Figure 1
under homomorphism-based semantics

?bstar1 ?bstar2 ?tstar ?system ?rel

Rigil Kentaurus Toliman Proxima Centauri Alpha Centauri closest
Rigil Kentaurus Rigil Kentaurus Proxima Centauri Alpha Centauri closest
Toliman Toliman Proxima Centauri Alpha Centauri closest
Rigil Kentaurus Rigil Kentaurus Toliman Alpha Centauri closest
Toliman Toliman Rigil Kentaurus Alpha Centauri closest

the mapping is a sub-graph of the data graph. More formally, let µ : V → C
denote a partial mapping from variables to constants, and let dom(µ) denote
the set of variables for which µ is defined. Further let V(Q) denote the set of
variables used in Q. We can then define the evaluation of Q over G as:

Definition 4 (Evaluation of a del graph pattern). Let Q be a del graph
pattern and let G be a del graph. We then define the evaluation of graph pattern
Q over G, as Q(G) := {µ | µ(Q) ⊆ G and dom(µ) = V(Q)}.

Graph patterns of this form can be seen as transforming graphs into tables. In
Table 1 we present the results of evaluating the del graph pattern of Figure 3 over
the del graph of Figure 1, where each row indicates a solution given by a mapping
µ per the previous definition. Graph patterns can be evaluated under different
semantics by placing further restrictions on µ. Without further restrictions, a
homomorphism-based semantics is considered where two or more variables in
an individual solution can be mapped to a single constant in the data. On the
other hand, if we restrict µ to be one-to-one, a (sub-graph) isomorphism-based
semantics is considered, where each variable in an individual solution must map
to a different constant. All of the solutions shown in Table 1 are returned under
the unrestricted homomorphism-based semantics, while only the first solution is
returned under the restricted isomorphism-based semantics.

Given that graph patterns return tables, a natural idea is to introduce the
relational algebra to allow the solutions of a graph pattern to be transformed,
and the solutions of several graph patterns to be combined: using π to project
variables or σ to select rows returned from a single graph pattern, or using ∪, −,
or 1 to apply a union, difference, or join (respectively) across the results of two
graph patterns. We can also introduce further syntactic operators, such as left-
joins (1, aka optionals), anti-joins (�; aka not exists), etc. As a simple example,
given the graph pattern Q of Figure 3, we may define π?tstar(σ?bstar1 6=?bstar2(Q))
to select only solutions where ?bstar1 and ?bstar2 map to different constants,
and subsequently project only the results for the ?tstar variable. Graph patterns
extended with the relational algebra are called complex graph patterns [3]. Graph
patterns extended with projection alone are called conjunctive queries.

The features we have seen thus far can only match bounded sub-graphs of
the data graph (more formally, we can say that they are Gaifman-local [45]).
However, we may be interested to find pairs of nodes that are connected by
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paths of arbitrary lengths. In order to express such queries, we can introduce
path expressions and regular path queries.3

Definition 5 (Path expression). A constant c ∈ C is a path expression.
Furthermore:

– If r is a path expression, then r− (inverse) and r∗ (Kleene star) are path
expressions.

– If r1 and r2 are path expressions, then r1 · r2 (concatenation) and r1 | r2
(disjunction) are path expressions.

In the following we assume that the evaluation of a path expression returns
pairs of nodes connected by some path that satisfies the path expression [29].
Other query languages may support returning paths [23, 3]. We will further
introduce the notation NG to denote the nodes of G; more formally, we define
the nodes of G as NG := {x | ∃p, y : (x, p, y) ∈ G or (y, p, x) ∈ G}.

Definition 6 (Path expression evaluation). Given a del graph G and a path
expression r, we define the evaluation of r over G, denoted r[G], as follows:

r[G] := {(u, v) | (u, r, v) ∈ E} (where r ∈ C)

r−[G] := {(u, v) | (v, u) ∈ r[G]}
r1 | r2[G] := r1[G] ∪ r2[G]
r1 · r2[G] := {(u, v) | ∃w ∈ NG : (u,w) ∈ r1[G] and (w, v) ∈ r2[G]}

r∗[G] :=NG ∪
⋃
n∈N+

rn[G]

where by rn we denote the nth-concatenation of r (e.g., r3 = r · r · r).

Let R denote the set of all path expressions. We next define a regular path
query and a navigational graph pattern [4].

Definition 7 (Regular path query). A regular path query is a triple (x, r, y) ∈
T× (R ∪V)×T.

Definition 8 (Navigational graph pattern). A navigational graph pattern
Q is a set of regular path queries.

We provide an example of a navigational graph pattern in Figure 4, searching
for planemos in the Milky Way, along with the star(s) they orbit. The evaluation
of a navigational graph pattern is then defined analogously to the evaluation of
graph patterns, but where pairs of nodes connected by arbitrary-length paths –
rather than simply edges – can now be matched. The navigational graph pattern
of Figure 4 will return four results, with ?star mapped to Sun in each, and
?planemo mapped to Earth, Pluto, Charon and Luna.
3 We implicitly refer to two-way regular path queries as inverse expressions are quite
widely used in practice [15].
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Milky Way ?starsystem · galaxy

Star

type · subclass*

?planemo(child|parent−)*

Planemo

type · subclass*

Fig. 4. Navigational graph pattern looking for planemos in the Milky Way and the
stars that they orbit

Finally, noting that navigational graph patterns again transform graphs into
tables, it is natural to define complex navigational graph patterns, which support
applying relational algebra over the results of one or more navigational graph
patterns. Navigational graph patterns extended with (only) projection are known
as conjunctive two-way regular path queries (C2RPQs) [9].

The task of finding solutions for a query over a graph is known as query
answering. While query answering have been well-studied in the literature [9,
4], there are a number of interesting problems that arise when considering the
evaluation of (complex) navigational graph patterns. We now discuss two topics.

In the context of relational databases, the Atserias–Grohe–Marx
(AGM) bound establishes a tight upper bound for the number of tuples that
can be returned for conjunctive queries (without projection) over relations
with a given number of tuples [7]. This bound can be naturally extended
to give a tight bound in the case of graph patterns. For example, consider
the following triangular graph pattern looking for planets of binary stars:

?planet

?star1

child

?star2

parent

orbits

The AGM bound is based on a fractional edge cover, where each edge
(relation) is assigned a weight in [0, 1] such that, for each variable, when
we sum the weights of the edges it appears in, the value is at least 1. In
this case, for example, we can assign 1

2 to orbits, 1
2 to child and 1

2 to parent,
which is sufficient to (fractionally) cover all variables. The number of results
returned by the query is then bounded by nwo

o · nwc
c · n

wp
p , where no, nc,

np denote the size of the relations for orbits, child and parent, respectively,
while wo, wc, wp denote their fractional edge cover weights. If we find the
fractional edge cover that minimises the aforementioned product over all

Topic 3.1: *-case optimality
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relations, then the bound is tight. In this case, the tight bound is given by
n

1
2
o · n

1
2
c · n

1
2
p ; assuming n = no = nc = np for simplicity, we get n

3
2 .

The AGM bound then gives us a general mechanism by which we can
estimate the maximum number of results that a graph pattern can return.
When we think of methods for enumerating all of the solutions for a graph
pattern Q over a given graph, the best we can then hope for is an algorithm
that runs in O(β(Q)), where β(Q) is the AGM bound for Q. This is not
trivial as the classical strategies for evaluating the aforementioned graph
pattern (nested loops, hash joins, etc.) would be to proceed pattern-by-
pattern, which would first execute a join such as:

?planet

?star1

child

?star2

parent

But in this case we must assign 1 to child and 1 to parent to have a fractional
edge cover, meaning that the bound for this join would be n2, which could
not be processed within the O(n

3
2 ) runtime.

However, there do exist worst-case optimal join algorithms [50] that
allow for the solutions of such queries to always be evaluated within linear
time of the worst-case output size (the AGM bound). The core idea of
such algorithms is to apply multiple joins at once, essentially evaluating
variable-by-variable, rather than pattern-by-pattern. Such algorithms have
been implemented in the context of querying graphs, and have shown that
these theoretic guarantees translate into promising results in practice, par-
ticularly for more complex graph patterns with cycles (e.g., [51, 1, 38, 36]).

More work is left to do in terms of extending worst-case optimal al-
gorithms to offer similar guarantees when other features of graph queries
are present, including path expressions. Furthermore, works that go be-
yond worst-case optimality, perhaps considering average-case output size,
or even instance-optimal join algorithms, are left to explore [50].

Graph patterns return tables of solutions rather than graphs. An
interesting research topic to explore is then to consider query languages
based on composable operators that transform and return native graph
objects – i.e., nodes, edges, paths, graphs, etc. – rather than tables.

We defined the evaluation of regular path queries such that the nodes
connecting paths satisfying the path expression are returned. In practice,

Topic 3.2: Native graph querying
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it may often be necessary to return not only pairs of nodes, but also the
paths themselves that are matched by the expression. Unlike pairs of nodes,
paths in the presence of cycles may be infinite! For this reason, often a
particular restriction is applied to the paths considered, such as to include
only simple paths: paths that only visit each node at most once. As an
additional complication, differing semantics may affect the complexity of
evaluation in non-trivial ways; for example, finding a simple path of even
length between two nodes (e.g., matching (orbits·orbits)* in a directed graph
is NP-complete [42]). Similarly, the number of even simple paths can be
astronomically large, even for small graphs, making them difficult to im-
plement [5]. Finally, it is unclear how paths of arbitrary length should be
represented in the results, or what kinds of operators over paths can be
defined in the query language; for example, how should we join different
tables on a variable mapped to paths?

Practical query languages like Cypher [23] support returning paths,
and offer some operators, such as length(·) over paths. G-CORE [3] takes
this one step further, and treats paths as “first-class citizens”, allowing
for returning paths in results, finding weighted shortest paths, and more
besides. Still, however, more work is needed to understand how paths in
results can be represented, what key operators should be defined for them,
what are the appropriate semantics to apply, etc.

On the other hand, we may wish to return graphs from queries. Along
these lines, SPARQL and G-CORE support CONSTRUCT queries, which allow
for transforming a table of intermediate solutions into an output graph [29,
3]. Recursive extensions of CONSTRUCT queries have further been proposed
and studied in the literature [56]. Still, however, CONSTRUCT queries are
based on graph patterns that generate tables of intermediate results.

We then pose the idea of a native graph query language that is composed
of unary and binary operators over graphs that return graphs. In the case
of del graphs, which are defined as sets of triples, selection can be trivially
defined in terms of filtering such triples, while set-based operators – union,
intersection, difference – can be defined naturally with respect to the sets of
triples. An interesting question relates to how joins on two graphs could or
should be defined. Are joins even needed? What about aggregation? Would
a graph-based definition of operators affect the computational complexity
of query answering? Would it have practical benefits?

4 Ontologies

Looking more closely at the graph of Figure 1, we may be able to deduce ad-
ditional knowledge beyond what is explicitly stated in the graph. For example,
we might conclude that Charon and Luna are instances of Moon; that Toliman
and Rigil Kentaurus are instances of Binary Stars; that Luna, Earth, Sun, etc.,
are all part of the Milky Way, etc. In order to be able to draw such conclusions
automatically from a graph, we require a formal representation of the semantics
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of the terms used in the graph. While there are a number of alternatives that
we might consider for this task, we initially focus on ontologies, which have long
been studied in the context of defining semantics over graphs.

Ontologies centre around three main types of elements: individuals, concepts
(aka classes) and roles (aka properties). They allow for making formal, well-
defined claims about such elements, which in turn opens up the possibility to
perform automated reasoning. In terms of the semantics of ontologies, there
are many well-defined syntaxes we can potentially use, but perhaps the most
established formalism is taken from Description Logics (DL) [58, 41, 8], which
studies logics centring around (unary and) binary relations, and logical primitives
for which reasoning tasks remain decidable.

Table 2 defines the typical DL constructs one can find in the literature. The
syntax column denotes how the construct is expressed in DL. A DL ontology
then consists of an assertional box (A-Box), a T-Box (terminological box), and
an R-Box (role box), each of which consists of a set of axioms that describe
formal claims about individuals, concepts and properties, respectively.

Definition 9 (DL ontology). A DL ontology O is defined as a tuple (A,T,R),
where A is the A-Box: a set of assertional axioms; T is the T-Box: a set of
concept (aka class/terminological) axioms; and R is the R-Box: a set of role
(aka property/relation) axioms.

Syntactically, DL ontologies can be serialised as (del) graphs. Such a se-
rialisation is defined by the Web Ontology Language (OWL) [31], which draws
inspiration from the DL area towards standardising languages for which common
reasoning tasks are decidable (or even tractable), and which defines serialisations
of OWL ontologies as RDF graphs. In this context, looking at Figure 1, for ex-
ample, a triple such as (Planet, subclass,Planemo) can be read as a concept axiom
Planet v Planemo, a triple such as (Pluto, child,Charon) can be read as a role
axiom child(Pluto, Charon), while a triple such as (Charon, type,Planemo) can
be read as a concept assertion Planemo(Charon).

Regarding the formal meaning of these axioms, the semantics column of
Table 2 defines axioms using interpretations.

Definition 10 (DL interpretation). A DL interpretation I is defined as a
pair (∆I , ·I), where ∆I is the interpretation domain, and ·I is the interpretation
function. The interpretation domain is a set of individuals. The interpretation
function accepts a definition of either an individual a, a concept C, or a role R,
mapping them, respectively, to an element of the domain (aI ∈ ∆I), a subset of
the domain (CI ⊆ ∆I), or a set of pairs from the domain (RI ⊆ ∆I ×∆I).

An interpretation I satisfies an ontology O if and only if, for all axioms in O,
the corresponding semantic conditions in Table 2 hold for I. In this case, we call
I a model of O. This notion of a model gives rise to the key notion of entailment.

Definition 11. Given two DL ontologies O1 and O2, we define that O1 entails
O2, denoted O1 |= O2, if and only if every model of O1 is a model of O2.
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Table 2. Description Logic syntax and semantics

Name Syntax Semantics (·I)
Concept Definitions

Atomic Concept A AI (a subset of ∆I)
Top Concept > ∆I

Bottom Concept ⊥ ∅
Concept Negation ¬C ∆I \ CI
Concept Intersection C uD CI ∩DI

Concept Union C tD CI ∪DI

Nominals {a} {aI}
Existential Restriction ∃R.C {x | ∃y : (x, y) ∈ RI and y ∈ CI}
Universal Restriction ∀R.C {x | ∀y : (x, y) ∈ RI implies y ∈ CI}
Self Restriction ∃R.Self {x | (x, x) ∈ RI}
Number Restriction ? nR (where ? ∈ {≥,≤,=}) {x | #{y : (x, y) ∈ RI} ? n}
Qualified Number Restriction ? nR.C (where ? ∈ {≥,≤,=}) {x | #{y : (x, y) ∈ RI and y ∈ CI} ? n}

Concept Axioms (T-Box)

Concept Inclusion C v D CI ⊆ DI

Role Definitions

Role R RI (a subset of ∆I ×∆I)
Inverse Role R− {(y, x) | (x, y) ∈ RI}
Universal Role U ∆I ×∆I

Role Axioms (R-Box)

Role Inclusion R v S RI ⊆ SI
Complex Role Inclusion R1 ◦ ... ◦Rn v S RI1 ◦ ... ◦RIn ⊆ SI
Transitive Roles Trans(R) RI ◦RI ⊆ RI
Functional Roles Func(R) {(x, y), (x, z)} ⊆ RI implies y = z
Reflexive Roles Ref(R) for all x ∈ ∆I : (x, x) ∈ RI
Irreflexive Roles Irref(R) for all x ∈ ∆I : (x, x) 6∈ RI
Symmetric Roles Sym(R) RI = (R−)I

Asymmetric Roles Asym(R) RI ∩ (R−)I = ∅
Disjoint Roles Disj(R,S) RI ∩ SI = ∅

Assertional Definitions

Individual a aI (an element of ∆I)

Assertional Axioms (A-Box)

Role Assertion R(a, b) (aI , bI) ∈ RI
Negative Role Assertion ¬R(a, b) (aI , bI) 6∈ RI
Concept Assertion C(a) aI ∈ CI
Equality a = b aI = bI

Inequality a 6= b aI 6= bI
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As an example of a DL ontology, for O := (A,T,R), let:

– A := {Planet(Earth), parent(Luna,Earth), parent(Pluto,Sun)};
– T := {Planet v ∀child.Moon, Planemo ≡ Moon t Planet t DwarfPlanet};
– R := {parent v orbits, parent ≡ child−}.

For I = (∆I , ·I), let:

– ∆I := {⊕,$,\,☼};
– EarthI := ⊕, LunaI := $, PlutoI := \, SunI := ☼;
– PlanetI := {⊕,\}, PlanemoI := {⊕,\,$};
– parentI := {($,⊕), (\,☼)}, childI := {(⊕,$), (☼,\)}.

The interpretation I is not a model of O since it does not have that $ is an
instance of Moon, nor that $ orbits ⊕, nor that \ orbits ☼. However, if we
extend the interpretation I with the following:

– MoonI := {$};
– orbitsI := {($,⊕), (\,☼)}.

then the interpretation of I will satisfy – i.e., will be a model of – the ontology
O. Notably even though the ontology O does not entail that Planemo(Pluto),
it is still the case that I satisfies O; this is often referred to as the Open World
Assumption, where ontologies are not assumed to completely describe the world,
but rather to be incomplete. Now given the ontology:

O′ := ({Moon(Luna)}, {Moon v Planemo}, {}) ,

we may – with a bit of thought – convince ourselves of the fact that any model
I of O must also be a model of O′, and hence that O |= O′.

Unfortunately, deciding entailment for DL ontologies using all of the axioms
of Table 2 in an unrestricted manner is undecidable. Hence, different DLs then
apply different restrictions to the use of these axioms in order to achieve par-
ticular guarantees with respect to the complexity of deciding entailment. Most
DLs are founded on one of the following base DLs (we use indentation to denote
that the child DL extends the parent DL):

ALC (Attributive Language with Complement [61]), supports atomic concepts,
the top and bottom concepts, concept intersection, concept union, concept
negation, universal restrictions and existential restrictions. Role and concept
assertions are also supported.
S extends ALC with transitive closure.

These base languages can be extended as follows:

H adds role inclusion.
R adds (limited) complex role inclusion, as well as role reflexivity, role

irreflexivity, role disjointness and the universal role.
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O adds nomimals.
I adds inverse roles.
F adds (limited) functional properties.
N adds (limited) number restrictions.
Q adds (limited) qualified number restrictions (subsuming N given >).

We use “(limited)” to indicate that such features are often only allowed under
certain restrictions to ensure decidability; for example, complex roles (chains)
typically cannot be combined with cardinality restrictions. DLs are then typically
named per the following scheme, where [a|b] denotes an alternative between a
and b and [c][d] denotes a concatenation cd:

[ALC|S][H|R][O][I][F|N |Q]

Examples include ALCO, ALCHI, SHIF , SROIQ, etc. These languages often
apply additional restrictions on concept and role axioms to ensure decidability,
which we do not discuss here. For further details on Description Logics, we refer
to the recent book by Baader et al. [8].

We now discuss a research topic relating to the combination of ontology
entailment and graph querying.

The area of Ontology-Based Data Access (OBDA) [72] focuses on
finding and implementing DL fragments for which query answering can be
conducted over an ontology by means of a query rewriting strategy. Given
an ontology and a graph query, this strategy involves extending the query
such that, when it is evaluated over the base data, the solutions include
those also given by entailments with respect to the ontology. For example,
with respect to the aforementioned example ontology O, a simple graph
pattern {(?moon, type,Moon)} may be rewritten to query for:

{(?moon, type,Moon)}∪
{(?planet, type,Planet)(?planet, child, ?moon)}∪
{(?planet, type,Planet)(?moon, parent, ?planet)}

capturing the various ways in which instances of Moon could be entailed
from the base data. The ability of an ontology language (e.g., DL frag-
ment) to have all of its entailments supported in this way for queries using
the basic relational algebra (i.e., complex graph patterns) is called first-
order rewritability (referring to “first-order queries” which are equivalent
to relational algebra queries per Codd’s theorem). In general, only heavily
restricted ontology languages have this property [6], often only conjunctive
queries are accepted, and often the rewritten queries are unions of graph
patterns (rather than using the full algebra) as illustrated above.

Topic 4.1: OBDA on graphs
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So what happens if the input query is not simply a graph pattern or a
conjunctive query, but is rather a (complex) navigational graph pattern?
A number of works have studied the complexity of query answering for
navigational graph patterns in the presence of ontologies of varying ex-
pressivity [54, 65, 12]. However, such queries are not first-order queries,
and are not first-order rewritable, where it is thus unclear how regular
path queries can be supported in the context of OBDA, for example.

Many database systems, however, support features that go beyond first-
order queries; for example, relational database engines support recursion,
while graph database engines support path expressions. Such features of
query engines have rarely exploited as targets for query rewriting strategies;
exceptions include works on supporting transitive closure [63] and recursive
rules [73] using SQL recursion, and studies of other forms of rewritability,
such as rewriting to Datalog and Monadic Disjunctive Datalog [22].

This leaves the question: given a graph database system capable of an-
swering (complex) navigational graph patterns – as popular in practice –
what are the limits to the types of OBDA that the system can support
through query rewriting? What kinds of input queries can be supported
with respect to which ontology languages? A number of works have ex-
plored query rewriting strategies considering navigational queries as tar-
gets, but have focussed on particular ontology languages [13, 21]. An in-
teresting topic would be to explore, more generally, what kinds of ODBA
typical graph database engines can support, and under what assumptions.
Furthermore, experimental works to understand the limitations of such
techniques in terms of scalability and performance would be of importance
to understand how such systems can be adopted in practice.

5 Rules

Another way to define the semantics of knowledge graphs is to use rules. Rules
can be formalised in many ways – as Horn clauses, as Datalog, etc. – but in
essence they consist of if-then statements, where if some condition holds, then
some entailment holds. Here we define rules based on graph patterns.

Definition 12 (Rule). A rule is a pair R := (B,H) such that B and H are
graph patterns. The graph pattern B is called the body of the rule while H is
called the head of the rule.

Given a graph G and a rule R = (B,H), we can then apply R over G by
taking the union of µ(H) for all µ ∈ B(G). Typically we will assume that the set
of variables used in H will be a subset of those used in B (V(H) ⊆ V(B)), which
assures us that µ(H) will always result in a graph without variables. Given a set
of rules, we can then apply each rule recursively, accumulating the results in the
graph until a fixpoint is reached, thus enriching our graph with entailments.

There is a large intersection between the types of semantics we can define
with rules and with DL-based ontologies [40]. For example, we can capture the
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role-inclusion axiom parent v orbits as a rule (written B → H):

{(?x, parent, ?y)} → {(?x, orbits, ?y)}

or we can capture the concept inclusion Planet v ∀child.Moon as:

{(?x, type, Planet), (?x, child, ?y)} → {(?y, type, Moon)} .

However, we cannot capture axioms such as BinaryStar v ∃orbits.BinaryStar
with the types of rules we have seen. Such an axiom would need a rule like:

{(?x, type, BinaryStar)} → ∃y : {(?x, orbits, y), (y, type, BinaryStar)}

where the head introduces a fresh existential variable y for each binary star,
which itself is a binary star. (Note that if left unrestricted, such a rule, applied
recursively on a single instance of a binary star, might end up creating an infinite
chain of existential binary stars, each orbiting their existential successor!)

Additionally, rules as we have previously defined cannot capture axioms of
the form Planemo v Moon t Planet t DwarfPlanet either. For this we would
need a rule along the lines of the following:

{(?x, type, Planemo)} →{(?x, type, Moon)}∨
{(?x, type, Planet)}∨
{(?x, type, DwarfPlanet)} .

Here we introduce the disjunctive connective “∨” to state that when the body is
matched, then at least one of the heads holds true.

Rules extended with existentials and disjunction have, however, been ex-
plored as extensions of Datalog. Datalog± variants support existential rules (aka
tuple generating dependencies (tgds)) that allow for generating existentials in the
head of the rule, per the BinaryStar example, but typically in a restricted way to
ensure termination. On the other hand, Disjunctive Datalog allows for using dis-
junction in the head of rules, as seen in the Planemo example. These extensions
allow rules to capture semantics similar to more expressive DLs [59, 26, 27].

On the other hand, rules can express entailments not typically supported in
DLs, where a simple example of such a rule is:

{(?x, orbits, ?y), (?y, orbits, ?x)} →{(?x, sibling, ?y)} .

This type of entailment would require role intersection, which is not typically
supported by DLs. More generally, cyclical graph patterns that entail role asser-
tions are typically not supported in DLs, though easily captured by rules.4

Efficient reasoning systems have then been developed to support such rules
over knowledge graphs, including most recently, Vadalog [11] and VLog [17].

4 Cyclical graph patterns that entail concept assertions can be captured, in a slightly
roundabout way, in DLs with Self Restrictions and Complex Role Inclusions.
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Given a diverse knowledge graph, such as Wikidata [67], manually
defining all of the rules that may hold is a costly exercise. To help arrive
at an initial set of rules in such cases, a number of rule mining techniques
have been proposed that, given a graph, a certain support threshold, and a
certain confidence threshold, will return rules that meet the defined thresh-
olds; support is defined as the number of entailments given by the rule that
are deemed correct, while confidence is the ratio of entailments given by
the rule that are deemed correct. Given that knowledge graphs are incom-
plete, while we may assume that the triples given by the graph are correct,
it is not clear how we might know which triples are incorrect. A common
heuristic is to apply a Partial Completeness Assumption (PCA) [24], where
a triple (s, p, o) is considered correct if it appears in G, and incorrect if it
does not appear in G but there exists a triple (s, p, o′) that does appear in
G; other triples are ignored. A seminal rule mining system along these lines
is AMIE [24], which incrementally builds rules using a sequence of steps
called “refinements”, filtering rules that do not meet the specified thresh-
olds. A number of later systems support additional features in rules, such
as forms of negation [32]. However, to the best of our knowledge, mining
existential or disjunctive rules remains open for knowledge graphs.

Topic 5.1: Existential/disjunctive rule mining

6 Context

All of the data represented in Figure 1 holds true with respect to a given context :
a given scope of truth. As an example of temporal context, the Sun will cease
being a G-type Star and will eventually become a White Dwarf in its later years.
We may also have spatial context (e.g., to state that something holds true in
a particular region of space, such as a solar eclipse affecting parts of Earth),
provenance (e.g., to state that something holds true with respect to a given
source, such as the mass of a given planet), and so forth.

There are a variety of syntactic ways to embed contextual meta-data in a
knowledge graph. Within del graphs, for example, the options include reifica-
tion [18], n-ary relations [18], and singleton properties [52]. Context can also be
represented syntactically using higher-arity models, such as property graphs [4],
RDF* [30], or named graphs [18]. For further details on these options for repre-
senting context in graphs, we refer to the extended tutorial [35].

Aside from syntactic conventions for representing context in graphs, an im-
portant issue is with respect to how the semantics of context should be defined.
A general contextual framework for graphs based on annotations has been pro-
posed by Zimmermann et al. [76], based on the notion of an annotation domain.

Definition 13 (Annotation domain). Let A be a set of annotation values.
An annotation domain is defined as an idempotent, commutative semi-ring D =
〈A,⊕,⊗,0,1〉.
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For example, we may define A to be powerset of numbers from {1, . . . , 365}
indicating different days of the year. We may then annotate triples such as
(Luna, occults, Sun) with a set of days in a given year – say {13, 245, 301} on
which the given occultation will occur. Given another similar such triple – say
(Luna, occults, Jupiter) annotated with {46, 245, 323} – we can define ⊕ to be ∪
and use it to find the annotation for days when Luna occults the Sun or Jupiter
({13, 46, 245, 301, 323}); we can further define ⊗ to be ∩ and use it to find the
annotation for days when Luna occults the Sun and Jupiter ({245}). In this
scenario, 0 would then refer to the empty set, while 1 would refer to the set of
all days of the year. Custom annotation domains can be defined for custom forms
of context, and can be used in the context of querying and rules for computing
the annotations corresponding to particular results and entailments.

In the context of ontologies, a more declarative framework for handling con-
text – called contextual knowledge repositories – was proposed by Homola and
Serafini [37] based on Description Logics, with a related framework more re-
cently proposed by Schuetz et al. [62] based on an OLAP-style abstraction.
These frameworks can assign graphs into different hierarchical contexts, which
can then be aggregated into higher-level contexts.

Still, there are a number of questions that remain open regarding context.

Context – in the sense of the scope of truth – is an almost arbi-
trarily complex subject. To take some examples, context can be recurrent,
relative, and conceptual. Such forms of context are not – to the best of our
knowledge – well-supported by current contextual frameworks.

In terms of recurrent context, most examples stem from temporal con-
text, where we may state something that recurrently holds true of a given
date of a year, or a given day of the week, which we may then wish, for
example, to map to intervals on a non-recurrent temporal context.

In terms of relative context, the Wikidata [67] knowledge graph defines
a “truthy” context, which includes information that is not deprecated or
superseded by other information; for example, a population reading for a
city would be considered truthy if there is no other more recent population
reading available. However, the contextual notion of “most recent” requires
a relative assessment of context dependent on the other data available.

Regarding conceptual context, the triple (Pluto, type,Dwarf Planet) only
holds true since 2006. But unlike temporal context, it is the conceptualisa-
tion of a Planet, rather than Pluto itself, that has changed. This is an ex-
ample of concept drift [70], where the meaning of domain terms can change
over time, which in turn relates to the area of ontology evolution [75]. How
we conceptualise a domain can thus also be contextual.

The notion of context in knowledge graphs can then be arbitrarily com-
plex, where more complex notions of context remain poorly understood.

Topic 6.1: Complex contexts
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7 Embeddings

Machine learning has been gaining more and more attention in recent years,
particularly due to impressive advances in sub-areas such as Deep Learning,
where multi-layer architectures such as Convolutional Neural Networks (CNNs)
have led to major strides in tasks involving multi-dimensional inputs (such as
image classification), while architectures such as Recurrent Neural Networks
(RNNs) have likewise lead to major strides in tasks involving sequential data
(such as natural language translation). An obvious question then is: what kinds
of learning architectures could be applied to graphs? The answer, unfortunately,
is not so obvious. While machine learning architectures typically assume numeric
inputs in the form of tensors (multi-dimensional arrays), graphs – unlike, say,
images – are not naturally conceptualised in such terms.

A first attempt to encode a graph numerically would be a “one-hot encoding”.
Recalling the notation of NG for the nodes of a del graph, we introduce a similar
notation EG to denote the edge-labels (i.e., predicates or properties) of a del
graph; formally, EG := {p | ∃x, y : (x, p, y) ∈ G}. We could consider creating
a 3-mode tensor of size |NG| · |EG| · |NG|, where the element at (i, j, k) is 1 if
(ni, ej , nk) ∈ G, or 0 otherwise; here ni and nk denote the ith and kth nodes
in an indexing of NG, while ej indicates the jth edge label in an indexing of
EG. Though we now have a tensor representing the graph, for most graphs in
practice, the tensor would be very sparse, with few 1’s relative to 0’s. As a result,
using the tensor for the purposes of machine learning would be impractical.

In order to create more practical numeric representations of graphs for ma-
chine learning applications, knowledge graph embeddings aim to embed graphs
within a low-dimensional, dense, numerical representation. There are many ways
in which embeddings may be defined, but typically an embedding will map each
node and each edge-label of a graph to an independent vector or matrix. For
simplicity, we will assume embeddings that associate nodes and edge-labels to
real-valued vectors of fixed dimension d, which we denote by the set Rd.5

Definition 14 (Knowledge graph embedding). Given a del graph G, a
knowledge graph embedding of G is a pair of mappings (ε, ρ) such that ε :
NG → Rd and ρ : EG → Rd.

Typically ε is known as an entity embedding, while ρ is known as a relation
embedding. The knowledge graph embedding then consists of (typically low-
dimensional) numeric representations of the node and edge-labels of the graph G,
typically extracted such that the graph G can be (approximately) reconstructed
from the embedding. Towards this goal, the graph can be conceptualised as
a function γ : C × C × C → R[0,1], where γ(s, p, o) = 1 if (s, p, o) ∈ G or
γ(s, p, o) = 0 if (s, p, o) 6∈ G. Instead of accepting the constants s, p, o, however,
we could rather consider accepting the embeddings of those concepts: ε(s), ρ(p),
ε(o). This gives rise to the notion of a plausibility scoring function.
5 In practice, knowledge graph embeddings can take complex-valued vectors, or real-
valued matrices, or have entity and relation embeddings of different dimensions [68],
and so forth, but such details are not exigent for our purposes.
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Definition 15 (Plausibility). A plausibility scoring function is a partial func-
tion φ : Rd × Rd × Rd → R[0,1]. Given a del graph G = (V,E, L), a triple
(s, p, o) ∈ NG × EG × NG, and a knowledge graph embedding (ε, ρ) of G, the
plausibility of (s, p, o) is given as φ(ε(s), ρ(p), ε(o)).

Triples with scores closer to 1 are considered more plausible, while triples
with scores closer to 0 are considered less plausible. We can now learn embed-
dings that yield a score close to 1 for triples in (s, p, o), and a score close to 0 for
a sample of negative triples not in G. Given that G is assumed to be incomplete,
we cannot be certain that triples not in G are false. A common heuristic to gener-
ate negative examples is to apply the Partial Completeness Assumption (PCA),
taking a triple (s, p, o) from G and replacing a term (often o) with another term
appearing in G such that the resulting triple does not appear in G. In practice,
the dimensions of the embeddings are fixed to a low number such that rather
than “remembering” G, the knowledge graph embedding is forced to generalise
patterns in how G is connected. Different knowledge graph embeddings instan-
tiate the types of embedding considered and the plausibility scoring function in
different ways [68]. We refer to the extended tutorial for details [35].

Once trained over G, knowledge graph embeddings directly allow for estimat-
ing the plausibility for triples of the form (s, p, o) ∈ NG ×EG ×NG (i.e., triples
using some combination of terms found in G). This can be used for the purposes
of link prediction, whereby considering the graph G of Figure 1 and given a par-
tial triple such as (Toliman, orbits, ?), the embedding of G can be used to predict
likely completions of the triples, such as Rigil Kentaurus (already in the graph),
or perhaps Proxima Centauri, or even Toliman itself. The embeddings themselves
can also be useful independently of the plausibility scoring function as numerical
representations of the elements of the graph, where, for example, similar numer-
ical values will typically be assigned to similar nodes and edge-labels based on
how they are connected in the graph.

In terms of open questions, a natural topic to explore is the combination of
knowledge graph embeddings with ontologies and notions of entailment.

The plausibility scoring function assigns 1 to triples deemed likely
to be true, and 0 to triples deemed likely to be false. This function is learnt
based on the triples found in G. But in the case that G contains ontological
definitions, it may entail triples that are not explicitly stated. In such cases,
many knowledge graph embeddings only consider the structure, rather than
the semantics, of G, and may thus assign entailed-but-not-stated triples a
score closer to 0. Ideally, a semantic knowledge graph embedding would
assign a plausibility of (close to) 1 for triples that are entailed by G.

A natural strategy is to materialise as many entailments for G as pos-
sible and then apply a structural knowledge graph embedding over the
extended version of G as usual. However, in the case of ontological defini-

Topic 7.1: Semantic knowledge graph embeddings
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tions that generate new existentials, for example, it is possible that not all
entailments can be materialised; in other cases, the number of entailments
may simply be too large for materialisation to be practical.

A number of approaches have been proposed for considering entail-
ments in knowledge graph embeddings [69, 28, 20]. Wang et al. [69] use
functional and inverse-functional axioms as constraints (under a Unique
Name Assumption (UNA)) such that if adding a triple to the graph would
violate such a constraint, then its plausibility is lowered; for example, if
we define system to be functional, and if we already have that the edge
(Sun, system, Sol) holds, then we would reduce the plausibility of triples
such as (Sun, system,Alpha Centauri). On the other hand, the KALE [28]
system uses a combination of t-norm fuzzy logics and rules to assign plau-
sibility to entailments. However, the approach relies on generating “ground
rules” that indicate specific ways in which a triple can be entailed, which
can lead to many ground rules for more complex definitions.

A perhaps simpler approach is to again conceptualise entailment nu-
merically. If we state, for example, that parent v orbits, then we would
expect that for any triples (x, parent, y) and (x, orbits, y), the former triple
(being more specific) should be less plausible than the latter triple (being
more general). Likewise, for example, a triple (z, type,Dwarf Planet) should
always be less plausible than a triple (z, type,Planemo). This observation
is exploited by FSL [20], which then defines soft constraints that associate
a cost with contradicting such plausibility orderings. However, only simple
forms of entailment are supported.

Hence a relevant topic is to explore how knowledge graph embeddings
can be formulated and trained in order to find a numerical representa-
tion not only of the structure of a graph, but also its semantics, including
potentially complex forms of entailment.

8 Graph Neural Networks

Rather than encoding the structure of graphs numerically, an alternative to en-
able learning over graphs is to design machine learning architectures that oper-
ate directly over the structure of a graph. A natural starting point is to consider
neural networks, which already form graphs where nodes are (artificial) neurons,
and edges are (artificial) axons that pass signals between neurons. Unlike graphs
used to represent data, however, traditional neural networks tend to have a much
more regular structure, being organised into layers, where all the nodes of one
layer are connected pairwise to all the nodes of the next layer.

To enable learning over graphs of data, an alternative approach is to define
the structure of the neural network in terms of the structure of the graph. In
this case, the nodes of the graph are interpreted as neurons, while edges are
interpreted as axons. Thus nodes can pass signals to each other through edges
towards solving a given task. In a supervised setting, we may label a subset of
nodes in the graph and then learn functions that aggregate information from
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the neighbourhood of each node, computing a new state for the node; this may
continue recursively until a fixpoint, or for a fixed number of steps. Typically
nodes and edges in the input graph will be associated with numerical feature vec-
tors that encode pertinent information for the supervised task. Such a learning
architecture is known as a graph neural network (GNN) [60].

As an example, assuming a large del graph similar to that shown in Figure 2,
we may label a subset of planets that are known to be in a habitable zone that
could support life. We could then associate nodes with vectors that numerically
encode their type, their mass, their density, their composition etc.; we may then
further associate edges with vectors indicating the type of relation, the astro-
nomic distance between bodies, etc. Based on labelled examples, a graph neural
network can then learn aggregation functions that take the information sur-
rounding the neighbourhood of each node – for example, numerical data about
the moon(s) of a particular planet, the star(s) of planet, the distances involved,
etc. – and generate the expected output; the same functions can then be applied
to unlabelled nodes to generate predicted classifications.

We first define a vector-labelled del graph, which serves as input to a GNN:

Definition 16 (Vector-labelled graph). A vector-labelled del graph Gλ is
a pair Gλ := (G,λ) where G is a del graph, and λ : NG ∪ G → Ra is a vector
labelling function.

For simplicity, we will assume that nodes and triples are labelled with vectors
of the same dimension (a). Thereafter, there are two principle architectures for
GNNs: recursive and non-recursive graph neural networks. Here we focus on
non-recursive graph neural networks, where details of the recursive architecture
can rather be found in the extended tutorial [35]. Note that in the following
definition, we use S → N to denote bags (aka multisets) formed from the set S.

Definition 17 (Non-recursive graph neural network). A non-recursive
graph neural network (NRecGNN) N with l layers is an l-tuple of functions
N := (Agg(1), . . . ,Agg(l)), where Agg(k) : Ra×2(Ra×Ra)→N → Ra for 1 ≤ k ≤ l.

Each aggregation function Agg(k) computes a new feature vector for a node,
given its previous feature vector and the feature vectors of the nodes and edges
forming its neighbourhood. We assume for simplicity that the dimensions of the
vectors remain the same throughout, though this is not necessary in practice.6
Given an NRecGNN N = (Agg(1), . . . ,Agg(l)), a vector-labelled graph Gλ, and
a node u ∈ NG, we define the output vector assigned to node u in Gλ by N

(written N(Gλ, u)) as follows. First let n
(0)
u := λ(u). For all i ≥ 1, let:

n(i)
u := Agg(i)

(
n(i−1)
u , {{(n(i−1)

v , λ(v, p, u)) | (v, p, u) ∈ E}}
)

Then N(Gλ, u) := n
(l)
u .

6 We can still define a to be the largest dimension needed, padding other vectors.
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In an l-layer NRecGNN, a different aggregation function is applied at each
step (i.e., in each layer), up to a fixed number of steps l. These aggregation
functions are typically parametrised and learnt based on labelled training data.
When the aggregation functions are based on a convolutional operator, the result
is a convolutional graph neural network (ConvGNN ).

Though initially it may seem as if GNNs and ontologies are orthogonal con-
cepts for graphs, there are some correspondences between both.

Both GNNs and ontologies can be used to classify nodes. While
GNNs can be used to perform classification based on numerical methods
and inductive learning, ontologies can be used to perform classification
based on symbolic methods and deductive reasoning. An interesting re-
search question is then to understand how these two paradigms might re-
late in terms of expressiveness. For example, can GNNs potentially learn
to make similar classifications based on similar input data as ontologies?
In fact, some progress has been made recently on this question.

GNNs are typically based on aggregations of data from a local neigh-
bourhood. This means that there are limitations to what GNNs can distin-
guish. In particular, GNNs based on local information cannot distinguish
certain non-isomorphic graphs [74], but rather can only distinguish graphs
that are also distinguishable by a weaker Weisfeiler–Lehman (WL) test for
isomorphism, which involves recursively hashing neighbouring information
of nodes up to a fixpoint. More specifically, if the WL test assigns the same
hash to two nodes in the graph, then those nodes cannot be distinguished
by a GNN of the form previously described. Barceló et al. [10] then recently
showed that for any binary classification expressible as an ALCQ ontology,
there exists a GNN of the form previously described that will compute the
same classification; they further define a discrete form of GNN that can
only capture binary classifications expressible as an ALCQ ontology.

This rather surprising correspondence between GNNs and ALCQ con-
stitutes a bridge between deductive and inductive semantics for knowledge
graphs. An interesting line of research is then to investigate GNN-style
architectures that permit classification with respect to other DLs [10].

Topic 8.1

9 Conclusions

The growing popularity of knowledge graphs presents an opportunity for re-
search that combines various technical perspectives on how graphs can be used
to represent and exploit knowledge at large scale. Within the intersection of these
varying perspectives lies interesting research questions in terms of how concepts
from graph databases and knowledge representation can be fruitfully combined,
how techniques from machine learning relate to logical languages, and so forth.
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Here we have mentioned a number of key concepts relating to knowledge
graphs – specifically data models, querying, ontologies, rules, embeddings and
graph neural networks – as well as a number of research topics that arise from
their combination. We have only scratched the surface. Knowledge graphs en-
compass an even wider range of topics, where we have not touched upon con-
cepts such as shapes and validation, graph algorithm and analytics, privacy and
anonymisation, data quality, knowledge graph creation and completion, knowl-
edge graph refinement, etc. Likewise there are many interesting research ques-
tions that arise when considering combinations of these concepts. For discussion
on these and other topics we refer to the extended tutorial [35].
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