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1 INTRODUCTION
Though the phrase “knowledge graph” has been used in the literature since at least 1972 [118], the

modern incarnation of the phrase stems from the 2012 announcement of the Google Knowledge

Graph [122], followed by further announcements of knowledge graphs by Airbnb, Amazon, eBay,

Facebook, IBM, LinkedIn, Microsoft, Uber, and more besides [57, 95]. The growing industrial uptake

of the concept proved difficult for academia to ignore, with more and more scientific literature

being published on knowledge graphs in recent years [32, 77, 100, 105, 106, 140, 144].

Knowledge graphs use a graph-based data model to capture knowledge in application scenarios

that involve integrating, managing and extracting value from diverse sources of data at large

scale [95]. Employing a graph-based abstraction of knowledge has a number of benefits when

compared with a relational model or NoSQL alternatives. Graphs provide a concise and intuitive

abstraction for a variety of domains, where edges and paths capture different, potentially complex

relations between the entities of a domain [6]. Graphs allow maintainers to postpone the definition

of a schema, allowing the data to evolve in a more flexible manner [4]. Graph query languages

support not only standard relational operators (joins, unions, projections, etc.), but also navigational

operators for finding entities connected through arbitrary-length paths [4]. Ontologies [18, 52, 89]

and rules [59, 70] can be used to define and reason about the semantics of the terms used in

the graph. Scalable frameworks for graph analytics [80, 126, 148] can be leveraged for computing

centrality, clustering, summarisation, etc., in order to gain insights about the domain being described.

Promising techniques are now emerging for applying machine learning over graphs [140, 145].

1.1 Overview and Novelty
The goal of this tutorial paper is to motivate and give a comprehensive introduction to knowledge

graphs, to describe their foundational data models and how they can be queried and validated, and

to discuss deductive and inductive ways to make knowledge explicit. Our focus is on introducing

key concepts and techniques, rather than specific implementations, optimisations, tools or systems.

A number of related surveys, books, etc., have been published relating to knowledge graphs. In

Table 1, we provide an overview of the tertiary literature – surveys, books, tutorials, etc. – relating

to knowledge graphs, comparing the topics covered to those specifically covered in this paper.

We see that the existing literature tends to focus on particular topics shown. Some of the related

literature provides more details on particular topics than this paper; we will often refer to these

works for further reading. Unlike these works, our goal as a tutorial paper is to provide a broad

and accessible introduction to knowledge graphs. In the final row of the table, we indicate the

topics covered in this paper ( ✓ ) and an extended version ( E ) published online [57]. While this

paper focuses on the core of knowledge graphs, the extended online version further discusses

knowledge graph creation, enrichment, quality assessment, refinement, publication, as well as

providing further details of the use of knowledge graphs in practice, their historical background,

and formal definitions that complement this paper. We also provide concrete examples relating to

the paper in the following repository: https://github.com/knowledge-graphs-tutorial/examples.

Our intended audience includes researchers and practitioners who are new to knowledge graphs.

As such, we do not assume that readers have specific expertise on knowledge graphs.

https://doi.org/0000001.0000001
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Table 1. Related tertiary literature on knowledge graphs; * denotes informal publication (arXiv), ✓ denotes
in-depth discussion, denotes brief discussion, E denotes discussion in the extended version of this paper [57]
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Pan et al. [97] 2017 Book ✓ ✓ ✓ ✓ ✓

Paulheim [100] 2017 Survey ✓

Wang et al. [140] 2017 Survey ✓

Yan et al. [151] 2018 Survey ✓ ✓ ✓ ✓ ✓

Gesese et al. [38] 2019 Survey ✓

Kazemi et al. [67] 2019 Survey* ✓ ✓ ✓

Kejriwal [69] 2019 Book ✓

Xiao et al. [147] 2019 Survey ✓

Wang and Yang [143] 2019 Survey ✓ ✓

Al-Moslmi et al. [2] 2020 Survey ✓

Fensel et al. [33] 2020 Book ✓ ✓

Heist et al. [49] 2020 Survey* ✓

Ji et al. [65] 2020 Survey* ✓ ✓ ✓ ✓

Hogan et al. 2021 Tutorial ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ E E E E E E E E E

1.2 Terminology
We now establish some core terminology used throughout the paper.

Knowledge graph. The definition of a “knowledge graph” remains contentious [13, 15, 32], where

a number of (sometimes conflicting) definitions have emerged, varying from specific technical

proposals to more inclusive general proposals.
1
Herein we define a knowledge graph as a graph of

data intended to accumulate and convey knowledge of the real world, whose nodes represent entities of

interest and whose edges represent potentially different relations between these entities. The graph of

data (aka data graph) conforms to a graph-based data model, which may be a directed edge-labelled

graph, a heterogeneous graph, a property graph, etc. (we discuss these models in Section 2).

Knowledge. While many definitions for knowledge have been proposed, we refer to what Nonaka

and Takeuchi [94] call “explicit knowledge”, i.e., something that is known and can be written down.

Knowledge may be composed of simple statements, such as “Santiago is the capital of Chile”, or

quantified statements, such as “all capitals are cities”. Simple statements can be accumulated as

edges in the data graph. For quantified statements, a more expressive way to represent knowledge –

such as ontologies or rules – is required. Deductive methods can then be used to entail and accumulate

further knowledge (e.g., “Santiago is a city”). Knowledge may be extracted from external sources.

Additional knowledge can also be extracted from the knowledge graph itself using inductive methods.

Open vs. enterprise knowledge graphs. Knowledge graphs aim to become an ever-evolving shared

substrate of knowledge within an organisation or community [95]. Depending on the organisation

or community the result may be an open or enterprise knowledge graph. Open knowledge graphs

are published online, making their content accessible for the public good. The most prominent

examples – BabelNet [90], DBpedia [76], Freebase [14], Wikidata [138], YAGO [55], etc. – cover

many domains, offer multilingual lexicalisations (e.g., names, aliases and descriptions of entities),

and are either extracted from sources such as Wikipedia [55, 76, 90], or built by communities of

volunteers [14, 138]. Open knowledge graphs have also been publishedwithin specific domains, such

as media, government, geography, tourism, life sciences, and more besides. Enterprise knowledge

1
A comprehensive discussion of prior definitions can be found in Appendix A of the extended version [57].
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graphs are typically internal to a company and applied for commercial use-cases [95]. Prominent

industries using enterprise knowledge graphs include Web search, commerce, social networks,

finance, among others, where applications include search, recommendations, information extraction,

personal agents, advertising, business analytics, risk assessment, automation, and more besides [57].

1.3 Paper Structure
We introduce a running example used throughout the paper, and the paper’s structure.

Running example. To keep the discussion accessible, we present concrete examples for a hypo-

thetical knowledge graph relating to tourism in Chile (loosely inspired by, e.g., [66, 79]), aiming to

increase tourism in the country and promote new attractions in strategic areas through an online

tourist information portal. The knowledge graph itself will eventually describe tourist attractions,

cultural events, services, businesses, as well as cities and popular travel routes.

Structure. The remainder of the paper is structured as follows:

Section 2 outlines graph data models and the languages used to query and validate them.

Section 3 presents deductive formalisms by which knowledge can be represented and entailed.

Section 4 describes inductive techniques by which additional knowledge can be extracted.

Section 5 concludes with a summary and future research directions for knowledge graphs.

2 DATA GRAPHS
At the foundation of any knowledge graph is the principle of first modelling data as a graph. We

now discuss a selection of popular graph-structured data models, languages used to query and

validate graphs, as well as representations of context in graphs.

2.1 Models
Graphs offer a flexible way to conceptualise, represent and integrate diverse and incomplete data.

We now introduce the graph data models most commonly used in practice [4].

2.1.1 Directed edge-labelled graphs. A directed edge-labelled graph, or del graph for short (also

known as a multi-relational graph [9, 17, 93]) is defined as a set of nodes – like Santiago , Arica ,

2018-03-22 12:00 – and a set of directed labelled edges between those nodes, like Santa Lucía Santiagocity .

In knowledge graphs, nodes represent entities (the city Santiago; the hill Santa Lucía; noon on

March 22
nd
, 2018; etc.) and edges represent binary relations between those entities (e.g., Santa

Lucía is in the city Santiago). Figure 1 exemplifies how the tourism board could model event data

as a del graph. Adding data to such a graph typically involves adding new nodes and edges (with

some exceptions discussed later). Representing incomplete information requires simply omitting a

particular edge (e.g., the graph does not yet define a start/end date-time for the Food Truck festival).

Modelling data in this way offers more flexibility for integrating new sources of data, compared

to the standard relational model, where a schema must be defined upfront and followed at each step.

While other structured data models such as trees (XML, JSON, etc.) would offer similar flexibility,

graphs do not require organising the data hierarchically (should venue be a parent, child, or sibling
of type for example?). They also allow cycles to be represented and queried (e.g., in Figure 1, note

the directed cycle in the routes between Santiago, Arica, and Viña del Mar).

A standard data model based on del graphs is the Resource Description Framework (RDF) [24].

RDF defines three types of nodes: Internationalised Resource Identifiers (IRIs), used for globally

identifying entities and relations on the Web; literals, used to represent strings and other datatype

values (integers, dates, etc.); and blank nodes, used to denote the existence of an entity.

ACM Comput. Surv., Vol. X, No. X, Article XX. Publication date: March 2021.
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EID15

Ñam

name

Food Festivaltype

Drinks Festival

type

Open Market

type

Santa Lucía

venue

Santiago

city

EID16type

type

Food Truck

name

2018-03-22 12:00 start

2018-03-29 20:00

end

Piscina Olímpica

venue

Arica

city

flight

Sotomayor

venue

Viña del Mar

city
flight
bus bus

Fig. 1. Directed-edge labelled graph describing events and their venues.

Santiago

City

type

Chilecapital Perú
borders

borders

Country

type type

(a) Del graph

Santiago : City Chile : Countrycapital Perú : Country
borders

borders

(b) Heterogeneous graph

Fig. 2. Data about capitals and countries in a del graph and a heterogeneous graph

2.1.2 Heterogeneous graphs. A heterogeneous graph [61, 142, 154] (or heterogeneous information

network [128, 129]) is a graph where each node and edge is assigned one type. Heterogeneous graphs

are thus akin to del graphs – with edge labels corresponding to edge types – but where the type of

node forms part of the graph model itself, rather than being expressed as a special relation, as seen

in Figure 2. An edge is called homogeneous if it is between two nodes of the same type (e.g., borders);
otherwise it is called heterogeneous (e.g., capital). Heterogeneous graphs allow for partitioning nodes

according to their type, for example, for the purposes of machine learning tasks [61, 142, 154].

However, unlike del graphs, they typically assume a one-to-one relation between nodes and types

(notice the node Santiago with zero types and EID15 with multiple types in the del graph of Figure 1).

2.1.3 Property graphs. A property graph allows a set of property–value pairs and a label to be

associatedwith nodes and edges, offering additional flexibility whenmodelling data [4, 84]. Consider,

for example, modelling the airline companies that offer flights. In a del graph, we cannot directly

annotate an edge like Santiago Aricaflight with the company, but we could add a new node denoting

a flight and connect it with the source, destination, companies, and mode, as shown in Figure 3a.

Applying this pattern to a large graph may require significant changes. Conversely, Figure 3b

exemplifies a property graph with analogous data, where property–value pairs on edges model

companies, property–value pairs on nodes indicate latitudes and longitudes, and node/edge labels

indicate the type of node/edge. Though not yet standardised, property graphs are used in popular

graph databases, such as Neo4j [4, 84]. While the more intricate model offers greater flexibility in

terms of how to encode data as a property graph (e.g., using property graphs, we can continue

modelling flights as edges in Figure 3b) potentially leading to a more intuitive representation, these

additional details likewise require more intricate query languages, formal semantics, and inductive

techniques versus simpler graph models such as del graphs or heterogeneous graphs.

2.1.4 Graph dataset. A graph dataset allows for managing several graphs, and consists of a set

of named graphs and a default graph. Each named graph is a pair of a graph ID and a graph. The

default graph is a graph without an ID, and is referenced “by default” if a graph ID is not specified.

Figure 4 provides an example where events and routes are stored in two named graphs, and the

ACM Comput. Surv., Vol. X, No. X, Article XX. Publication date: March 2021.
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Santiago

Capital City

type

−33.45

lat

−70.66

long

Flight LATAM Arica

−18.48

lat

−70.33

long

Port City

type

LA381

to fromcompanymode

LA380

from tocompanymode

(a) Del graph

lat = −33.45

long = −70.66

Santiago : Capital City

lat = −18.48

long = −70.33

Arica : Port Citycompany = LATAM

LA380 : flight

company = LATAM

LA381 : flight

(b) Property graph

Fig. 3. Flight data in a del graph and a property graph

Events

Ñam

EID15

name

Food Festivaltype

Drinks Festival

type

Open Market

type

Santa Lucía

venue

Santiago

city

EID16type

type

Food Truck

name

2018-03-22 12:00 start

2018-03-29 20:00

end

Piscina Olímpica

venue

Arica

city

Sotomayor

venue

Viña del Mar

city

Routes

Santiago Arica

flight

Viña del Mar
flight
bus bus

Default Routes 2018-04-03updated Events 2018-06-14updated

Fig. 4. Graph dataset with two named graphs and a default graph describing events and routes

default graph manages meta-data about the named graphs. Though the example uses del graphs,

graph datasets can be generalised to other types of graphs. Graph datasets are useful for managing

and querying data from multiple sources [48], where each source can be managed as a separate

graph, allowing individual graphs to be queried, updated, removed, etc., as needed.

2.1.5 Other graph data models. The graph models presented thus far are the most popular in

practice [4]. Other graph data models exist with nodes that may contain individual edges or even

nested graphs (aka. hypernodes) [6]. Likewise hypergraphs allow edges that connect sets rather

than pairs of nodes. Nonetheless, data can typically be converted from one model to another; in

our view, a knowledge graph can thus adopt any such graph data model. In this paper we discuss

del graphs given their relative succinctness, but most discussion extends naturally to other models.

2.1.6 Graph stores. A variety of techniques have been proposed for storing and indexing graphs,

facilitating the efficient evaluation of queries (as discussed next). Directed-edge labelled graphs can

be stored in relational databases either as a single relation of arity three (triple table), as a binary

relation for each property (vertical partitioning), or as n-ary relations for entities of a given type

(property tables) [146]. Custom storage techniques have also been developed for a variety of graph

models, providing efficient access for finding nodes, edges and their adjacent elements [6, 84, 146].

A number of systems further allow for distributing graphs over multiple machines based on popular

NoSQL stores or custom partitioning schemes [63, 146]. For further details we refer to the book

chapter by Janke and Staab [63] and the survey by Wylot et al. [146] dedicated to this topic.

ACM Comput. Surv., Vol. X, No. X, Article XX. Publication date: March 2021.
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Food Festival ?evtype

?vn1

venue

?vn2

venue

?ev ?vn1 ?vn2

EID16 Piscina Olímpica Sotomayor
EID16 Sotomayor Piscina Olímpica
EID16 Piscina Olímpica Piscina Olímpica
EID16 Sotomayor Sotomayor
EID15 Santa Lucía Santa Lucía

Fig. 5. Graph pattern (left) with mappings generated over the graph of Figure 1 (right)

2.1.7 Creation. We have seen how knowledge graphs can be modelled and stored, but how are

they created? Creation often involves integrating data from diverse sources, including direct

human input; extraction from existing text, markup, legacy file formats, relational databases, other

knowledge graphs; etc. [57]. Further discussion on knowledge graph creation, enrichment, quality

assessment, refinement and publication is provided in the extended version [57].

2.2 Querying
A number of languages have been proposed for querying graphs [4, 121], including the SPARQL

query language for RDF graphs [46]; and Cypher [34], Gremlin [112], and G-CORE [5] for querying

property graphs. We now describe some common primitives that underlie these languages [4].

2.2.1 Graph patterns. A (basic) graph pattern [4] is a graph just like the data graph being queried,

but that may also contain variables. Terms in graph patterns are thus divided into constants, such

as Arica or venue, and variables, which we prefix with question marks, such as ?event or ?rel. A graph

pattern is then evaluated against the data graph by generating mappings from the variables of the

graph pattern to constants in the data graph such that the image of the graph pattern under the

mapping (replacing variables with the assigned constants) is contained within the data graph.

Figure 5 shows a graph pattern looking for the venues of Food Festivals, along with the mappings

generated by the graph pattern against the data graph of Figure 1. In the latter two mappings,

multiple variables are mapped to the same term, which may or may not be desirable depending on

the application. Hence a number of semantics have been proposed for evaluating graph patterns [4],

amongst which the most important are: homomorphism-based semantics, which allows multiple

variables to be mapped to the same term such that all mappings shown in Figure 5 would be

considered results (this semantics is adopted by SPARQL); and isomorphism-based semantics, which

requires variables on nodes and/or edges to be mapped to unique terms, thus excluding the latter

three mappings of Figure 5 from the results (this semantics is adopted by Cypher for edge variables).

2.2.2 Complex graph patterns. A graph pattern transforms an input graph into a table of results

(as shown in Figure 5). A complex graph pattern [4] then allows the tabular results of one or more

graph patterns to be transformed using the relational algebra, as supported in query languages

such as SQL, including operators such as projection (π , aka. SELECT), selection (σ , aka. WHERE or
FILTER), union (∪, aka. UNION), difference (−, aka. EXCEPT), inner joins (Z, aka. NATURAL JOIN),
left outer join (Z, aka. LEFT OUTER JOIN or OPTIONAL), anti-join (◃, aka. NOT EXISTS), etc. Graph
query languages such as SPARQL [46] and Cypher [34] then support complex graph patterns.

Figure 6 shows a complex graph pattern looking for food festivals or drinks festivals not held in

Santiago, optionally returning their name and start date (where available). We denote projected

variables in bold. The complex graph pattern combines the tables of mappings for five basic graph

patterns (Q1, . . . ,Q5) using relational operators (∪, ◃, Z) in order to generate the results shown.

Complex graph patterns can give rise to duplicate results; for example, if we project only

the variable ?ev in Figure 5, then EID16 appears (alone) as a result four times. Query languages

ACM Comput. Surv., Vol. X, No. X, Article XX. Publication date: March 2021.
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?event Food FestivaltypeQ1:
?event Drinks FestivaltypeQ2:

?event ?venvenue SantiagocityQ3:

?event ?startstartQ4:
?event ?namenameQ5:

Q := ((((Q1 ∪Q2) ◃Q3) Z Q4) Z Q5), Q(G) =
?event ?start ?name

EID16 Food Truck

Fig. 6. Complex graph pattern (Q) with mappings generated (Q(G)) over the graph of Figure 1 (G)

Food Festival ?eventtype ?namename

?city

(venue · city)−

Arica (bus | flight)*

?event ?name ?city

EID15 Ñam Santiago
EID16 Food Truck Arica
EID16 Food Truck Viña del Mar

Fig. 7. Navigational graph pattern (left) with mappings generated over the graph of Figure 1 (right)

typically offer two semantics: bag semantics preserves duplicates according to the multiplicity of

the underlying mappings, while set semantics (aka. DISTINCT) removes duplicates from the results.

2.2.3 Navigational graph patterns. A path expression r is a regular expression that can be used in a

regular path query (x, r ,y), where x and y can be variables or constants, in order to match paths of

arbitrary length. The base path expression is where r is a constant (an edge label). If r is a path
expression, then r− (inverse)

2
and r ∗ (Kleene star : 0-or-more) are also path expressions. If r1 and r2

are path expressions, then r1 | r2 (disjunction) and r1 · r2 (concatenation) are also path expressions.

Regular path queries can then be evaluated under a number of different semantics. For example,

(Arica, bus*, ?city) evaluated against the graph of Figure 1 may match the following paths:

Arica1 Arica Viña del Marbus2 Arica Viña del Marbus Aricabus3 ...

In fact, since a cycle is present, an infinite number of paths are potentially matched. For this reason,

restricted semantics are often applied, returning only the shortest paths, or paths without repeated

nodes or edges (as in the case of Cypher).
3
Rather than returning paths, another option is to instead

return the (finite) set of pairs of nodes connected by a matching path (as in the case of SPARQL 1.1).

Regular path queries can then be used in graph patterns to express navigational graph patterns [4],

as shown in Figure 7, which illustrates a query searching for food festivals in cities reachable

(recursively) from Arica by bus or flight. Combining regular paths queries with complex graph

patterns gives rise to complex navigational graph patterns [4], which are supported by SPARQL 1.1.

2.2.4 Other features. Graph query languages may support other features beyond those we have

discussed, such as aggregation, complex filters and datatype operators, sub-queries, federated

queries, graph updates, entailment regimes, etc. For more information, we refer to the respective

query languages (e.g., [5, 46]) and to the survey by Angles et al. [4].

2.3 Validation
While graphs offer a flexible representation for diverse, incomplete data at large-scale, we may

wish to validate that our data graph follows a particular structure, or is in some sense “complete”.

In Figure 1, for example, we may wish to ensure that all events have at least a name, venue, start

2
Some authors distinguish 2-way regular path queries from regular path queries, where only the former supports inverses.

3
Mapping variables to paths requires special treatment [4]. Cypher [34] returns a string that encodes a path, upon which

certain functions such as length(·) can be applied. G-CORE [5], on the other hand, allows for returning paths, and supports

additional operators on them, including projecting them as graphs, applying cost functions, and more besides.

ACM Comput. Surv., Vol. X, No. X, Article XX. Publication date: March 2021.
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venue

1..*

city

0..1

bus0..*flight 0..*

Event

name: string[1. .∗]

start: dateTime[1. .1]

end: dateTime[1. .1]

type: any[1. .∗]

Venue

indoor: boolean[0. .1]

City

population: int ∧ >5000 [0. .1]

Place

lat: float[0. .1]

long: float[0. .1]

Fig. 8. Example shapes graph depicted as a UML-like diagram

and end date, such that applications using the data – e.g., one notifying users of events – have the

minimal information required. One mechanism to facilitate such validation is to use shapes graphs.

2.3.1 Shapes graphs. A shape [72, 75, 104] targets a set of nodes in a data graph and specifies

constraints on those nodes. The shape’s target can be specified manually, using a query, etc.

A shapes graph is then formed from a set of interrelated shapes. Shapes graphs can be depicted

as UML-like class diagrams, where Figure 8 illustrates an example of a shapes graph based on

Figure 1, defining constraints on four interrelated shapes. Each shape – denoted with a box like

Place , Event , etc. – is associated with a set of constraints. Nodes conform to a shape if and only if

they satisfy all constraints defined on the shape. Inside each shape box constraints are placed on

the number (e.g., [1..*] denotes one-to-many, [1..1] denotes precisely one, etc.) and types (e.g., string,
dateTime, etc.) of nodes that conforming nodes can relate to with an edge label (e.g., name, start,
etc.). Another option is to place constraints on the number of nodes conforming to a particular

shape that the conforming node can relate to with an edge-label (thus generating edges between

shapes); for example, Event Venue

venue
1..* denotes that conforming nodes for Event must link to

at least one node that conforms to the Venue shape with the edge label venue. Shapes can inherit

the constraints of parent shapes (denoted with △) as per City and Venue whose parent is Place .

Boolean combinations of shapes can be defined using conjunction (and), disjunction (or), and

negation (not); for example, we may say that all the values of venue should conform to the shape

Venue and (not City) , making explicit that venues in the data should not be directly given as cities.

When declaring shapes, the data modeller may not know in advance the entire set of prop-

erties that some nodes can have. An open shape allows the node to have additional proper-

ties not specified by the shape, while a closed shape does not. For example, if we add the edge

Santiago Pedro de Valdiviafounder to the graph represented in Figure 1, then Santiago only conforms to the

City shape if that shape is defined as open (since the shape does not mention founder).

2.3.2 Conformance. A node conforms to a shape if it satisfies all of the constraints of the shape. The

conformance of a node to a shape may depend on the conformance of other nodes to other shapes;

for example, the node EID15 conforms to the Event shape not only based on its local properties, but

also based on conformance of Santa Lucía to Venue and Santiago to City . Conformance dependencies

may also be recursive, where the conformance of Santiago to City requires that it conform to Place ,

which requires that Viña del Mar and Arica conform to Place , and so on. Conversely, EID16 does not

conform to Event , as it does not have the start and end properties required by the shapes graph.

A graph is valid with respect to a shapes graph (and its targets) if and only if every node that

each shape targets conforms to that shape; for example, if Event targets EID15 and EID16 , the graph

of Figure 1 will not be valid with respect to the shapes graph of Figure 8 ( EID16 does not conform

to Event ), whereas if Event targets EID15 only, and no other target is defined, the graph is valid.
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Santiago Aricaflight

e

subject predicate object

1956valid from

(a) RDF Reification

Santiago eflight

1956

valid from

Arica

value

(b) n-ary Relations

Santiago Aricae

1956

valid from

flight

singleton

(c) Singleton properties

Fig. 9. Three representations of temporal context on an edge in a directed-edge labelled graph

2.3.3 Other features. Two shapes languages with such features have been proposed for RDF graphs:
Shape Expressions (ShEx) [104]; and SHACL (Shapes Constraint Language) [72]. These languages

also support additional features; for example, SHACL supports constraints expressed using graph

queries in the SPARQL language. More details about ShEx and SHACL can be found in the book

by Labra Gayo et al. [75]. Similar ideas have been proposed by Angles [3] for property graphs.

2.4 Context
Many (arguably all) facts presented in the data graph of Figure 1 can be considered true with respect

to a certain context. With respect to temporal context [23, 44, 114, 115], Santiago has existed as a city

since 1541, flights from Arica to Santiago began in 1956, etc. With respect to provenance [16, 39, 103],

data about EID15 were taken from – and are thus said to be true with respect to – the Ñam webpage

on April 11
th
, 2020. Other forms of context may also be used and combined, such as to indicate that

Arica is a Chilean city (geographic) since 1883 (temporal) per the Treaty of Ancón (provenance).

By context we herein refer to the scope of truth, and thus talk about the context in which some

data are held to be true [42, 81]. The graph of Figure 1 leaves much of its context implicit. However,

making context explicit can allow for interpreting the data from different perspectives, such as

to understand what held true in 2016, what holds true excluding webpages later found to have

spurious data, etc. We now discuss various explicit representations of context.

2.4.1 Direct representation. The first way to represent context is to consider it as data no different

from other data. For example, the dates for the event EID15 in Figure 1 can be seen as directly

representing an ad hoc form of temporal context [114]. Alternatively, a number of specifications

have been proposed to directly represent context in a more standard way, including the Time

Ontology [23] for temporal context, the PROV Data Model [39] for provenance, etc.

2.4.2 Reification. Often we may wish to directly define the context of edges themselves; for

example, we may wish to state that the edge Santiago Aricaflight is valid from 1956. One option is

to use reification, which allows for describing edges themselves in a graph. Figure 9 presents three

forms of reification for modelling temporal context [50]: RDF reification [24], n-ary relations [24]

and singleton properties [91]. Unlike in a direct representation, e is seen as denoting an edge in

the graph, not a flight. While n-ary relations [24] and singleton properties [91] are more succinct,

and n-ary relations are more compatible with path expressions, the best choice of reification may

depend on the system chosen [50]. Other forms of reification have been proposed in the literature,

including, for example, NdFluents [40]. In general, a reified edge does not assert the edge it reifies;

for example, we may reify an edge to state that it is no longer valid.

2.4.3 Higher-arity representation. We can also use higher-arity representations – that extend

the graph model – for encoding context. Taking again the edge Santiago Aricaflight , Figure 10

illustrates three higher-arity representations of temporal context. First, we can use a named del

graph (Figure 10a) to contain the edge and then define the temporal context on the graph name.

Second, we can use a property graph (Figure 10b) where the temporal context is defined as an

attribute on the edge. Third, we can use RDF* [47] (Figure 10c): an extension of RDF that allows
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Santiago Aricaflight

e 1956valid from

(a) Named graph

Santiago Arica

valid from = 1956

e : flight

(b) Property graph

Santiago Aricaflight 1956valid from

(c) RDF*

Fig. 10. Three higher-arity representations of temporal context on an edge

SantiagoArica flight
{[1, 125], [200, 365]}

EID17

city
{[276, 279]}

EID16

city
{[123, 130]}

Punta Arenasflight
{[1, 120], [220, 365]}

EID18

city
{[150, 152]}

G: Santiago ?cityflight ?eventcityQ :

Q (G) :
?city context

Arica {[123, 125], [276, 279]}

Fig. 11. Example query on a temporally annotated graph

edges to be defined as nodes. The most flexible of the three is the named graph representation, where

we can assign context to multiple edges at once by placing them in one named graph, for example,

adding more edges valid from 1956 to the named graph of Figure 10a. The least flexible option is

RDF*, which, without an edge id, cannot capture different groups of contextual values on an edge;

for example, we can add four values to the edge Chile M. Bacheletpresident stating that it was valid

from 2006 until 2010 and valid from 2014 until 2018, but we cannot pair the values [50, 115].

2.4.4 Annotations. While the previous alternatives are concerned with representing context, an-

notations allow for defining contexts, which enables automated context-aware processing of data.

Some annotations model a particular contextual domain; for example, Temporal RDF [44] allows for

annotating edges with time intervals, such as Chile M. Bachelet
president

[2006, 2010] , while Fuzzy RDF [125]

allows for annotating edges with a degree of truth such as Santiago Semi-Aridclimate
0.8

, indicating

that it is more-or-less true – with a degree of 0.8 – that Santiago has a semi-arid climate.

Other frameworks are domain-independent. Annotated RDF [30, 134, 156] allows for representing

various forms of context modelled as semi-rings: algebraic structures consisting of domain values

(e.g., temporal intervals, fuzzy values, etc.) and two main operators to combine domain values:

meet and join (different from the relational algebra join). Figure 11 gives an example where G is

annotated with integers (1–365) denoting days of the year. We use an interval notation such that

{[150, 152]} indicates the set {150, 151, 152}. Query Q asks for flights from Santiago to cities with

events and returns the temporal validity of each answer. To derive these answers, we first apply

the meet operator – defined here as set intersection – to compute the annotation for which a flight
and city edge match; for example, applying meet on {[150,152]} and {[1,120],[220,365]} for Punta Arenas

gives the empty time interval {}, and thus it may be omitted from the results (depending on the

semantics chosen). However, for Arica , we find two non-empty intersections: {[123,125]} for EID16

and {[276,279]} for EID17 . Since we are interested in the city, rather than the event, we combine these

two annotations for Arica using the join operator, returning the annotation in which either result

holds true. In our scenario, we define join as the union of sets, giving {[123,125],[276,279]}.

2.4.5 Other contextual frameworks. Other frameworks for modelling and reasoning about context

in graphs include that of contextual knowledge repositories [58], which assign (sub-)graphs to

contexts with one or more partially-ordered dimensions (e.g., 2020-03-22 ≼ 2020-03 ≼ 2020 ) allowing to

select sub-graphs at different levels of contextual granularity. A similar framework, proposed by

Schuetz et al. [120], is based on OLAP-like operations over contextual dimensions.

ACM Comput. Surv., Vol. X, No. X, Article XX. Publication date: March 2021.



XX:12 Hogan et al.

Q : ?festival
Festival

type

Santiago
location

?name name

Fig. 12. Graph pattern querying for names of festivals in Santiago

3 DEDUCTIVE KNOWLEDGE
As humans, we can deduce more from the data graph of Figure 1 than what the edges explicitly

indicate. We may deduce, for example, that the Ñam festival ( EID15 ) will be located in Santiago, that

the cities connected by flights must have some airport nearby, etc. Given the data as premises, and

some general rules about the world that we may know a priori, we can use a deductive process to

derive new data, allowing us to know more than what is explicitly given to us by the data.

Machines do not have inherent deductive faculties, but rather need entailment regimes to formalise

the logical consequence of a given set of premises. Once instructed in this manner, machines can

(often) apply deductions with a precision, efficiency, and scale beyond human performance. These

deductions may serve a range of applications, such as improving query answering, (deductive)

classification, finding inconsistencies, etc. As an example, take the query in Figure 12 asking for the

festivals located in Santiago. The query returns no results for the graph in Figure 1: there is no node

with type Festival , and nothing has the location Santiago . However, an answer ( Ñam ) could be entailed

if we stated that x being a Food Festival entails that x is a Festival, or that x having venue y in city

z entails that x has location z. Entailment regimes automate such deductions.

In this section, we discuss ways in which potentially complex entailments can be expressed and

automated. Though we could leverage a number of logical frameworks for these purposes – such as

First-Order Logic, Datalog, Prolog, Answer Set Programming, etc. – we focus on ontologies, which

constitute a formal representation of knowledge that, importantly for us, can be represented as a

graph; in other words, ontologies can be seen as knowledge graphs with well-defined meaning [32].

3.1 Ontologies
To enable entailment, we must be precise about what the terms we use mean. For example, we have

referred to the nodes EID15 and EID16 in Figure 1 as “events”. But what if, for example, we wish to

define two pairs of start and end dates for EID16 corresponding to the different venues? Should we

rather consider what takes place in each venue as a different event? What if an event has various

start and end dates in a single venue: would these be considered one (recurring) event, or many

events? These questions are facets of a more general question: what do we mean by an “event”? The

term “event” may be interpreted in many ways, where the answers are a matter of convention.

In computing, an ontology is then a concrete, formal representation – a convention – on what

terms mean within the scope in which they are used (e.g., a given domain). Like all conventions,

the usefulness of an ontology depends on how broadly and consistently it is adopted, and how

detailed it is. Knowledge graphs that use a shared ontology will be more interoperable. Given that

ontologies are formal representations, they can further be used to automate entailment.

Amongst the most popular ontology languages used in practice are the Web Ontology Language

(OWL) [52], recommended by the W3C and compatible with RDF graphs; and the Open Biomedical

Ontologies Format (OBOF ) [89], used mostly in the biomedical domain. Since OWL is the more

widely adopted, we focus on its features, though many similar features are found in both [89].

Before introducing such features, however, we must discuss how graphs are to be interpreted.

3.1.1 Interpretations. We as humans may interpret the node Santiago in the data graph of Figure 1

as referring to the real-world city that is the capital of Chile. We may further interpret an edge
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Arica Santiagoflight as stating that there are flights from the city of Arica to this city. We thus

interpret the data graph as another graph – what we here call the domain graph – composed of

real-world entities connected by real-world relations. The process of interpretation, here, involves

mapping the nodes and edges in the data graph to nodes and edges of the domain graph.

We can thus abstractly define an interpretation [7] of a data graph as the combination of a domain

graph and a mapping from the terms (nodes and edge-labels) of the data graph to those of the

domain graph. The domain graph follows the same model as the data graph. We refer to the nodes

of the domain graph as entities, and the edges of the domain graph as relations. Given a node Santiago

in the data graph, we denote the entity it refers to in the domain graph (per a given interpretation)

by Santiago . Likewise, for an edge Arica Santiagoflight , we will denote the relation it refers to by

Arica Santiagoflight . In this abstract notion of an interpretation, we do not require that Santiago or

Arica be the real-world cities: an interpretation can have any domain graph and mapping.

3.1.2 Assumptions. Why is this abstract notion of interpretation useful? The distinction between

nodes/edges and entities/relations becomes clear when we define the meaning of ontology features

and entailment. To illustrate, if we ask whether there is an edge labelled flight between Arica and

Viña del Mar for the data graph in Figure 1, the answer is no. However, if we ask if the entities Arica

and Viña del Mar are connected by the relation flight, then the answer depends on what assumptions

we make when interpreting the graph. Under the Closed World Assumption (CWA) – which asserts

that what is not known is assumed false – without further knowledge the answer is no. Conversely,

under the Open World Assumption (OWA), it is possible for the relation to exist without being

described by the graph [7]. Under the Unique Name Assumption (UNA), which states that no two

nodes can map to the same entity, we can say that the data graph describes at least two flights

to Santiago (since Viña del Mar and Arica must be different entities). Conversely, under the No Unique

Name Assumption (NUNA), we can only say that there is at least one such flight since Viña del Mar

and Arica may be the same entity with two “names” (i.e., two nodes referring to the same entity).

These assumptions definewhich interpretations are valid, andwhich interpretations satisfy which

data graphs. The UNA forbids interpretations that map two nodes to the same entity, while the

NUNA does not. Under CWA, an interpretation that contains an edge x yp in its domain graph

can only satisfy a data graph from which we can entail x yp . Under OWA, an interpretation

containing the edge x yp can satisfy a data graph not entailing x yp so long it does not

contradict that edge. Ontologies typically adopt the NUNA and OWA, i.e., the most general case,

which considers that data may be incomplete, and two nodes may refer to the same entity.

3.1.3 Semantic conditions. Beyond our base assumptions, we can associate certain patterns in the

data graph with semantic conditions that define which interpretations satisfy it [7]; for example, we

can add a semantic condition on a special edge label subp. of (subproperty of) to enforce that if our

data graph contains the edge venue locationsubp. of , then any edge x yvenue in the domain graph

of the interpretation must also have a corresponding edge x ylocation in order to satisfy the data

graph. These semantic conditions then form the features of an ontology language.

3.1.4 Individuals. In Table 2, we list the main features supported by ontologies for describing

individuals [52] (aka., entities). First, we can assert (binary) relations between individuals using

edges such as Santa Lucía Santiagocity . In the condition column, whenwewrite x zy , for example,

we refer to the condition that the given relation holds in the interpretation; if so, the interpretation

satisfies the assertion. We may further assert that two terms refer to the same entity, where, e.g.,

Región V Región de Valparaísosame as states that both refer to the same region; or that two terms refer

to different entities, where, e.g., Valparaíso Región de Valparaísodiff. from distinguishes the city from the

region of the same name. We may also state that a relation does not hold using negation.
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Table 2. Ontology features for individuals

Feature Axiom Condition Example

Assertion x zy x zy Chile Santiagocapital

Negation n
x

sub

ypre

z

obj

Neg

type

not x zy n
Chile

sub

capital
pre

Arica

obj

Neg

type

Same As x1 x2same as x1 = x2 Región V Región de Valparaísosame as

Different From x1 x2diff. from x1 , x2 Valparaíso Región de Valparaísodiff. from

3.1.5 Properties. Properties denote terms that can be used as edge-labels [52]. We may use a

variety of features for defining the semantics of properties, as listed in Table 3. First we may define

subproperties as exemplified before. We may also associate classes with properties by defining

their domain and range. We may further state that a pair of properties are equivalent, inverses, or

disjoint, or define a particular property to denote a transitive, symmetric, asymmetric, reflexive, or

irreflexive relation. We can also define the multiplicity of the relation denoted by properties, based

on being functional (many-to-one) or inverse-functional (one-to-many). We may further define a

key for a class, denoting the set of properties whose values uniquely identify the entities of that

class. Without adopting a Unique Name Assumption (UNA), from these latter three features we

may conclude that two or more terms refer to the same entity. Finally, we can relate a property to

a chain (a path expression only allowing concatenation of properties) such that pairs of entities

related by the chain are also related by the given property. For the latter two features in Table 3 we

use the vertical notation
.
.
. to represent lists (for example, OWL uses RDF lists [24]).

3.1.6 Classes. Often we can group nodes in a graph into classes – such as Event, City, etc. – with

a type property. Table 4 then lists a range of features for defining the semantics of classes. First,

subclass can be used to define class hierarchies.We can further define pairs of classes to be equivalent,

or disjoint. We may also define novel classes based on set operators: as being the complement of

another class, the union or intersection of a list of other classes, or as an enumeration of all of its

instances. One can also define classes based on restrictions on the values its instances take for a

property p, such as defining the class that has some value or all values from a given class on p;4

have a specific individual (has value) or themselves (has self ) as a value on p; have at least, at most

or exactly some number of values on p (cardinality); and have at least, at most or exactly some

number of values on p from a given class (qualified cardinality). For the latter two cases, in Table 4,

we use the notation “#{ a | ϕ}” to count distinct entities satisfying ϕ in the interpretation. Features

can be combined to create complex classes, where combining the examples for Intersection and

Has Self in Table 4 gives the definition: self-driving taxis are taxis having themselves as a driver.

3.1.7 Other features. Ontology languages may support further features, including datatype vs.

object properties, which distinguish properties that take datatype values from those that do not;

and datatype facets, which allow for defining new datatypes by applying restrictions to existing

datatypes, such as to define that places in Chile must have a float between -66.0 and -110.0 as their

value for the (datatype) property latitude. For more details we refer to the OWL 2 standard [52].

4
While DomesticAirport NationalFlightallflight prop might be a tempting definition, its condition would be vacuously

satisfied by individuals that cannot have any flight (e.g., an instance of Bus Station where Bus Station 0=flight prop ).
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Table 3. Ontology features for property axioms

Feature Axiom Condition (for all x∗, y∗, z∗) Example

Subproperty p qsubp. of x yp implies x yq venue locationsubp. of

Domain p cdomain x yp implies x ctype venue Eventdomain

Range p crange x yp implies y ctype venue Venuerange

Eqivalence p qequiv. p. x yp iff x yq start beginsequiv. p.

Inverse p qinv. of x yp iff y xq venue hostsinv. of

Disjoint p qdisj. p. not x y
p
q

venue hostsdisj. p.

Transitive p Transitivetype x yp zp implies x zp part of Transitivetype

Symmetric p Symmetrictype x yp iff y xp nearby Symmetrictype

Asymmetric p Asymmetrictype not x y
p
p

capital Asymmetrictype

Reflexive p Reflexivetype x p part of Reflexivetype

Irreflexive p Irreflexivetype not x p flight Irreflexivetype

Functional p Functionaltype y1 xp y2p implies y1 = y2 population Functionaltype

Inv. Functional p Inv. Functionaltype x1 yp x2p implies x1 = x2 capital Inv. Functionaltype

Key c
p1
.
.
.
pn

key x1

c

type

x2

type
y1p1 p1

...
... ...

yn

pn pn

implies x1 = x2 City lat
longkey

Chain p
q1
.
.
.
qn

chain
x y1q1 yn−1... zqn
. implies x zp

location location
part ofchain

3.2 Semantics and Entailment
The conditions listed in the previous tables give rise to entailments; for example, the definition

nearby Symmetrictype and edge Santiago Santiago Airportnearby entail Santiago Airport Santiagonearby per

the Symmetric condition of Table 3. We now describe how these conditions lead to entailments.

3.2.1 Model-theoretic semantics. Each axiom described by the previous tables, when added to a

graph, enforces some condition(s) on the interpretations that satisfy the graph. The interpretations

that satisfy a graph are calledmodels of the graph [7]. If we considered only the base condition of the

Assertion feature in Table 2, for example, then the models of a graph would be any interpretation

such that for every edge x zy in the graph, there exists a relation x zy in the model. Given

that there may be other relations in the model (under the OWA), the number of models of any such

graph is infinite. Furthermore, given that we can map multiple nodes in the graph to one entity

in the model (under the NUNA), any interpretation with (for example) the relation a aa is

a model of any graph so long as for every edge x zy in the graph, it holds that x = y = z

= a in the interpretation (in other words, the interpretation maps everything to a ). As we add

axioms with their associated conditions to the graph, we restrict models for the graph; for example,

considering a graph with two edges – x zy and y Irreflexivetype – the interpretation with

a aa , x = y = ... = a is no longer a model as it breaks the condition for the irreflexive axiom.
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Table 4. Ontology features for class axioms and definitions

Feature Axiom Condition (for all x∗, y∗, z∗) Example

Subclass c dsubc. of x ctype implies x dtype City Placesubc. of

Eqivalence c dequiv. c. x ctype iff x dtype Human Personequiv. c.

Disjoint c ddisj. c. not c xtype dtype City Regiondisj. c.

Complement c dcomp. x ctype iff not x dtype Dead Alivecomp.

Union c
d1
.
.
.
dn

union x ctype iff

x d1type or

x ...type or

x dntype

Flight DomesticFlight
InternationalFlightunion

Intersection c
d1
.
.
.
dn

inter. x ctype iff x ...type

d1type

dn
type

SelfDrivingTaxi Taxi
SelfDrivinginter.

Enumeration c
x1
.
.
.
xn

one of x ctype iff x ∈ { x1 , . . . , xn } EUState

Austria
.
.
.

Sweden
one of

Some Values c
d

some

p
prop x ctype iff

there exists a such that

x ap dtype
EUCitizen

EUState
some

nationality
prop

All Values c
d

all

p
prop x ctype iff

for all a with x ap

it holds that a dtype
Weightless

Weightless
all

has partprop

Has Value c
yvalue

p
prop x ctype iff x yp ChileanCitizen

Chilevalue

nationalityprop

Has Self c
true

self

p
prop x ctype iff x xp SelfDriving

trueself

driverprop

Cardinality

⋆ ∈ {=, ≤, ≥}
c

n
⋆

p
prop x ctype iff

. #{ a | x ap } ⋆ n
Polyglot

2
≥

fluentprop

Qualified

Cardinality

⋆ ∈ {=, ≤, ≥}

c dclass

n
⋆

p
prop x ctype iff

. #{ a | x ap dtype } ⋆ n
BinaryStarSystem Starclass

2

=

body
prop

3.2.2 Entailment. We say that one graph entails another if and only if any model of the former

graph is also a model of the latter graph [7]. Intuitively this means that the latter graph says

nothing new over the former graph and thus holds as a logical consequence of the former graph. For

example, consider the graph Santiago Citytype Placesubc. of and the graph Santiago Placetype . All

models of the latter must have that Santiago Placetype , but so must all models of the former, which

must have Santiago Citytype Placesubc. of and further must satisfy the condition for Subclass,

which requires that Santiago Placetype also hold. Hence we conclude that any model of the former

graph must be a model of the latter graph, and thus the former graph entails the latter graph.

3.3 Reasoning
Given two graphs, deciding if the first entails the second – per all of the features in Tables 2–4

– is undecidable: no (finite) algorithm for such entailment can exist that halts on all inputs with

the correct true/false answer [53]. However, we can provide practical reasoning algorithms for

ontologies that (1) halt on any input ontology but may miss entailments, returning false instead
of true, (2) always halt with the correct answer but only accept input ontologies with restricted
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O : location
venue
city

chain FestivalFood Festival subc. of Drinks Festivalsubc. of

O(Q) :
( ?festival Festivaltype ∪ ?festival Food Festivaltype ∪ ?festival Drinks Festivaltype )

Z ( ?festival Santiagolocation ∪ ?festival ?xvenue Santiagocity ) Z ?festival ?namename

Fig. 13. Query rewriting example for the query Q of Figure 12

features, or (3) only return correct answers for any input ontology but may never halt on certain

inputs. Though option (3) has been explored using, e.g., theorem provers for First Order Logic [119],

options (1) and (2) are more commonly pursued using rules and/or Description Logics. Option (1)

often allows for more efficient and scalable reasoning algorithms and is useful where data are

incomplete and having some entailments is valuable. Option (2) may be a better choice in domains

– such as medical ontologies – where missing entailments may have undesirable outcomes.

3.3.1 Rules. A straightforward way to implement reasoning is through inference rules (or simply

rules), composed of a body (if) and a head (then). Both the body and head are given as graph

patterns. A rule indicates that if we can replace the variables of the body with terms from the data

graph and form a subgraph of a given data graph, then using the same replacement of variables

in the head will yield a valid entailment. The head must typically use a subset of the variables

appearing in the body to ensure that the conclusion leaves no variables unreplaced. Rules of this

form correspond to (positive) Datalog in databases, Horn clauses in logic programming, etc.

Rules can be used to capture entailments under ontological conditions. Here we provide an

example of two rules for capturing some of the entailments valid for Subclass:

?x ?ctype ?dsubc. of ⇒ ?x ?dtype

?c ?dsubc. of ?esubc. of ⇒ ?c ?esubc. of

A comprehensive set of rules for OWL have been standardised as OWL 2 RL/RDF [87]. These

rules are, however, incomplete as such rules cannot fully capture negation (e.g., Complement),

existentials (e.g., Some Values), universals (e.g., All Values), or counting (e.g., Cardinality and

Qualified Cardinality). Other rule languages can, however, support additional such features,

including existentials (see, e.g., Datalog
±
[12]), disjunction (see, e.g., Disjunctive Datalog [113]), etc.

Rules can be used for reasoning in a number of ways.Materialisation applies rules recursively to a

graph, adding entailments back to the graph until nothing new can be added. The materialised graph

can then be treated as any other graph; however the materialised graph may become unfeasibly

large to manage. Another strategy is to use rules for query rewriting, which extends an input query

in order to find entailed solutions. Figure 13 provides an example ontology whose rules are used to

rewrite the query of Figure 12; if evaluated over the graph of Figure 1, Ñam will be returned as a

solution. While not all ontological features can be supported in this manner, query rewriting is

sufficient to support complete reasoning over lightweight ontology languages [87].

While rules can be used to (partially) capture ontological entailments, they can also be defined

independently of an ontology, capturing entailments for a given domain. In fact, some rules – such

as the following – cannot be emulated with the ontology features previously seen, as they do not

support ways to infer binary relations from cyclical graph patterns (for computability reasons):

?x ?yflight ?z

country
country ⇒ ?x ?ydomestic flight

Various languages allow for expressing rules over graphs (possibly alongside ontological definitions)

including: Rule Interchange Format (RIF) [70], Semantic Web Rule Language [59], etc.
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3.3.2 Description Logics. Description Logics (DLs) hold an important place in the logical formali-

sation of knowledge graphs: they were initially introduced as a way to formalise the meaning of

frames [85] and semantic networks [107] (which can be seen as predecessors of knowledge graphs)

and also heavily influenced OWL. DLs are a family of logics rather than a particular logic. Initially,

DLs were restricted fragments of First Order Logic (FOL) that permit decidable reasoning tasks,

such as entailment checking [7]. DLs would later be extended with useful features for modelling

graph data that go beyond FOL, such as transitive closure, datatypes, etc. Different DLs strike

different balances between expressive power and the computational complexity of reasoning.

DLs are based on three types of elements: individuals, such as Santiago; classes (aka concepts) such
as City; and properties (aka roles) such as flight. DLs then allow for making claims, known as axioms,

about these elements. Assertional axioms can be either unary class relations on individuals, such as

City(Santiago), or binary property relations on individuals, such as flight(Santiago,Arica). Such axioms

form the Assertional Box (A-Box). DLs further introduce logical symbols to allow for defining class

axioms (forming the Terminology Box, or T-Box for short), and property axioms (forming the Role

Box, or R-Box); for example, the class axiom City ⊑ Place states that the former class is a subclass

of the latter one, while the property axiom flight ⊑ connectsTo states that the former property is

a subproperty of the latter one. DLs also allow for defining classes based on existing terms; for

example, we can define a class ∃nearby.Airport as the class of individuals that have some airport(s)

nearby. Noting that the symbol ⊤ is used in DLs to denote the class of all individuals, we can then

add a class axiom ∃flight.⊤ ⊑ ∃nearby.Airport to state that individuals with an outgoing flight must

have some airport nearby. Noting that the symbol ⊔ can be used in DL to define that a class is the

union of other classes, we can further define that Airport ⊑ DomesticAirport ⊔ InternationalAirport,
i.e., that an airport is either a domestic airport or an international airport (or both).

The similarities between DLs and OWL are not coincidental: the OWL standard was heavily

influenced by DLs, where the OWL 2 DL language is a restricted fragment of OWL with decidable

entailment. To exemplify one such restriction, with DomesticAirport ⊑ =1 destination ◦ country.⊤
we can define in DL syntax that domestic airports have flights destined to precisely one country

(where p ◦ q denotes a chain of properties). However, counting chains is often disallowed in DLs to

ensure decidability. For further reading, we refer to the textbook by Baader et al. [7].

Expressive DLs support complex entailments involving existentials, universals, counting, etc.

A common strategy for deciding such entailments is to reduce entailment to satisfiability, which

decides if an ontology is consistent or not.
5
Thereafter methods such as tableau can be used to

check satisfiability, cautiously constructing models by completing them along similar lines to the

materialisation strategy previously described, but additionally branching models in the case of

disjunction, introducing new elements to represent existentials, etc. If any model is successfully

“completed”, the process concludes that the original definitions are satisfiable (see, e.g., [88]). Due to

their prohibitive computational complexity [87], such reasoning strategies are not typically applied

to large-scale data, but may be useful when modelling complex domains.

4 INDUCTIVE KNOWLEDGE
Inductive reasoning generalises patterns from input observations, which are used to generate

novel but potentially imprecise predictions. For example, from a graph with geographical and

flight information, we may observe that almost all capital cities of countries have international

airports serving them, and hence predict that since Santiago is a capital city, it likely has an

international airport serving it; however, some capitals (e.g., Vaduz) do not have international

airports. Predictions may thus have a level of confidence; for example, if we see that 187 of 195

5G entails G′
if and only if G ∪ not(G′) is not satisfiable.
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capitals have an international airport, we may assign a confidence of 0.959 for predictions made

with that pattern. We then refer to knowledge acquired inductively as inductive knowledge, which

includes both the models that encode patterns, and the predictions made by those models.

Inductive knowledge can be acquired from graphs using supervised or unsupervised methods.

Supervised methods learn a function (aka model) to map a set of example inputs to their labelled

outputs; the model can then be applied to unlabelled inputs. To avoid costly labelling, some

supervised methods can generate the input–output pairs automatically from the (unlabelled) input,

which are then fed into a supervised process to learn a model; herein we refer to this approach as

self-supervision. Alternatively, unsupervised processes do not require labelled input–output pairs,

but rather apply a predefined function (typically statistical in nature) to map inputs to outputs.

In Figure 14 we provide an overview of the inductive techniques typically applied to knowledge

graphs. In the case of unsupervised methods, there is a rich body of work on graph analytics,

wherein well-known algorithms are used to detect communities or clusters, find central nodes and

edges, etc., in a graph. Alternatively, knowledge graph embeddings use self-supervision to learn a

low-dimensional numerical model of elements of a knowledge graph. The structure of graphs can

also be directly leveraged for supervised learning through graph neural networks. Finally, symbolic

learning can learn symbolic models – i.e., logical formulae in the form of rules or axioms – from a

graph in a self-supervised manner. We now discuss each of the aforementioned techniques in turn.

4.1 Graph Analytics
Graph analytics is the application of analytical algorithms to (often large) graphs. Such algorithms

often analyse the topology of the graph, i.e., how nodes and groups thereof are connected. In this

section, we provide a brief overview of some popular graph algorithms applicable to knowledge

graphs, and then discuss graph processing frameworks onwhich such algorithms can be implemented.

4.1.1 Graph algorithms. A wide variety of graph algorithms can be applied for analytical purposes,

where we briefly introduce five categories of algorithms that are often used in practice [62].

First, centrality analysis aims to identify the most important (“central”) nodes or edges of a graph.

Specific node centrality measures include degree, betweenness, closeness, Eigenvector, PageRank,

HITS, Katz, among others. Betweenness centrality can also be applied to edges. A node centrality
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measure would allow, e.g., to predict the busiest transport hubs in Figure 15, while edge centrality

would allow us to find the edges on which many shortest routes depend for predicting traffic.

Second, community detection aims to identify sub-graphs that are more densely connected

internally than to the rest of the graph (aka. communities). Community detection algorithms include

minimum-cut algorithms, label propagation, Louvain modularity, etc. Community detection applied

to Figure 15 may, for example, detect a community to the left (referring to the north of Chile), to the

right (referring to the south of Chile), and perhaps also the centre (referring to cities with airports).

Third, connectivity analysis aims to estimate how well-connected and resilient the graph is.

Specific techniques include measuring graph density or k-connectivity, detecting strongly connected

components and weakly connected components, computing spanning trees or minimum cuts, etc. In

the context of Figure 15, such analysis may tell us that routes to Grey Glacier and Piedras Rojas are the

most “brittle”, becoming disconnected from the main hubs if one of two bus routes fail.
Fourth, node similarity aims to find nodes that are similar to other nodes by virtue of how they are

connected within their neighbourhood. Node similarity metrics may be computed using structural

equivalence, random walks, diffusion kernels, etc. These methods provide an understanding of what

connects nodes, and in what ways they are similar. In Figure 15, such analysis may tell us that

Calama and Arica are similar nodes as both have return flights to Santiago and return buses to San Pedro .

Fifth, graph summarisation aims to extract high-level structures from a graph, often based on

quotient graphs, where nodes in the input graph are merged while preserving the edges between the

input nodes [21, 57]. Such methods help to provide an overview for a large-scale graph. Figure 16

provides an example of a quotient graph that summarises the graph of Figure 15, such that if there

is an edge s op in the input graph, there is an edge S Op in the quotient graph with s ∈ S
and o ∈ O . In this case, quotient nodes are defined in terms of outgoing edge-labels, where we may

detect that they represent islands, cities, and towns/attractions, respectively, from left to right.

Many such techniques have been proposed and studied for simple graphs or directed graphs

without edge labels. An open research challenge in the context of knowledge graphs is to adapt such

algorithms for graph models such as del graphs, heterogeneous graphs and property graphs [15].

4.1.2 Graph processing frameworks. Various graph parallel frameworks have been proposed for

large-scale graph processing, including Apache Spark (GraphX) [26, 148], GraphLab [78], Pregel [80],

Signal–Collect [126], Shark [149], etc. Computation in these frameworks is iterative, where in each

iteration, each node reads messages received through inward edges (and possibly its own previous

state), performs a computation, and then sends messages through outward edges using the result.

To illustrate, assume we wish to compute the places that are most (or least) easily reached in the

graph of Figure 15. A good way to measure this is using centrality, where we choose PageRank [96],

which computes the probability of a tourist that randomly follows the routes shown in the graph

being at a particular place after a given number of “hops”. We can implement PageRank on large

graphs using a graph parallel framework. In Figure 17, we provide an example of an iteration of

PageRank for a sub-graph of Figure 15. The nodes are initialised with a score of
1

|V |
= 1

6 : a tourist
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Fig. 17. Example of a graph-parallel iteration of PageRank for a sample sub-graph of Figure 15

is assumed to have an equal chance of starting at any point. In the message phase (Msg), each node

v passes a score of
dRi (v )

|E(v )| on each of its outgoing edges, where we denote by d a “damping factor”

(typically d = 0.85) used to ensure convergence, by Ri (v) the score of node v in iteration i (the
probability of the tourist being at node v after i hops), and by |E(v)| the number of outgoing edges

of v . The aggregation phase (Agg) for v then sums all incoming messages along with its share of

the damping factor (
1−d
|V |

) to compute Ri+1(v). We then proceed to the message phase of the next

iteration, continuing until some termination criterion is reached and results are output.

While the given example is for PageRank, this abstraction is general enough to support a wide

variety of (though not all [150]) graph algorithms. An algorithm in this framework consists of the

functions to compute message values (Msg), and to accumulate messages (Agg). The framework

will then take care of distribution, message passing, fault tolerance, etc.

4.2 Knowledge Graph Embeddings
Machine learning can be used for directly refining a knowledge graph [100]; or for downstream

tasks using the knowledge graph, such as recommendation [155], information extraction [135],

question answering [60], query relaxation [139], query approximation [45], etc. However, machine

learning techniques typically assume numeric representations (e.g., vectors), distinct from how

graphs are usually expressed. So how can graphs be encoded numerically for machine learning?

A first attempt to represent a graph using vectors would be to use a one-hot encoding, generating

a vector of length |L| · |V | for each node – with |V | the number of nodes in the input graph and |L|
the number of edge labels – placing a one at the corresponding index to indicate the existence of

the respective edge in the graph, or zero otherwise. Such a representation will, however, typically

result in large and sparse vectors, which will be detrimental for most machine learning models.

The main goal of knowledge graph embedding techniques is to create a dense representation of

the graph (i.e., embed the graph) in a continuous, low-dimensional vector space that can then be

used for machine learning tasks. The dimensionality d of the embedding is fixed and typically low

(often, e.g., 50 ≥ d ≥ 1000). Typically the graph embedding is composed of an entity embedding

for each node: a vector with d dimensions that we denote by e; and a relation embedding for each

edge label: (typically) a vector with O(d) dimensions that we denote by r. The overall goal of these
vectors is to abstract and preserve latent structures in the graph. There are many ways in which

this notion of an embedding can be instantiated. Most commonly, given an edge s op , a specific

embedding approach defines a scoring function that accepts es (the entity embedding of node s ), rp
(the relation embedding of edge label p) and eo (the entity embedding of node o ) and computes the

plausibility of the edge: how likely it is to be true. Given a data graph, the goal is then to compute

the embeddings of dimension d that maximise the plausibility of positive edges (typically edges in

the graph) and minimise the plausibility of negative examples (typically edges in the graph with a
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node or edge label changed such that they are no longer in the graph) according to the given scoring

function. The resulting embeddings can then be seen as models learnt through self-supervision

that encode (latent) features of the graph, mapping input edges to output plausibility scores.

Embeddings can then be used for a number of low-level tasks. The plausibility scoring function

can be used to assign confidence to edges (possibly extracted from an external source), or to

complete edges with missing nodes/edge labels (aka. link prediction). Additionally, embeddings will

typically assign similar vectors to similar terms, and can thus be used for similarity measures.

A wide range of knowledge graph embedding techniques have been proposed [140], where we

summarise the most prominent. First we discuss translational models where relations are seen as

translating subject entities to object entities. We then describe tensor decomposition models that

extract latent factors approximating the graph’s structure. Thereafter we discuss neural models based

on neural networks. Finally, we discuss language models based on word embedding techniques.

4.2.1 Translational models. Translational models interpret edge labels as transformations from

subject nodes (aka the source or head) to object nodes (aka the target or tail); for example, in the

edge San Pedro Moon Valleybus , the edge label bus is seen as transforming San Pedro to Moon Valley , and

likewise for other bus edges. A seminal approach is TransE [17]. Over all positive edges s op ,

TransE learns vectors es, rp, and eo aiming to make es + rp as close as possible to eo. Conversely,
if the edge is negative, TransE attempts to learn a representation that keeps es + rp away from

eo. Figure 18 provides a toy example of two-dimensional (d = 2) entity and relation embeddings

computed by TransE. We keep the orientation of the vectors similar to the original graph for clarity.

For any edge s op in the original graph, adding the vectors es+ rp should approximate eo. In this

toy example, the vectors correspond precisely where, for instance, adding the vectors for Licantén

(eL.) and west of (rwo.) gives a vector corresponding to Curico (eC.). We can use these embeddings to

predict edges (among other tasks); for example, in order to predict which node in the graph is most

likely to be west of Antofagasta (A.), by computing eA. + rwo. we find that the resulting vector (dotted

in Figure 18c) is closest to eT., thus predicting Toconao (T.) to be the most plausible such node.

Aside from this toy example, TransE can be too simplistic; for example, in Figure 15, bus not
only transforms San Pedro to Moon Valley , but also to Arica and Calama , where TransE will try to give

similar vectors to all target locations, which may not be feasible given other edges. To resolve

such issues, many variants of TransE have been investigated, typically using a distinct hyperplane

(e.g., TransH [144]) or vector space (e.g., TransR [77], TransD [64]) for each type of relation.

Recently, RotatE [130] proposes translational embeddings in complex space, which allows to

capture more characteristics of relations, such as direction, symmetry, inversion, antisymmetry,

and composition. Embeddings have also been proposed in non-Euclidean space; e.g., MuRP [9] uses

relation embeddings that transform entity embeddings in the hyperbolic space of the Poincaré ball

mode, whose curvature provides more “space” to separate entities with respect to the dimensionality.
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4.2.2 Tensor decomposition models. A second approach to derive graph embeddings is to apply

methods based on tensor decomposition. A tensor is a multidimensional numeric field that generalises

scalars (0-order tensors), vectors (1-order tensors) and matrices (2-order tensors) towards arbitrary

dimension/order. Tensor decomposition involves decomposing a tensor into more “elemental”

tensors (e.g., of lower order) from which the original tensor can be recomposed (or approximated)

by a fixed sequence of basic operations. These elemental tensors can be seen as capturing latent

factors in the original tensor. There are many approaches to tensor decomposition, where we will

now briefly introduce the main ideas behind rank decompositions [108].

Leaving aside graphs, consider an (a × b)-matrix (i.e., a 2-order tensor) C, where each element

(C)i j denotes the average temperature of the ith city of Chile in the jth month of the year. Since

Chile is a long, thin country – ranging from subpolar to desert climates – we may decompose C
into two vectors representing latent factors – x (with a elements) giving lower values for cities with

lower latitude, and y (with b elements), giving lower values for months with lower temperatures

– such that computing the outer product
6
of the two vectors approximates C reasonably well:

x ⊗ y ≈ C. If there exist x and y such that x ⊗ y = C, we call C a rank-1 matrix. Otherwise, the

rank r of C is the minimum number of rank-1 matrices we need to sum to get precisely C, i.e.,
x1 ⊗ y1 + . . . xr ⊗ yr = C. In the temperature example, x2 ⊗ y2 might correspond to a correction for

altitude, x3 ⊗ y3 for higher temperature variance further south, etc. A (low) rank decomposition

of a matrix then sets a limit d on the rank and computes the vectors (x1, y1, . . . , xd , yd ) such that

x1 ⊗ y1 + . . . + xd ⊗ yd gives the best d-rank approximation of C. Noting that to generate n-order
tensors we need to compute the outer product of n vectors, we can generalise this idea towards low

rank decomposition of tensors; this method is called Canonical Polyadic (CP) decomposition [51].

To compute knowledge graph embeddings with such techniques, a graph can be encoded as a one-

hot 3-order tensor G with |V | × |L| × |V | elements, where the element (G)i jk = 1 if the ith node links

to the k th node with the jth edge label (otherwise (G)i jk = 0). A CP decomposition [51] can compute

a sequence of vectors (x1, y1, z1, . . . , xd , yd , zd ) such that x1 ⊗ y1 ⊗ z1 + . . . + xd ⊗ yd ⊗ zd ≈ G,

as illustrated in Figure 19. Letting X,Y,Z denote the matrices formed by

[
x1 · · · xd

]
,

[
y1 · · · yd

]
,[

z1 · · · zd
]
, respectively, with each vector forming a matrix column, we can extract the ith row of

Y as an embedding for the ith relation, and the jth rows of X and Z as two embeddings for the jth

entity. However, knowledge graph embeddings typically aim to assign one vector to each entity.

DistMult [152] is a seminal method for computing knowledge graph embeddings based on rank

decompositions, where each entity and relation is associated with a vector of dimension d , such

that for an edge s op , a plausibility scoring function

∑d
i=1(es)i (rp)i (eo)i is defined, where (es)i ,

(rp)i and (eo)i denote the ith elements of vectors es, rp, eo, respectively. The goal, then, is to learn

6
The outer product of two (column) vectors x of length a and y of length b , denoted x ⊗ y, is defined as xyT, yielding an
(a × b)-matrixM such that (M)i j = (x)i · (y)j . Analogously, the outer product of k vectors is a k-order tensor.
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vectors for each node and edge label that maximise the plausibility of positive edges and minimise

the plausibility of negative edges. This approach equates to a CP decomposition of the graph tensor

G, but where entities have one vector that is used twice: x1 ⊗ y1 ⊗ x1 + . . . + xd ⊗ yd ⊗ xd ≈ G. A

weakness of this approach is that per the scoring function, the plausibility of s op will always

be equal to that of o sp ; in other words, DistMult does not capture edge direction.

Rather than use a vector as a relation embedding, RESCAL [93] uses a matrix, which allows

for combining values from es and eo across all dimensions, and thus can capture (e.g.) edge direc-

tion. However, RESCAL incurs a higher cost in terms of space and time than DistMult. Recently,

ComplEx [132] and HolE [92] both use vectors for relation and entity embeddings, but ComplEx

uses complex vectors, while HolE uses a circular correlation operator (on reals) [57] in order to

capture edge-direction. SimplE [68] proposes to compute a standard CP decomposition, averaging

terms across X, Y, Z to compute the final plausibility scores. TuckER [10] employs a different

type of decomposition – called a Tucker Decomposition [133], which computes a smaller “core”

tensor T and a sequence of three matrices A, B and C, such that G ≈ T ⊗ A ⊗ B ⊗ C – where

entity embeddings are taken from A and C, while relation embeddings are taken from B. Of these
approaches, TuckER [10] currently provides state-of-the-art results on standard benchmarks.

4.2.3 Neural models. A number of approaches rather use neural networks in order to learn knowl-

edge graph embeddings with non-linear scoring functions for plausibility.

An early neural model was Semantic Matching Energy (SME) [41], which learns parameters

(aka weights: w, w′
) for two functions – fw(es, rp) and дw′(eo, rp) – such that the dot product of

the result of both functions gives the plausibility score. Both linear and bilinear variants of fw
and дw′ are proposed. Another early proposal was Neural Tensor Networks (NTN) [123], which

maintains a tensorW of weights and computes plausibility scores by combining the outer product

es ⊗W⊗ eo with rp and a standard neural layer over es and eo. The tensorW yields a high number

of parameters, limiting scalability [140]. Multi Layer Perceptron (MLP) [31] is a simpler model,

where es, rp and eo are concatenated and fed into a hidden layer to compute the plausibility score.

More recent models use convolutional kernels. ConvE [29] generates a matrix from es and rp
by “wrapping” each vector over several rows and concatenating both matrices, over which (2D)

convolutional layers generate the embeddings. A disadvantage is that wrapping vectors imposes

an arbitrary two-dimensional structure on the embeddings. HypER [8] also uses convolutions, but

avoids such wrapping by applying a fully connected layer (called the “hypernetwork”) to rp in order

to generate relation-specific convolutional filters through which the embeddings are generated.

The presented approaches strike different balances in terms of expressivity and the number of

parameters that need to be trained. While more expressive models, such as NTN, may better fit

more complex plausibility functions over lower dimensional embeddings by using more hidden

parameters, simplermodels, such as that proposed byDong et al. [31], and convolutional networks [8,

29] that enable parameter sharing by applying the same (typically small) kernels over different

regions of a matrix, require handling fewer parameters overall and are more scalable.

4.2.4 Language models. Embedding techniques were first explored as a way to represent natural

language within machine learning frameworks, with word2vec [83] and GloVe [102] being two

seminal approaches. Both approaches compute embeddings for words based on large corpora of

text such that words used in similar contexts (e.g., “frog”, “toad”) have similar vectors.

Approaches for language embeddings can be applied for graphs. However, while graphs consist

of an unordered set of sequences of three terms (i.e., a set of edges), text in natural language consists

of arbitrary-length sequences of terms (i.e., sentences of words). Along these lines, RDF2Vec [109]

performs biased random walks on the graph and records the paths traversed as “sentences”, which

are then fed as input into the word2vec [83] model. An example of such a path extracted from
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Figure 15 might be, for example, San Pedro Calamabus Iquiqueflight Santiagoflight ; the paper experi-

ments with 500 paths of length 8 per entity. RDF2Vec also proposes a second mode where sequences

are generated for nodes from canonically-labelled sub-trees of which they are a root node, where the

paper experiments with sub-trees of depth 1 and 2. Conversely, KGloVe [22] is based on the GloVe

model. Much like how the original GloVe model [102] considers words that co-occur frequently in

windows of text to be more related, KGloVe uses personalised PageRank to determine the most

related nodes to a given node, whose results are then fed into the GloVe model.

4.2.5 Entailment-aware models. The embeddings thus far consider the data graph alone. But what

if an ontology or set of rules is provided? One may first consider using constraint rules to refine the

predictions made by embeddings. Wang et al. [141] use functional and inverse-functional definitions

as constraints (under UNA); for example, if we define that an event can have at most one value for

venue, the plausibility of edges that would assign multiple venues to an event is lowered.

More recent approaches rather propose joint embeddings that consider both the data graph and

rules. KALE [43] computes entity and relation embeddings using a translational model (specifically

TransE) that is adapted to further consider rules using t-norm fuzzy logics. With reference to

Figure 15, consider a simple rule ?x ?ybus ⇒ ?x ?yconnects to . We can use embeddings to assign

plausibility scores to new edges, such as e1: Piedras Rojas Moon Valleybus . We can further apply the

previous rule to generate a new edge e2: Piedras Rojas Moon Valleyconnects to from the predicted edge e1.
But what plausibility should we assign to e2? Letting p1 and p2 be the current plausibility scores

of e1 and e2 (initialised using the standard embedding), then t-norm fuzzy logics suggests that

the plausibility be updated as p1p2 − p1 + 1. Embeddings are then trained to jointly assign larger

plausibility scores to positive examples of both edges and ground rules, i.e., rules with variables

replaced by constants from the graph, such as Arica San Pedrobus ⇒ Arica San Pedroconnects to .

Generating ground rules can be costly. An alternative approach, adopted by FSL [28], observes

that in the case of a simple rule, such as ?x ?ybus ⇒ ?x ?yconnects to , the relation embedding

bus should always return a lower plausibility than connects to. Thus, for all such rules, FSL pro-

poses to train relation embeddings while avoiding violations of such inequalities. While relatively

straightforward, FSL only supports simple rules, while KALE also supports more complex rules.

4.3 Graph Neural Networks
Rather than compute numerical representations for graphs, an alternative is to define custom ma-

chine learning architectures for graphs. Most such architectures are based on neural networks [145]

given that a neural network is already a directed weighted graph, where nodes serve as artificial

neurons, and edges serve as weighted connections (axons). However, the topology of a traditional

(fully-connected feed-forward) neural network is quite homogeneous, having sequential layers of

fully-connected nodes. Conversely, the topology of a data graph is typically more heterogeneous.

A graph neural network (GNN) [117] is a neural network where nodes are connected to their

neighbours in the data graph. Unlike embeddings, GNNs support end-to-end supervised learning for

specific tasks: given a set of labelled examples, GNNs can be used to classify elements of the graph

or the graph itself. GNNs have been used to perform classification over graphs encoding compounds,

objects in images, documents, etc.; as well as to predict traffic, build recommender systems, verify

software, etc. [145]. Given labelled examples, GNNs can even replace graph algorithms; for example,

GNNs have been used to find central nodes in knowledge graphs in a supervisedmanner [98, 99, 117].

We now introduce two flavours of GNNs: recursive and convolutional.

4.3.1 Recursive graph neural networks. Recursive graph neural networks (RecGNNs) are the sem-

inal approach to graph neural networks [117, 124]. The approach is conceptually similar to the
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Fig. 20. Illustration of information flowing between neighbours in a RecGNN

abstraction illustrated in Figure 17, where messages are passed between neighbours towards re-

cursively computing some result. However, rather than define the functions used to decide the

messages to pass, we rather give labelled examples and let the framework learn the functions.

In a seminal paper, Scarselli et al. [117] proposed what they generically call a graph neural

network (GNN), which takes as input a directed graph where nodes and edges are associated

with static feature vectors that can capture node and edge labels, weights, etc. Each node in the

graph also has a state vector, which is recursively updated based on information from the node’s

neighbours – i.e., the feature and state vectors of the neighbouring nodes and edges – using a

parametric transition function. A parametric output function then computes the final output for a

node based on its own feature and state vector. These functions are applied recursively up to a

fixpoint. Both parametric functions can be learned using neural networks given a partial set of

labelled nodes in the graph. The result can thus be seen as a recursive (or even recurrent) neural

network architecture. To ensure convergence up to a fixpoint, the functions must be contractors,

meaning that upon each application, points in the numeric space are brought closer together.

To illustrate, assume that we wish to identify new locations needing tourist information offices.

In Figure 20 we illustrate the GNN architecture proposed by Scarselli et al. [117] for a sub-graph of

Figure 15, where we highlight the neighbourhood of Punta Arenas . In this graph, nodes are annotated

with feature vectors (nx ) and hidden states at step t (h(t )x ), while edges are annotated with feature

vectors (axy ). Feature vectors for nodes may, for example, one-hot encode the type of node (City,

Attraction, etc.), directly encode statistics such as the number of tourists visiting per year, etc. Feature

vectors for edges may, for example, one-hot encode the edge label (i.e., the type of transport), directly

encode statistics such as the distance or number of tickets sold per year, etc. Hidden states can

be randomly initialised. The right-hand side of Figure 20 provides the GNN transition and output

functions, where N(x) denotes the neighbouring nodes of x , fw(·) denotes the transition function

with parameters w, and дw′(·) denotes the output function with parameters w′
. An example is also

provided for Punta Arenas (x = 1). These functions will be recursively applied until a fixpoint is

reached. To train the network, we can label examples of places that already have tourist offices

and places that do not have tourist offices. These labels may be taken from the knowledge graph,

or may be added manually. The GNN can then learn parameters w and w′
that give the expected

output for the labelled examples, which can subsequently applied to label other nodes.

4.3.2 Convolutional graph neural networks. Convolutional neural networks (CNNs) have gained a

lot of attention, in particular, for machine learning tasks involving images [73]. The core idea in

the image setting is to apply small kernels (aka filters) over localised regions of an image using a

convolution operator to extract features from that local region. When applied to all local regions,

the convolution outputs a feature map of the image. Multiple kernels are typically applied, forming

multiple convolutional layers. These kernels can be learnt, given sufficient labelled examples.
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Fig. 21. An incomplete del graph describing flights between airports

Both GNNs and CNNs work over local regions of the input data: GNNs operate over a node

and its neighbours in the graph, while (in the case of images) CNNs operate over a pixel and its

neighbours in the image. Following this intuition, a number of convolutional graph neural networks

(ConvGNNs) [145] – aka. graph convolutional networks (GCNs) [71] – have been proposed, where the

transition function is implemented by means of convolutions. A benefit of CNNs is that the same

kernel can be applied over all the regions of an image, but this creates a challenge for ConvGNNs

since – unlike in the case of images, where pixels have a predictable number of neighbours –

the neighbourhoods of different nodes in a graph can be diverse. Approaches to address these

challenges involve working with spectral (e.g. [19, 71]) or spatial (e.g., [86]) representations of

graphs that induce a more regular structure from the graph. An alternative is to use an attention

mechanism [136] to learn the nodes whose features are most important to the current node.

Aside from architectural considerations, there are two main differences between RecGNNs and

ConvGNNs. First, RecGNNs aggregate information from neighbours recursively up to a fixpoint,

whereas ConvGNNs typically apply a fixed number of convolutional layers. Second, RecGNNs

typically use the same function/parameters in uniform steps, while different convolutional layers

of a ConvGNN can apply different kernels/weights at each distinct step.

4.4 Symbolic Learning
The supervised techniques discussed thus far learn numerical models that are hard to interpret;

for example, taking the graph of Figure 21, knowledge graph embeddings might predict the edge

SCL ARIflight as being highly plausible, but the reason lies implicit in a complex matrix of learnt

parameters. Embeddings further suffer from the out-of-vocabulary problem, where they are often

unable to provide results for inputs involving previously unseen nodes or edge-labels. An alternative

is to use symbolic learning to learn hypotheses in a logical (symbolic) language that “explain” sets of

positive and negative edges. Such hypotheses are interpretable; furthermore, they are quantified

(e.g., “all airports are domestic or international”), partially addressing the out-of-vocabulary issue.

In this section, we discuss two forms of symbolic learning for knowledge graphs: rule mining for

learning rules, and axiom mining for learning other forms of logical axioms.

4.4.1 Rule mining. Rule mining, in the general sense, refers to discovering meaningful patterns

in the form of rules from large collections of background knowledge. In the context of knowl-

edge graphs, we assume a set of positive and negative edges as given. The goal of rule min-

ing is to identify new rules that entail a high ratio of positive edges from other positive edges,

but entail a low ratio of negative edges from positive edges. The types of rules considered may

vary from more simple cases, such as ?x ?yflight ⇒ ?y ?xflight , to more complex rules, such

ACM Comput. Surv., Vol. X, No. X, Article XX. Publication date: March 2021.



XX:28 Hogan et al.

as ?x ?ycapital ?znearby Airporttype ⇒ ?z International Airporttype , indicating that airports near

capitals tend to be international airports; or ?x ?yflight ?z

country
country ⇒ ?x ?ydomestic flight , indi-

cating that flights within the same country denote domestic flights (as seen in Section 3.3.1).

Per the international airport example, rules are not assumed to hold in all cases, but rather are

associated with measures of how well they conform to the positive and negative edges. In more

detail, we call the edges entailed by a rule and the set of positive edges (not including the entailed

edge itself), the positive entailments of that rule. The number of entailments that are positive is

called the support for the rule, while the ratio of a rule’s entailments that are positive is called the

confidence for the rule [127]. The goal is to find rules with both high support and confidence.

While similar tasks have been explored for relational settings with Inductive Logic Program-

ming (ILP) [27], when dealing with an incomplete knowledge graph (under OWA), it is not immedi-

ately clear how to define negative edges. A common heuristic is to adopt a Partial Completeness As-

sumption (PCA) [36], which considers the set of positive edges to be those contained in the data graph,

and the set of negative examples to be the set of all edges x y′p not in the graph but where there ex-

ists a node y such that x yp is in the graph. Taking Figure 21, SCL ARIflight is a negative edge

under PCA (given the presence of SCL LIMflight ); conversely, SCL ARIdomestic flight is neither pos-

itive nor negative. Under PCA, the support for the rule ?x ?ydomestic flight ⇒ ?y ?xdomestic flight

is then 2 (since it entails IQQ ARIdomestic flight and ARI IQQdomestic flight in the graph), while the

confidence is
2

2
= 1 (noting that SCL ARIdomestic flight , though entailed, is neither positive nor

negative, and is thus ignored by the measure). The support for the rule ?x ?yflight ⇒ ?y ?xflight

is analogously 4, while the confidence is
4

5
= 0.8 (noting that SCL ARIflight is negative).

An influential rule-mining system for graphs is AMIE [36, 37], which adopts the PCA mea-

sure of confidence, and builds rules in a top-down fashion [127] starting with rule heads of the

form ⇒ ?x ?ycountry for each edge label. For each such rule head, three types of refinements

are considered, which add an edge with: (1) one existing variable and one fresh variable; for ex-

ample, refining the aforementioned rule head might give: ?z ?xflight ⇒ ?x ?ycountry ; (2) an

existing variable and a node from the graph; for example, refining the above rule might give:

?zDomestic Airport type ?xflight ⇒ ?x ?ycountry ; (3) two existing variables; for example, refin-

ing the above rule might give: ?zDomestic Airport type ?xflight ?y

country
⇒ ?x ?ycountry . Combining

refinements gives rise to an exponential search space that can be pruned. First, if a rule does not

meet the support threshold, its refinements need not be explored as refinements (1–3) reduce

support. Second, only rules up to fixed size are considered. Third, refinement (3) is applied until a

rule is closed, meaning that each variable appears in at least two edges of the rule (including the

head); the previous rules produced by refinements (1) and (2) are not closed since y appears once.

Later works have built on these techniques for mining rules from knowledge graphs. Gad-Elrab

et al. [35] propose a method to learn non-monotonic rules – rules with negated edges in the

body – in order to capture exceptions to base rules; for example, the approach may learn a rule

?zInternational Airport ¬ type ?xflight ?y

country
⇒ ?x ?ycountry , indicating that flights are within the

same country except when the (departure) airport is international (the exception is dotted and ¬ is

used to negate an edge). The RuLES system [54] also learns non-monotonic rules, and extends the

confidence measure to consider the plausibility scores of knowledge graph embeddings for entailed

edges not appearing in the graph. In lieu of PCA, the CARL system [101] uses knowledge of the

cardinalities of relations to find negative edges, while d’Amato et al. [25] use ontologically-entailed

negative edges for measuring the confidence of rules generated by an evolutionary algorithm.

Another line of research is on differentiable rule mining [111, 116, 153], which enables end-to-end

learning of rules by using matrix multiplication to encode joins in rule bodies. First consider
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one-hot encoding edges with label p by an adjacency matrix Ap of size |V | × |V |. Now given

?x ?ydomestic flight ?zcountry ⇒ ?x ?zcountry , we can denote the body by the matrix multipli-

cation Adf.Ac., which gives an adjacency matrix representing entailed country edges, where we

expect the 1’s in Adf.Ac. to be covered by the head’s adjacency matrix Ac.. Given adjacency ma-

trices for all edge labels, we are left to learn confidence scores for individual rules, and to learn

rules (of varying length) with a threshold confidence. Along these lines, NeuralLP [153] uses an

attention mechanism to find variable-length sequences of edge labels for path-like rules of the

form ?x ?y1p1 . . .p2 ?ynpn ?zpn+1 ⇒ ?x ?zp , for which confidences are likewise learnt.

DRUM [116] also learns path-like rules, where, observing that some edge labels are more/less likely

to follow others – for example, flight should not be followed by capital in the graph of Figure 15 as

the join will be empty – the system uses bidirectional recurrent neural networks (a technique for

learning over sequential data) to learn sequences of relations for rules. These differentiable rule

mining techniques are, however, currently limited to learning path-like rules.

4.4.2 Axiom mining. Aside from rules, more general forms of axioms – expressed in logical

languages such as DLs (see Section 3.3.2) – can be mined from a knowledge graph. We can divide

these approaches into two categories: those mining specific axioms and more general axioms.

Among works mining specific types of axioms, disjointness axioms are a popular target; for ex-

ample, the disjointness axiom DomesticAirport ⊓ InternationalAirport ≡ ⊥ states that the intersection

of the two classes is equivalent to the empty class, i.e., no individual can be instances of both classes.

Völker et al. [137] extract disjointness axioms based on (negative) association rule mining [1], which

finds pairs of classes where each has many instances in the knowledge graph but there are relatively

few (or no) instances of both classes. Töpper et al. [131] rather extract disjointness for pairs of

classes that have a cosine similarity – computed over the nodes and edge-labels associated with a

given class – below a fixed threshold. Rizzo et al. [110] propose an approach that can further capture

disjointness constraints between class descriptions (e.g., city without an airport nearby is disjoint

from city that is the capital of a country) using a terminological cluster tree that first extracts class

descriptions from clusters of similar nodes, and then identifies disjoint pairs of class descriptions.

Other systems propose methods to learn more general axioms. A prominent such system is

DL-Learner [20], which is based on algorithms for class learning (aka concept learning), whereby

given a set of positive nodes and negative nodes, the goal is to find a logical class description that

divides the positive and negative sets. For example, given { Iquique , Arica } as the positive set and

{ Santiago } as the negative set, we may learn a (DL) class description ∃nearby.Airport⊓¬(∃capital−.⊤),
denoting entities near to an airport that are not capitals, of which all positive nodes are instances

and no negative nodes are instances. Like AMIE, such class descriptions are discovered using a

refinement operator used to move from more general classes to more specific classes (and vice-

versa), a confidence scoring function, and a search strategy. The system further supports learning

more general axioms through a scoring function that determines what ratio of edges that would

be entailed were the axiom true are indeed found in the graph; for example, to score the axiom

∃flight−.DomesticAirport ⊑ InternationalAirport over Figure 21, we can use a graph query to count

how many nodes have incoming flights from a domestic airport (there are 3), and how many nodes

have incoming flights from a domestic airport and are international airports (there is 1), where the

greater the difference between both counts, the weaker the evidence for the axiom.

5 SUMMARY AND CONCLUSION
We have given a comprehensive introduction to knowledge graphs. Defining a knowledge graph as

a graph of data intended to accumulate and convey knowledge of the real world, whose nodes represent

entities of interest and whose edges represent potentially different relations between these entities, we
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have discussed models by which data can be structured, queried and validated as graphs; we also

discussed techniques for leveraging deductive and inductive knowledge over graphs.

Knowledge graphs serve as a common substrate of knowledge within an organisation or com-

munity, enabling the representation, accumulation, curation, and dissemination of knowledge over

time [95]. In this role, knowledge graphs have been applied for diverse use-cases, ranging from

commercial applications – involving semantic search, user recommendations, conversational agents,

targeted advertising, transport automation, etc. – to open knowledge graphs made available for the

public good [57]. General trends include: (1) the use of knowledge graphs to integrate and leverage

data from diverse sources at large scale; and (2) the combination of deductive (rules, ontologies, etc.)

and inductive techniques (machine learning, analytics, etc.) to represent and accumulate knowledge.

Future directions. Research on knowledge graphs can become a confluence of techniques from

different areas with the common objective of maximising the knowledge – and thus value – that

can be distilled from diverse sources at large scale using a graph-based data abstraction [56].

Particularly interesting topics for knowledge graphs arise from the intersections of areas. In

the intersection of data graphs and deductive knowledge, we emphasise emerging topics such

as formal semantics for property graphs, with languages that can take into account the meaning

of labels and property–value pairs on nodes and edges [74]; and reasoning and querying over

contextual data, in order to derive conclusions and results valid in a particular setting [58, 120, 156].

In the intersection of data graphs and inductive knowledge, we highlight topics such as similarity-

based query relaxation, allowing to find approximate answers to exact queries based on numerical

representations (e.g., embeddings) [139]; shape induction, in order to extract and formalise inherent

patterns in the knowledge graph as constraints [82]; and contextual knowledge graph embeddings that

provide numeric representations of nodes and edges that vary with time, place, etc. [67, 154]. Finally,

in the intersection of deductive and inductive knowledge, we mention the topics of entailment-aware

knowledge graph embeddings [28, 43], that incorporate rules and/or ontologies when computing

plausibility; expressive graph neural networks proven capable of complex classification analogous to

expressive ontology languages [11]; as well as further advances on rule and axiom mining, allowing

to extract symbolic, deductive representations from the knowledge graphs [20, 37].

Aside from specific topics, more general challenges for knowledge graphs include scalability,

particularly for deductive and inductive reasoning; quality, not only in terms of data, but also the

models induced from knowledge graphs; diversity, such as managing contextual or multi-modal

data; dynamicity, considering temporal or streaming data; and finally usability, which is key to

increasing adoption. Though techniques are continuously being proposed to address precisely these

challenges, they are unlikely to ever be completely “solved”; rather they serve as dimensions along

which knowledge graphs, and their techniques, tools, etc., will continue to mature.

Extended version and online material: We refer to the extended version [57] for discussion of further

topics relating to knowledge graphs and formal definitions. We provide concrete examples relating

to the paper in the following repository: https://github.com/knowledge-graphs-tutorial/examples.
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